
Lecture 1

Introduction

Reading: CT1 Core Reading Unit 1
Further reading: http://www.actuaries.org.uk

After some general information about relevant history and about the work of an actuary,
we introduce cash-flow models as the basis of this course and as a suitable framework to
describe and look beyond the contents of this course.

1.1 The actuarial profession

Actuarial Science is a discipline with its own history. The Institute of Actuaries was
formed in 1848, (the Faculty of Actuaries in Scotland in 1856, the two merged in 2010),
but the roots go back further. An important event was the construction of the first life
table by Sir Edmund Halley in 1693. However, Actuarial Science is not oldfashioned.
The language of probability theory was gradually adopted as it developed in the 20th
century; computing power and new communication technologies have changed the work of
actuaries. The growing importance and complexity of financial markets continues to fuel
actuarial work; current debates and changes in life expentancy, retirement age, viability
of pension schemes are core actuarial topics that the profession vigorously embraces.

Essentially, the job of an actuary is risk assessment. Traditionally, this was insurance
risk, life insurance, later general insurance (health, home, property etc). As typically
large amounts of money, reserves, have to be maintained, this naturally extended to
investment strategies including the assessment of risk in financial markets. Today, the
Actuarial Profession claims yet more broadly to make “financial sense of the future”.

To become a Fellow of the Institute/Faculty of Actuaries in the UK, an actuarial
trainee has to pass nine mathematics, statistics, economics and finance examinations (core
technical series – CT), examinations on risk management, reporting and communication
skills (core applications – CA), and three specialist examinations in the chosen areas of
specialisation (specialist technical and specialist applications series – ST and SA) and
for a UK fellowship an examination on UK specifics. This programme takes normally at
least three or four years after a mathematical university degree and while working for an
insurance company under the guidance of a Fellow of the Institute/Faculty of Actuaries.
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This lecture course is an introductory course where important foundations are laid and
an overview of further actuarial education and practice is given. An upper second mark
in the examination following the full OBS4/BS4 unit normally entitles to an exemption
from the CT1 paper. The CT3 paper is covered by the Part A Probability and Statistics
courses. A further exemption, from CT4, is available for BS3 Stochastic Modelling.

1.2 The generalised cash-flow model

The cash-flow model systematically captures payments either between different parties
or, as we shall focus on, in an inflow/outflow way from the perspective of one party. This
can be done at different levels of detail, depending on the purpose of an investigation,
the complexity of the situation, the availability of reliable data etc.

Example 1 Look at the transactions on a bank statement for September 2011.

Date Description Money out Money in
01-09-11 Gas-Elec-Bill £21.37
04-09-11 Withdrawal £100.00
15-09-11 Telephone-Bill £14.72
16-09-11 Mortgage Payment £396.12
28-09-11 Withdrawal £150.00
30-09-11 Salary £1,022.54

Extracting the mathematical structure of this example we define elementary cash-flows.

Definition 2 A cash-flow is a vector (tj , cj)1≤j≤m of times tj ∈ R and amounts cj ∈ R.
Positive amounts cj > 0 are called inflows. If cj < 0, then |cj| is called an outflow.

Example 3 The cash-flow of Example 1 is mathematically given by

j tj cj

1 1 −21.37
2 4 −100.00
3 15 −14.72

j tj cj

4 16 −396.12
5 28 −150.00
6 30 1,022.54

Often, the situation is not as clear as this, and there may be uncertainty about the
time/amount of a payment. This can be modelled stochastically.

Definition 4 A generalised cash-flow is a random vector (Tj, Cj)1≤j≤M of times Tj ∈ R

and amounts Cj ∈ R with a possibly random length M ∈ N.

Sometimes, in fact always in this course, the random structure is simple and the times
or the amounts are deterministic, or even the only randomness is that a well specified
payment may fail to happen with a certain probability.
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Example 5 Future transactions on a bank account (say for November 2011)

j Tj Cj Description
1 1 −21.37 Gas-Elec-Bill
2 T2 C2 Withdrawal?
3 15 C3 Telephone-Bill

j Tj Cj Description
4 16 −396.12 Mortgage payment
5 T5 C5 Withdrawal?
6 30 1,022.54 Salary

Here we assume a fixed Gas-Elec-Bill but a varying telephone bill. Mortgage payment
and salary are certain. Any withdrawals may take place. For a full specification of the
generalised cash-flow we would have to give the (joint!) laws of the random variables.

This example shows that simple situations are not always easy to model. It is an
important part of an actuary’s work to simplify reality into tractable models. Sometimes,
it is worth dropping or generalising the time specification and just list approximate
or qualitative (’big’, ’small’, etc.) amounts of income and outgo. cash-flows can be
represented in various ways as the following important examples illustrate.

1.3 Examples and course overview

Example 6 (Zero-coupon bond) Usually short-term investments with interest paid
at the end of the term, e.g. invest £99 for ninety days for a payoff of £100.

j tj cj

1 0 −99
2 90 100

Example 7 (Government bonds, fixed-interest securities) Usually long-term in-
vestments with annual or semi-annual coupon payments (interest), e.g. invest £10, 000
for ten years at 5% per annum. [The government borrows money from investors.]

