
BS3b
Statistical Lifetime-Models

David Steinsaltz1

University of Oxford
Based on early editions by Matthias Winkel and Mary Lunn

1 2 3 4

1

2

3

4

Time

Ag
e

P'(1,t)

P'(2,t)

P'(3,t)

HT 2010 (updated HT 2014)

1University lecturer at the Department of Statistics, University of Oxford





BS3b
Statistical Lifetime-Models

David Steinsaltz – 16 lectures HT 2010
steinsal@stats.ox.ac.uk

Prerequisites

Part A Probability, Part A Statistics and Part B Applied Probability are prerequisites.

Website: http://www.steinsaltz.me.uk/BS3b/BS3b.html

Aims

Statistical Lifetime-Models follows on from Applied Probability. Models introduced there are
examined in the first part of the course more specifically in a life insurance context where
transitions typically model the passage from ‘alive’ to ‘dead’, possibly with intermediate stages
like ‘loss of a limb’ or ‘critically ill’. The aim is to develop statistical methods to estimate
transition rates and more specifically to construct life tables that form the basis in the calculation
of life insurance premiums.

We will then move on to survival analysis, which is widely used in medical research, in
addition to insurance, in which we consider the effect of covariates and of partially observed
data. We also explain demographic concepts, and how life tables are adapted to the context of
changing mortality rates.

Synopsis

Survival models: general lifetime distributions, force of mortality (hazard rate), survival function,
specific mortality laws, the single decrement model, curtate lifetimes, life tables, period and
cohort.

Estimation procedures for lifetime distributions: empirical lifetime distributions, censoring,
Kaplan-Meier estimate, Nelson-Aalen estimate. Parametric models, accelerated life models
including Weibull, log-normal, log-logistic. Plot-based methods for model selection. Proportional
hazards, partial likelihood, semiparametric estimation of survival functions, use and overuse of
proportional hazards in insurance calculations and epidemiology.

Two-state and multiple-state Markov models, with simplifying assumptions. Estimation
of Markovian transition rates: Maximum likelihood estimators, time-varying transition rates,
census approximation. Applications to reliability, medical statistics, ecology.

Graduation, including fitting Gompertz-Makeham model, comparison with standard life table:
tests including chi-square test and grouping of signs test, serial correlations test; smoothness.

http://www.steinsaltz.me.uk/BS3b/BS3b.html
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Exercises and Classes

Classes will be held on Fridays. There will be four sessions: 10-11, 11-12, 2-3, 3-4. Class
assignments will be available on Minerva at https://minerva.stats.ox.ac.uk.

Scripts are to be handed in by Mondays 4pm in the Department of Statistics.
The scope of exercises goes significantly beyond that of exam questions in many cases, but

understanding the exercises is essential to coping with the variety of exam questions that might
come up. There is a great range of difficulty in the exercises, and most students should find at
least some of the exercises very challenging. Try all of them, but don’t spend hours and hours
on questions if you are not making any progress.

Try to start solving exercises when you get the problem sheet, not the day before you have
to hand in your solutions. This allows you to have second attempts at exercises that you can’t
solve straight away.

Lecture notes are meant to be useful when solving exercises. You may use any result from
the lectures, except where the contrary is explicitly stated.

Reading

There are lots of good books on survival analysis. Look for one that suits you. Some pointers
will be given in the lecture notes to readings that are connected, but look in the index to find
topics that confuse you and/or interest you.

The actuarial material in the course is modeled on the CT4 Core Reading from the Institute
of Actuaries.

CT4 Models Core Reading. Faculty & Institute of Actuaries

This is the core reading for the actuarial professional examination on survival models. In some
places, the approach is more practically oriented and often placed in an insurance context,
whereas the course is more academic and not only oriented towards insurance applications. All
in all, this is the main reference for about half the course. It is available for about £21.50 from
the Institute of Actuaries on Worcester Street. (A few college libraries have it.)

D.R. Cox and D. Oakes: Analysis of Survival Data. Chapman & Hall (1984)

This is the classical text on survival analysis. The presentation is concise, but gives a broad
view of the subject. The text contains exercises. This is the main reference for about half the
course. It contains also much more related material beyond the scope of the course.

H.U. Gerber: Life Insurance Mathematics. 3rd edition, Springer (1997)

The presentation is concise. Only three chapters are relevant. Chapter 2 gives an introduction
to lifetime distributions, Chapter 7 discusses the multiple decrement model and Chapter 11
estimation procedures for lifetime distributions. The remainder combines the ideas with the
interest rate theory of BS4.

Klein & Moeschberger: Survival Analysis: Techniques for Censored and Truncated
Data, 2nd edition, Springer (2003)

This is an excellent source for a lot of the survival analysis topics, particularly censoring and
truncation, and the Kaplan-Meier and Nelson-Aalen estimators. Lots of terrific examples.

https://minerva.stats.ox.ac.uk
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Lecture 1

Introduction: Survival Models

1.1 Early life tables

In one of the earliest treatises on probability George Leclerc Buffon considered the problem of
finding the fundamental unit of risk, the smallest discernible probability. He wrote that “all fear
or hope, whose probability equals that which produces the fear of death, in the moral realm
may be taken as unity against which all other fears are to be measured.” [Buf77, p. 56] In other
words, because no healthy man in the prime of life (he argued) attends to the risk that he may
die in the next twenty-four hours, Buffon considered that events with this probability could be
treated as negligible; after all, “since the intensity of the fear of death is a good deal greater
than the intensity of any other fear or hope,” any other risk of equivalent probability of a less
troubling event — such as winning a lottery — would leave a person equally indifferent. He
decided that the appropriate age to consider for a man to be in the prime of health was 56 years.
But what is that probability, that a 56 year old man dies in the next day?

To answer this, Buffon turned to mortality tables. A colleague (one M. Dupré of Saint-Maur)
assembled the registers of 12 rural parishes and 3 parishes of Paris, in which 23,994 deaths were
recorded. The ages at death were all recorded, so that he knew that 174 of the deaths were at
age 56; that is, between the 56th and 57th birthdays.1 Our näıve estimator for the probability
of an event is

probability of occurrence =
number of occurrences

number of opportunities
.

The number of occurrences of the event (death of an individual aged 56) is observed to be
174. But what about the denominator? The number of “opportunities” for this event is just
the number of individuals in the population at the appropriate age. The most direct way to
determine this number would be a time-consuming census. Buffon’s approach (and that of
other 17th and 18th creators of such life tables) depended upon the following implicit logic:
Suppose the population is stable, so that the same number of people in each age group die each
year. Since every person dies at some time (it is believed), the total number of people in the
population who live to their 56th birthday will be exactly the same as the number of people
observed to have died after their 56th birthday in the particular year under observation, which
happens to be 5031. The probability of dying in one day may then be estimated as

1
365

× 174
5031

≈ 1
10000

,

1Actually, Buffon’s statistical procedure was a bit more complicated than this. The recorded numbers of deaths
at ages 55,56,57,58,59,60 were 280,130,129,182,90,534 respectively. Buffon observed that the priests (“particularly
the country priests”) were likely to record round numbers for the age at death, rather than the exact age — which
they may not know anyway. He thus decided that it would make more sense to smooth (as statisticians would call
the procedure today) or graduate (as actuaries call it) the data. We will learn about graduation in Lecture.

1
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and Buffon proceeds to reason with this estimate.

From this elementary exercise we see that:

• Mortality probabilities can be estimated as the ratio of the number of deaths to the number
of individuals “at risk”.

• The numerator (the number of deaths) is usually straightforward to determine.

• The denominator (the number at risk) can be challenging.

• Mortality can serve as a model for thinking about risks (and opportunities) more generally,
for events happening at random times.

• You don’t get very far in thinking about mortality and other risks without some sort of
theoretical model.

The last claim may require a bit more elucidation. What would a näıve, empirical approach
to life tables look like? Given a census of the population by age, and a list of the ages at death
in the following year, we could compute the proportion of individuals aged x who died in the
following year. This is merely a free-floating fact, which could be compared with other facts,
such as the measured proportion of individuals aged x who died in a different year (or at a
different age, or a different place, etc.) If you want to talk about a probability of dying in that
year (for which the proportion would serve as an estimate), this is a theoretical construct, which
can be modelled (as we will see) in different ways. Once you have a probability model, this
allows you to pose (and perhaps answer) questions about the probability of dying in a given day,
make predictions about past and future trends, and isolate the effect of certain medications or
life-style changes on mortality.

There are many different kinds of problems for which the same survival analysis statistics
may be applied. Some examples which we will consider at various points in this course are:

• Time to failure of a machine with multiple internal components.

• Time from infection until a subject shows signs of illness.

• Time from starting to try to conceive a baby until a woman is pregnant.

• Time until a person diagnosed with (and perhaps treated for) a disease has a recurrence.

• Time until an unmarried couple marries or separates.

Often, though, we will use the term “lifetime” to represent any waiting time, along with its
attendant vocabulary: survival probability, mortality rate, cause of death, etc.

1.2 Basic statistical methods for lifetime distributions

In Table 1.1 we see the estimated ages at death for 103 tyrannosaurs, from four different species,
as reported in [ECIW06]. Let us treat them here as a single population.
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A. sarcophagus 2,4,6,8,9,11,12,13,14,14,15,15,16,17,17,18,19,19,20,21,23,28

T. rex
2,6,8,9,11,14,15,16,17,18,18,18,18,18,19,21,21,21,
22,22,22,22,22,22,23,23,24,24,28

G. libratus
2,5,5,5,7,9,10,10,10,11,12,12,12,13,13,14,14,14,14,14,
15,16,16,17,17,17,18,18,18,19,19,19,20,20,21,21,21,21,22

Daspletosaurus 3,9,10,17,18,21,21,22,23,24,26,26,26

Table 1.1: 103 estimated ages of death (in years) for four different tyrannosaur species.

In Part A Statistics you learned to do the following:

1.2.1 Plot the data

The most basic thing you can do with any data is to sort the observations into bins of some
width ∆, and plot the histogram, as in Figure 1.1). This does not presuppose any model.

Histogram of tyrannosaur deaths
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Figure 1.1: Histogram of tyrannosaur mortality data from Table 1.1.

1.2.2 Fit a model

Suppose we believe the list of lifetimes to be i.i.d. samples from a fixed (unknown) distribution.
We can then use the data to determine which distribution it was that generated the samples.
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In Part A statistics you learned parametric maximum likelihood estimation. Suppose the
unknown distribution is believed to be one of a family of distributions that is indexed by a
possibly multivariate (k-dimensional) parameter λ ∈ Λ ⊂ Rk. That is — taking just the case
of data from a continuous distribution — the distribution of the independent observations has
density f(T ; λ) at the point T , if the true value of the parameter is λ. Suppose we have observed
n independent lifetimes T1, . . . , Tn. We define the log-likelihood function to be the (natural) log
of the density of the observations, considered as a function of the parameter. By the assumption
of independence, this is

`T1,...,Tn(λ) = `T :=
n∑

i=1

ln f(Ti;λ). (1.1)

(We use T to represent the vector (T1, . . . , Tn).) The maximum likelihood estimator (MLE) is
simply the value of λ that makes this as large as possible:

λ̂ = λ̂(T) = λ̂(T1, . . . , Tn) := arg max
λ∈Λ

n∏
i=1

f(Ti;λ). (1.2)

Notice the nomenclature: maxλ∈Λ f(λ) picks the maximal value in the range of f , arg maxλ∈Λ f(λ)
picks the λ-value in the domain of f for which this maximum is attained.

The most basic model for lifetimes is the exponential. This is the “memoryless” waiting-
time distribution, meaning that the remaining waiting time always has the same distribution,
conditioned on the event not having occurred up to any time t. This distribution has a single
parameter (k = 1) µ, and density

f(µ;T ) = µe−µT .

The parameter µ is chosen from the domain Λ = (0,∞). If we observe independent lifetimes
T1, . . . , Tn from the exponential distribution with parameter µ, and let T̄ := n−1

∑n
i=1 Ti be the

average, the log likelihood is

`T(µ) =
n∑

i=1

ln
(
µe−µTi

)
= n

(
lnµ− T̄ µ

)
,

which has maximum at µ̂ = 1/T̄ = n/
∑

Ti. This is an example of what we will see to be a
general principle:

Estimated rate =
# events

total time at risk
. (1.3)

In some cases we will be thinking of the time as random, in other cases the number of events,
but the formula (1.3) remains. The challenge will be to estimate the number of events and the
total time in a way that they correspond to the same time period and the same population,
since they are often estimated from different data sources and timed in different ways.

For large n, the estimator λ̂(T1, . . . , Tn) is approximately normally distributed, under some
regularity conditions, and it has some other optimality properties (finite-sample and asymptotic).
This allows us to construct approximate confidence intervals/regions to indicate the precision of
maximum likelihood estimates. Specifically, for

λ̂ ∼ N
(
λ, (I(λ))−1

)
, where Ij1j2(λ) = −E

[
∂2

∂λj1∂λj2

n∑
i=1

ln(f(Ti;λ))

]
= −E

[
∂2`T(λ)
∂λj1∂λj2

]
are the entries of the Fisher Information matrix. Of course, we generally don’t know what λ
is — otherwise, we probably would not be bothering to estimate it! — so we may approximate
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the Information matrix by computing Ij1j2(λ̂) instead. Furthermore, we may not be able to
compute the expectation in any straightforward way; in that case, we use the principle of Monte
Carlo estimation: We approximate the expectation of a random variable by the average of a
sample of observations. We already have the sample T1, . . . , Tn from the correct distribution, so
we define the observed information matrix

Jj1j2(λ, T1, . . . , Tn) = − 1
n

n∑
i=1

∂2 ln f(Ti;λ)
∂λj1∂λj2

.

Again, we may substitute Jj1j2(λ̂, T1, . . . , Tn), since the true value of λ is unknown. Thus, in
the case of a one-dimensional parameter (where the covariance matrix is just the variance and
the matrix inverse (I(λ̂))−1 is just the multiplicative inverse in R), we obtain[

λ̂− 1.96

√
1

I(λ̂)
, λ̂ + 1.96

√
1

I(λ̂)

]

as an approximate 95% confidence interval for the unknown parameter λ.
In the case of the exponential model, we have

`′′T(µ) = − n

µ2
,

so that the standard error for µ̂ is µ/
√

n, which we estimate by µ̂/
√

n. For the tyrannosaur data
of Table 1.1, we have

T̄ = 16.03,

µ̂ = 0.062,

SEµ̂ = 0.0061,

95% confidence interval for µ̂ = (0.050, 0.074).

Aside: In the special case of exponential lifetimes, we can construct exact confidence intervals,
since we know the distribution of n/µ̂ ∼ Γ(n, µ), so that 2nµ/µ̂ ∼ χ2

2n allows to use χ2-tables.
Is the fit any good? We have various standard methods of testing goodness of fit — we

discuss an example in section 1.2.3 — but it’s pretty easy to see by eye that the histograms in
Figure 1.1 aren’t going to fit an exponential distribution, which is a declining density, very well.
In Figure 1.2 we show the empirical (observed) cumulative distribution of tyrannosaur deaths,
together with the cdf of the best exponential fit, which is obviously not a very good fit at all.

We also show (in green) the fit to a class of distribution which is an example of a larger
class that we will meet later, called the “Weibull” distributions. Instead of the exponential cdf
F (t) = 1− e−µt, suppose we take F (t) = 1− e−αt2 . Note that if we define Yi = T 2

i , we have

P (Yi ≤ y) = P (Ti ≤
√

y) = 1− e−αy,

so Yi is actually exponentially distributed with parameter α. Thus, the MLE for α is

α̂ =
n∑
T 2

i

.

We see in Figure 1.2 that this fits much better than the exponential distribution.
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Figure 1.2: Empirical cumulative distribution of tyrannosaur deaths (circles), together with cdf
of exponential fit (red) and Weibull fit (green).

1.2.3 Significance test

The maximum-likelihood approach is optimal in many respects for picking the correct parameter
based on the observed data, under the assumption that the observed data did actually
come from a distribution in the appointed parametric family. But did they? We
already looked at a plot, Figure 1.2, comparing the fit cdf to the observed cdf. The Weibull fit
was clearly better. But how much better?

