
Lecture 6

Mortgages and loans

Reading: CT1 Core Reading Unit 8, McCutcheon-Scott Sections 3.7-3.8

As we indicated in the Introduction, interest-only and repayment loans are the formal
inverse cash-flows of securities and annuities. Therefore, most of the last lecture can be
reinterpreted for loans. We shall here only translate the most essential formulae and then
pass to specific questions and features arising in (repayment) loans and mortgages, e.g.
calculations of outstanding capital, proportions of interest/repayment, discount periods
and rates used to compare loans/mortgages.

6.1 Loan repayment schemes

Definition 46 A repayment scheme for a loan of L in the model δ(·) is a cash-flow

c = ((t1, X1), (t2, X2), . . . , (tn, Xn))

such that

L = Val0(c) =
n∑

k=1

v(tk)Xk =
n∑

k=1

e−
R tk
0

δ(t)dtXk. (1)

This ensures that, in the model given by δ(·), the loan is repaid after the nth payment
since it ensures that Val0((0,−L), c) = 0 so also Valt((0,−L), c) = 0 for all t.

Example 47 A bank lends you £1,000 at an effective interest rate of 8% p.a. initially,
but due to rise to 9% after the first year. You repay £400 both after the first and half
way through the second year and wish to repay the rest after the second year. How much
is the final payment? We want

1, 000 = 400v(1) + 400v(1.5) + Xv(2) =
400

1.08
+

400

(1.09)1/21.08
+

X

(1.09)(1.08)
,

which gives X = £323.59.

Example 48 Often, the payments Xk are constant (level payments) and the times tk are
are regularly spaced (so we can assume tk = k). So

L = Val0((1, X), (2, X), . . . , (n, X)) = X an| in the constant-i model.
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22 Lecture 6: Mortgages and loans

6.2 Loan outstanding, interest/capital components

The payments consist both of interest and repayment of the capital. The distinction can
be important e.g. for tax reasons. Earlier in term, there is more capital outstanding,
hence more interest payable, hence less capital repaid. In later payments, more capital
will be repaid, less interest. Each payment pays first for interest due, then repayment of
capital.

Example 48 (continued) Let n = 3, L = 1, 000 and assume a constant-i model with
i = 7%. Then

X = 1, 000/a3|7% = 1, 000/(2.624316) = 381.05.

Furthermore,

time 1 time 2 time 3
interest due 1, 000× 0.07 688.95 × 0.07 356.12 × 0.07

= 70 = 48.22 = 24.93
capital repaid 381.05 − 70 381.05 − 48.22 381.05 − 24.93

= 311.05 = 332.83 = 356.12
amount outstanding 1, 000 − 311.05 688.95 − 332.83 0

= 688.95 = 356.12

Let us return to the general case. In our example, we kept track of the amount outstanding
as an important quantity. In general, for a loan L in a δ(·)-model with payments c≤t =
((t1, X1), . . . , (tm, Xm)), the outstanding debt at time t is Lt such that

Valt((0,−L), c≤t, (t, Lt)) = 0,

i.e. a single payment of Lt would repay the debt.

Proposition 49 (Retrospective formula) Given L, δ(·), c≤t,

Lt = Valt((0, L)) − Valt(c≤t) = A(0, t)L −
m∑

k=1

A(tk, t)Xk.

Recall here that A(s, t) = e
R t

s
δ(r)dr.

Alternatively, for a given repayment scheme, we can also use the following prospective
formula.

Proposition 50 (Prospective formula) Given L, δ(·)) and a repayment scheme c,

Lt = Valt(c>t) =
1

v(t)

∑

k:tk>t

v(tk)Xk. (2)

Proof: Valt((0,−L), c≤t, (t, Lt)) = 0 and Valt((0,−L), c≤t, c>t) = 0 (since c is a repay-
ment scheme), so

Lt = Valt((t, Lt)) = Valt(c>t).
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Corollary 51 In a repayment scheme c = ((t1, X1), (t2, X2), . . . , (tn, Xn)), the jth pay-
ment consists of

Rj = Ltj−1
− Ltj

capital repayment and

Ij = Xj − Rj = Ltj−1
(A(tj−1, tj) − 1)

interest payment.

Note Ij represents the interest payable on a sum of Ltj−1
over the period (tj−1, t).

6.3 Fixed, capped and discount mortgages

In practice, the interest rate of a mortgage is rarely fixed for the whole term and the
lender has some freedom to change their Standard Variable Rate (SVR). Usually changes
are made in accordance with changes of the UK base rate fixed by the Bank of England.
However, there is often a special “initial period”:

Example 52 (Fixed period) For an initial 2-10 years, the interest rate is fixed, usually
below the current SVR, the shorter the period, the lower the rate.

Example 53 (Capped period) For an initial 2-5 years, the interest rate can fall par-
allel to the base rate or the SVR, but cannot rise above the initial level.

Example 54 (Discount period) For an initial 2-5 years, a certain discount on the
SVR is given. This discount may change according to a prescribed schedule.

Regular (e.g. monthly) payments are always calculated as if the current rate was valid
for the whole term (even if changes are known in advance). So e.g. a discount period
leads to lower initial payments. Any change in the interest rate leads to changes in the
monthly payments.

Initial advantages in interest rates are usually combined with early redemption penal-
ties that may or may not extend beyond the initial period (e.g. 6 months of interest on
the amount redeemed early).