−£10, 000 +£500 +£500 +£500 +£500 +£10, 500

0 1 2 3 9 10

Example 8 (Corporate bonds) The underlying cash-flow looks the same as for gov-
ernment bonds, but they are not as secure. Credit rating agencies assess the insolvency
risk. If a company goes bankrupt, invested money is often lost. One may therefore wish
to add probabilities to the cash-flow in the above figure. Typically, the interest rate in
corporate bonds is higher to allow for this extra risk of default that the investor takes.

Example 9 (Equities) Shares in the ownership of a company that entitle to regular
dividend payments of amounts depending on the profit and strategy of the company.
Equities can be bought and sold on stock markets (via a stock broker) at fluctuating
market prices. In the above diagram (including payment probabilities) the inflow amounts
are not fixed, the term at the discretion of the shareholder and sales proceeds are not fixed.
There are advanced stochastic models for stock price evolution. A wealth of derivative
products is also available, e.g. forward contracts, options to sell or buy shares. We will
discuss forward contracts, but otherwise refer to B10b Mathematical Models for Financial
Derivatives.
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.

Example 10 (Index-linked securities) Inflation-adjusted securities: coupons and re-
demption payment increase in line with inflation, by tracking an inflation index.

Example 11 (Annuity-certain) Long term investments that provide a series of regu-
lar annual (semi-annual or monthly) payments for an initial lump sum, e.g.

−£10, 000 +£1, 400 +£1, 400 +£1, 400 +£1, 400 +£1, 400

0 1 2 3 9 10

Here the term is n = 10 years. Perpetuities provide regular payment forever (n = ∞).

Example 12 (Loans) Formally the negative of a bond cash-flow (interest-only loan) or
annuity-certain (repayment loan), but the rights of the parties are not exactly opposite.
Whereas the bond investor may be able to redeem or sell the bond early, the lender of a
loan often has to obey stricter rules, to protect the borrower.

Example 13 (Appraisal of investment projects) Consider a building project. An
initial construction period requires certain payments, the following exploitation (e.g. let-
ting) yields income in return for the investment, but maintenance has to be taken into
accout as well. Under what circumstances is the project profitable? How reliable are the
estimated figures?

These “qualitative” questions, that can be answered qualitatively using specifications
as stable, predictable, variable, increasing etc. are just as important as precise estimates.

Example 14 (Life annuity) Life annuities are like annuities-certain, but do not ter-
minate at a fixed time but when the beneficiary dies. Risks due to age, health, profession
etc. when entering the annuity contract determine the payment level. They are a basic
form of a pension. Several modifications exist (minimal term, maximal term, etc.).

Example 15 (Life assurance) Pays a lump sum on death for monthly or annual premi-
ums that depend on age and health of the policy holder when the policy is underwritten.
The sum assured may be decreasing in accordance with an outstanding mortgage.

Example 16 (Property insurance) A class of general insurance (others are health,
building, motor etc.). In return for regular premium payments, an insurance company
replaces or refunds any stolen or damaged items included on the policy. From the insurer’s
point of view, all policy holders pay into a common fund to provide for those who claim.
The claim history of policy holders affects their premium.
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A branch of an insurance company is said to suffer technical ruin if the fund runs empty.



Lecture 2

The theory of compound interest

Reading: CT1 Core Reading Units 2-3, McCutcheon-Scott Chapter 1, Sections 2.1-2.4

Quite a few problems that we deal with in this course can be approached in an intuitive
way. However, the mathematical and more powerful approach to problem solving is to
set up a mathematical model in which the problem can be formalised and generalised.
The concept of cash-flows seen in the last lecture is one part of such a model. In this
lecture, we shall construct another part, the compound interest model in which interest
on capital investments, loans etc. can be computed. This model will play a crucial role
throughout the course.

In any mathematical model, reality is only partially represented. An important part
of mathematical modelling is the discussion of model assumptions and the interpretation
of the results of the model.

2.1 Simple versus compound interest

We are familiar with the concept of interest in everyday banking: the bank pays interest
on positive balances on current accounts and savings accounts (not much, but some), and
it charges interest on loans and overdrawn current accounts. Reasons for this include that

• people/institutions borrowing money are willing to pay a fee (in the future) for the
use of this money now,

• there is price inflation in that £100 lose purchasing power between the beginning
and the end of a loan as prices increase,

• there is often a risk that the borrower may not be able to repay the loan.

To develop a mathematical framework, consider an “interest rate h” per unit time, under
which an investment of C at time 0 will receive interest Ch by time 1, giving total value
C(1 + h):

C −→ C(1 + h),

e.g. for h = 4% we get C −→ 1.04C.
There are two natural ways to extend this to general times t:
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6 Lecture 2: The theory of compound interest

Definition 17 (Simple interest) Invest C, receive C(1+ th) after t years. The simple
interest on C at rate h for time t is Cth.

Definition 18 (Compound interest) Invest C, receive C(1 + i)t after t years. The
compound interest on C at rate i for time t is C((1 + i)t − 1).

For integer t = n, this is as if a bank balance was updated at the end of each year

C −→ C(1 + i) −→ (C(1 + i))(1 + i) = C(1 + i)2 −→ (C(1 + i)n−1)(1 + i) = C(1 + i)n.

Example 19 Given an interest rate of i = 6% per annum (p.a.), investing C = £1, 000
for t = 2 years yields

Isimp = C2i = £120.00 and Icomp = C
(

(1 + i)2 − 1
)

= C(2i + i2) = £123.60,

where we can interpret Ci2 as interest on interest, i.e. interest for the second year paid
at rate i on the interet Ci for the first year.