One way to answer this question is to apply a significance test. We start with a set of
distributions H1, such that we know that it includes the true distribution (for instance, the set
of all distributions on (0,∞), and a null hypothesis H0 ⊂ H1, and we wish to test how plausible
the observations are as a sample from H0, rather than from the alternative hypothesis H1 \H0.
The standard parametric procedure is to use a χ2 goodness of fit test, based on the statistic

X2 =
m∑

j=1

(Oj − Ej)2

Ej
∼ χ2

m−k−1 approximately, under H0, (1.4)

where m is the number of bins (e.g. from your histogram), but merged to satisfy size restrictions,
and k the number of parameters estimated. Oj is the random variable modelling the number
observed in bin j, Ej the number expected under maximum likelihood parameters. To justify
the approximate distribution for the test statistic, we require that at most 20% of bins have
Ej ≤ 5, none Ej ≤ 1 (‘size restriction’).

We obtain then X2 = 17.9 for the Weibull model, and X2 = 92.2 for the exponential
distribution. The latter produces a p-value on the order of 10−18, but the former has a p-
value around 0.0013. Thus, while the data could not possibly have come from an exponential
distribution, or anything like it, the Weibull distribution, while unlikely to have produced exactly
these data, is a plausible candidate.
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Age Observed
Expected Expected

Exponential Weibull

0–4 8 22.7 5.4
5–9 13 21.5 19.3

10–14 22 15.7 25.3
15–19 39 11.5 22.7
20–24 25 8.4 15.7
25+ 15 23.1 14.6

Table 1.2: χ2 computation for fitting tyrannosaur data.

1.3 Overview of the course

Why do we need special statistical methods for lifetime data? Some reasons are:

• Large samples Other models, such as single-decrement models with time-varying transi-
tion rates, may be closer to the truth. We may have more elaborate multivariate parametric
models for the transition rates, but they are unlikely to be precisely true. The problem
then is that the parametric families will eventually be rejected, once the sample size is
large enough — and since we may be concerned with statistical surveys of, for example,
the entire population of the UK, the sample sizes will be very large indeed. Nonparametric
or semiparametric methods will be better able to let the data speak for themselves.

• Small samples While nonparametric models allow the data to speak for themselves,
sometimes we would prefer that they be somewhat muffled. When the number of observed
deaths is small — which can be the case, even in a very large data set, when considering
advanced ages, above 90, and certainly above 100, because of the small number of individuals
who survive to be at risk, but also in children, because of the very low mortality rate — the
estimates are less reliable, being subject to substantial random noise. Also, the mortality
pattern changes over time, and we are often interested in future mortality, but only have
historical data. A non-parametric estimate that precisely reflects the data at hand may
reflect less well the underlying processes, and be ill-suited to projection into the future.
Graduation (smoothing) and extrapolation methods have been developed to address these
issues.

• Incomplete observations Some observations will be incomplete. We may not know the
exact time of a death, but only that it occurred before a given time, or after a given time,
or between two known times, a phenomenon called “censoring”. (When we are informed
only of the year of a death, but not the day or time, this is a kind of censoring. Or we
may have observed only a sample of the population, with the sample being not entirely
random, but chosen according to being alive at a certain date, or having died before a
certain date, a phenomenon known as “truncation”. We need special techniques to make
use of these partial observations.) Since we are observing times, subjects who break off a
study midway through provide partial information in a clearly structured way.

• Successive events A key fact about time is its sequence. A patient is infected, develops
symptoms, has a diagnosis, a treatment, is cured or relapses, at some point dies. Some or
all of these events may be considered as a progression, and we may want to model the
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sequence of random times. Some care is needed to carry out joint maximum likelihood
estimation of all transition rates in the model, from one or several individuals observed.
This can be combined with time-varying transition rates.

• Comparing lifetime distributions We may wish to compare the lifetime distributions
of different groups (e.g., smokers and nonsmokers; those receiving a traditional cholesterol
medication and those receiving the new drug) or the effect of a continuous parameter (e.g.,
weight) on the lifetime distribution.

• Changing rates Mortality rates are not static in time, creating disjunction between
period measures — looking at a cross-section of the population by age as it exists at a
given time — and cohort measures — looking at a group of individuals born at a given
time, and following them through life.



Lecture 2

Lifetime distributions

All the stochastic models in this course will be within the class of discrete state-space Markov
processes which may be time inhomogeneous. We will not be using the general form of these
models, but will be simplifying and specialising them substantially. What unifies this course
is the nature of the questions we will be asking. In the standard theory of Markov processes,
we focus early on stationary processes. Our models will not be stationary, because they have
absorbing states. The key questions will concern the absorbing states: When the process is
absorbed (the “lifetime”), and, in some models, which state absorbs it.

We need to be careful to distinguish between representations of the population and repre-
sentations of the individual. In the present context, the Markov process always represents an
individual. The population consists of some number of independently running copies of the basic
Markov process. In simple cases — for instance, exponential mortality — the population-level
process (total population at time t) will also be a Markov process, a “pure-death” chain. This
raises the complication that there are usually two different kinds of time running: The “internal”
time of the individual process, which usually represents age in some way, and calendar time.
The full implications of these interacting time-frames — also called the cohort and the period
perspective — are a major topic in demography, and we will only touch on them in this course.

2.1 Survival function and hazard rate (force of mortality)

As discussed in chapter 1, the simplest lifetime model is the single-decrement model: The
individual is alive for some length of time L, at the end of which he/she becomes dead. This is
a homogeneous Markov process if and only if L has an exponential distribution. In general, we
may describe a lifetime distribution — which is simply the distribution of a nonnegative random
variable — in several different ways:

cdf F (t) = P
{
L ≤ t

}
;

survival function S(t) = F̄ (t) = 1− F (t) = P
{
L > t

}
;

density function f(t) = dF/dt;
hazard rate λ(t) = f(t)/F̄ (t)

The hazard rate is also called mortality rate in survival contexts. The traditional name in
demography is force of mortality. This may be thought of as the instantaneous rate of dying per
unit time, conditioned on having already survived.s The exponential distribution with parameter
λ ∈ (0,∞) is given by

9
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cdf F (t) = 1− e−λt;
survival function F̄ (t) = e−λt;
density function f(t) = λe−λt;

hazard rate λ(t) = λ.

Thus, the exponential is the distribution with constant force of mortality, which is a formal
statement of the “memoryless” property.

2.2 Residual lifetimes

Assume that there is an overall lifetime distribution, and every individual born has a random
lifetime according to this distribution. Then, if we observe sombody now aged x, and we denote
his residual lifetime T − x by Tx, then we have

F̄Tx(t) = F̄T−x|T>x(t) =
F̄T (x + t)

F̄T (x)
, fTx(t) = fT−x|T>x(t) =

fT (x + t)
F̄T (x)

, t ≥ 0. (2.1)

So, any distribution of a full lifetime T is naturally associated with a family of conditional
distributions of T given T > x.

2.3 Force of mortality

We now look more closely at the hazard rate, which may be defined as

hT (t) = µt = lim
ε↓0

1
ε
P(T ≤ t + ε|T > t) = lim

ε↓0

1
εP(t < T ≤ t + ε)

P(T > t)
=

fT (t)
F̄T (t)

. (2.2)

The density fT (t) is the (unconditional) infinitesimal probability to die at age t. The hazard
rate hT (t) is the (conditional) infinitesimal probability to die at age t of an individual known to
be alive at age t. It may seem that the hazard rate is a more complicated quantity than the
density, but it is very well suited to modelling mortality. Whereas the density has to integrate
to one and the distribution function (survival function) has boundary values 0 and 1, the force
of mortality has no constraints, other than being nonnegative — though if “death” is certain the
force of mortality has to integrate to infinity. Also, we can read its definition as a differential
equation and solve

F̄ ′
T (t) = −µtF̄T (t), F̄ (0) = 1 ⇒ F̄T (t) = exp

{
−
∫ t

0
µsds

}
, t ≥ 0. (2.3)

We can now express the distribution of Tx as

F̄Tx(t) =
F̄T (x + t)

F̄T (x)
= exp

{
−
∫ x+t

x
µsds

}
= exp

{
−
∫ t

0
µx+rdr

}
, t ≥ 0. (2.4)

Note that this implies that hTx(t) = hT (x + t), so it is really associated with age x + t only, not
with initial age x nor with time t after initial age. Also note that, given a measurable function
µ : [0,∞) → R, F̄Tx(0) = 1 always holds, F̄Tx decreasing if and only if µ ≥ 0. F̄Tx(∞) = 0 if and
only if

∫∞
0 µtdt = ∞. This leaves a lot of modelling freedom via the force of mortality.

Densities can now be obtained from the definition of the force of mortality (and consistency)
as fTx(t) = µt+xF̄Tx(t).
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2.4 Defining mortality laws from hazards

We are now in the position to model mortality laws via their force of mortality. Clearly, the
Exp(λ) distribution has a constant hazard rate µt ≡ λ, and the uniform distribution on [0, ω]
has a hazard rate

hT (t) =
1

ω − t
, 0 ≤ t < ω. (2.5)

Note that here
∫ ω
0 hT (t)dt = ∞ squares with F̄T (ω) = 0 and forces the maximal age ω. This is

a general phenomenon: distributions with compact support have a divergent force of mortality
at the supremum of their support, and the singularity is not integrable.

The Gompertz distribution is given by µt = Beθt. More generally, Makeham’s law is given by

µt = A + Beθt, F̄Tx(t) = exp
{
−At−m

(
eθ(x+t) − eθx

)}
, x ≥ 0, t ≥ 0, (2.6)

for parameters A > 0, B > 0, θ > 0; m = B/θ. Note that mortality grows exponentially. If θ is
big enough, the effect is very close to introducing a maximal age ω, as the survival probabilities
decrease very quickly. There are other parameterisations for this family of distributions. The
Gompertz distribution is named for British actuary Benjamin Gompertz, who in 1825 first
published his discovery [Gom25] that human mortality rates over the middle part of life seemed
to double at constant age intervals. It is unusual, among empirical discoveries, for having
been confirmed rather than refuted as data have improved and conditions changed, and it (or
Makeham’s modification) serves as a standard model for mortality rates not only in humans, but
in a wide variety of organisms. As an example, see Figure 2.1, which shows Canadian mortality
rates from life tables produced by Statistics Canada (available at http://www.statcan.ca:
80/english/freepub/84-537-XIE/tables.htm). Notice how close to a perfect line the mid-life
mortality rates for both males and females is, when plotted on a logarithmic scale, showing that
the Gompertz model is a very good fit.

Figure 2.1(b) shows the corresponding survival curves. It is worth recognising how much
more informative the mortality rates are. in Figure 2.1(a) we see that male mortality is regularly
higher than female mortality at all ages (and by a fairly constant ratio), we see several phases
of mortality — early decline, jump in adolescence, then steady increase through midlife, and
deceleration in extreme old age — whereas Figure 2.1(b) shows us only that mortality is
accelerating overall, and that males have accumulated higher mortality by late life.

The Weibull distribution suggests a polynomial rather than exponential growth of mortality

µt = ktn, F̄Tx(t) = exp
{
− k

n + 1
(
(x + t)n+1 − xn+1

)}
, x ≥ 0, t ≥ 0, (2.7)

for rate parameter k > 0 and exponent n > 0. The Weibull model is commonly used in
engineering contexts to represent the failure-time distribution for machines. The Weibull
distribution arises naturally as the lifespan of a machine with n redundant components, each
of which has constant failure rate, such that the machine fails only when all components have
failed. Later in the course we will discuss how to fit Weibull and Gompertz models to data.

Another class of distributions is obtained by replacing the parameter λ in the exponential
distribution by a (discrete or continuous) random variable M . Then the specification of
exponential conditional densities

fT |M=λ(t) = λe−λt (2.8)

http://www.statcan.ca:80/english/freepub/84-537-XIE/tables.htm
http://www.statcan.ca:80/english/freepub/84-537-XIE/tables.htm
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Figure 2.1: Canadian mortality data, 1995–7.

determines the unconditional density of T as

fT (t) =
∫ ∞

0
fT,M (t, λ)dλ =

∫ ∞

0
λe−λtfM (λ)dλ or fT (t) =

∑
λ>0

λe−λtP(M = λ). (2.9)

Various special cases of exponential mixtures and other extensions of the exponential distribution
have been suggested in a life insurance context. Some of these will be presented later.

E.g., for M ∼ Geom(p), i.e. P(M = k) = pk−1(1− p), k ≥ 1, we obtain

F̄T (t) =
∫ ∞

t
fT (s)ds =

∫ ∞

t

∞∑
k=1

fT |M=k(s)p
k−1(1− p)ds

=
∞∑

k=1

∫ ∞

t
ke−ktpk−1(1− p)ds =

(1− p)e−t

1− pe−t

and one easily deduces

fT (t) =
(1− p)e−t

(1− pe−t)2
, t ≥ 0.

The corresponding hazard rate is

hT (t) =
fT (t)
F̄T (t)

=
1

1− pe−t
,

which is an increasing but bounded.
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2.5 Curtate lifespan

We have implicitly assumed that the lifetime distribution is continuous. However, we can always
pass from a continuous random variable T on [0,∞) to a discrete random variable K = [T ], its
integer part, on N. If T models a lifetime, then K is called the associated curtate lifetime.

2.6 Single decrement model

The exponential model may also be represented as a Markov process. Let S = {0, 1} be our
state space, with interpretation 0=‘alive’ and 1=‘dead’, and consider the Q-matrix

Q =
(
−µ µ
0 0

)
. (2.10)

Then a continuous-time Markov chain X = (Xt)t≥0 with X0 = 0 and Q-matrix Q will have a
holding time T ∼ exp(µ) in state 0 before a transition to 1, where it is absorbed, i.e.

Xt =
{

0 if 0 ≤ t < T
1 if t ≥ T

. (2.11)

The transition matrix is

Pt = etQ =
(

e−µt 1− e−µt

0 1

)
.

It seems that this is an overly elaborate description of a simple model (diagrammed in Figure
2.2), but this viewpoint will be useful for generalisations. Also, the ‘rate parameter’ µ has a
more concrete meaning, and the lack of memory property of the exponential distribution is also
reflected in the Markov property: given that the chain is still in state 0 at time t (i.e. given
T > t), the residual holding time (i.e. T − t) has conditional distribution Exp(µ).

Alive Dead
μ

Figure 2.2: The single-decrement model.

This model may be generalised by allowing the transition rate µ to become an age-dependent
rate function t 7→ µ(t). This may be seen as a very special kind of inhomogeneous Markov process,
or as a special kind of renewal process (one with only one transition). The general two-state
model with transient state ‘alive’ and absorbing state ‘dead’, is called the ‘single-decrement
model’.
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2.7 Mortality laws: Simple or Complex? Parametric or Non-
parametric?

Consider the data for Albertosaurus sarcophagus in Table 1.1. We see here the estimated ages
at death for 22 members of this species. Let us assume, for the sake of discussion, that these
estimates are correct, and that our skeleton collection represents a simple random sample of all
Albertosaurs that ever lived. If we assume that there was a large population of these dinosaurs,
and that they died independently (and not, say, in a Cretaceous suicide pact), then these are 22
independent samples T1, . . . , T22 of a random variable T whose distribution we would like to
know. Consider the probabilities

qx := P
{
x ≤ T < x + 1

}
.

Then the number of individuals observed to have curtate lifespan x has binomial distri-
bution Bin(22, qx). The MLE for a binomial probability is just the näıve estimate q̂x =
# successes/# trials (where a “success”, in this case, is a death in the age interval under con-
sideration). To compute q̂2, then, we observe that there were 22 Albertosaurs from our sample
still alive on their 22 birthdays, of which one unfortunate met its maker in the following year:
q̂2 = 1/22 ≈ 0.046. As for q̂3, on the other hand, there were 21 Albertosaurs observed alive on
their third birthdays, and all of them arrived safely at their fourth, making q̂3 = 0/21. This
leads us to the peculiar conclusion that our best estimate for the probability of an albertosaur
dying in its third year is 0.046, but that the probability drops to 0 in its fourth year, then
becomes nonzero again in the fifth year, and so on. This violates our intuition that mortality
rates should be fairly smooth as a function of age. This problem becomes even more extreme
when we consider continuous lifetime models. With no constraints, the optimal estimator for the
mortality distribution would put all the mass on just those moments when deaths were observed
in the sample, and no mass elsewhere — in other words, infinite hazard rate at a finite set of
points at which deaths have been observed, and 0 everywhere else.