Example 55 We continue Example 44 and consider the discount mortgage of £85,000
with interest rates of i1 = SVR − 2.96% = 2.99% in year 1, i2 = SVR − 1.76% = 4.19%
in year 2 and SVR of i3 = 5.95% for the remainder of a 20-year term; a £100 Product
Fee is added to the initial loan amount, a £25 Funds Transfer Fee is deducted from the
Net Amount provided to the borrower. Then the borrower receives £84, 975, but the
initial loan outstanding is L0 = 85, 100. With annual payments, the repayment scheme
is c = ((1, X), (2, Y ), (3, Z), . . . , (20, Z)), where

X =
L0

a20|2.99%

, Y =
L1

a19|4.19%

, Z =
L0

a18|5.95%

.
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With

a20|2.99% =
1 − (1.0299)−20

0.0299
= 14.89124 ⇒ X =

L0

a20|2.99%

= 5, 714.77,

we will have a loan outstanding of L1 = L0(1.0299) − X = 81, 929.72 and then

Y =
L1

a19|4.19%

= 6, 339.11, L2 = L1(1.0419)−Y = 79, 023.47, Z =
L0

a18|5.95%

= 7270.96.

With monthly payments, we can either repeat the above with 12X̃ = L0/a
(12)

20|2.99%
etc.

to get monthly payments ((1/12, X̃), (2/12, X̃), . . . , (11/12, X̃), (1, X̃)) for the first year
and then proceed as above. But, of course, L1 and L2 will be exactly as above, and we
can in fact replace parts of the repayment scheme c = ((1, X), (2, Y ), (3, Z), . . . , (20, Z))
by equivalent cash-flows, where equivalence means same discounted value. Using in each
case the appropriate interest rate in force at the time

• ((1, X)) is equivalent to ((1/12, X̃), . . . , (11/12, X̃), (1, X̃)) in the constant i1-model,

where 12X̃s
(12)

1|2.99%
= X, so X̃ = X/12s

(12)

1|2.99%
= 1

12
Xi

(12)
1 /i1 = 469.83.

• ((2, Y )) is equivalent to ((1 + 1/12, Ỹ ), . . . , (1 + 11/12, Ỹ ), (2, Ỹ )) in the constant

i2-model, where Ỹ = 1
12

Y i
(12)
2 /i2 = 518.38.

• ((k, Z)) is equivalent to ((k−11/12, Z̃), (k−10/12, Z̃), . . . , (k−1/12, Z̃), (k, Z̃)) in

the constant i3-model, where Z̃ = 1
12

Zi
(12)
3 /i3 = 589.99.

6.4 Comparison of mortgages

How can we compare deals, e.g. describe the “overall rate” of variable-rate mortgages?
A method that is still used sometimes, is the “flat rate”

F =
total interest

total term × initial loan
=

∑n
j=1 Ij

tnL
=

∑n
j=1 Xj − L

tnL
.

This is not a good method: we should think of interest paid on outstanding debt Lt, not
on all of L. E.g. loans of different terms but same constant rate have different flat rates.

A better method to use is the Annual Percentage Rate (APR) of Section 4.3.

Example 55 (continued) The Net Amount provided to the borrower is L = 84, 975,
so the flat rate with annual payments is

Fannual =
X + Y + 18Z − L

20 × L
= 3.41%,

while the yield is 5.445%, i.e. the APR is 5.4% – we calculated this in Example 44.
With monthly payments we obtain

Fmonthly =
12X̃ + 12Ỹ + 18 × 12Z̃ − L

20 × L
= 3.196%,

while the yield is 5.434%, i.e. the APR is still 5.4%.
The yield is also more stable under changes of payment frequency than the flat rate.



Lecture 7

Funds and weighted rates of return

Reading: CT1 Core Reading Unit 9, McCutcheon-Scott Sections 5.6-5.7

Funds are pools of money into which various people pay for various reasons, e.g. in-
vestment opportunities, reserves of pension schemes etc. A fund manager maintains a
portfolio of investment products (fixed-interest securities, equities, derivative products
etc.) adapting it to current market conditions, often under certain constraints, e.g. at
least some fixed proportion of fixed-interest securities or only certain types of equity
(“high-tech” stocks, or only “ethical” companies, etc.). In this lecture we investigate the
performance of funds from several different angles.

7.1 Money-weighted rate of return

Consider a fund, that is in practice a portfolio of asset holdings whose composition
changes over time. Suppose we look back at time T over the performance of the fund
during [0, T ]. Denote the value of the fund at any time t by F (t) for t ∈ [0, T ]. If no
money is added/withdrawn between times s and t, then the value changes from F (s) to
F (t) by an accumulation factor of A(s, t) = F (t)/F (s) that reflects the rate of return
i(s, t) such that A(s, t) = (1+i(s, t))t−s. In particular, the yield of the fund over the whole
time interval [0, T ] is then i(0, T ), the yield of the cash-flow ((0, F (0)), (T,−F (T ))).

Note that we do not specify the portfolio or any internal change in composition here.
This is up to a fund manager, we just assess the performance of the fund as reflected by its
value. If, however, there have been external changes, i.e. deposits/withdrawals in [0, T ],
then rates such as i(0, T ) in terms of F (0) and F (T ) as above, become meaningless. We
record such external changes in a cash-flow c. What rate of return did the fund achieve?