Compound interest behaves well under term-splitting: for t = s + r

C −→ C(1 + i)s −→ (C(1 + i)s) (1 + i)r = C(1 + i)t,

i.e. investing C at rate i first for s years and then the resulting C(1 + i)s for a further r
years gives the same as directly investing C for t = s + r years. Under simple interest

C −→ C(1 + hs) −→ C(1 + hs)(1 + hr) = C(1 + ht + srh2) > C(1 + ht),

(in the case C > 0, r > 0, s > 0). The difference Csrh2 = (Chs)hr is interest on the
interest Chs that was already paid at time s for the first s years.

What is the best we can achieve by term-splitting under simple interest?

Denote by St(C) = C(1 + th) the accumulated value under simple interest at rate h for
time t. We have seen that Sr ◦ Ss(C) > Sr+s(C).

Proposition 20 Fix t > 0 and h. Then

sup
n∈N,r1,...,rn∈R+:r1+···+rn=t

Srn
◦ Srn−1

◦ · · · ◦ Sr1
(C) = lim

n→∞
St/n ◦ · · · ◦ St/n(C) = ethC.

Proof: For the second equality we first note that

St/n ◦ · · · ◦ St/n(C) =

(

1 +
t

n
h

)n

C → ethC,

because
log((1 + th/n)n) = n log(1 + th/n) = n(th/n + O(1/n2)) → th.

For the first equality,

erh = 1 + rh +
r2h2

2
+ · · · ≥ 1 + rh

so if r1 + · · ·+ rn = t, then

ethC = er1her2h · · · ernhC ≥ (1 + r1h)(1 + r2h) · · · (1 + rnh)C = Srn
◦ Srn−1

◦ · · · ◦ Sr1
(C).

2
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So, the optimal achievable is C −→ Ceth. If eth = (1 + i)t, i.e. eh = 1 + i or
h = log(1 + i), we recover the compound interest case.

From now on, we will always consider compound interest.

Definition 21 Given an effective interest rate i per unit time and an initial capital C
at time 0, the accumulated value at time t under the compound interest model (with
constant rate) is given by

C(1 + i)t = Ceδt,

where

δ = log(1 + i) =
∂

∂t
(1 + i)t

∣

∣

∣

∣

t=0

,

is called the force of interest.

The second expression for the force of interest means that it is the “instantaneous rate
of growth per unit capital per unit time”.

2.2 Nominal and effective rates

The effective annual rate is i such that C −→ C(1 + i) after one year. We have already
seen the force of interest δ = log(1+ i) as a way to describe the same interest rate model.
In practice, rates are often quoted in other ways still.

Definition 22 A nominal rate h convertible pthly (or compounded p times per year)
means that an accumulated value C(1 + h/p) is achieved after time 1/p.

By compounding, the accumulated value at time 1 is C(1 + h/p)p, and at time t is
C(1+h/p)pt. This again describes the same model of accumulated values if (1+h/p)p =
1+ i, i.e. if h = p((1+ i)1/p −1. Actuarial notation for the nominal rate convertible pthly
associated with effective rate i is i(p) = p((1 + i)1/p − 1).

Example 23 An annual rate of 8% convertible quarterly, i.e. i(4) = 8% means that
i(4)/4 = 2% is credited each 3 months (and compounded) giving an annual effecive rate
i = (1 + i(4)/4)4 − 1 ≈ 8.24%.

The most common frequencies are for p = 2 (half-yearly, semi-annually), p = 4 (quar-
terly), p = 12 (monthly), p = 52 (weekly), although the latter used to be approximated
using

lim
p→∞

i(p) = lim
p→∞

(1 + i)1/p − 1

1/p
=

∂

∂t
(1 + i)t

∣

∣

∣

∣

t=0

= log(1 + i) = δ;

the force of interest δ can be called the “nominal rate of interest convertible continuously”.

Example 24 Here are two genuine and one artificial options for a savings account.

(1) 3.25% p.a. effective (i1 = 3.25%)
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(2) 3.20% p.a. nominal convertible monthly (i
(12)
2 = 3.20%)

(3) 3.20% p.a. nominal “convertible continuously” (δ3 = 3.20%)

After one year, an initial capital of £10,000 accumulates to

(1) 10, 000 × (1 + 3.25%) = 10, 325.00 = R1,

(2) 10, 000 × (1 + 3.20%/12)12 = 10, 324.74 = R2,

(3) 10, 000 × e3.20% = 10, 325.18 = R3.

Although interest may be credited to the account differently, an investment into (j) just
consists of deposit and withdrawal, so the associated cash-flow is ((0,−10000), (1, Rj)),
and we can use Rj to decide between the options. We can also compare i2 ≈ 3.2474%
and i3 ≈ 3.2518% or calculate δ1 and δ2 to compare with δ3 etc.

Interest rates always refer to some time unit. The standard choice is one year, but it
sometimes eases calculations to choose six months, one month or one day. All definitions
we have made reflect the assumption that the interest rate does not vary with the initial
capital C nor with the term t. We refer to this model of accumulated values as the
constant-i model, or the constant-δ model.

2.3 Discount factors and discount rates

Before we more fully apply the constant-i model to cash-flows in Lecture 3, let us discuss
the notion of discount. We are used to discounts when shopping, usually a percentage
reduction in price, time being implicit. Actuaries use the notion of an effective rate of
discount d per time unit to represent a reduction of C to C(1− d) if payment takes place
a time unit early.