As we see from Figure 1.1, the mortality distribution for the tyrannosaurs becomes much
smoother and less erratic when we use larger bins for the histogram. This is no surprise, since
we are then sampling from a larger baseline, leading to less random fluctuation. The simplest
way to impose our intuition of regularity upon the estimators is to increase the time-step and
reduce the number of parameters to estimate. An extreme version of this, of course, is to impose
a parametric model with a small number of parameters. This is part of the standard tradeoff in
statistics: a free, nonparametric model is sensitive to random fluctuations, but constraining the
model imposes preconceived notions onto the data.

Notation: When the hazard rate µx is being assumed constant over each year of life, the
continuous mortality rate has been reduced to a discrete set of parameters. What do we call
these parameters? By convention, the value of µ that is in effect for all ages in [x, x + 1) is
identified with just one age, namely µx+ 1

2
.
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Life Tables

Reading: Gerber Sections 2.4-2.5, CT4 Units 5-2, 6, 10-1
Further reading: Cox-Oakes Sections 4.1-4.4, Gerber Sections 11.1-11.5

Life tables represent a discretised form of the hazard function for a population, often together
with raw mortality data. Apart from an aggregate table subsuming the whole population (of
the UK, say), such tables exist for various groups of people characterized by their sex, smoking
habits, job type, insurance level etc. This immediately raises interesting questions concerning
the interdependence of such tables, but we focus here on some fundamental issues, which are
already present for the single aggregate table.

We begin with a näıve, empirical approach. In Table 3.2 we see a life table for men in the
UK, in the years 1990–2, as provided by the Office of National Statistics. In the column labelled
Ex we see the number of years “exposed to risk” in age-class x. Since everyone alive is at risk of
dying, this should be exactly the sum of the number of individuals alive in the age class in years
1990, 1991, and 1992. The 1991 number is obtained from the census of that year, and the other
two years are estimated. The column dx shows the number of men of the given age known to
have died during this three-year period. The final column is mx := dx/Ex.

Again, this is an empirical fact, but we find ourselves in a quandary when we try to interpret
it. What is mx? If the number of deaths is reasonably stable from year to year, then mx should
be close to the fraction of men aged x who died each year. How close? The number of men at
risk changes constantly, with each birthday, each death, each immigration or emigration. We
sense intuitively that the effect of these changes would be small, but how small? And what
would we do to compensate for this in a smaller population, where the effects are not negligible?
How do we make projections about future states of the population?

15
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AGE x Ex dx mx × 105

0 1066867 8779 823
1 1059343 661 62
2 1054256 403 38
3 1047298 319 30
4 1037973 251 24
5 1022032 229 22
6 1003486 201 20
7 989008 186 19
8 976049 180 18
9 981422 180 18
10 988020 179 18
11 984778 179 18
12 950853 185 19
13 909437 212 23
14 891556 259 29
15 913423 366 40
16 954339 496 52
17 1002077 758 76
18 1057508 922 87
19 1124668 930 83
20 1163581 979 84
21 1195366 1030 86
22 1210521 1073 89
23 1238979 1105 89
24 1263313 1083 86
25 1296300 1068 82
26 1313794 1145 87
27 1311662 1090 83
28 1291017 1110 86
29 1259644 1129 90
30 1219278 1101 90
31 1176120 1144 97
32 1135091 1128 99
33 1103162 1095 99
34 1071474 1142 107
35 1035587 1218 118
36 1017422 1291 127
37 1010544 1399 138
38 1006929 1536 153
39 1006500 1660 165
40 1016727 1662 163
41 1046632 1967 188
42 1092927 2240 205
43 1167798 2543 218
44 1134652 2656 234
45 1071729 2836 265
46 974301 2930 301
47 955329 3251 340
48 914107 3354 367
49 848419 3486 411
50 815653 3836 470
51 811134 4251 524

AGE x Ex dx mx × 105

52 827414 4781 578
53 822603 5324 647
54 810731 5723 706
55 794930 6411 806
56 775350 6925 893
57 759747 7592 999
58 755475 8477 1122
59 761913 9484 1245
60 764497 10735 1404
61 753706 11880 1576
62 736868 12871 1747
63 725679 14463 1993
64 721743 16094 2230
65 713576 17704 2481
66 700666 19097 2726
67 681977 20930 3069
68 676972 22507 3325
69 678157 25127 3705
70 684764 27159 3966
71 600343 26508 4415
72 504808 24443 4842
73 422817 22792 5391
74 422480 24921 5899
75 431321 27286 6326
76 422822 29712 7027
77 399257 30856 7728
78 365168 30744 8419
79 328386 30334 9237
80 293014 29788 10166
81 260517 28483 10933
82 229149 27399 11957
83 197322 25697 13023
84 165896 23717 14296
85 136103 20930 15378
86 110565 18689 16903
87 87989 16370 18605
88 68443 13571 19828
89 52151 11284 21637
90 40257 9061 22508
91 29000 7032 24248
92 20124 5405 26858
93 13406 4057 30263
94 9392 3069 32677
95 6446 2219 34424
96 4384 1578 35995
97 2795 1091 39034
98 1761 701 39807
99 1059 489 46176
100 624 292 46795
101 359 178 49582
102 216 118 54630
103 107 63 58879

Table 3.1: Male mortality data for England and Wales, 1990–2. From [Fox97] (available online
at http://www.statistics.gov.uk/StatBase/Product.asp?vlnk=333).

http://www.statistics.gov.uk/StatBase/Product.asp?vlnk=333
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AGE x `x qx ex

0 100000 0.0082 73.4
1 99180 0.0006 73.0
2 99119 0.0004 72.1
3 99081 0.0003 71.1
4 99052 0.0002 70.1
5 99028 0.0002 69.1
6 99006 0.0002 68.2
7 98986 0.0002 67.2
8 98967 0.0002 66.2
9 98950 0.0002 65.2
10 98932 0.0002 64.2
11 98914 0.0002 63.2
12 98896 0.0002 62.2
13 98877 0.0002 61.2
14 98855 0.0003 60.2
15 98826 0.0004 59.3
16 98786 0.0005 58.3
17 98735 0.0008 57.3
18 98660 0.0009 56.4
19 98574 0.0008 55.4
20 98492 0.0008 54.5
21 98410 0.0009 53.5
22 98325 0.0009 52.5
23 98238 0.0009 51.6
24 98150 0.0009 50.6
25 98066 0.0008 49.7
26 97986 0.0009 48.7
27 97900 0.0008 47.8
28 97819 0.0009 46.8
29 97735 0.0009 45.8
30 97647 0.0009 44.9
31 97559 0.0010 43.9
32 97465 0.0010 43.0
33 97368 0.0010 42.0
34 97272 0.0011 41.0
35 97168 0.0012 40.1
36 97053 0.0013 39.1
37 96930 0.0014 38.2
38 96796 0.0015 37.2
39 96648 0.0016 36.3
40 96489 0.0016 35.4
41 96332 0.0019 34.4
42 96151 0.0021 33.5
43 95954 0.0022 32.5
44 95745 0.0023 31.6
45 95521 0.0027 30.7
46 95269 0.0030 29.8
47 94982 0.0034 28.9
48 94660 0.0037 28.0
49 94313 0.0041 27.1
50 93926 0.0047 26.2
51 93486 0.0052 25.3

AGE x `x qx ex

52 92997 0.0058 24.4
53 92461 0.0065 23.6
54 91865 0.0070 22.7
55 91219 0.0080 21.9
56 90486 0.0089 21.0
57 89682 0.0099 20.2
58 88791 0.0112 19.4
59 87800 0.0124 18.6
60 86714 0.0139 17.9
61 85505 0.0156 17.1
62 84168 0.0173 16.4
63 82710 0.0197 15.6
64 81078 0.0221 14.9
65 79290 0.0245 14.3
66 77347 0.0269 13.6
67 75267 0.0302 13.0
68 72992 0.0327 12.4
69 70605 0.0364 11.8
70 68037 0.0389 11.2
71 65391 0.0432 10.6
72 62567 0.0473 10.1
73 59610 0.0525 9.6
74 56481 0.0573 9.1
75 53246 0.0613 8.6
76 49982 0.0679 8.1
77 46590 0.0744 7.7
78 43125 0.0807 7.2
79 39643 0.0882 6.8
80 36145 0.0967 6.5
81 32651 0.1036 6.1
82 29270 0.1127 5.7
83 25971 0.1221 5.4
84 22800 0.1332 5.1
85 19763 0.1425 4.8
86 16946 0.1555 4.5
87 14310 0.1698 4.2
88 11881 0.1799 4.0
89 9744 0.1946 3.8
90 7848 0.2016 3.6
91 6266 0.2153 3.3
92 4917 0.2355 3.1
93 3759 0.2611 2.9
94 2777 0.2787 2.7
95 2003 0.2912 2.6
96 1420 0.3023 2.5
97 991 0.3232 2.3
98 670 0.3284 2.2
99 450 0.3698 2.1
100 284 0.3737 2.0
101 178 0.3909 1.9
102 108 0.4209 1.8
103 63 0.4450 1.7

Table 3.2: Life table for English men, computed from data in Table 3.1
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3.1 Notation for life tables

qx Probability that individual aged x dies before reaching age x + 1
px Probability that individual aged x survives to age x + 1
tqx Probability that individual aged x dies before reaching age x + t

tpx Probability that individual aged x survives to age x + t
lx Number of people who survive to age x. Note: This is based

on starting with a fixed number l0 of lives, called the Radix;
most commonly, for human populations the radix is 100,000

dx Number of individuals who die aged x (from the standard population)
tmx Mortality rate between exact age x and exact age x + t
ex Remaining life expectancy at age x

Note the following relationships:

dx = lx − lx+1;
lx+1 = lxpx = lx(1− qx);

tpx =
t−1∏
i=0

px+i

The quantities qx may be thought of as the discrete analogue of the mortality rate — we will
call it the discrete mortality rate or discrete hazard function — since it describes the probability
of dying in the next unit of time, given survival up to age x. In Table 3.1 we show the life table
computed from the raw data of Table 3.2. (It differs slightly from the official table, because the
official table added some slight corrections. The differences are on the order of 1% in qx, and
much smaller in lx.) The life table represents the effect of mortality on a nominal population
starting with size l0 called the Radix, and commonly fixed at 100,000 for large-population
life tables. Imagine 100,000 identical individuals — a cohort — born on 1 January, 1900. In
the column qx we give the estimates for the probability of an individual who is alive on his x
birthday dying in the next year, before his x + 1 birthday. (We discuss these estimates later in
the chapter.) Thus, we estimate that 820 of the 100,000 will die before their first birthday. The
surviving l1 = 99, 180 on 1 January, 1901, face a mortality probability of 0.00062 in their next
year, so that we expect 61 of them to die before their second birthday. Thus l2 = 99119. And
so it goes. The final column of this table, labelled ex, gives remaining life expectancy; we will
discuss this in section 4.2.

3.2 Continuous and discrete models

3.2.1 General considerations

The first decision that needs to be made in setting up a lifetime model is whether to model
lifetimes as continuous or discrete random variables. On first consideration, the discrete approach
may seem to recommend itself: after all, we are commonly concerned with mortality data given in
whole years or, if not years, then whole numbers of months, weeks, or days. Real measurements
are inevitably discrete multiples of some minimal unit of precision. In fact, though, discrete
models for measured quantities are problematic because
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• They tie the analysis to one unit of measurement. If you start by measuring lifespans in
years, and restrict the model accordingly you have no way of even posing a question about,
for instance, the effect of shifting the reporting date within the year.

• Discrete methods are comfortable only when the numbers are small, whereas moving down
to the smallest measurable unit turns the measurements into large whole numbers. Once
you start measuring an average human lifespan as 30000 days (more or less), real numbers
become easier to work with, as integrals are easier than sums.

• It is relatively straightforward to embed discrete measures within a continuous-time model,
by considering the integer part of the continuous random lifetime, called the curtate
lifetime in actuarial terminology.

(Compare this to the suggestion once made by the physicist Enrico Fermi, that lecturers might
take their listeners’ investment of time more seriously if they thought of the 50-minute span of
a lecture as a “microcentury”.) The discrete model, it is pointed out by A. S. Macdonald in
[Mac96] (and rewritten in [CT406, Unit 9]), “is not so easily generalised to settings with more
than one decrement. Even the simplest case of two decrements gives rise to difficult problems,”
and involves the unnecessary complication of estimating an Initial Exposed To Risk. We will
generally treat the continuous model as the fundamental object, and treat the discrete data
as coarse representations of an underlying continuous lifetime. However, looking beyond the
actuarial setting, there are models which really do not have an underlying continuous time
parameter. For instance, in studies of human fertility, time is measured in menstrual cycles, and
there simply are no intermediate chances to have the event occur.

3.2.2 Are life tables continuous or discrete?

The standard approach to life tables mixes the continuous and discrete, in sometimes confusing
ways. The data upon which life tables are based are measured in discrete units, but in most
applications we assume that the risk is actually continuous. If we were to observe a fixed number
of individuals for exactly one year, and count the number of deaths at the end of the year, and if
the number of deaths during the year were a small fraction of the total number at risk, it would
hardly matter whether we chose a discrete or continuous model. As we discuss in chapter 5.3,
the distinction becomes significant to the extent that the number of individuals at risk changes
substantially over a single time unit; then we need to distinguish among Initial Exposed To Risk,
Central Exposed To Risk, and the census approximation (see chapter 5.3).

The connection between discrete and continuous laws is fairly straightforward, at least in
one direction. Suppose T is a lifetime with hazard rate µx at age x, and qx is the probability of
dying on or after birthday x, and before the x + 1 birthday. Then

tqx = e−
R x+t

x µsds.

Another way of putting this is to say that the discrete model may be embedded in the
continuous model, by considering the discrete random variable K = [T ], called the associated
curtate lifetime. The remainder (fractional part) S = T − K = {T} can often be treated
separately in a simplified way (see below). Clearly, the probability mass function of K on N is
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given by

P(K = n) = P(n ≤ T < n + 1) =
∫ n+1

n
fT (t)dt = F̄T (n)− F̄T (n + 1)

= exp
{
−
∫ n

0
µT (t)dt

}(
1− exp

{
−
∫ n+1

n
µT (t)dt

})
and if we denote the one-year death probabilities (discrete hazard function) by

qk = P(K = k|K ≥ k) =
P(K = k)
P(K ≥ k)

= 1− exp
{
−
∫ k+1

k
µT (t)dt

}
and pk = 1− qk, k ∈ N, we obtain the probability of success after n independent Bernoulli trials
with varying success probabilities qk:

P(K = n) = p0 . . . pn−1qn.

Note that qk only depends on the hazard rate between ages k and k + 1. As a consequence, for
Kx = [Tx]

P(Kx = n) = px . . . px+n−1qx+n

are also easily represented in terms of (qk)k∈N.

3.3 Interpolation for non-integer ages

Suppose now that we have modeled the curtate lifetime K. The fractional part S of the lifetime
is a random variable on the interval [0, 1], commonly modeled in one of the following ways:

Constant force of mortality µ(x) is constant on the interval [k, k+1), and is called µT (k+ 1
2),

or sometimes µk+ 1
2

when T is clear from the context. Then

1qk = 1− e
−µ

k+1
2 ; µk+ 1

2
= − ln pk.

S has the distribution of an exponential random variable conditioned on S < 1, so it has
density

f(s) = µk+ 1
2

e
−µ

k+1
2

s

1− e
−µ

k+1
2

.

This assumption thus implies decreasing density of the lifetime through the interval. We
also have, for 0 ≤ s ≤ 1, and k an integer,

spk = P(T > k + s|T > k) = exp
{
−
∫ k+s

k
µtdt

}
= exp

{
−sµk+ 1

2

}
= (1− qk)s.

Note that K and S are not independent, under this assumption.

Uniform If S is uniform on [0, 1), this implies that for s ∈ [0, 1),

fT (k + s) = (F̄T (k)− F̄T (k + 1)) = F̄T (k)qk,

sqk = s · 1qk,

F̄T (k + s) = F̄T (k)
(
1− sqk

)
,

µT (k + s) =
fT (k + s)
F̄T (k + s)

=
qk

1− sqk
.