Definition 56 Let F (s) be the value of a fund at time s, c(s,t] the cash-flow describing
its in- and outflows during the time interval (s, t], and F (t) the fund value at time t. The
money-weighted rate of return MWRR(s, t) of the fund between times s and t is defined
to be the yield of the cash-flow

((s, F (s)), c(s,t], (t,−F (t))).

If the fund is an investment fund belonging to an investor, the money-weighted rate
of return is the yield of the investor.

25



26 Lecture 7: Funds and weighted rates of return

7.2 Time-weighted rate of return

Consider again a fund as in the last section, using the same notation. If no money is
added/withdrawn between times s and t, then i(s, t) reflects the yield achieved by the
fund manager purely by adjusting the portfolio to current market conditions. If the value
of the fund goes up or down at any time, this reflects purely the evolution of assets held
in the portfolio at that time, assets which were selected by the fund manager.

If there are deposits/withdrawals, they also affect the fund value, but are not under
the control of the fund manager. What rate of return did the fund manager achieve?

Definition 57 Let F (s+) be the initial value of a fund at time s, c(s,t] = (tj , cj)1≤j≤n the
cash-flow describing its in- and outflows during the time interval (s, t], F (t−) the value
at time t. The time weighted rate of return TWRR(s, t) is defined to to be i ∈ (−1,∞)
such that

(1 + i)t−s =
F (t1−)

F (s+)

F (t2−)

F (t1+)
· · ·

F (tn−)

F (tn−1+)

F (t−)

F (tn+)
,

i.e.

log(1 + i) =

n∑

j=0

tj+1 − tj
t − s

log(1 + i(tj , tj+1)),

where F (tj−) and F (tj+) are the fund values just before and just after time tj , so that
cj = F (tj+) − F (tj−), and where t0 = s and tn+1 = t.

The time-weighted rate of return is a time-weighted (geometric) average of the yields
achieved by the fund manager between external cash-flows. Compared to the TWRR,
the MWRR gives more weight to periods where the fund is big.

7.3 Units in investment funds

When two or more investors invest into the same fund, we want to keep track of the value
of each investor’s money in the fund.

Example 58 Suppose a fund is composed of holdings of two investors, as follows.

• Investor A invests £100 at time 0 and withdraws his holdings of £130 at time 3.

• Investor B invests £290 at time 2 and withdraws his holdings of £270 at time 4.

The yields of the two investors are yA = 9.14% and yB = −3.51%, based respectively on
cash-flows ((0, 100), (3,−130)) and ((2, 290), (4,−270)).

The cash-flow of the fund is

c = ((0, 100), (2, 290), (3,−130), (4,−270)).

Its yield is MWRR(0, 4) = 1.16%.
To calculate the TWRR, we need to know fund values. Clearly F (0+) = 100 and

F (4−) = 270. Suppose furthermore, that F (2−) = 145, then F (2+) = 145 + 290 = 435.
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During the time interval (2, 3), both investors achieve the same rate of return, so 145 →
130 means F (2+) = 435 → 390 = F (3−), then F (3+) = 390 − 130 = 260. Now

(1 + TWRR)4 =
F (2−)

F (0+)

F (3−)

F (2+)

F (4−)

F (3+)
=

145

100

390

435

270

260
= 1.35 ⇒ TWRR = 7.79%.

We can see that the yield of Investor B pulls MWRR down because Investor B put
higher money weights than Investor A. On the other hand the TWRR is high, because
three good years outweigh the single bad year – it does not matter for TWRR that the
bad year was when the fund was biggest, but this is again what pulls MWRR down.

A convenient way to keep track of the value of each investor’s money is to assign units
to investors and to track prices P (t) per unit. There is always a normalisation choice,
typically but not necessarily fixed by setting £1 per unit at time 0. The TWRR is now
easily calculated from the unit prices:

Proposition 59 For a fund with unit prices P (s) and P (t) at times s and t, we have

(1 + TWRR(s, t))t−s =
P (t)

P (s)
.

Proof: Consider the external cash-flow c(s,t] = (tj , cj)1≤j≤n. Denote by N(tj−) and
N(tj+) the total number of units in the fund just before and just after tj . Since the
number of units stays constant on (tj−1, tj), we have N(tj−1+) = N(tj−). With F (tj±) =
N(tj±)P (tj), we obtain

(1 + TWRR(s, t))t−s =
F (t1−)

F (s+)

F (t2−)

F (t1+)
· · ·

F (tn−)

F (tn−1+)

F (t−)

F (tn+)

=
N(t1−)P (t1)

N(s+)P (s)

N(t2−)P (t2)

N(t1+)P (t1)
· · ·

N(tn−)P (tn)

N(tn−1+)P (tn−1)

N(t−)P (t)

N(tn+)P (tn)

=
P (t)

P (s)
.

2

Cash-flows of investors can now be conveniently described in terms of units. The yield
achieved by an investor I making a single investment buying NI units for NIP (s) and
selling NI units for NIP (t) is the TWRR of the fund between these times, because the
number of units cancels in the yield equation NIP (s)(1 + i)t−s = NIP (t).