This is consistent with the constant-i model, if the payment of C(1− d) accumulates
to C = (C(1 − d))(1 + i) after one time unit, i.e. if

(1 − d)(1 + i) = 1 ⇐⇒ d = 1 −
1

1 + i
.

A more prominent role will be played by the discount factor v = 1 − d, which answers
the question

How much will we have to invest now to have 1 at time 1?

Definition 25 In the constant-i model, we refer to v = 1/(1 + i) as the associated
discount factor and to d = 1 − v as the associated effective annual rate of discount.

Example 26 How much do we have to invest now to have 1 at time t? If we invest C,
this accumulates to C(1 + i)t after t years, hence we have to invest C = 1/(1 + i)t = vt.



Lecture 3

Valuing cash-flows

Reading: CT1 Core Reading Units 3 and 5, McCutcheon-Scott Chapter 2

In Lecture 2 we set up the constant-i interest rate model and saw how a past deposit
accumulates and a future payment can be discounted. In this lecture, we combine these
concepts with the cash-flow model of Lecture 1 by assigning time-t values to cash-flows.
We also introduce general (deterministic) time-dependent interest models, and continuous
cash-flows that model many small payments as infinitesimal payment streams.

3.1 Accumulating and discounting in the constant-i

model

Given a cash-flow c = (cj, tj)1≤j≤m of payments cj at time tj and a time t with t ≥ tj
for all j, we can write the joint accumulated value of all payments by time t according
to the constant-i model as

AValt(c) =

m
∑

j=1

cj(1 + i)t−tj =

m
∑

j=1

cje
δ(t−tj ),

because each payment cj at time tj earns compound interest for t − tj time units. Note
that some cj may be negative, so the accumulated value could become negative. We
assume implicitly that the same interest rate applies to positive and negative balances.

Similarly, given a cash-flow c = (cj , tj)1≤j≤m of payments cj at time tj and a time
t > tj for all j, we can write the joint discounted value at time t of all payments as

DValt(c) =
m

∑

j=1

cjv
tj−t =

m
∑

j=1

cj(1 + i)−(tj−t) =
m

∑

j=1

cje
−δ(tj−t).

This discounted value is the amount we invest at time t to be able to spend cj at time tj
for all j.

9
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3.2 Time-dependent interest rates

So far, we have assumed that interest rates are constant over time. Suppose, we now
let i = i(k) vary with time k ∈ N. We define the accumulated value at time n for an
investment of C at time 0 as

C(1 + i(1))(1 + i(2)) · · · (1 + i(n − 1)) · · · (1 + i(n)).

Example 27 A savings account pays interest at i(1) = 2% in the first year and i(2) = 5%
in the second year, with interest from the first year reinvested. Then the account balance
evolves as 1, 000 −→ 1, 000(1 + i(1)) = 1, 020 −→ 1, 000(1 + i(1))(1 + i(2)) = 1, 071.

When varying interest rates between non-integer times, it is often nicer to specify the
force of interest δ(t) which we saw to have a local meaning as the infinitesimal rate of
capital growth under compound interest:

C −→ C exp

(
∫ t

0

δ(s)ds

)

= R(t).

Note that now (under some right-continuity assumptions)

∂

∂t
R(t)

∣

∣

∣

∣

t=0

= δ(0) and more generally
∂

∂t
R(t) = δ(t)R(t),

so that the interpretation of δ(t) as local rate of capital growth at time t still applies.

Example 28 If δ(·) is piecewise constant, say constant δj on (tj−1, tj], j = 1, . . . , n, then

C −→ Ceδ1r1eδ2r2 · · · eδnrn, where rj = tj − tj−1.

Definition 29 Given a time-dependent force of interest δ(t), t ∈ R+, we define the
accumulated value at time t ≥ 0 of an initial capital C ∈ R under a force of interest δ(·)
as

R(t) = C exp

(
∫ t

0

δ(s)ds

)

.

Also, we may refer to I(t) = R(t) − C as the interest from time 0 to time t under δ(·).

3.3 Accumulation factors

Given a time-dependent interest model δ(·), let us define accumulation factors from s to
t

A(s, t) = exp

(
∫ t

s

δ(r)dr

)

, s < t. (1)

Just as C −→ R(t) = CA(0, t) for an investment of C at time 0 for a term t, we use A(s, t)
as a factor to turn an investment of C at time s into its accumulated value CA(s, t) at
time t. This behaves well under term-splitting, since

C −→ CA(0, s) −→ (CA(0, s))A(s, t)=C exp

(
∫ s

0

δ(r)dr

)

exp

(
∫ t

s

δ(r)dr

)

=CA(0, t).

More generally, note the consistency property A(r, s)A(s, t) = A(r, t), and conversely:
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Proposition 30 Suppose, A : {(s, t) : s ≤ t} → (0,∞) satisfies the consistency property
and t 7→ A(s, t) is differentiable for all s, then there is a function δ(·) such that (1) holds.

Proof: Since consistency for r = s = t implies A(t, t) = 1, we can define as (right-hand)
derivative

δ(t) = lim
h↓0

A(t, t + h) − A(t, t)

h
= lim

h↓0

A(0, t + h) − A(0, t)

hA(0, t)
,

where we also applied consistency. With g(t) = A(0, t) and f(t) = log(A(0, t))

δ(t) =
g′(t)

g(t)
= f ′(t) ⇒ log(A(0, t)) = f(t) =

∫ t

0

δ(s)ds.