Lecture 3: Life Tables 21

So this assumption implies that the force of mortality is increasing over the time unit.
Note that µ is discontinuous at (some if not all) integer times unless q0 = α = 1/n and
qx+1 = qx/(1 − qx), i.e. qk = α

1−kα , k = 1, . . . , n − 1, with ω = n maximal age. Usually,
one accepts discontinuities.

Balducci 1−tqk+t = (1− t)qk for t ∈ [0, 1), so that the probability of death in the remaining
time 1− t, having survived to k + t, is the product of the time left and the probability of
death in [k, k + 1). There is a trivial identity that the probability of surving 1 time unit
from time k is the probability of surviving t time units from time k, times the probability
of surviving 1− t time units from time k + t. Thus

qk = 1− (1− tqk) · (1− 1−tqk+t) = 1− (1− tqk) · (1− (1− t)qk),

so that

tqk = 1− 1− qk

1− (1− t)qk
,

This implies that

F̄T (k + t) = F̄T (k)P
{
T > k + t

∣∣T > k
}

= F̄T (k)
1− qk

1− qk + tqk

fT (k + t) =
d

dt
F̄T (k + t) =

F̄T (k)qk(1− qk)
(1− qk + tqk)2

,

µT (k + t) =
fT (k + t)
F̄T (k + t)

=
qk

1− qk + tqk

So this assumption implies that the force of mortality is decreasing over the time unit.

Once we have made one of these assumptions, we can reconstruct the full distribution of a lifetime
T from the entries (qx)x∈N of a life table. When the force of mortality is small, these different
assumptions are all equivalent to µk+ 1

2
= qk. Notice again that the choice of a measurement unit

for discretisation implies a certain level of smoothing, in continuous nonparametric life table
computations. Taking the evidence at face value, we would have to say that we have observed
zero mortality rate, except at the instants at which deaths were observed, where mortality
jumps to ∞. Of course, we average over a period of time, either by imposing the constraint that
mortality rates be step functions, constant over a single measurement unit (or multiple units, if
we wish to impose additional smoothing, usually because the number of observations is small).

Moving in the other direction is not so straightforward. The continuous model cannot be
embedded in the discrete model, for obvious reasons: within the framework of the discrete
model, there is no such thing as a death midway through a time period. Traditionally, when the
discrete nature of lifetable data has been in the foreground, a model of the fractional part, such
as one of those listed above, has been adjoined to the model. As described in section 3.2.1, this
approach quickly collapses under the weight of unnecessary complications, which is why we will
always treat the continuous lifetime as the fundamental object, except when the lifetime truly is
measured only in discrete units.

3.4 Crude estimation of life tables – discrete method

Since their invention in the 17th century, the basic methodology for life table has been to collect
(from the church registry or whoever kept records of births and deaths) lifetimes, truncate to
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integer lifetimes, count the numbers dx of deaths between ages x and x + 1, relate this to the
numbers `x alive at age x, and use q̂

(0)
x = dx/`x, or similar quantities as an estimate for the

one-year death probability qx.

In our model, the deaths are Bernoulli events with probability qx, so we know that the
Maximum Likelihood Estimator for qx is q̂

(0)
x = # successes/# trials = dx/`x for n = `0

independently observed curtate lifetimes k1, . . . , kn, observed from random variables with common
probability mass function (m(x))x∈N parameterized by (qx)x∈N. If we denote m(x) = (1 −
q0) . . . (1− qx−1)qx, the likelihood is

n∏
i=1

m(k(i)) =
∏
x∈N

(m(x))dx =
∏
x∈N

(1− qx)`x−dxqdx
x , (3.1)

where only max{k1, . . . , kn}+ 1 factors in the infinite product differ from 1, and

dx = dx(k1, . . . , kn) = #
{

1 ≤ i ≤ n : k(i) = x
}

,

`x = `x(k1, . . . , kn) = #
{

1 ≤ i ≤ n : k(i) ≥ x
}

.

This product is maximized when its factors are maximal (the xth factor only depending on
parameter qx). An elementary differentiation shows that q 7→ (1−q)`−dqd is maximal for q̂ = d/`,
so that

q̂(0)
x = q̂(0)

x (k1, . . . , kn) =
dx(k1, . . . , kn)
`x(k1, . . . , kn)

, 0 ≤ x ≤ max{k1, . . . , kn}.

Note that for x = max{k1, . . . , kn}, we have q̂
(0)
x = 1, so no survival beyond the highest age

observed is possible under the maximum likelihood parameters, so that (q̂(0))0≤x≤max{k1,...,kn}
specifies a unique distribution. (Varying the unspecified parameters qx, x > max{k1, . . . , kn},
has no effect.)

3.5 Crude life table estimation – continuous method

Alternatively, we can take a maximum likelihood approach on the continuous lifetimes, and
obtain a different estimator. Assume that you observe n = `0 independent lives t1, . . . , tn. Then
the likelihood function is

n∏
i=1

fT (ti) =
n∏

i=1

µti exp
{
−
∫ ti

0
µsds

}
(3.2)

Now assume that the force of mortality µs is constant on [x, x + 1), x ∈ N and denote these
values by

µx+ 1
2

= − ln(px)
(

remember px = exp
{
−
∫ x+1

x
µsds

})
. (3.3)

Then, the likelihood takes the form∏
x∈N

µdx

x+ 1
2

exp
{
−µx+ 1

2

˜̀
x

}
(3.4)
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where only max{t1, . . . , tn}+ 1 factors in the infinite product differ from 1, and

dx = dx(t1, . . . , tn) = # {1 ≤ i ≤ n : [ti] = x} ,

˜̀
x = ˜̀

x(t1, . . . , tn) =
n∑

i=1

∫ x+1

x
1{ti>s}ds.

˜̀
x is called the total exposed to risk.

The quantities µx+ 1
2
, x ∈ N, are the parameters, and we can maximise the product by

maximising each of the factors. An elementary differentiation shows that µ 7→ µde−µ` has a
unique maximum at µ̂ = d/`, so that

µ̂x+ 1
2

= µ̂x+ 1
2
(t1, . . . , tn) =

dx(t1, . . . , tn)
˜̀
x(t1, . . . , tn)

, 0 ≤ x ≤ max{t1, . . . , tn}.

Since maximum likelihood estimators are invariant under reparameterisation (the range of the
likelihood function remains the same, and the unique parameter where the maximum is obtained
can be traced through the reparameterisation), we obtain

q̂x = q̂x(t1, . . . , tn) = 1− p̂x = 1− exp
{
−µ̂x+ 1

2

}
= 1− exp

{
−dx(t1, . . . , tn)

˜̀
x(t1, . . . , tn)

}
. (3.5)

For small dx/˜̀
x, this is close to dx/˜̀

x, and therefore also close to dx/`x.
Note that under q̂x, x ∈ N, there is a positive survival probability beyond the highest

observed age, and the maximum likelihood method does not fully specify a lifetime distribution,
leaving free choice beyond the highest observed age.

3.6 Comparing continuous and discrete methods

There appears to be a contradiction between the discrete life-table estimation of section 3.4 and
the continuous life-table estimation of section 3.5. While the models are different, there are
questions to which both offer an answer, and the answers are different. In the discrete model,
we estimate

P
{
T < x + 1

∣∣T ≥ x
}

= qx ≈ q̂x =
dx

`x
.

The continuous model suggests that we estimate the same quantity by

P
{
T < x + 1

∣∣T ≥ x
}

= 1− e
−µ

x+1
2 ≈ 1− e

−µ̂
x+1

2 = 1− e−dx/˜̀
x ≤ dx

˜̀
x

. (3.6)

If we take `x as a substitute for ˜̀
x, then, the continuous model gives a strictly smaller answer,

unless dx = 0. Why is that? The difference here is that the continuous model presumes that
individuals are dying all through the year, making ˜̀

x somewhat smaller than `x. In fact, if we
make the estimate ˜̀

x ≈ `x − dx/2 (so presuming that those who died lived on average half a
year), substituting the Taylor series expansion into (3.6) shows that in the continuous model

P
{
T < x + 1

∣∣T ≥ x
}

=
dx

`x − dx/2
− dx

2(`x − dx/2)2
+ o

(( dx

`x − dx/2

)3
)

=
dx

`x
+ o

(( dx

`x − dx/2

)3
)

.

That is, when the mortality fraction dx/`x is small, the estimates agree up to second order in
dx/`x.
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3.7 An example: Fractional lifetimes can matter

Imagine an insurance company that insures valuable pieces of construction machinery, which we
will call piddledonks. For safety reasons, piddledonks cannot be used more than 3 years, but
they may fail before that time. The company has records on 1000 of these machines, summarised
in Table 3.3. That is, 100 failed in their first year (age 0), 400 in the second year, and 400 in
the third year of operation. The last column shows the estimated failure probabilities.

Table 3.3: Life table for piddledonks.

age x lx dx qx

0 1000 100 0.10
1 900 400 0.44
2 500 400 0.80

Suppose the company sells insurance policies that pay £1000 when a piddledonk fails. The
fair price for such a contract will be £100 for a new-built piddledonk. (That is, the price equal
to the expected value of the contract; obviously, a company that wants to cover its costs and
even turn a profit needs to sell its insurance somewhat above the nominal fair price.) It will be
£444 for a piddledonk on its first birthday, and £800 for a piddledonk on its second birthday.
Suppose, though, someone comes with a piddledonk that is 18 months old, and wishes to buy
insurance for the next half year. What would be the fair price?

We have no data on when in the year failure occurs. It is possible, in principle, that
piddledonks fail only on their birthdays; if they survive that day, they’re good for the rest of the
year. In that case, the insurance could be free, since the probability of a failure in the second
half year is 0. This seems implausible, though. Suppose we adopt the constant-hazard model.
Calling the constant hazard µ, we see that p1 = e−µ, and

p1 = 0.5p1 · 0.5p1.5. (3.7)

Thus,
0.5p1.5 = 0.5p1 = e−µ/2 =

√
p1 =

√
1− q1 =

√
.555 = 0.745,

and 0.5q1.5 = 0.255, and the fair price for the half year of insurance is £255. Suppose, on the
other hand, we adopt the uniform model for S. We still have (3.7), but now

0.5p1 = 1− 0.5q1 = 1− 1
21q1,

so that

0.5p1.5 =
p1

1− 1
21q1

=
0.555
.778

= 0.713,

implying that the fair price for this insurance would be £287.



Lecture 4

Cohorts and Period Life Tables

4.1 Types of life tables

You may have noticed a logical fallacy in the arguments of sections 3.4 and 3.5. The life
expectancy at birth should be the average length of life of individuals born in that year. Of
course, we would have to go back to about 1890 to find a birth year whose cohort — the
individuals born in that year — have completed their lives, so that the average lifespan can be
computed as an average.

Consider, for instance, the discrete-time non-homogeneous model. “Time” in the model is
individual age: An individual starts out at age 0, then progresses to age 1 if she survives, and so
on. We estimate the probability of dying aged x by dividing the number of deaths observed age
x by the number of individuals observed to have been at that age.

In our life-tables, called period life tables, these numbers came from a census of the individuals
alive at one particular time, and the count of those who died in the same year, or period of a few
years. No individual experiences those mortality rates. Those born in 2009 will experience the
mortality rates for age 10 in 2019, and the mortality rates for age 80 in 2089. Putting together
those mortality rates would give us a cohort life table. (Actually, this is not precisely true. You
might think about why not. The answer is given in a footnote.1) If, as has been the case for the
past 150 years, mortality rates decline in the interval, that means that the survival rates will be
higher than we see in the period table.

We show in Figure 4.1 a picture of how a cohort life table for the 1890 cohort would be
related to the sequence of period life tables from the 1890s through the 2000s. The mortality
rates for ages 0 through 9 (thus 1q0, 4q1, 5q5)2 are on the 1890s period life table, while their
mortality rates for ages 10 through 19 are on the 1900–1909 period life table, and so on. Note
that the mortality rates for the 1890s period life table yield a life expectancy at birth e0 = 44.2
years. That is the average length of life that babies born in those years would have had, if their
mortality in each year of their lives had corresponded to the mortality rates which were realised
in for the whole population in the year of their birth. Instead, though, those that survived their
early years entered the period of late-life high mortality in the mid- to late 20th century, when
mortality rates were much lower. It may seem surprising, then, that the life expectancy for the

1The main difference between a cohort life table and the life table constructed from the corresponding age
classes of successive period life tables is immigration: The cohort life table for 1890 should include, in the row for
(let us say) ages 60–4 the mortality rates of those born in 1890 in the relevant region — England and Wales in
this case — who are still alive at age 60. But these are not identical to the 60 year old men living in England and
Wales in 1950. Some of the original cohort have moved away, and some residing in the country were not born
there.

2Actually, we have given µx for the intervals [0, 1), [1, 5), and [5, 10). We compute 1q0 = 1−e−µ0 , 4q1 = 1−e−4µ1 ,

5q5 = 1− e−5µ5 .

25
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cohort life table only goes up to 44.7 years. Is it true that this cohort only gained 6 months of
life on average, from all the medical and economic progress that took place during their lives?

Yes and no. If we look more carefully at the period and cohort life tables in Table 4.1 we see
an interesting story. First of all, a substantial fraction of potential lifespan is lost in the first
year, due to the 17% infant mortality, which is obviously the same for the cohort and period life
tables. 25% died before age 5. If mortality to age 5 had been reduced to modern levels — close
to zero — the period and cohort mortality would both be increased by about 14 years. Second,
notice that the difference in life expectancies jumps to over 5 years at age 30. Why is that?
For the 1890 cohort, age 30 was 1920 — after World War I, and after the flu pandemic. The
male mortality rate in this age class was around 0.005 in 1900–9, and less than 0.004 in 1920–9.
Averaged over the intervening decade, though, male mortality was close to 0.02. (Most of the
effect is due to the war, as we see from the fact that it almost exclusively is seen in the male
mortality; female mortality in the same period shows a slight tick upward, but it is on the order
of 0.001.) One way of measuring the horrible cost of that war is to see that for the generation
of men born in the 1890s, that was most directly affected, the advances of the 20th century
procured them on average about 4 years of additional life, relative to what might have been
expected from the mortality rates in the year of their birth. Of these 4 years, 31

2 were lost in the
war. Another way of putting this is to see that the approximately 4.5 million boys born in the
UK between 1885 and 1895 lost cumulatively about 16 million years of potential life in the war.

1890-1899 1900-1909 1910-1919 1920-1929 1930-1939 1940-1949

1950-1959 1960-1969 1970-1979 1980-1989 1990-1999 2000-

Figure 4.1: Decade period life tables, with the pieces joined that would make up a cohort life
table for individuals born in 1890.

There are, in a sense, three basic kinds of life tables:

1. Cohort life table describing a real population. These make most sense in a biological
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x µx `x dx ex

0 0.187 100000 17022 44.2
1 0.025 82978 7923 51.7
5 0.004 75055 1655 52.8
10 0.002 73400 908 48.9
15 0.004 72492 1379 44.5
20 0.005 71113 1766 40.3
25 0.006 69347 2087 36.2
30 0.008 67260 2550 32.2
35 0.010 64710 3229 28.4
40 0.013 61481 3970 24.7
45 0.017 57511 4703 21.2
50 0.022 52808 5515 17.8
55 0.030 47293 6508 14.6
60 0.042 40785 7710 11.6
65 0.061 33075 8636 8.9
70 0.086 24439 8511 6.5
75 0.122 15928 7281 4.5
80 0.193 8647 5346 2.7
85 0.262 3301 2410 1.7
90 0.358 891 742 0.9
95 0.477 149 135 0.5
100 0.590 14 13 0.3
105 0.695 1 1 0.2
110 0.772 0 0 0.0

(a) Period life table for men in England
and Wales 1890–9

x µx `x dx ex

0 0.187 100000 17022 44.7
1 0.025 82978 7923 52.3
5 0.004 75055 1655 53.5
10 0.002 73400 774 49.6
15 0.003 72626 1167 45.1
20 0.020 71459 6749 40.8
25 0.017 64710 5219 39.7
30 0.004 59491 1257 37.9
35 0.006 58234 1608 33.6
40 0.006 56626 1671 29.5
45 0.009 54955 2384 25.3
50 0.012 52571 3027 21.3
55 0.019 49544 4388 17.5
60 0.028 45156 5956 14.0
65 0.044 39200 7760 10.8
70 0.067 31440 8985 8.0
75 0.102 22455 8940 5.7
80 0.146 13515 6997 3.8
85 0.215 6518 4294 2.3
90 0.288 2224 1697 1.4
95 0.395 527 454 0.8
100 0.516 73 67 0.4
105 0.645 6 6 0.2
110 0.733 0 0 0.0

(b) Cohort life table for the 1890 cohort
of men in England and Wales

Table 4.1: Period and cohort tables for England and Wales. The period table is taken directly
from the Human Mortality Database http://www.mortality.org/. The cohort table is taken
from the period tables of the HMD, not copied from their cohort tables.

context, where there is a small and short-lived population. The `x numbers are actual
counts of individuals alive at each time, and the rest of the table is simply calculated from
these, giving an alternative descriptions of survival and mortality.