Example 58 (continued) With P (0) = 1, Investor A buys 100 units, we obtain P (2) =
1.45 (from F (2−) = 145), P (3) = 1.30 (from the sale proceeds of 130 for Investor A’s 100
units). With P (2) = 1.45, Investor B receives 200 units for £290, and so P (4) = 1.35(from
the sale proceeds of 270 for Investor B’s 200 units).
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7.4 Fees

In practice, there are fees payable to the fund manager. Two types of fees are common.
The first is a fixed rate f on the fund value, e.g. if unit prices would be P̃ (t) without

the fee deducted, then the actual unit price is reduced to P (t) = P̃ (t)/(1 + f)t. Or,
for an associated force ϕ = log(1 + f), with the portfolio accumulating according to

Ã(s, t) = exp(
∫ t

s
δ(r)dr), i.e. P̃ (t) = P (0)Ã(0, t) satisfies P̃ ′(t) = δ(t)P (t), then P ′(t) =

(δ(t) − ϕ)P (t), i.e.

P (t) = exp(−

∫ t

0

(δ(s) − ϕ)ds)P (0) = e−ϕtP̃ (t).

This fee is to cover costs associated with portfolio changes between external cash-flows.
It is incorporated in the unit price.

A second type of fee is often charged when adding/withdrawing money, e.g. a 2% fee
could mean that the purchase price per unit is 1.02P (t) and/or the sale price is 0.98P (t).

7.5 Fund types

Investment funds offer a way to invest indirectly into a wide variety of assets. Some
of these assets, such as equity shares, can be risky with prices fluctuating heavily over
time, but with thousands of investors investing into the same fund and the fund manager
spreading the combined money over many different assets (diversification), funds form
a less risky investment and give access to further advantages such as lower transaction
costs for larger volumes traded.

Funds are extremely popular as shown by the fact that the Financial Times has 7
pages devoted to their prices each day (there are only 2 pages for share prices on the
London Stock Exchange). There is a wide spectrum of funds. Apart from different
constraints on the portfolio, we distinguish

• active strategy: a fund manager takes active decisions to beat the market;

• passive strategy: investments are chosen according to a simple rule.

A simple rule can be to track an investment index. E.g., the FTSE 100 Share Index
consists of the 100 largest quoted companies by market capitalisation (number of shares
times share price), accounting for about 80% of the total UK equity market capitalisa-
tion. The index is calculated on a weighted arithmetic average basis with the market
capitalisation as the weights.



Lecture 8

Inflation

Reading: CT1 Core Reading Units 4 and 11.3, McCutcheon-Scott Sections 5.5, 7.11
Further reading: http://www.statistics.gov.uk/hub/economy/prices-output-and-

productivity/price-indices-and-inflation

Inflation means goods become more expensive over time, the purchasing power of money
falls. In this lecture we develop a model for inflation.

8.1 Inflation indices

An inflation index records the price at successive times of some “basket of goods”. The
most commonly used indices are the Retail Price Index (RPI) and the Consumer Price
Index (CPI). Their baskets contain food, clothing, cars, electricity, insurance, council tax
etc., and in the case of the RPI (but not the CPI) also housing-related costs such as
mortgage payments.

Year 2006 2007 2008 2009 2010 2011
Retail Price Index in January 193.4 201.6 209.8 210.1 217.9 229.0
Annual Inflation rate 4.2% 4.1% 0.1% 3.7% 5.1%

Here the inflation rates are calculated e.g. as e2010 = 229.0/217.9 − 1 = 5.1%. Theoreti-
cally, ek is the interest rate earned by buying the basket at time k and selling it at time
k + 1. (In practice, many goods in the basket don’t allow this.)

Although we will work with “one inflation index” at a time, often RPI, it should be
noted that there are other important indices that are worth mentioning. Also, prices for
any specific good are likely to behave in a completely different way from the RPI. When
buying a house, you may wish to consult the House Price Index (house prices increased
much faster than general inflation, up to 20% in some years, for about 15 years before
reaching a plateau; now there is some evidence that they have started sinking - house
price deflation, negative inflation rates). As a pensioner you have different needs and
there is an inflation index that takes this into account (no salaries, no mortgage rates,
more weight on medical expenses etc.).

Let’s use RPI for the sake of argument. To track “real value”, we can work in units
of purchasing power, not units of currency.

29
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Example 60 In January 2009 an investor put £1,000 in a savings account at an effective
rate of 4% interest. His balance in January 2010 was £1,040. The RPI basket cost
£2009210.10 in 2009 and £2010217.90 in 2010, so

£2009210.10 = £2001217.90

and hence

£20101, 040 = £20091, 040 × 210.10/217.90 = £20091002.77 = £20091, 000(1 + iR),

and we say that the real effective interest rate was iR = 0.277%. Alternatively, we can
use the RPI table to express every payment in multiples of RPI, i.e. relative to the index.
Then iR satisfies

1, 000

210.1
(1 + iR) =

1, 030

217.9
.

We regard an inflation index Q(t) as a function of time. In practice, inflation indices
typically give monthly values. Q(m/12). If more frequency is required, use interpolation,
either linear interpolation of index value Q(t), or (normally more appropriate) linear
interpolation of log(Q(t)) (since inflation acts as a multiplier).

Only the ratio of indices at different times matters. So we can fix Q = 1 or Q = 100
at a particular time.