Since consistency implies A(s, t) = A(0, t)/A(0, s), we obtain (1). 2

We included the apparently unrealistic A(s, t) < 1 (accumulated value less than the initial
capital) that leads to negative δ(·). This can be useful for some applications where δ(·)
is not pre-specified, but connected to investment performance where prices can go down
as well as up, or to inflation/deflation. Similarly, we allow any i ∈ (−1,∞), so that the
associated 1-year accumulation factor 1 + i is positive, but possibly less than 1.

3.4 Time value of money

We have discussed accumulated and discounted values in the constant-i model. In the
time-varying δ(·) model with accumulation factors A(s, t) = exp(

∫ t

s
δ(r)dr), we obtain

AValt(c) =

m
∑

j=1

cjA(tj , t) if all tj ≤ t, DValt(c) =

m
∑

j=1

cjV (t, tj) if all tj > t,

where V (s, t) = 1/A(s, t) = exp(−
∫ t

s
δ(r)dr) is the discount factor from time t back to

time s ≤ t. With v(t) = V (0, t), we get V (s, t) = v(t)/v(s). Notation v(t) is useful, as it
is often the present value, i.e. the discounted value at time 0, that is of interest, and we
then have

DVal0(c) =
m

∑

j=1

cjv(tj), if all tj > 0,

where each payment is discounted by v(tj). Each future payment has a different present
value. Note that the formulas for AValt and DValt are identical, if we express A(s, t) and
V (s, t) in terms of δ(·).

Definition 31 The time-t value of a cash-flow c is defined as

Valt(c) = AValt(c≤t) + DValt(c>t),

where c≤t and c>t denote restrictions of c to payments at times tj ≤ t resp. tj > t.

Proposition 32 For all s ≤ t we have Valt(c) = Vals(c)A(s, t) = Vals(c)
v(s)

v(t)
.
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The proof is straightforward and left as an exercise. Note in particular, that if Valt(c) = 0
for some t, then Valt(c) = 0 for all t.

Remark 33 1. A sum of money without time specification is meaningless.

2. Do not add or directly compare values at different times.

3. If values of two cash-flows are equal at one time, they are equal at all times.

3.5 Continuous cash-flows

If many small payments are spread evenly over time, it is natural to model them by a
continuous stream of payment.

Definition 34 A continuous cash-flow is a function c : R → R. The total net inflow
between times s and t is

∫ t

s

c(r)dr,

and this may combine periods of inflow and outflow.

As before, we can consider random c. We can also mix continuous and discrete parts.
Note that the net inflow “adds” values at different times ignoring the time-value of money.
More useful than the net inflow are accumulated and discounted values

AValt(c) =

∫ t

0

c(s)A(s, t)ds and DValt(c) =

∫ ∞

t

c(s)V (t, s)ds =
1

v(t)

∫ ∞

t

c(s)v(s)ds.

Everything said in the previous section applies in an analogous way.

3.6 Example: withdrawal of interest as a cash-flow

Consider a savings account that does not credit interest to the savings account itself
(where it is further compounded), but triggers a cash-flow of interest payments.

1. In a δ(·)-model, 1 −→ 1 + I = exp(
∫ 1

0
δ(ds)). Consider the interest cash-flow

(1,−I). Then Val1((0, 1), (1,−I)) = 1 is again the capital, at time 1.

2. In the constant-i model, recall the nominal rate i(p) = p((1 + i)1/p − 1). Interest on
an initial capital 1 up to time 1/p is i(p)/p. After one or indeed k such pthly interest
payments of i(p)/p, we have Valk/p((0, 1), (1/p,−i(p)/p), . . . , (k/p,−i(p)/p)) = 1.

3. In a δ(·)-model, continuous cash-flow c(s) = δ(s) has Valt((0, 1),−c≤t)=1 for all t.

We leave as an exercise to check these directly from the definitions.
Note, in particular, that accumulation of interest itself does not correspond to events

in the cash-flow. Cash-flows describe external influences on the account. Although in-
terest is not credited continuously or at every withdrawal in practice, our mathematical
model does assign a balance=value that changes continuously between instances of ex-
ternal cash-flow. We include the effect of interest in a cash-flow by withdrawal.



Lecture 4

The yield of a cash-flow

Reading: CT1 Core Reading Unit 7, McCutcheon-Scott Section 3.2

Given a cash-flow representing an investment, its yield is the constant interest rate that
makes the cash-flow a fair deal. Yields allow to assess and compare the performance of
possibly quite different investment opportunities as well as mortgages and loans.

4.1 Definition of the yield of a cash-flow

In that follows, it does not make much difference whether a cash-flow c is discrete,
continuous or mixed, whether the time horizon of c is finite or infinite (like e.g. for
perpetuities). However, to keep statements and technical arguments simple, we assume:

The time horizon of c is finite and payment rates of c are bounded. (H)

Since we will compare values of cash-flows under different interest rates, we need to adapt
our notation to reflect this:

NPV(i) = i-Val0(c)

denotes the Net Present Value of c discounted in the constant-i interest model, i.e. the
value of the cash-flow c at time 0, discounted using discount factors v(t) = vt = (1+ i)−t.