2. Period life tables, which describe a notional cohort (usually starting with radix `0 being
a nice round number) that passes through its lifetime with mortality rates given by the
qx. These qx are estimated from data such as those of Table 3.2, giving the number of
individuals alive in the age class during the period (or number of years lived in the age
class) and the number of deaths.

3. Synthetic cohort life tables. These take the qx numbers from a real cohort, but express
them in terms of survival `x starting from a rounded radix.

http://www.mortality.org/
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4.2 Life Expectancy

4.2.1 What is life expectancy?

One of the most interesting (and most discussed) features of life tables is the life expectancy. It
has an intuitive meaning — the average length of life — and is commonly used as a summary
of the life table, to compare mortality between countries, regions, and subpopulations. For
instance, Table 4.2 shows the estimated life expectancy in some rich and poor countries, ranging
from 37.2 years for a man in Angola, to 85.6 years for a woman in Japan. The UK is in between
(though, of course, much closer to Japan), with 76.5 years for men and 81.6 years for women.

Table 4.2: 2009 Life expectancy at birth (LE) in years and infant mortality rate per thousand
live births (IMR) in selected countries, by sex. Data from US Census Bureau. International
Database available at http://www.census.gov/ipc/www/idb/idbprint.html

Country IMR IMR male IMR female LE LE male LE female
Angola 180 192 168 38.2 37.2 39.2
France 3.33 3.66 2.99 81.0 77.8 84.3
India 30.1 34.6 25.2 69.9 67.5 72.6
Japan 2.79 2.99 2.58 82.1 78.8 85.6
Russia 10.6 12.1 8.9 66.0 59.3 73.1
South Africa 44.4 48.7 40.1 49.0 49.8 48.1
United Kingdom 4.85 5.40 4.28 79.0 76.5 81.6
United States 6.26 6.94 5.55 78.1 75.7 80.7

Life expectancies can vary significantly, even within the same country. For example, the UK
Office of National Statistics has published estimates of life expectancy for 432 local areas in the
UK (available at http://www.statistics.gov.uk/life-expectancy/default.asp). We see
there that, for the period 2005–7, men in Kensington and Chelsea had a life expectancy of 83.7
years, and women 87.8 years; whereas in Glasgow (the worst-performing area) the corresponding
figures were 70.8 and 77.1 years. Overall, English men live 2.7 years longer on average than
Scottish men, and English women 2.0 years longer.

When we think of lifetimes as random variables, the life expectancy is simply the mathematical
expectation E[T ]. By definition,

E[T ] =
∫ ∞

0
xfT (x)dx.

Integration by parts, using the fact that fT = −F̄ ′
T , turns this into a much more useful form,

E[T ] = −tF̄T (t)
∣∣∣∞
0

+
∫ ∞

0
F̄T (t)dt =

∫ ∞

0
F̄T (t)dt =

∫ ∞

0
e−

R t
0 µsdsdt. (4.1)

That is, the life expectancy may be computed simply by integrating the survival function. The
discrete form of this is

E[K] =
∞∑

k=0

kP
{
K = k

}
=

∞∑
k=0

P
{
K > k

}
. (4.2)

http://www.census.gov/ipc/www/idb/idbprint.html
http://www.statistics.gov.uk/life-expectancy/default.asp


Lecture 4: Cohorts and Period Life Tables 29

Applying this to life tables, we see that the expected curtate lifetime is

E[K] =
∞∑

k=0

P
{
K > k

}
=

∞∑
k=1

lk
l0

=
∞∑

k=1

p0 · · · pk−1.

Note that expected future lifetimes can be expressed as

◦
ex:= E[Tx] =

∫ ∞

x
exp

{
−
∫ t

x
µsds

}
dt and ex := E[Kx] =

∑
k∈N

px . . . px+k =
ω∑

k=x+1

lk
lx

.

We see that ex ≤
◦
ex< ex + 1. For sufficiently smooth lifetime distributions,

◦
ex≈ ex + 1

2 will be a
good approximation.

For variances, formulas in terms of y 7→ µy and (px)x≥0 can be written down, but do not
simplify as neatly. Also the approximation V ar(Tx) ≈ V ar(Kx)+ 1

12 requires rougher arguments:
this follows e.g. if we assume that Sx = Tx −Kx is independent of Kx and uniformly distributed
on [0, 1].

4.2.2 Example

Table 4.3 shows a life table based on the mortality data for tyrannosaurs from Table 1.1. Notice
that the life expectancy at birth e0 = 16.0 years is exactly what we obtain by averaging all the
ages at death in Table 4.3.

age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dx 0 0 3 1 1 3 2 1 2 4 4 3 4 3 8
lx 103 103 103 100 99 98 95 93 92 90 86 82 79 75 72
qx 0.00 0.00 0.03 0.01 0.01 0.03 0.02 0.01 0.02 0.04 0.05 0.04 0.05 0.04 0.11
ex 16.0 15.0 14.0 13.5 12.6 11.7 11.1 10.3 9.4 8.7 8.1 7.5 6.7 6.1 5.4

age 15 16 17 18 19 20 21 22 23 24 25 26 27 28
dx 4 4 7 10 6 3 10 8 4 3 0 3 0 2
lx 64 60 56 49 39 33 30 20 12 8 5 5 2 2
qx 0.06 0.07 0.12 0.20 0.15 0.09 0.33 0.40 0.33 0.38 0.00 0.60 0.00 1.00
ex 5.0 4.4 3.7 3.2 3.0 2.6 1.8 1.7 1.8 1.8 1.8 0.8 1.0 0.00

Table 4.3: Life table for tyrannosaurs, based on data from Table 1.1.

4.2.3 Life expectancy and mortality

The connection between life expectancy and mortality is somewhat subtle. It is well known that
life expectancy at birth — e0 — has been rising for well over a century. For males it is 73.4
years on the 1990-2 UK life table, but was only 44.1 years on the life table a century before.
However, it would be a mistake to suppose this means that a typical man was dying at an age
that we now consider active middle-age. This becomes clearer when we look at the remaining
life expectancy at age 44. In 1990 it was 31.6 years; in 1890 it was 22.1 years. Less, to be sure,
but still a substantial number of years remaining. The low average length of life in 1890 was
determined in large part by the number of zeroes being included in the average.

Imagine a population in which everyone dies at exactly age 75. The expectation of life
remaining at age x would then be exactly 75−x. While that is not, of course, our true situation,
mortality in much of the developed world today is quite close to this extreme: There is almost no
randomness, as witnessed by the fact that the remaining life expectancy column of the lifetable
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marches monotonously down by one year per year lived. The only exception is at the beginning
— the newborn has only lost about 0.4 remaining years for the year it has lived. This is because
the mortality in the first year is fairly high, so that overcoming that hurdle gives a significant
boost to ones remaining life expectancy. We can compute

e0 = p0(1 + e1).

This follows either from (4.2), or directly from observing that if someone survives the first year
(which happens with probability p0) he will have lived one year, and have (on average) e1 years
remaining. Thus,

q0 = 1− e0

1 + e1
=

1 + e1 − e0

1 + e1
=

.6
74.4

= 0.008,

which is approximately right. On the 1890 life table we see that the life expectancy of a newborn
was 44.1 years, but this rose to 52.2 years for a boy on his first birthday. This can only mean
that a substantial portion of the children died in infancy. We compute the first-year mortality
as q0 = (1 + 52.2− 44.1)/53.2 = 0.17, so about one in six.

How much would life expectancy have been increased simply by eliminating infant mortality
— that is, mortality in the first year of life? In that case, all newborns would have reached their
first birthday, at which point they would have had 52.2 years remaining on average — thus, 53.2
years in total. Today, with infant mortality almost eliminated, there is only a potential 0.6 years
remaining to be achieved from further reductions.

4.3 An example of life-table computations

Suppose we are studying a population of creatures that live a maximum of 4 years. For
simplicity, we will assume that births all occur on 1 January. (The complications of births
going on throughout the year will be addressed in lecture 5.) The entire population is under
observation, and all deaths are recorded. We make the following observations:

Year 1: 300 born, 100 die.

Year 2: 350 born, 150 die. 20 1-year-olds die.

Year 3: 400 born, 100 die. 40 1-year-olds die. 90 2-year-olds die.

Year 4: 300 born, 50 die. 75 1-year-olds die. 100 2-year-olds die. 90 3-year-olds die.

In Table 4.4 we compute different life tables from these data. The two cohort life tables
(Tables 4.4(a) and 4.4(b)) are fairly straightforward: We start by writing down `0 (the number
of births in that cohort) and then in the dx column the number of deaths in each year from that
cohort. Subtracting those successively from `0 yields the number of survivors in each age class
`x, and qx = dx/`x. Finally, we compute the remaining life expectancies:

e0 =
`1

`0
+

`2

`0
+

`3

`0

e1 =
`2

`1
+

`3

`1

e2 =
`3

`2
.
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x dx `x qx ex

0 100 350 0.333 1.57
1 20 200 0.10 1.35
2 90 180 0.50 0.50
3 90 90 1.0 0

(a) Cohort 1 life table

x dx `x qx ex

0 150 350 0.43 1.2
1 40 200 0.20 1.1
2 100 160 0.625 0.375
3 60 60 1.0 0

(b) Cohort 2 life table

x qx `x `x ex

0 0.167 1000 167 1.69
1 0.25 833 208 1.03
2 0.625 625 0.375
3 1.0 235 1.0 0

(c) Period life table for year 4

Table 4.4: Alternative life tables from the same data.

The period life table is computed quite differently. We start with the qx numbers, which
come from different cohorts:

q0 comes from cohort 4 newborn deaths;
q1 comes from cohort 3 age 1 deaths;
q2 comes from cohort 2 age 2 deaths;
q3 comes from cohort 1 age 3 deaths.

We then write in the radix `0 = 1000. Of 1000 individuals born, with q0 = 0.167, we expect 167
to die, giving us our d0. Subtracting that from `0 tells us that `1 = 833 of the 1000 newborns
live to their first birthday. And so it continues. The life expectancies are computed by the same
formula as before, but now the interpretation is somewhat different. The cohort remaining life
expectancies were the same as the actual average number of (whole) years remaining for the
population of individuals from that cohort who reached the given age. The period remaining life
expectancies are fictional, telling us how many individuals would have remained alive if we had
a cohort of 1000 that experienced in each age the same mortality rates that were in effect for
the population in year 4.



Lecture 5

Central exposed to risk and the
census approximation

Reading: CT4 Units 6-2 and 10, Cox-Oakes Section 1.3, Gerber Section 11.1
Further reading: Cox-Oakes Chapter 3

5.1 Censoring

The term ‘Censoring’ refers to various types of incomplete information. The simplest example
occurs in any study where processes (e.g. lifetimes in a single or multiple decrement framework)
are observed over a limited time range, as is unavoidably imposed since the study cannot go
on until all participants have died; if the end of the study is a predetermined fixed time, then
the fact that a participant survives bears important information, so survivors must be given
appropriate consideration in the likelihood.

In a single (or multiple) decrement model, this is e.g. the probability of survival: if r
individuals are observed for t years (or prior death), then the likelihood contribution from those
dying at time si < t, say, is the density fT (si); the likelihood contribution of those surviving to
the end of the study at time t is the probability of survival F̄T (t).

This is an example of right censoring, which, more generally, also occurs, when participants
withdraw from the study for other exterior reasons (e.g. expiry date of an insurance policy).
More general types of censoring will be treated later.

5.2 Insurance data

Insurance data have several special features. In the best of cases, we have full information from
each person insured as follows; for a simple life assurance paying death benefits on death only,
for individual m:

• date of birth bm

• date of entry into observation: policy start date xm

• reason for exit from observation (death Dm = 1, or expiry/withdrawal Dm = 0)

• date of exit from observation Ym

32
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This then easily translates into a likelihood

1{Dm=1}fTxm−bm
(Ym−xm)+1{Dm=0}F̄Txm−bm

(ym−xm) = µDm
Ym−bm

exp
{
−
∫ Ym−bm

xm−bm

µtdt

}
, (5.1)

and it is clear how much time this individual was exposed to risk at age x, i.e. aged [x, x + 1)
for all x ∈ N. We can calculate the Central exposed to risk Ec

x as the aggregate quantity across
all individuals exactly. We can also read off the number of deaths aged [x, x + 1), dx, and hence

µ̂x+ 1
2

=
dx

Ec
x

(5.2)

This is the maximum likelihood estimator under the assumption of a constant force of mortality
on [x, x + 1). Note that this estimator conforms with the Principle of Correspondence which
states that

A life alive at time t should be included in the exposure at age x at time t if and
only if, were that life to die immediately, he or she would be counted in the death
data dx at age x.

In practice, data are often not provided in this form and approximations are required. E.g.,
policy start and end dates may not be available; instead, only total numbers of policies per
age group at annual census dates are provided, and there is ambiguity as to when individuals
change age group between the census dates. The solution to the problem is called the census
approximation.

The key point is that we can tolerate a substantial amount of uncertainty in the numerator
and the denominator (number of events and total time at risk), but failing to satisfy the Principle
of Correspondence can be disastrous. For example, [ME05] analyses the “Hispanic Paradox,”
the observation that Latin American immigrants in the USA seem to have substantially lower
mortality rates than the native population, despite being generally poorer (which is usually
associated with shorter lifespans). This difference is particularly pronounced at more advanced
ages. Part of the explanation seems to be return migration: Some old hispanics return to their
home countries when they become chronically ill or disabled. Thus, there are some members of
this group who count as part of the US hispanic population for most of their lives, but whose
deaths are counted in their home-country statistics.

5.3 Census approximation

The task is to approximate Ec
x (and often also dx) given census data. There are various forms of

census data. The most common one is

Px,k = Number of policy holders aged [x, x + 1) at time k = 0, . . . , n.

The problem is that we do not know policy start and end dates. The basic assumption of the
census approximation is that the number of policies changes linearly between any two consecutive
census dates. It is easy to see that

Ec
x =

∫ n

0
Px,tdt (5.3)

We only know the integrand at integer times, and the linearity approximation gives

Ec
x ≈

n∑
k=1

1
2
(Px,k−1 + Px,k). (5.4)
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This allows us to estimate µx+ 1
2

if we also know dx, the number of deaths aged x.
Now assume that, in fact, you are not given dx but only calender years of birth and death

leading to

d′x = Number of deaths aged x on the birthday in the calendar year of death.

Then, some of the deaths counted in d′x will be deaths aged x− 1, not x, in fact we should view
d′x as containing deaths aged in the interval (x− 1, x+ 1), but not all of them. If we assume that
birthdays are uniformly spread over the year, we can also specify that the proportion of deaths
counted under d′x changes linearly from 0 to 1 and back to 0 as x− 1 increases to x and x + 1.

In order to estimate a force of mortality, we need to identify the corresponding (approximation
to) Central exposed to risk. The Principle of Correspondence requires

Ec′
x =

∫ n

0
P ′

x,tdt, (5.5)

where

P ′
x,t = Number of policy holders at t with xth birthday in calendar year [t].

Again, suppose we know the integrand at integer times. Here the linear approximation requires
some care, since the policy holders do not change age group continuously, but only at census
dates. Therefore, all continuing policy holders counted in P ′

x,k−1 will be counted in P ′
x,t for all

k − 1 ≤ t < k, but then in P ′
x+1,k at the next census date. Therefore

Ec′
x ≈

n∑
k=1

1
2
(P ′

x,k−1 + P ′
x+1,k). (5.6)

The ratio d′x/Ec′
x gives a slightly smoothed (because of the wider age interval) estimate of µx

(and not µx+ 1
2
). Note however that it is not clear if this estimate is a maximum likelihood

estimate for µx under any suitable model assumptions such as constancy of the force of mortality
between half-integer ages.