8.2 Modelling inflation

Since Q(t) represents the “accumulated value” of some basket of goods, we can give Q(t)
the same structure as the accumulation factors A(0, t). Recall A(0, t) = exp(

∫ t

0
δ(s)ds).

Definition 61 If Q has the form

Q(t) = Q(0) exp

(∫ t

0

γ(s)ds

)

for a function γ : [0,∞) → R, then γ is called the (time-dependent) force of inflation.

In the long term, we would expect A(0, t) > Q(t)/Q(0) (interest above inflation), i.e.
“real interest rates” should be positive, but this may easily fail over short intervals.

Definition 62 Given an interest rate model δ(·) and an inflation model γ(·), we call
δ(·) − γ(·) the (time-dependent) real force of interest.

The real accumulation factor A∗(s, t) = exp(
∫ t

s
(δ(r) − γ(r))dr) captures real invest-

ment return, over and above inflation. With A(s, t) = A∗(s, t)Q(t)/Q(s), we split the
accumulation factor A(s, t) into a component in line with inflation Q(t)/Q(s), and the
remaining A∗(s, t).

The real force of interest measures interest in purchasing power.
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Definition 63 For a cash-flow c = ((t1, c1), . . . , (tn, cn)) “on paper”, the cash-flow net of
inflation or in real terms is given by

cQ =

((
t1,

Q(t0)

Q(t1)
c1

)
, . . . ,

(
tn,

Q(t0)

Q(tn)
cn

))
.

Everything is now expressed in time-t0 money units (units of purchasing power).

We define the real yield yQ(c) = y(cQ).

The value of t0 or Q(t0) is not important: Q(t0) is just a constant in the yield equation.

Example 64 In January 1980, a bank issued a loan of £25,000. The loan was repayable
after 3 years, with 10% interest payable annually in arrears. What is the real rate of
return of the deal? With

Jan 1980 Jan 1981 Jan 1982 Jan 1983
RPI 245.3 277.3 310.6 325.9

With money units of £2, 500, the cash-flow on paper is ((0,−10), (1, 1), (2, 1), (3, 11)),
while the real cash-flow in time-0 money units is

(
(0,−10),

(
1,

245.3

277.3

)
,

(
2,

245.3

310.6

)
,

(
3, 11

245.3

325.9

))

= ((0,−10), (1, 0.8846), (2, 0.7898), (3, 8.2795)).

We solve the equation for the real yield

f(i) = −10 + 0.8846(1 + i)−1 + 0.7898(1 + i)−2 + 8.2795(1 + i)−3 = 0

in an approximate way guessing two values and using a linear interpolation

f(0%) = −0.04611, f(−0.5%) = 0.09174, i ≈ −0.17%.

8.3 Constant inflation rate

If the force of inflation γ(·) is constant equal to γ, then e = eγ − 1 is the rate of increase
in the value of goods per year. We have Q(t + 1) = (1 + e)Q(t) and Q(t) = Q(0)(1 + e)t.

If also the force of interest is constant, δ, and i = eδ − 1, then so is the real force of
interest δ − γ, and we can define the real rate of interest

j = exp(δ − γ) − 1 =
1 + i

1 + e
− 1 =

i − e

1 + e
.

Under a constant inflation rate e, real yields and yields satisfy the same relationship
as real interest rates and interest rates:
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Proposition 65 Consider a constant inflation rate e. Let c be a cash-flow with yield
y(c). Then the real yield of c exists and is given by

ye(c) =
y(c) − e

1 + e
.

Proof: Write c = ((t1, c1), . . . , (tn, cn)) and Q(t) = (1 + e)t. The real yield corresponds
to the yield (if it exists) of

cQ = ((t1, (1 + e)−t1c1), . . . , (tn, (1 + e)−tncn).

We are looking for j, the unique solution of the real yield equation

n∑

k=1

(1 + e)−tkck(1 + j)−tk = 0 ⇐⇒

n∑

k=1

((1 + j)(1 + e))−tk = 0.

We know that the yield equation

n∑

k=1

(1 + i)−tkck = 0

has a solution i = y(c) that is unique in (−1,∞). But we now see that j solves the real
yield equation if and only if i with (1 + i) = (1 + e)(1 + j) satisfies the yield equation.
Also j > −1 if and only if i := (1+ e)(1 + j)− 1 > −1, so the real yield equation has the
unique solution

j =
1 + y(c)

1 + e
− 1 =

y(c) − e

1 + e
.

Therefore, this is the real yield ye(c). 2

8.4 Index-linking

Suppose we wish to realise a cash-flow “in real terms”, “in time-t0 units”, say c =
((t1, c1), . . . , (tn, cn)), with reference to some inflation index R(t). Then the corresponding
cash-flow “on paper” is

cR =

((
t1,

R(t1)

R(t0)
c1

)
, . . . ,

(
tn,

R(tn)

R(t0)
cn

))
.

This is the principle of index-linked securities (and pensions, benefits, etc.), which are
supposed to produce a reliable income in real terms.

Mathematically, this concept is the inverse of cQ. The ratios R(tj)/R(t0) now create
time-tj money units, whereas for cQ, the ratio Q(t0)/Q(tj) removed time-tj money units
expressing everything in terms of time-t0 units. In fact, (cQ)Q = c and (cQ)Q = c.

We will provide an example in Lecture 9 in the context of fixed-interest securities.