Lemma 35 Given a cash-flow c satifying hypothesis (H), the function i 7→ NPV(i) is
continuous on (−1,∞).

Proof: In the discrete case c = ((t1, c1), . . . , (tn, cn)), we have NPV(i) =

n
∑

k=1

ck(1+ i)−tk ,

and this is clearly continuous in i for all i > −1. For a continuous-time cash-flow c(s),
0 ≤ s ≤ t (and mixed cash-flows) we use the uniform continuity of i 7→ (1 + i)−s on
compact intervals s ∈ [0, t] for continuity to be maintained after integration

NPV(i) =

∫ t

0

c(s)(1 + i)−sds.

2

Corollary 36 Under hypothesis (H), i 7→ i-Valt(i) is continuous on (−1,∞) for any t.

13
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Often the situation is such that an investment deal is profitable (NPV(i) > 0) if the
interest rate i is below a certain level, but not above, or vice versa. By the intermediate
value theorem, this threshold is a zero of i 7→ NPV(i), and we define

Definition 37 Given a cash-flow c, if i 7→ NPV(i) has a unique root on (−1,∞), we
define the yield y(c) to be this root. If i 7→ NPV(i) does not have a root in (−1,∞) or
the root is not unique, we say that the yield is not well-defined.

The yield is also known as the “internal rate of return” or also just “rate of return”. We
can say that the yield is the fixed interest rate at which c is a “fair deal”. The equation
NPV(i) = 0 is called yield equation.

Example 38 Suppose that for an initial investment of £1,000 you obtain a payment of
£400 after one year and 770 after two years. What is the yield of this deal? Clearly
c = ((0,−1000), (1, 400), (2, 770). By definition, we are looking for roots i ∈ (−1,∞) of

NPV(i) = −1, 000 + 400(1 + i)−1 + 800(1 + i)−2 = 0

⇐⇒ 1, 000(i + 1)2 − 400(i + 1) − 770 = 0

The solutions to this quadratic equation are i1 = −1.7 and i2 = 0.1. Since only the
second zero lies in (−1,∞), the yield is y(c) = 0.1, i.e. 10%.

Sometimes, it is onvenient to solve for v = (1 + i)−1, here 1, 000 − 400v − 770v2 = 0
etc. Note that i ∈ (−1,∞) ⇐⇒ v ∈ (0,∞).

Example 39 Consider the security of Example 7 in Lecture 1. The yield equation
NPV(i) = 0 can be written as

10, 000 = 500

10
∑

k=1

(1 + i)−k + 10, 000(1 + i)−10.

We will introduce some short-hand actuarial notation in Lecture 5. Note, however, that
we already know a root of this equation, because the cash-flow is the same as for a bank
account with capital £10, 000 and a cash-flow of annual interest payments of £500, i.e.
at 5%, so i = 5% solves the yield equation. We will now see in much higher generality
that there is usually only one solution to the yield equation for investment opportunities.

4.2 General results ensuring the existence of yields

Since the yield does not always exist, it is useful to have sufficient existence criteria.

Proposition 40 If c has in- and outflows and all inflows of c precede all outflows of c
(or vice versa), then the yield y(c) exists.

Remark 41 This includes the vast majority of projects that we will meet in this course.
Essentially, investment projects have outflows first, and inflows afterwards, while loan
schemes (from the borrower’s perspective) have inflows first and outflows afterwards.
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Proof: By assumption, there is T such that all inflows are strictly before T and all
outflows are strictly after T . Then the accumulated value

pi = i-ValT (c<T )

is positive strictly increasing in i with p−1 = 0 and the discounted value p∞ = ∞ (by
assumption there are inflows) and

ni = i-ValT (c>T )

is negative strictly increasing with n−1 = −∞ (by assumption there are outflows) and
n∞ = 0. Therefore

bi = pi + ni = i-ValT (c)

is strictly increasing from −∞ to ∞, continuous by Corollary 36; its unique root i0 is
also the unique root of i 7→ NPV(i) = (1 + i)−T (i-ValT (c)) by Corollary 32.

For the “vice versa” part, replace c by −c and use Val0(c) = −Val0(−c) etc. 2

Corollary 42 If all inflows precede all outflows, then

y(c) > i ⇐⇒ NPV(i) < 0.

If all outflows precede all inflows, then

y(c) > i ⇐⇒ NPV(i) > 0.

Proof: In the first setting assume y(c) > 0, we know by(c) = 0 and i 7→ bi increases with
i, so i < y(c) ⇐⇒ bi < 0, but bi = i-ValT (c) = (1 + i)T NPV(i).

The second setting is analogous (substitute −c for c). 2

As a useful example, consider i = 0, when NPV(0) is the sum of undiscounted payments.

Example 39 (continued) By Proposition 40, the yield exists and equals y(c) = 5%.