Some other types of data appear on Assignment 3. The general problem is always to identify
the corresponding central exposed to risk and what the ratio of death counts and its central
exposed to risk estimates.

5.4 Lexis diagrams

A graphical tool that helps in making sense of estimates like the census approximation is the
Lexis diagram.1 These reduce the three dimensions of demographic data — date, age, and
moment of birth — to two, by an ingenious application of the diagonal.

Consider the diagram in Figure 5.1. The horizontal axis represents calendar time (which we
will take to be in years), while the vertical axis represents age. Lines representing the lifetimes of
individuals start at their birthdate on the horizontal axis, then ascend at a 45◦ angle, reflecting
the fact that individuals age at the rate of one year (of age) per year (of calendar time). Events
during an individual’s life may be represented along the lifeline — for instance, the line might

1These diagrams are named for Wilhelm Lexis, a 19th century statistician and demographer of many accomplish-
ments, none of which was the invention of these diagrams, in keeping with Stigler’s law of eponymy, which states that
“No scientific discovery is named after its original discoverer.” (cf. Christophe Vanderschrick, “The Lexis diagram, a
misnomer”, Demographic Research 4:3, pp. 97–124, http://www.demographic-research.org/Volumes/Vol4/3/.)

http://www.demographic-research.org/Volumes/Vol4/3/
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change colour when the individual buys an insurance policy — and the line ends at death. (Here
we have marked the end with a black dot.) The collection of lifelines in a diagonal strip —
individuals born at the same time (more or less broadly defined) — comprise what demographers
call a “cohort”. They start out together and march out along the diagonal through life, exposed
to similar (or at least simultaneous) experiences. (A “cohort” was originally a unit of a Roman
legion.) Note that cohorts need not be birth cohorts, as the horizontal axis of the Lexis diagram
need not represent literal birthdates. For instance, a study of marriage would start “lifelines”
at the date of marriage, and would refer to the “marriage cohort of 2008”, for instance, while
a study of student employment prospects would refer to the “student cohort of 2008”, the
collection of all students who completed (or started) their studies in that year.

1 2 3 4

1

2

3

4

Time

Ag
e

Figure 5.1: A Lexis diagram.

The census approximation involves making estimates for mortality rates in regions of the
Lexis diagram. Vertical lines represent the state of the population, so a census may be represented
by counting (and describing) the lifelines that cross a given vertical line. The goal is to estimate
the hazard rate for a region (in age-time space) by

# events
total time at risk

The total time at risk is the total length of lifelines intersecting the region (or, to be geometric
about it, the total length divided by

√
2), while the number of events is a count of the number

of dots. The problem is that we do not know the exact total time at risk. Our censuses do tell
us, though, the number of individuals at risk
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Figure 5.2: Census at time 2 represented by open circles. The population consists of 7 individuals.
4 are between ages 1 and 2, and 3 are between 0 and 1.

The count dx described in section 5.3 tells us the number of deaths of individuals aged
between x and x + 1 (for integer x), so it is counting events in horizontal strips, such as we have
shown in Figure 5.3. We are trying to estimate the central time at risk Ec

x :=
∫ T
0 Px,tdt, where

Px,t is the number of individuals alive at time t whose curtate age is x. We can represent this as

Ec
x =

∫ T

0
Px,tdt =

T−1∑
k=0

Px,k, (5.7)

where Px,k is defined to be the average of Px,t over t in the interval [k, k + 1). If we assume
that Px,t is approximately linear over such an interval, we may approximate this average by
1
2(P (x, k) + P (x, k + 1)). Then we get the approximation

Ec
x =

T−1∑
k=0

Px,k ≈
1
2
Px,0 +

T−1∑
k=1

Px,k +
1
2
Px,T .

Note that this is just the trapezoid rule for approximating the integral (5.7).
Is this assumption of linearity reasonable? What does it imply? Consider first the individuals

whose lifelines cross a box with lower corner (k, x). (Note that, unfortunately, the order of the
age and time coordinates is reversed in the notation when we go to the geometric picture. This
has no significance except sloppiness which needs to be cleaned up.) They may enter either the
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left or the lower border. In the former case (corresponding to individuals born in year x− k)
they will be counted in Px,k; in the latter (born in x− k + 1) case in Px,k+1. If the births in year
x− k + 1 differ from those in year x− k by a constant (that is, the difference between January 1
births in the two years is the same as the difference between February 12 births, and so on, then
on average the births in the two years on a given date will contribute 1/2 year to the central
years at risk, and will be counted once in the sum Px,k + Px,k+1. Important to note:

• This does not actually require that births be evenly distributed through the year.

• When we say births, we mean births that survive to age k. If those born in, say, December
of one year had substantially lowered survival probability relative to a “normal” December,
this would throw the calculation off.

• These assumptions are not about births and deaths in general, but rather about births
and deaths of the population of interest: those who buy insurance, those who join the
clinical trial, etc.

If mortality levels are low, this will suffice, since nearly all lifelines will be counted among
those that cross the box. If mortality rates are high, though, we need to consider the contribution
of years at risk due to those lifelines which end in the box. In this case, we do need to assume that
births and deaths are evenly spread through the year. This assumption implies that conditioned
on a death occurring in a box, it is uniformly distributed through the box. On the one hand, that
implies that it contributes (on average) 1/4 year to the years at risk in the box. On the other
hand, it implies that the probability of it having been counted in our average 1

2(Px,k + Px,k+1)
is 1

2 , since it is counted only if it is in the upper left triangle of box. On average, then, these
should balance.

What happens when we count births and deaths only by calendar year? Note that P ′
x,k = Px,k

for integers k and x. One difference is that the regions in question, which are parallelograms,
follow the same lifelines from the beginning of the year to the end. This makes the analysis
more straightforward. Lifelines that pass through the region are counted on both ends. The
other difference is that the region that begins with the census value Px,k ends not with Px,k+1,
but with Px+1,k+1. Thus all the lifelines passing through the region will be counted in Px,k and
in Px+1,k+1, hence also in their average. This requires no further assumptions. For the lifelines
that end in the region to be counted appropriately, on the other hand, requires that the deaths
be evenly distributed throughout the year. (Other, slightly less restrictive assumptions, are also
possible.) In this case, each death will contribute exactly 1/2 to the estimate 1

2(Px,k + Px+1,k+1)
(since it is counted only in Px,k), and it contributes on average 1/2 year of time at risk.
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Figure 5.3: Census approximation when events are counted by actual curtate age. The vertical
segments represent census counts.
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Figure 5.4: Census approximation when events are counted by calendar year of birth and death.
Vertical segments bounding the coloured regions represent census counts.



Lecture 6

Comparing life tables

6.1 The binomial model

Suppose we observe n identically distributed, independent lives aged x for exactly 1 year, and
record the number dx who die. Using the notation set up for the discrete model, a life dies with
probability qx within the year.

Hence Dx, the random variable representing the numbers dying in the year conditional on n
alive at the beginning of the year, has distribution

Dx ∼ B(n, qx)

giving a maximum likelihood estimator

q̂x =
Dx

n
, with var(q̂x) =

qx (1− qx)
n

where using previous notation we have set lx = n.

While attractively simple, this approach has significant problems. Normally failures, deaths,
and other events of interest, happen continuously, even if we happen to observe or tabulate them
at discrete intervals. While we get a perfectly valid estimate of qx, the probability of an event
happening in this time interval, we have no way of generalising to a question about how many
individuals died in half a year, for example. And real data may be interval truncated: That is,
the life is not under observation during the entire year, but only during the interval of ages
(x + a, x + b), where 0 ≤ a < b ≤ 1. If we write Di

x for the indicator of the event that individual
i is observed to die at (curtate) age x, we have

P (Di
x = 1) = bi−ai

qx+ai

Hence

EDx = E

(
n∑

i=1

Di
x

)
=

n∑
i=1

bi−ai
qx+ai

There is no way to analyse (or even describe) this intra-interval refinement within the framework
of the binomial model.

Nonetheless, the simplicity and tradition of the binomial model have led actuaries to develop
a kind of continuous prosthetic for the binomial model, in the form of a supplemental (and
hidden) model for the unobserved continuous part of the lifetime. These have been discussed in
Lecture 3. In the end, these are applied through the terms Initial Exposed To Risk (E0

x) and
Central Exposed To Risk (Ec

x). These are defined more by their function than as a particular

40
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quantity: the Initial Exposed To Risk plays the role of n in a binomial model, and Ec
x plays the

role of total time at risk in an exponential model. They are linked by the actuarial estimator

E0
x ≈ Ec

x +
1
2
dx.

This may be justified from any of our fractional-lifetime models if the number of deaths is small
relative to the number at risk. Thus, the actuarial estimator for qx is

q̃x =
dx

Ec
x + 1

2dx
.

The denominator, Ec
x + 1

2dx, comprises the observed time at risk (also called central exposed to
risk) within the interval (x, x + 1), added to 1/2 the number of deaths (assumes deaths evenly
spread over the interval). This is an estimator for Ex which is the inital exposed to risk and is
what is required for the binomial model.

NB assumptions (i)-(iii) collapse to the same model, essentially (i), if µx+ 1
2

is very small,
since all become tqx ≈ tµx+ 1

2
, 0 < t < 1.

Definitions, within year (x, x + 1)
a) Ec

x = observed total time (in years) at risk = central exposed to risk, with approxima-
tion Ec

x ≈ Ex − 1
2dx, if required.

b) E0
x(= Ex) = initial exposed to risk = # in risk set at age x, with approximation

Ex ≈ Ec
x + 1

2dx, if required.

6.2 The Poisson model

Under the assumption of a constant hazard rate (force of mortality) µx+ 1
2

over the year (x, x+1],
we may view the estimation problem as a chain of separate hazard rate estimation problems, one
for each year of life. Each individual lives some portion of a year in the age interval (x, x + 1],
the portion being 0 (if he dies before birthday x), 1 (if he dies after birthday x + 1), or between
0 and 1 if he dies between the two birthdays. Suppose now we lay these intervals end to end,
with a mark at the end of an interval where an individual died. It is not hard to see that what
results is a Poisson process on the interval [0, Ec

x], where Ec
x is the total observed years at risk.

Suppose we treat Ec
x as though it were a constant. Then if Dx represents the numbers dying

in the year the model uses

P
{
Dx = k

}
=

(
µx+ 1

2
Ec

x

)k
e
−µ

x+1
2

Ec
x

k!
, k = 0, 1, 2, · · ·

which is an approximation to the 2-state model, and which in fact yields the same likelihood.
The estimator for the constant force of mortality over the year is

µ̃x+ 1
2

=
Dx

Ec
x

, with estimate
dx

Ec
x

.

Under the Poisson model we therefore have that

varµ̃x+ 1
2

=
µx+ 1

2
Ec

x

(Ec
x)2

=
µx+ 1

2

Ec
x

.



42 Lecture Notes – Part B Statistical Lifetime-Models – Oxford HT 2010-14

So the estimate will be
varµ̃x+ 1

2
≈ dx

(Ec
x)2

.

If we compare with the 2-state stochastic model over year (x, x + 1), assuming constant
µ = µx+ 1

2
, then the likelihood is

L =
n∏
1

µδie−µti ,

where δi = 1 if life i dies and ti = bi − ai in previous terminology (see the binomial model).
Hence

L = µdxe−µEc
x

and so
µ̂ =

Dx

Ec
x

.

The estimator is exactly the same as for the Poisson model except that both Dx and Ec
x are

random variables. Using asymptotic likelihood theory we see that the estimate for the variance
is

varµ̂ ≈ µ2

dx
≈ dx

(Ec
x)2

.

6.3 Testing hypotheses for qx and µx+ 1
2

We note the following normal approximations:

(i) Binomial model:

Dx ∼ B(Ex, qx) =⇒ Dx ∼ N(Exqx, Exqx (1− qx)

and

q̂x =
Dx

Ex
∼ N

(
qx,

qx (1− qx)
Ex

)
.

(ii) Poisson model or 2-state model:

Dx ∼ N(Ec
xµx+ 1

2
, Ec

xµx+ 1
2
)

and

µ̂x+ 1
2
∼ N

(
µx+ 1

2
,
µx+ 1

2

Ec
x

)
.

Tests are often done using comparisons with a published standard life table. These can
be from national tables for England and Wales published every 10 years, or insurance company
data collected by the Continuous Mortality Investigation Bureau, or from other sources. (It
needs to be a source

A superscript ”s” denotes ”from a standard table”, such as qs
x and µs

x+ 1
2

.

Test statistics are generally obtained from the following:

Binomial:

zx =
dx − Exqs

x√
Exqs

x (1− qs
x)

(
≈ O − E√

V

)
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Poisson/2-state:

zx =
dx − Ec

xµs
x+ 1

2√
Ec

xµs
x+ 1

2

(
≈ O − E√

V

)
.

Both of these are denoted as zx since under a null hypothesis that the standard table is
adequate Zx ∼ N(0, 1) approximately.

6.3.1 The tests

χ2 test

We take
X =

∑
all ages x

z2
x

This gives the sum of squares of standard normal random variables under the null hypothesis
and so is a sum of χ2(1). Therefore

X ∼ χ2(m) , if m = # years of study.

H0 : there is no difference between the standard table and the data,

HA : they are not the same.

It is normal to use 5% significance and so the test fails if X > χ2(m)0.95.

It tests large deviations from the standard table.

Disadvantages:

1. There may be a few large deviations offset by substantial agreement over part of the table.
The test will not pick this up.

2. There might be bias, that is, although not necessarily large, all the deviations may be of
the same sign.

3. There could be significant groups of consecutive deviations of the same sign, even if not
overall.

Standardised deviations test

This tries to address point 1 above. Noting that each zx is an observation from a standard
normal distribution under H0, the real line is divided into intervals, say 6 with dividing points
at −2,−1, 0, 1, 2. The number of zx in each interval is counted and compared with the expected
number from a standard normal distribution. The test statistic is then

X =
∑

intervals

(O − E)2

E
∼ χ2(5)

under the null hypothesis since this is Pearson’s statistic. The problem here is that m is unlikely
to be large enough to give approximate validity to the chi-square distribution. So this test is
rarely appropriate.
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Signs test

Test statistic X is given by
X = #{zx > 0}

Under the null hypothesis X ∼ B(m, 1
2), since the probability of a positive sign should be 1/2.

This should be administered as a two-tailed test. It is under-powered since it ignores the size of
the deviations but it will pick up small deviations of consistent sign, positive or negative, and so
it addresses point 2 above.

Cumulative deviations test

This again addresses point 2 and essentially looks very similar to the logrank test between two
survival curves. If instead of squaring dx − Exqs

x or dx − Ec
xµs

x+ 1
2

, we simply sum then∑
(dx − Exqs

x)√∑
Exqs

x (1− qs
x)
∼ N(0, 1), approximately

and ∑(
dx − Ec

xµs
x+ 1

2

)
√∑

Ec
xµs

x+ 1
2

∼ N(0, 1) approximately.

H0 : there is no bias
HA : there is a bias.

This test addresses point 2 again, which is that the chi-square test does not test for consistent
bias.

Other tests

There are tests to deal with consecutive bias/runs of same sign. These are called the groups of
signs test and the serial correlations test. Again a very large number of years, m, are required
to render these tests useful.

6.3.2 An example

Table 6.3.2 presents imaginary data for men aged 90 to 95. The column `x lists the initial at
risk, the number of men in the population on the census date, and dx is the number of deaths
from this initial population over the course of the year. Ec

x is the central at risk, estimated as
`x − dx/2. Standard male British mortality for these ages is listed in column µs

x. (The columen
µ̊x is a graduated estimate, which will be discussed in section 6.4.

We note substantial differences between the estimates µ̂x and the standard mortality µs
x,

but none of them is extremely large relative to the standard error: The largest zx is 1.85. We
test the two-sided alternative hypothesis, that the mortality rates in the old-people’s home are
different from the standard mortality rates, with a χ2 test, adding up the z2

x. The observed
X2 is 7.1, corresponding to an observed significance level p = 0.31. (Remember that we have 6
degrees of freedom, not 5, because these zx are independent. This is not an incidence table.)
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age `x dx Ec
x µ̂x+ 1

2
µs

x zx µ̊x

90 40 10 35 0.29 0.202 1.1 0.25
91 35 8 31 0.258 0.215 0.52 0.28
92 22 4 18 0.20 0.236 −0.33 0.335
93 14 6 11 0.545 0.261 1.85 0.40
94 11 4 9 0.444 0.279 0.94 0.45
95 7 3 5.5 0.545 0.291 1.11 0.48

Table 6.1: Table of mortality rates for an imaginary old-people’s home, with standard British
male mortality given as µs

x, and graduated estimate µ̊x.