Lecture 9

Taxation

Reading: CT1 Core Reading Unit 11.1, 11.4-11.5, McCutcheon-Scott 2.10, 7.4-7.10, 8
Further reading: http://www.hmrc.gov.uk/cgt

Detailed taxation legislation is beyond this course, but we do address a distinction that is
commonly made between (regular) income and capital gain from asset sales. In practice,
both may be subject to taxation, but often at different rates. We will discuss the impact
of inflation in this context, and possible inflation-adjustments.

9.1 Fixed-interest securities and running yields

Lecture 5 dealt with calculating the price of a fixed-interest security given an interest
rate model and “the yield” given a price. In the context of securities, the use precise
terminology is essential. The following definition introduces different notions of “yield”.

Definition 66 Given a security, the yield y(c) of the underlying cash-flow

c = ((0,−NP0), (1, Nj), . . . , (n − 1, Nj), (n, Nj + NR))

is called the yield to redemption.
If the security is traded for Pk per unit nominal at time k, then the ratio j/Pk of

dividend (coupon) rate and price per unit nominal is called the running yield of the
security at time k.

For equities the definition of the running yield applies with price Pk per share and
dividend Dk instead of coupon rate j. The price Pk determines the current capital value
of the security/share, and the running yield then expresses the rate at which interest is
paid on the capital value. This distinction of yield to redemption and running yield is
related to the notions of interest income and capital gains relevant for taxation.

• Income Tax may be payable on income (including interest, coupon payments, divi-
dend payments);

• Capital Gains Tax (CGT) may be payable when goods (including shares, securities
etc.) are sold for a profit.

33
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Suppose a good was bought at a purchase price C and sold at a sale price S, this gives a
capital gain S − C (a capital loss, if negative). If S > C, then CGT may by payable on
S − C.

Tax is payable if neither the investor nor the asset are exempt from tax. Tax rates
may vary between different investors (e.g. income tax bands of 20%, 40% and 50%).

The yield to redemption reflects both income and capital gains (or losses), whereas
the running yield only reflects the income part.

Example 67 Given a security with semi-annual coupons at 6%, with redemption date
three years from now that is currently traded above par at 105%, the running yield is
6/105 ≈ 5.7%. The yield to redemption is the solution of

0 = i-V al0((0,−105), (0.5, 3), (1, 3), (1.5, 3), (2, 3), (2.5, 3), (3, 103))

= −105 + 6a
(2)

3|i
+ (1 + i)−3100

and numerically, we calculate a yield to redemption of ≈ 4.3%. The difference is due to
the capital loss that is ignored by the running yield.

9.2 Income tax and capital gains tax

For simplicity, we will assume that tax is always due at the time of the relevant cash-
flow, i.e. if an investor is to receive a payment ck, but is subject to income tax at
rate r1, then the cash-flow is reduced to ck(1 − r1), and if an investor is to receive a
payment cn = C + (S − C) consisting of capital C and capital gain/loss S − C, but
is subject to CGT at rate r2, then the cash-flow is reduced to S − r2(S − C)+, where
(S − C)+ = max(S − C, 0) denotes the positive part.

Example 68 The holder of a savings account paying interest at 2.5% gross, subject to
income tax at 20%, receives net interest payments at rate 2.5%(1-20%)=2% net.

Example 69 An investor who bought equities for C = £80 and sells for S = £100 within
a year and is subject to 40% capital gains tax, only receives S − (S − C)40% = £92.

A key example where usually both income tax and CGT apply is a fixed-interest
security.

Example 70 If the holder of a fixed-interest security is liable to income tax at rate r1

and capital gains tax at rate r2, in principle, and if the fixed-interest security is not
exempt from any of these taxes, then the liabilities are as follows.

After purchase at a price A, the gross cash-flow (ignoring tax, or assuming no liability
to tax) would be

c = ((1/2, Nj/2), (1, Nj/2), . . . , (n − 1/2, Nj/2), (n, Nj/2 + NR)),

but income tax reduces coupon payments Nj/2 to Nj(1 − r1)/2 and CGT reduces the
redemption payment NR to NR − r2(NR − A)+.

If the security is not held for the whole term but is sold at time k for Pk per unit
nominal, capital gains tax reduces the sales proceeds PkN to PkN − r2(PkN − A)+.



Lecture Notes – BS4a Actuarial Science – Oxford MT 2011 35

9.3 Offsetting

If capital gains and capital losses occur due to assets sold in the same tax year, a taxpayer
may (under certain restrictions) offset the losses L agains the gains G, to pay CGT only
on (G − L)+.

Example 71 Asset A (silverware) is sold for £1, 865 (previously bought for £1, 300).
Asset B (a painting) is sold for £500 (previously bought for £900).

Under liability to CGT at 40%, the tax due for Asset A on its own would be

40% × (£1, 865 − £1, 300) = 40% × £565 = £226.

Offsetting agains losses from Asset B, tax is only due

40% × ((£1, 865 − £1, 300) − (£900 − £500)) = 40% × £165 = £66.

9.4 Indexation of CGT

If purchase and sale are far apart, paying CGT on (S − C)+ may not be fair, since no
allowance has been made for inflation. The government may decide to tax only on real
capital gain, for which the purchase price C is revalued to account for inflation.