4.3 Example: APR of a loan

A yield that is widely quoted in practice, is the Annual Percentage Rate (APR) of a
loan. This is straightforward if the loan agreement is based on a constant interest rate
i. Particularly for mortgages (loans to buy a house), it is common, however, to have an
initial period of lower interest rates and lower monthly payments followed by a period of
higher interest rates and higher payments. The APR then gives a useful summary value:

Definition 43 Given a cash-flow c representing a loan agreement (with inflows preceding
outflows), the yield y(c) rounded down to next lower 0.1% is called the Annual Percentage
Rate (APR) of the loan.
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Example 44 Consider a mortgage of £85,000 with interest rates of 2.99% in year 1,
4.19% in year 2 and 5.95% for the remainder of a 20-year term. A Product Fee of £100 is
added to the loan amount, and a Funds Transfer Fee is deducted from the Net Amount
provided to the borrower. We will discuss in Lecture 6 how this leads to a cash flow of

c = ((0, 84975), (1,−5715), (2,−6339), (3,−7271), (4,−7271), . . . , (20,−7271)),

and how the annual payments are further transformed into equivalent monthly payments.
Let us here calculate the APR, which exists by Proposition 40. Consider

f(i) = 84, 975− 5, 715(1 + i)−1 − 6, 339(1 + i)−2 − 7, 271
20

∑

k=3

(1 + i)−k.

Solving the geometric progression, or otherwise, we find the root iteratively by evaluation

f(5%) = −3, 310, f(5.5%) = 396, f(5.4%) = −326, f(5.45%) = 36.

From the last two, we see that y(c) ≈ 5.4%, actually y(c) = 5.44503 . . .%. We can see
that APR=5.4% already from the middle two evaluations, since we always round down,
by definition of the APR.

4.4 Numerical calculation of yields

Suppose we know the yield exists, e.g. by Proposition 40. Remember that f(i) = NPV(i)
is continuous and (usually) takes values of different signs at the boundaries of (−1,∞).

Interval splitting allows to trace the root of f : (l0, r0) = (−1,∞), make successive
guesses in ∈ (ln, rn), calculate f(in) and define

(ln+1, rn+1) := (in, rn) or (ln+1, rn+1) = (ln, in)

such that the values at the boundaries f(ln+1) and f(rn+1) are still of different signs.
Stop when the desired accuracy is reached.

The challenge is to make good guesses. Bisection

in = (ln + rn)/2

(once rn < ∞) is the ad hoc way, linear interpolation

in = ln
f(rn)

f(rn) − f(ln)
+ rn

−f(ln)

f(rn) − f(ln)

an efficient improvement. There are more efficient variations of this method using some
kind of convexity property of f , but that is beyond the scope of this course.

Actually, the iterations are for computers to carry out. For assignment and exam-
ination questions, you should make good guesses of l0 and r0 and carry out one linear
interpolation, then claiming an approximate yield.

Example 44 (continued) Good guesses are r0 = 6% and l0 = 5%, since i = 5.95% is
mostly used. [Better, but a priori less obvious guess would be r0 = 5.5%.] Then

f(5%) = −3, 310.48
f(6%) = 3874.60

}

⇒ y(c) ≈ 5%
f(6%)

f(6%) − f(5%)
+ 6%

−f(5%)

f(6%) − f(5%)
= 5.46%.



Lecture 5

Annuities and fixed-interest
securities

Reading: CT1 Core Reading Units 6, 10.1, McCutcheon-Scott 3.3-3.6, 4, 7.2

In this chapter we introduce actuarial notation for discounted and accumulated values
of regular payment streams, so-called annuity symbols. These are useful not only in the
pricing of annuity products, but wherever regular payment streams occur. Our main
example here will be fixed-interest securities.

5.1 Annuity symbols

Annuity-certain. An annuity-certain of term n entitles the holder to a cash-flow

c = ((1, X), (2, X), . . . , (n − 1, X), (n, X)).

Take X = 1 for convenience. In the constant-i model, its Net Present Value is

an| = an|i = NPV(i) = Val0(c) =
n

∑

k=1

vk = v
1 − vn

1 − v
=

1 − vn

i
.

The symbols an| and an|i are annuity symbols, pronounced “a angle n (at i)”.
The accumulated value at end of term is

sn| = sn|i = Valn(c) = v−nVal0(c) =
(1 + i)n − 1

i
.

pthly payable annuities. A pthly payable annuity spreads (nominal) payment of 1
per unit time equally into p payments of 1/p, leading to a cash-flow

cp = ((1/p, 1/p), (2/p, 1/p), . . . , (n − 1/p, 1/p), (n, 1/p))

with

a
(p)
n|

= Val0(cp) =
1

p

np
∑

k=1

vk/p = v1/p 1 − vn

1 − v1/p
=

1 − vn

i(p)
,

17
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where ip = p((1 + i)1/p − 1) is the nominal rate of interest convertible pthly associated
with i. This calculation hence the symbol is meaningful for n any integer multiple of 1/p.

We saw in Section 3.6 that, (now expressed in our new notation)

ian| =Val0((1, i), (2, i), . . . , (n, i))=Val0((1/p, i
(p)/p), (2/p, i(p)/p), . . . , (n, i(p)/p))= i(p)a

(p)
n|

,

since both cash-flows correspond to the income up to time n on 1 unit invested at time
0, at effective rate i.

The accumulated value of cp at the end of term is

s
(p)
n|

= Valn(cp) = v−nVal0(cp) =
(1 + i)n − 1

i(p)
.

Perpetuities. As n → ∞, we obtain perpetuities that pay forever

a∞| = Val0((1, 1), (2, 1), (3, 1), . . .) =

∞
∑

k=1

vk =
v

1 − v
=

1

i
.

Continuously payable annuities. As p → ∞, the cash-flow cp “tends to” the con-
tinuous cash-flow c(s) = 1, 0 ≤ s ≤ n, with

an| = Val0(c) =

∫ n

0

c(s)vsds =

∫ n

0

vsds =

∫ n

0

e−δsds =
1 − e−δn

δ
=

1 − vn

δ
.