6.4 Graduation

Graduation is what statisticians would call ”smoothing”. Suppose that a company has collected
its own data, producing estimates for either qx or µx+ 1

2
. The estimates may be rather irregular

from year to year and this could be an artefact of the population the company happens to have
in a particular scheme. The underlying model should probably (but not necessarily) be smoother
than the raw estimates. If it is to be considered for future predictions, then smoothing should
be considered. This is called graduation.

There is always a tradeoff in smoothing procedures. Without smoothing, real patterns get
lost in the random noise. Too much smoothing, though, can swamp the data in the model, so
that the final estimate reflects more our choice of model than any truth gleaned from the data.

6.4.1 Parametric models

We may fit a formula to the data. Possible examples are

µx = µ (Exponential);

µx = Beθx (Gompertz);

µx = A + Beθx (Makeham)

The Gompertz can be a good model for a population of middle older age groups. The Makeham
model has an extra additive constant which is sometimes used to model “intrinsic mortality”,
which is supposed to be independent of age. We could use more complicated formulae putting
in polynomials in x.

6.4.2 Reference to a standard table

Here q0
x, µ0

x represent the graduated estimates. We could have a linear dependence

q0
x = a + bqs

x, µ0
x = a + bµs

x

or possibly a translation of years

q0
x = qs

x+k, µ0
x = µs

x+k

In general there will be some assigned functional dependence of the graduated estimate on
the standard table value. These are connected with the notions of accelerated lifetimes and
proportional hazards, which will be central topics in the second part of the course.
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6.4.3 Nonparametric smoothing

We effectively smooth our data when we impose the assumption that mortality rates are constant
over a year. We may tune the strength of smoothing by requiring rates to be constant over
longer intervals. This is a form of local averaging, and there are more and less sophisticated
versions of this. In Matlab or R the methods available include kernel smoothing, orthogonal
polynomials, cubic splines, and LOESS. These are beyond the scope of this course.

In Figure 6.1 we show a very simple example. The mortality rates are estimated by individual
years or by lumping the data in five year intervals. The green line shows a moving average of
the one-year estimates, in a window of width five years.
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Figure 6.1: Different smooothings for A. sarcophagus mortality from Table 1.1.

6.4.4 Methods of fitting

1. In any of the models (binomial, Poisson, 2-state) set (say) qx = a + bqs
x in the likelihood

and use maximum likelihood estimators for the unknown parameters a, b and similarly for
µx and other functional relationships with the standard values.

2. Use weighted least squares and minimise∑
all ages x

wx

(
q̂x − q0

x

)2 or

∑
all ages x

wx

(
µ̂x+ 1

2
− µ0

x+ 1
2

)2
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Figure 6.2: Estimated tyrannosaurus mortality rates from Table 4.3, together with exponential
and Gompertz fits.

as appropriate. For the weights suitable choices are either Ex or Ec
x respectively. Alterna-

tively we can use 1/var, where the variance is estimated for q̂x or µ̂x+ 1
2
, respectively.

The hypothesis tests we have already covered above can be used to test the graduation fit to
the data, replacing qs

x, µs
x+ 1

2

by the graduated estimates. Note that in the χ2 test we must

reduce the degrees of freedom of the χ2 distribution by the number of parameters
estimated in the model for the graduation. For example if q0

x = a + bqs
x, then we reduce

the degrees of freedom by 2 as the parameters a, b are estimated.

6.4.5 Examples

Standard life table

We graduate the estimates in Table 6.3.2, based on the standard mortality rates listed in the
column µs

x, using the parametric model µ̊x = a + bµs
x. The log likelihood is

` =
∑

dx log µ̊x+ 1
2
− µ̊x+ 1

2
Ec

x.
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We maximise by solving the equations

0 =
∂`

∂a
=
∑ dx

â + b̂µs
x+ 1

2

− Ec
x


0 =

∂`

∂b
=
∑(

dxµs
x+ 1

2

â + b̂µs
x

− µs
x+ 1

2

Ec
x

)
.

We can solve these equations numerically, to obtain â = −0.279 and b̂ = 2.6. This yields the
graduated estimates µ̊ tabulated in the final column of Table 6.3.2. Note that these estimates
have the virtue of being, on the one hand, closer to the observed data than the standard mortality
rates; on the other hand smoothly and monotonically increasing.

If we had used ordinary least squares to fit the mortality rates, we would have obtained very
different estimates: ã = −0.472 and b̃ = 3.44, because we would be counting the Weighted least
squares, with weights proportional to Ec

x (inverse variance) solves this problem, more or less,
and gives us estimates â∗ = −0.313 and b̂∗ = 2.75 very close to the MLE.

In Figure 6.2 we plot the mortality rate estimates for the complete population of tyrannosaurs
described in Table 1.1, on a logarithmic scale, together with two parametric model fits: the
exponential model, with one parameter µ estimated by

µ̂ =
1
t̄

=
n

t1 + · · ·+ tn
≈ n

k1 + · · ·+ kn + n/2
= 0.058,

where t1, . . . , tn are the n lifetimes observed, and ki = btic the curtate lifetimes; and the
Gompertz model µs = Beθs, estimated by

θ̂ solves
Q′(θ̂)

Q(θ̂)− 1
− 1

θ̂
= t̄,

B̂ :=
θ̂

Q(θ̂)− 1
,

where Q(θ) :=
1
n

∑
eθti .

This yields θ̂ = 0.17 and B̂ = 0.0070. It seems apparent to the eye that the exponential fit is
quite poor, while the Gompertz fit might be pretty good. It is hard to judge the fit by eye,
though, since the quality of the fit depends in part on the number of individuals at risk that go
into the individual mortality-rate estimates, something which does not appear in the plot.

To test the hypothesis, we compute the predicted number of deaths in each age class
d

(exp)
x = lx · q(exp)

x if there is a constant µx = µ̂ = 0.058, meaning that q
(exp)
x = 0.057, and

d
(Gom)
x = lx · q(Gom)

x if

qx = q(Gom)
x := 1− exp

{
−B̂

θ̂
eθ̂x
(
eθ̂ − 1

)}
,

which is obtained by integrating the Gompertz hazard.
It matters little how we choose to interpret the deviations in the column z

(exp)
x — with values

going up as high as 6.65, it is clear that these could not have come from a normal distribution,
and we must reject the null hypothesis that these lifetimes came from an exponential distribution.
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age lx dx q
(exp)
x d

(exp)
x z

(exp)
x q

(Gom)
x d

(Gom)
x z

(Gom)
x

0 103 0 0.057 5.8 -2.48 0.007 0.7 -0.97
1 103 0 0.057 5.8 -2.48 0.009 0.9 -0.97
2 103 3 0.057 5.8 -1.20 0.011 1.1 1.81
3 100 1 0.057 5.7 -2.02 0.013 1.3 -0.25
4 99 1 0.057 5.6 -2.00 0.015 1.5 -0.41
5 98 3 0.057 5.5 -1.11 0.018 1.8 0.94
6 95 2 0.057 5.4 -1.50 0.021 2.0 -0.02
7 93 1 0.057 5.3 -1.91 0.025 2.4 -0.90
8 92 2 0.057 5.2 -1.45 0.030 2.8 -0.47
9 90 4 0.057 5.1 -0.50 0.036 3.2 0.45
10 86 4 0.057 4.9 -0.40 0.042 3.6 0.19
11 82 3 0.057 4.6 -0.78 0.050 4.1 -0.56
12 79 4 0.057 4.5 -0.23 0.059 4.7 -0.32
13 75 3 0.057 4.2 -0.62 0.070 5.3 -1.02
14 72 8 0.057 4.1 2.00 0.083 6.0 0.87
15 64 4 0.057 3.6 0.21 0.098 6.2 -0.95
16 60 4 0.057 3.4 0.34 0.115 6.9 -1.17
17 56 7 0.057 3.2 2.22 0.135 7.6 -0.22
18 49 10 0.057 2.8 4.47 0.159 7.8 0.87
19 39 6 0.057 2.2 2.63 0.186 7.2 -0.51
20 33 3 0.057 1.9 0.85 0.216 7.1 -1.75
21 30 10 0.057 1.7 6.56 0.252 7.6 1.03
22 20 8 0.057 1.1 6.65 0.292 5.8 1.07
23 12 4 0.057 0.7 4.15 0.336 4.0 -0.02
24 8 3 0.057 0.5 3.90 0.386 3.1 -0.06
25 5 0 0.057 0.3 -0.55 0.440 2.2 -1.98
26 5 3 0.057 0.3 5.26 0.498 2.5 0.46
27 2 0 0.057 0.1 -0.35 0.559 1.1 -1.59
28 2 2 0.057 0.1 5.78 0.623 1.2 1.10

Table 6.2: Life table for tyrannosaurs, with fit to exponential and Gompertz models, and based
on data from Table 1.1.

As for the Gompertz model, the deviations are all quite moderate. We compute
∑

z2
x = 26.1.

There are 29 categories, but we have estimated 2 parameters, so this needs to be compared to
the χ2 distribution with 27 degrees of freedom. The cutoff for a test at the 0.05 level is 40.1, so
we do not reject the null hypothesis.

As you have already learned, the χ2 approximation doesn’t work very well when the expected
numbers in some categories are too low. This is certainly the case in this case, with dGom

x as low
as 0.7. (That is, we are using a normal approximation with mean 0.7 for a quantity which takes
on integer values. That obviously cannot be right.) The solution is to lump categories together.
If we replace the first 10 years by a single category, it will have an expected number of deaths
equal to 0.171 · 103 = 17.7, as compared with exactly 17 observed deaths, producing a z value of
0.18. Similarly, we cut off the final three years (since collectively they correspond to the certain
event that all remaining individuals die), leaving us with

∑
z2
x = 11 on 14 degrees of freedom.

Again, this is a perfectly ordinary value of the χ2 variable, and we do not reject the hypothesis
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of Gompertz mortality.



Lecture 7

Multiple decrements model

Reading: Gerber Sections 7.1-7.3 and 11.7, Cox-Oakes Sections 9.1-9.2,
Norris Section 1.10, CT4 Units 9,10-3,10-4

Further reading: Cox-Oakes Section 9.3

7.1 The Poisson model

Under the assumption of a constant hazard rate (force of mortality) µx+ 1
2

over the year (x, x+1],
we may view the estimation problem as a chain of separate hazard rate estimation problems, one
for each year of life. Each individual lives some portion of a year in the age interval (x, x + 1],
the portion being 0 (if he dies before birthday x), 1 (if he dies after birthday x + 1), or between
0 and 1 if he dies between the two birthdays. Suppose now we lay these intervals end to end,
with a mark at the end of an interval where an individual died. It is not hard to see that what
results is a Poisson process on the interval [0, Ec

x], where Ec
x is the total observed years at risk.

Suppose we treat Ec
x as though it were a constant. Then if Dx represents the numbers dying

in the year the model uses

P
{
Dx = k

}
=

(
µx+ 1

2
Ec

x

)k
e
−µ

x+1
2

Ec
x

k!
, k = 0, 1, 2, · · ·

which is an approximation to the 2-state model, and which in fact yields the same likelihood.
The estimator for the constant force of mortality over the year is

µ̃x+ 1
2

=
Dx

Ec
x

, with estimate
dx

Ec
x

.

Under the Poisson model we therefore have that

varµ̃x+ 1
2

=
µx+ 1

2
Ec

x

(Ec
x)2

=
µx+ 1

2

Ec
x

.

So the estimate will be
varµ̃x+ 1

2
≈ dx

(Ec
x)2

.

If we compare with the 2-state stochastic model over year (x, x + 1), assuming constant
µ = µx+ 1

2
, then the likelihood is

L =
n∏
1

µδie−µti ,
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where δi = 1 if life i dies and ti = bi − ai in previous terminology (see the binomial model).
Hence

L = µdxe−µEc
x

and so
µ̂ =

Dx

Ec
x

.

The estimator is exactly the same as for the Poisson model except that both Dx and Ec
x are

random variables. Using asymptotic likelihood theory we see that the estimate for the variance
is

varµ̂ ≈ µ2

dx
≈ dx

(Ec
x)2

.

Are we justified in treating Ec
x as though it were fixed? Certainly it’s not exactly the same:

The numerator and denominator are both random, and they are not even independent. One way
of looking at this is to ask, how different would our estimate have been in a given realisation,
had we fixed the total time under observation in advance. If we observe m lives from the start
of year x, we see that Dx is approximately normal with mean mqx and variance mqx(1− qx),
while Ec

x is normal with mean m−mqx(1− e∗), where e∗ is the expected remaining length of a
life starting from age x, conditioned on its being less than 1; and variance mσ2, where σ2 is
the variance in time under observation of a single life. (If µx is not very large, e∗ is close to 1

2 .)
Looking at the first-order Taylor series expansion, we see that the ratio Dx/Ec

x varies only by a
normal error term times m−1/2, plus a bias of order m−1. For large m, then, the estimate on
the basis of fixed m (number of individuals) is almost the same as the estimate we would have
made from observing the Poisson model for the fixed total time at risk m−mqx(1− e∗).

7.2 Rates in the single decrement model

The rate parameter in the two-state Markov model with L ∼ Exp(λ) has the infinitesimal
interpretation

P(Xt+ε = 1|Xt = 0) = P(L ≤ t + ε|L > t) = 1− e−λε = λε + o(ε), (7.1)

and for a general L with right-continuous density and hence right-continuous force of mortality
t 7→ µt, we have

P(Xt+ε = 1|Xt = 0) = P(L ≤ t + ε|L > t) = 1− exp
{
−
∫ t+ε

t
µsds

}
= µtε + o(ε), (7.2)

since, by l’Hôpital’s rule

lim
ε↓0

1
ε

(
1− exp

{
−
∫ t+ε

t
µsds

})
= lim

ε↓0
µt+ε exp

{
−
∫ t+ε

t
µsds

}
= µt. (7.3)

It is therefore natural to express the two-state model by a time-dependent Q-matrix

Q(t) =
(
−λ(t) λ(t)

0 0

)
, where λ(t) = µt = hL(t). (7.4)

For estimation purposes, it has been convenient to add as additional assumption that
λ(t) = µt = µx+ 1

2
= λ(x + 1

2) is constant on x ≤ t < x + 1, x ∈ N.
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We have expressed the process X = (Xt)t≥0 as Xt = 0 for 0 ≤ t < L and Xt = 1 for t > L,
where L is the transition time. Given the observed transition times y1, . . . , yn of n independent
copies of X (corresponding to n different ‘individuals’), we have constructed two different sets
of maximum likelihood estimates

µ̂
(0)

x+ 1
2

(y1, . . . , yn) = − ln
(
q̂(0)
x (y1, . . . , yn)

)
= ln

(
1− dx(y1, . . . , yn)

`x(y1, . . . , yn)

)
,

µ̂x+ 1
2
(y1, . . . , yn) =

dx(y1, . . . , yn)
˜̀
x(y1, . . . , yn)

, 0 ≤ x ≤ max{y1, . . . , yn}.

If we furthermore assume that λ(t) ≡ λ for all t ≥ 0, then the maximum likelihood estimator
is simply

λ̂ =
n

y1 + . . . + yn
=

d0 + . . . + d[max{y1,...,yn}]
˜̀
0 + . . . + ˜̀

[max{y1,...,yn}]
. (7.5)

7.3 Multiple decrement models

The simplest (and most immediately fruitful) way to generalise the single-decrements model is
to allow transitions to multiple absorbing states. Of course, as demographer Kenneth Wachter
has put it, it may seem peculiar to introduce multiple “dead” states into our models since there
is only one way of being dead; but (as he continues), there are many ways of getting there.
Further, there are many other settings which can be modelled by a single nonabsorbing state
transitioning into one of several possible absorbing states. Some examples are

• A working population insured for disability might transition into multiple different possible
causes of disability, which may be associated with different costs.