Example 72 Suppose shares were bought in March 1990 for £1,000 and sold in April
1996 for £1,800, with CGT charged at 40%. Then without indexation, CGT would be

40% × (£1, 800 − £1, 000) = £320.

With RPI in March 1990 at 131.4 and in April 1996 at 152.6, we have

£Mar19901, 000 = £Apr1996
152.6

131.4
1, 000 = £Apr19961, 161.34.

So, CGT due on sale is

40% × (£1, 800 − £1, 161.34) = £255.45.

9.5 Inflation adjustments

We return to a general inflation index R(·). Fixed-interest securities are useful to pro-
vide a regular income stream. But with inflation reducing the real value of the coupon
payments, this stream is decreasing in real terms. If we want to achieve a cash-flow

c = ((1/2, jN/2), (1, jN/2), . . . , (n − 1/2, jN/2), (n, jN/2 + RN))
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in real terms, we need to boost the coupon payments by R(·):

cR =

((
1/2,

R(1/2)

R(0)
jN/2

)
,

(
1,

R(1)

R(0)
jN/2

)
, . . . ,

(
n − 1/2,

R(n − 1/2)

R(0)
jN/2

)
,

(
n,

R(n)

R(0)
(jN/2 + RN)

))

to achieve (cR)R = c. Since payment of R(k/2)/R(0)jN/2 is made at time k/2, R(k/2)
must be known at time k/2, so we cannot take R(t) = RPI(t), since data collection
and aggregation to form index values is not instantaneous. In practice, the lag is often
significant, e.g. 8 months, i.e. R(t) = RPI(t − 8/12). An advantage is that both parties
know the sizes of payments well in advance. A disadvantage, is that the real yield
yQ(cR) = y((cR)Q) for Q(t) = RPI(t) will not exactly equal y(c), but it will normally be
similar: with normalisation R(0) = Q(0) = 1, we obtain

(cR)Q =

((
1/2,

R(1/2)

Q(1/2)
jN/2

)
,

(
1,

R(1)

Q(1)
jN/2

)
, . . . ,

(
n − 1/2,

R(n − 1/2)

Q(n − 1/2)
jN/2

)
,

(
n,

R(n)

Q(n)
(jN/2 + RN)

))
.



Lecture 10

Project appraisal

Reading: CT1 Core Reading Unit 9, McCutcheon-Scott Sections 5.1-5.4

For a given investment project, the notion of yield (of the underlying cash-flow)
provides a way to assess the project by identifying an internal rate of return (interest
rate). We develop this further in this lecture, focussing on profitability as the main
criterion, and we also discuss problems that arise when comparing two investment projects
or business ventures.

10.1 Net cash-flows and a first example

Recall that the yield y(c) of a cash-flow c as unique solution of NPV(i) = i-Val(c) = 0 rep-
resents the boundary between profitability (NPV(i) > 0) and unprofitability (NPV(i) <
0) as a function of the interest rate i. Specifically, each investment project (with net
outflows before net inflows) is profitable if its yield exceeds the market interest rate
(y(c) > i). Here, we use the word “net” to refer to the fact that both in- and outflows
have been incorporated in c and, where they happen at the same time, just the combined
flow at any time is considered.

Example 73 You purchase party furniture for £10, 000 to run a small hire business.
You expect continuous income from hiring fees at rate £1, 200 p.a., but also expect
expenditure for wear and tear of £400 p.a. So, the net rental income will be £800 p.a.
After 20 years we expect to sell the party furniture for £6, 000. The only net outflow
precedes the inflows, so the yield exists. We solve the yield equation

0 = f(i) = −10, 000 + 800a20|i + 5, 000(1 + i)−20 = 800
1 − (1 + i)−20

log(1 + i)
+ 5, 000(1 + i)−20

numerically. Since £800 interest on 10, 000 is 8% and we have 40% capital loss, 2% p.a.
(this is a very rough estimate as we ignore compounding over 20 years), we guess i = 6%

f(6%) = 1, 319.37 > 0, f(7%) = 319.01 > 0, f(7.5%) = −129.78 < 0,

so

i ≈ 7%
−f(7.5%)

f(7%) − f(7.5%)
+ 7.5%

f(7%)

f(7%) − f(7.5%)
= 7.36%.

37
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10.2 Payback periods and a second example

For a profitable investment project in a given interest rate model δ(·) we can study the
evolution of the accumulated value AValt(c≤t). With outflows preceding inflows, this
accumulated value will first be negative, but reach a positive terminal value at or before
the end of the project (positive because the project is profitable). We are interested in
the time when it becomes first positive.

Definition 74 Given a model δ(·) and a profitable cash-flow c with outflows preceding
inflows. We define the discounted payback period

T+ = inf{t ≥ 0 : AValt(c≤t) ≥ 0} = inf{t ≥ 0 : DValt(c≤t) ≥ 0}.

-
time t

6balance AV alt(c)

T+

If rather than investing existing capital, the investment project is financed by taking
out loans and then using any inflows for repayment, then T+ is the time when the account
balance changes from negative to positive, i.e. when the debt has been repaid. All
remaining inflows after T+ contribute fully to the profit of the project.

Since the periods of borrowing and saving are well-separated by T+, we can here deal
with interest models that have different borrowing rates δ−(·) and savings rates δ+(·).
The definition of T+ will then be based only on δ−(·) and the final accumulated profit
can then be calculated from δ−(·)-AValT+

(c≤T+
) and δ+(·)-DValT+

(c>T+
).