Or an| = Val0(c) = lim
p→∞

a
(p)
n|

= lim
p→∞

1 − vn

i(p)
=

1 − vn

δ
. Similarly sn| = Valn(c) = v−nan|.

Annuity-due. This simply means that the first payment is now

((0, 1), . . . , (n − 1, 1))

with

än| = Val0((0, 1), (1, 1), . . . , (n − 1, 1)) =
n−1
∑

k=0

vk =
1 − vn

1 − v
=

1 − vn

d

and

s̈n| = Valn((0, 1), (1, 1), . . . , (n − 1, 1)) = v−nän| =
(1 + i)n − 1

d
.

Similarly

ä
(p)
n|

= Val0((0, 1/p), (1/p, 1/p), . . . , (n − 1/p, 1/p))

and

s̈n| = Valn((0, 1/p), (1/p, 1/p), . . . , (n − 1/p, 1/p)).

Also ä∞|, ä
(p)
∞|

, etc.



Lecture Notes – BS4a Actuarial Science – Oxford MT 2011 19

Deferred and increasing annuities. Further important annuity symbols dealing with
regular cash-flows starting some time in the future, and with cash-flows with regular
increasing payment streams, are introduced on Assignment 2. The corresponding symbols
are

m|an|, m|a
(p)
n|

, m|än|, m|ä
(p)
n|

, m|an|, (Ia)n|, (Iä)n|, (Ia)n|, (Ia)n|, m|(Ia)n| etc.

5.2 Fixed-interest securities

Simple fixed-interest securities. A simple fixed-interest security entitles the holder
to a cash-flow

c = ((1, Nj), (2, Nj), . . . , (n − 1, Nj), (n, Nj + N)),

where j is the coupon rate, N is the nominal amount and n is the term. The value in the
constant-j model is

NPV(j) = Njan|j + N(1 + j)−n = Nj
1 − (1 + j)−n

j
+ N(1 + j)−n = N.

This is not a surprise: compare with point 2. of Section 3.6. The value in the constant-i
model is

NPV(i) = Njan|i + N(1 + i)−n = Nj
1 − (1 + i)−n

i
+ N(1 + i)−n = Nj/i + Nvn(1− j/i).

More general fixed-interest securities. There are fixed-interest securities with pthly
payable coupons at a nominal coupon rate j and with a redemption price of R per unit
nominal

c = ((1/p, Nj/p), (2/p, Nj/p), . . . , (n − 1/p, Nj/p), (n, Nj/p + NR)),

where we say that the security is redeemable at (resp. above or below) par if R = 1 (resp.
R > 1 or R < 1). We compute

NPV(i) = Nja
(p)
n|

+ NR(1 + i)−n.

If NPV(i) = N (resp. > N or < N), we say that the security is valued or traded at (resp.
above or below) par. Redemption at par is standard. If redemption is not at par, this is
usually expressed as e.g. “redemption at 120%” meaning R = 1.2. If redemption is not
at par, we can calculate the coupon rate per unit redemption money as j′ = j/R; with
N ′ = NR, the cash-flow of a pthly payable security of nominal amount N ′ with coupon
rate j′ redeemable at par is identical.

Interest payments are always calculated from the nominal amount. Redemption at
par is the standard. In practice, a security is a piece of paper (with coupon strips to cash
in the interest) that can change owner (sometimes under some restrictions).
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Fixed-interest securities as investments. Fixed-interest securities are issued by
Governments and are also called Government bonds as opposed to corporate bonds, which
are issued by companies. Corporate bonds are less secure than Government bonds since
(in either case, actually) bankruptcy can stop the payment stream. Since Government
typically issues large quantities of bonds, they form a very liquid/marketable form of
investment that is actively traded on bond markets.

Government bonds are either issued at a fixed price or by tender, in which case the
highest bidders get the bonds at a set issue date. Government bonds usually have a term
of several years. There are also shorter-term Government bills which have no coupons,
so they are just offered at a discount on their nominal value.

Example 45 Consider a fixed-interest security of N = 100 nominal, coupon rate j = 3%
payable annually and redeemable at par after a term of n = 2. If the security is currently
trading below par, with a purchase price of P = £97, the investment has a cash-flow

c = ((0,−97), (1, 3), (2, 103))

and we can calculate the yield by solving the equation of value

−97 + 3(1 + i)−1 + 103(1 + i)−2 = 0 ⇐⇒ 97(1 + i)2 − 3(1 + i) − 103 = 0

to obtain 1 + i = 1.04604, i.e. i = 4.604% (the second solution of the quadradic is
1 + i = −1.01512, i.e. i = −2.01512, which is not in (−1,∞); note that we knew already
by Proposition 40 that there can only be one admissible solution).

Here, we could solve the quadratic equation explicitly; for fixed-interest securities of
longer term, it is useful to note that the yield is composed of two effects, first the coupons
payable at rate j/R per unit redemption money (or at rate jN/P per unit purchasing
price) and then any capital gain/loss RN − P spread over n years. Here, these rough
considerations give

j/R+(R−P/N)/n = 4.5%, or more precisely (j/R+jN/P )/2+(R−P/N)/n = 4.546%,

and often even rougher considerations give us an idea of the order of magnitute of a yield
that we can then use as good initial guesses for a numerical approximation.