Example 75 A home-owner is considering to invest in a solar energy project. Purchasing
and installing solar panels on his roof costs £10, 000 in three months’ time. Energy is
then generated continuously at rate £1, 000 p.a. The expected lifetime of the panels is 20
years. With an interest rate of i = 8% on the loan account, is the investment profitable?
If so, what is the discounted payback period?

With money units of £1,000 and a time origin “in three months’ time”, the outflow
of 10 happens at time 0 and the continuous inflow, c, at unit rate starts at time 0:

AValt((0,−10), c≤t) = −10(1 + i)t + st| = (1 + i)t

(
1

log(1 + i)
− 10

)
−

1

log(1 + i)
.

Then for i = 8% and and t = 20, we have

AVal20((0,−10), c≤20) = 0.95939,

so we expect an accumulated profit of £959.39 > 0 making the project profitable.
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We calculate T+ = inf{t ≥ 0 : AValt((0,−10), c≤t) ≥ 0} by solving

AValt((0,−10), c≤t) = 0 ⇐⇒ t = −
log(1 − 10 log(1 + i))

log(1 + i)
= 19.0744 (19y, 27d)

so seen from now, three months before the installation is complete, the discounted pay-
back period is 19 years, 3 months and 27 days.

If loan repayment is not made continuously, but quarterly as an equivalent cash-flow
(at i = 8%), then the bank balance at the end of each quarter will be as with continuous
payment, but only an inflow (at the end of a quarter) can make the balance nonnegative,
so the discounted payback period will then be 19 years and 6 months.

10.3 Profitability, comparison and cross-over rates

Recall that a project is profitable at rate i if NPV(i) > 0. Now consider cash-flows cA

and cB representing two investment projects, and their Net Present Values NPVA(i) and
NPVB(i). To compare projects A and B, each with all outflows before all inflows, we
can calculate their yields yA and yB. Suppose yA < yB. If the market interest rate is
in (yA, yB), then project B is profitable, project A is not. But this does not mean that
project B is more profitable than project A (i.e. NPVB(i) > NPVA(i)) for all lower
interest rates as the following figure shows.

-market interest rate i

6Net Present Value

iX yB yA

NPVB(i)

NPVA(i)

iX is called a cross-over rate and can be calculated as solution to the yield equation of
cA−cB . For interest rates below iX , project B is more profitable than project A, although
its yield is smaller. A decision for one or the other project (or against both) now clearly
depends on the expectations on interest rate changes.

Example 76 Compare Project A from Example 73 and Project B from Example 75.
For simplicity, let us delay Project A by 3 months, so that the expenditure of £10,000
happens at the same time. This does not affect the yield. So far, we have seen that
Project A has yield yA ≈ 7.36% and Project B is profitable at i = 8% and therefore has
a yield yB > 8%.
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To investigate potential cross-over rates, consider cB − cA, a continuous cash-flow at
rate £800 − £1, 000 = £ − 200 p.a., i.e. net outflow, and an inflow of £5, 000 at time
20. We solve the yield equation (which has a unique solution, by Proposition 40)

−200a20|i + 5, 000(1 + i)−20 = 0 ⇒ · · · ⇒ iX ≈ 3.89%.

We conclude, that Project A is more profitable for i < 3.89%, while Project B is more
profitable than Project A for 3.89% < i < 7.36% ≈ yA, and that Project B is profitable
while Project A is not for 7.36% ≈ yA < i < yB. [yB ≈ 8.29%.]

10.4 Reasons for different yields/profitability curves

For much of the interest rate modelling developments, it is instructive to think that at
least the most secure savings/investment opportunities in the real world are consistent
with an underlying time-varying force of interest. Examples in this lecture seemed to
suggest otherwise. In this section we collect a variety of remarks, some of which motivate
further developments of this course and should be considered again after relevant concepts
have been introduced.

• There are many government bonds with a variety of redemption dates. We will
indeed extract from such prices a consistent system, an implied term structure of
interest rates. Even though this provides an interest rate model for a few decades,
this model is subject to uncertainty that manifests itself e.g. in that the implied
rate for a fixed future year will vary from day to day, month to month, between now
and in a year’s time, say. A more appropriate model that captures this uncertainty,
is a stochastic interest rate model.

• In an efficient market with participants optimizing their profit, any definitely “prof-
itable” investment project should involve something that is as yet unaccounted for.
Otherwise, many market participants would engage in it and market forces would
push up prices (or affect other parts of underlying cash-flow) and remove the profit.
We will investigate related reasoning in a lecture on arbitrage-free pricing.

• Unlike our toy examples, assessment of genuine business ventures will have to in-
clude allowances for personal labour, administration costs etc. Such expenditure
and indeed many other positions in the cash-flows will be subject to some uncer-
tainty. A higher yield of a business venture may be due to a higher risk. As an
example of such risk, we will investigate the risk of default, i.e. the risk that an
income stream stops due to bankruptcy of the relevant party.

• The reason why there is a cross-over rate in Example 76 is that the cash-flow of
Project A is more weighted towards later times, due to the big inflow after 20
years. As such, its NPV reacts more strongly to changes in interest rates. We will
investigate related notions of Discounted Mean Term and volatility of a cash-flow,
also referred to as duration.