• Workers may leave a company through retirement, resignation, or death.

• A model of unmarried cohabitations, which may end either by separation or marriage.

• Unemployed individuals may leave that state either by finding a job, or by giving up
looking for work and so becoming “long-term unemployed”.

An important common element is that calling the states “absorbing” does not have to mean
that it is a deathlike state, from which nothing more happens. Rather, it simply means that our
model does not follow any further developments.

7.3.1 An introductory example

This example is taken from section 8.2 of [Wac].
According to United Nations statistics, the probability of dying for men in Zimbabwe in

2000 was 5q30 = 0.1134, with AIDS accounting for approximately 4/5 of the deaths in this age
group. Suppose we wish to answer the question: what would be the effect on mortality rates of
a complete cure for AIDS?

One might immediately be inclined to think that the mortality rate would be reduced to 1/5
of its current rate, so that what the probability of dying of some other cause in the absence of
AIDS, which we might write as 5q

OTHER∗
30 , would be 0.02268. On further reflection, though, it

seems that this is too low: This is the proportion of people aged 30 who currently die of causes
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other than AIDS. If AIDS were eliminated, surely some of the people who now die of AIDS
would instead die of something else.

Of course, this is not yet a well-defined mathematical problem. To make it such, we need to
impose extra conditions. In particular, we impose the competing risks assumption: Individual
causes of death are assumed to act independently. You might imagine an individual drawing
lots from multiple urns, labelled “AIDS”, “Stroke”, “Plane crash”, to determine whether he will
die of this cause in the next year. The fraction of black lots among the white is precisely qx,
when the individual has age x. If he gets no black lot, he survives the year. If he draws two
or more, we only get to see the one drawn first, since he can only die once. The probability of
surviving is then the product of the survival probabilities:

iqx = 1−
(
1− iq

CAUSE1
x

)(
1− iq

CAUSE2
x

)
· · · (7.6)

What is the fraction of deaths due to a given cause? Assuming constant mortality rate over the
time interval due to each cause, we have

1− tq
CAUSE1
x = e−tλCAUSE1

x .

Given a death, the probability of it being due to a given cause, is proportional to the associated
hazard rate. Consequently,

λCAUSE1
x = fraction of deaths due to CAUSE 1× λx,

which implies that

tq
CAUSE1
x = 1− (1− tqx)fraction of deaths due to CAUSE 1 .

(Note that this is the same formula that we use for changing lengths of time intervals: tqx =
1− (1− 1qx)t.) This tells us the probability of dying from cause 1 in the absence of any other
cause. The probability of dying of any cause at all is then given by (7.6).

Applying this to our Zimbabwe AIDS example, treating the causes as being either AIDS or
OTHER, we see that the probability of dying of AIDS in the absence of any other cause is

5q
AIDS∗
30 = 1− (1− 5q30)4/5 = 1− 0.88664/5 = 0.0918,

while the probability of dying of any other cause, in the absence of AIDS, is

5q
OTHER∗
30 = 1− (1− 5q30)4/5 = 1− 0.88661/5 = 0.0238.

Appropriately, we have the total cause of death 0.1138 = 1− (1− 0.0918)(1− 0.0238).
Is the competing risks assumption reasonable? Another way of putting this is to ask, what

circumstances would cause the assumption to be violated? The answer is: Competing risks
is violated when a subpopulation is at higher than average risk for multiple causes of death
simultaneously; or conversely, when those at higher than average risk for one cause of death are
protected from another cause of death. For example, smokers have more than 10 times the risk of
dying from lung cancer that nonsmokers have; but they also have substantially higher mortality
from other cancers, heart disease, stroke, and so on. If a perfect cure for lung cancer were to
be found, it would not save nearly as many lives as one might suppose, from a competing-risks
calculation like the one above, because the lives that would be saved would be almost all those
of smokers, and they would be more likely to die of something else than an equivalent number
of saved lives from the general population.
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7.3.2 Basic theory

We consider here more general 1 + m-state Markov models with state space S = {0, . . . ,m} that
only have one transition from 0 to j, for some 1 ≤ j ≤ m, with absorption in j. We can write
down an – in general time-dependet – Q-matrix

Q(t) =


−λ+(t) λ1(t) · · · λm(t)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , where λ+(t) = λ1(t) + . . . + λm(t). (7.7)

Such models occur naturally where insurance policies provide different benefits for different
causes of death, or distinguish death and disability, possibly in various different strengths or
forms. This is also clearly a building block (one transition only) for general Markov models,
where states j = 1, . . . ,m may not all be absorbing.

Such a model depends upon the assumption that different causes of death act independently
— that is, the probability of dying is the product of what might be understood as the probability
of dying from each individual cause acting alone.

7.3.3 Multiple decrements – time-homogeneous rates

In the time-homogenous case, we can think of the multiple decrement model as m exponential
clocks Cj with parameters λj , 1 ≤ j ≤ m, and when the first clock goes off, say, clock j, the
only transition takes place, and leads to state j. Alternatively, we can describe the model as
consisting of one L ∼ Exp(λ+) holding time in state 0, after which the new state j is chosen
independently with probability λj/λ+, 1 ≤ j ≤ m. The likelihood for a sample of size 1 consists
of two ingredients, the density λ+e−tλ+ of the exponential time, and the probability λj/λ+ of
the transition observed. This gives λje

−tλ+ , or, for a sample of size n of lifetimes ti and states
ji, 1 ≤ i ≤ n,

n∏
i=1

λjie
−tiλ+ =

m∏
j=1

λ
nj

j e−λj(t1+...+tn), (7.8)

where nj is the number of transitions to j. Again, this can be solved factor by factor to give

λ̂j =
nj

t1 + . . . + tn
, 1 ≤ j ≤ m. (7.9)

In particular, we find again λ̂+ = n/(t1 + . . . + tn), since n1 + . . . + nm = n.
In the competing-clocks description, we can interpret the likelihood as consisting of m

ingredients, namely the density λje
−λjt of clock j to go off at time t, and probabilities e−λkt of

clocks Ck, k 6= j, to go off after time t.
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Multiple Decrements: Theory and
Examples

8.1 Estimation for general multiple decrements

We can deduce from either description in the previous section that the likelihood for a sample
of n independent lifetimes y1, . . . , yn and respective new states j1, . . . , jn, each (yi, ji) sampled
from (L, J), is given by

n∏
i=1

λji(yi) exp
{
−
∫ yi

0
λ+(t)dt

}
. (8.1)

Let us assume that the forces of decrement λj(t) = λj(x + 1
2) are constant on x ≤ t < x + 1, for

all x ∈ N and 1 ≤ j ≤ m. Then the likelihood can be given as

∏
x∈N

m∏
j=1

(
λj(x + 1

2)
)dj,x exp

{
−˜̀

xλj(x + 1
2)
}

, (8.2)

where dj,x is the number of decrements to state j between ages x and x + 1, and ˜̀
x is the total

time spent alive between ages x and x + 1.
Now the parameters are λj(x + 1

2), x ∈ N, 1 ≤ j ≤ m, and they are again well separated to
deduce

λ̂j(x + 1
2) =

dj,x

˜̀
x

, 1 ≤ j ≤ m, 0 ≤ x ≤ max{L1, . . . , Ln}. (8.3)

Similarly, we can try to adapt the method to get maximum likelihood estimators from the
curtate lifetimes. We can write down the likelihood as

n∏
i=1

p(J,K)(ji, [yi]) =
∏
x∈N

(1− qx)`x−dx

m∏
j=1

q
dj,x

j,x , (8.4)

but 1− qx = 1− q1,x − . . .− qm,x does not factorise, so we have to maximise simultaneously for
all 1 ≤ j ≤ m expressions of the form

(1− q1 − . . .− qm)`−d1−...−dm

m∏
j=1

q
dj

j . (8.5)

(We suppress the indices x.) A zero derivative with respect to qj amounts to

(`− d1 − . . .− dm)qj = dj(1− q1 − . . .− qm), 1 ≤ j ≤ m, (8.6)
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and summing over j gives

(`− d)q = d(1− q) ⇒ q =
d

`
. (8.7)

and then
(`− d)qj = dj(1− q) ⇒ qj =

dj(1− q)
`− d

=
dj

`
(8.8)

so that, if we display the suppressed indices x again,

q̂
(0)
j,x = q̂

(0)
j,x(y1, j1, . . . , yn, jn) =

dj,x

`x
. (8.9)

Now we’ve done essentially all maximum likelihood calculations. This one was the only one that
was not totally trivial. At repeated occurrences of the same factors, we have been and will be
less explicit about these calculations. We’ll derive likelihood functions, note that they factorise
and identify the factors as being of one of the three forms

(1− q)`−dqd ⇒ q̂ = d/`

µde−µ` ⇒ µ̂ = d/`

(1− q1 − . . .− qm)`−d1−...−dm

m∏
j=1

q
dj

j ⇒ q̂j = dj/`, j = 1, . . . ,m.

and deduce the estimates.

8.2 Example: Workforce model

A company is modelling its workforce using the model

Q(t) =


−λ(t)− σ(t)− µ(t) λ(t) σ(t) µ(t)

0 0 0 0
0 0 0 0
0 0 0 0

 (8.10)

with four states S = {W,V, I,∆}, where W =‘working’, V =’left the company voluntarily’,
I =’left the company involuntarily’ and ∆ =’left the company through death’.

If we observe nx people aged x, then

λ̂x+ 1
2

=
dx,V

˜̀
x

, σ̂x+ 1
2

=
dx,I

˜̀
x

, µ̂x+ 1
2

=
dx,∆

˜̀
x

(8.11)

where ˜̀
x is the total amount of time spent working aged x, dx,V is the total number of workers

who left the company voluntarily aged x, dx,I is the total number of workers who left the
company involuntarily aged x, dx,∆ is the total number of workers dying aged x.
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Multiple decrements: The
distribution of the endpoint

9.1 Which state do we end up in?

The time-homogeneous multiple-decrement model makes a transition at the minimum of m
exponential clocks as opposed to one clock in the single decrement model. In the same way, we
can construct the time-inhomogeneous multiple-decrement model from m independent clocks Cj

with hazard function λj(t), 1 ≤ j ≤ m. Then the likelihood for a transition at time t to state j
is the product of fCj (t) and F̄Ck

(t).
By Exercise A.1.2, the hazard function of L = min{C1, . . . , Cm} is given by hL(t) =

hC1(t) + . . . + hCm(t) = λ1(t) + . . . + λm(t) = λ+(t), and we can also calculate

P(L = Cj |L = t)= lim
ε↓0

P(t ≤ Cj < t + ε, min{Ck : k 6= j} ≥ Cj)
P(t ≤ L < t + ε)

≥ lim
ε↓0

1
εP(t ≤ Cj < t + ε, min{Ck : k 6= j} ≥ t + ε)

1
εP(t ≤ L < t + ε)

≤ lim
ε↓0

1
εP(t ≤ Cj < t + ε, min{Ck : k 6= j} ≥ t)

1
εP(t ≤ L < t + ε)

=
fCj (t)

∏
k 6=j F̄Ck

(t)
fL(t)

=
hCj (t)
hL(t)

=
λj(t)
λ+(t)

,

and we obtain

P(L = Cj) =
∫ ∞

0
P(L = Cj |L = t)fL(t)dt =

∫ ∞

0
λj(t)F̄L(t)dt = E(Λj(L)), (9.1)

where Λj(t) =
∫ t
0 λj(s)ds is the integrated hazard function. (For the last step we used that

E(g(L)) =
∫∞
0 g′(t)F̄L(t)dt for all increasing differentiable g : [0,∞) → [0,∞) with g(0) = 0.)

The discrete (curtate) lifetime model: We can also split the curtate lifetime K = [L]
according to the type of decrement J (J = j if L = Tj) and define

qj,x = P(L < x + 1, J = j|L > x), 1 ≤ j ≤ m, x ∈ N, (9.2)

then clearly for x ∈ N
q1,x + . . . + qm,x = qx (9.3)
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and, for 1 ≤ j ≤ m,

p(J,K)(j, x) = P(J = j, K = x) = P(L ≤ x + 1, J = j|L > x)P(L > x) = p0 . . . px−1qj,x. (9.4)

Note that this bivariate probability mass function is simple, whereas the joint distribution of
(L, J) is conceptually more demanding since L is continuous and J is discrete. We chose to
express the marginal probability density function of L and the conditional probability mass
function of J given L = t. In the assignment questions, you will see an alternative description
in terms of sub-probability densities gj(t) = d

dtP(L ≤ t, J = j), which you can normalise –
gj(t)/P(J = j) is the conditional density of L given J = j.

9.2 Cohabitation dissolution model

There has been considerable interest in the influence of nonmarital birth on the likelihood of a
child growing up without one of its parents. In the paper [Kie01] relevant data are given for nine
different western European countries. We give a summary of some of the UK data in Table 9.1.
We represent the data in terms of a multiple decrement model in which the one nonabsorbing
state is cohabitation, and this leads to the two absorbing states, which are marriage or separation.
(Of course, there is a third absorbing state, corresponding to the death of one of the partners,
but this did not appear in the data. And of course, the marriage state is not actually absorbing,
except in fairy tales. A more complete analysis would splice this model onto a model of the
fate of marriages. There are data in the article on rates of separation after marriage, for those
interested in filling out the model.) Time, in this model, begins with the birth of the first child.
Because of the way the data are given, we treat the hazard rates as constant in the time intervals
[0, 1], [1, 3], and [3, 5]. There are no data about what happens after 5 years. We write dM

x and
dS

x for the number of individuals marrying and separating, respectively, and similar for the
estimation of hazard rates. (For simplicity, we have divided the separation data, which were
actually only given for the periods [0, 3] and [3, 5], as though there were a count for separations
in [0, 1].)

Table 9.1: Data from [Kie01] on rates of conversion of cohabitations into marriage or separation,
by years since birth of first child

n after 3 years after 5 years

106 61 48

(a) % cohabiting couples remaining
together (from among those who did
not marry)

n 1 year 3 years 5 years

150 18 30 39

(b) % of cohabiting couples who
marry within stated time.

Translating the data in Table 9.1 into a multiple-decrement life table requires some interpretive
work.

1. There are only 106 individuals given for the data on separation; this is both because the
individuals who eventually married were excluded from this tabulation, and because the
two tabulations were based on slightly different samples.
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2. The data are given in percentages.

3. There is no count of separations in the first year.

4. Note that separations are given by survival percentages, while marriages are given by loss
percentages.

We now construct a combined life table from the data in Table 9.1. The purpose of this
model is to integrate information from the two data sets. This requires some assumptions, to
wit, that the transition rates to the two different absorbing states are the same for everyone, and
that they are constant over the periods 0–1, 1–3, 3–5 (and constant over 0–3 for separation).

The procedure is essentially the same as the construction of the single-decrement life table,
except that the survival is decremented by both loss counts dM

x and dS
x ; and the estimation of

years at risk ˜̀
x now depends on both decrements, so is

˜̀
x = `x′(x′ − x) + (dM

x + dS
x )

x′ − x

2
,

where x′ is the next age on the life table. Thus, for example, ˜̀
1, which is the number of years at

risk from age 1 to 3, is 64 · 2 + 41 · 1 = 169.
One of the challenges is that we observe transitions to Separation conditional on never being

Married, but the transitions to Married are unconditioned. The data for marriage are more
straightforward: These are absolute decrements, rather than conditional ones. If we set up a life
table an a radix of 1000, we know that the decrements due to marriage should be exactly the
percentages given in Table 9.2(b); that is, 180, 120, and 90. We begin by putting these into our
multiple-decrements life table, Table 9.2.

Of these nominal 1000 individuals, there are 610 who did not marry. Multiplying by the
percentages in Table 9.2(a) we estimate 238 separations in the first 3 years, and 79 in the next 2
years.

Table 9.2: Multiple decrement life table for survival of cohabiting relationships, from time of
birth of first child, computed from data in Table 9.1.

x `x dM
x dS

x
˜̀
x µ̂M

x µ̂S
x

0–1 1000 180 ? ? ? ?
1–3 ? 120 ? ? ? ?
3–5 462 90 79 755 ? ?

At this point, the only thing preventing us from completing the life table is that we don’t
know how to allocate the 238 separations between the first two rows, which makes it impossible
to compute the total years at risk for each of these intervals. The easiest way is to begin by
making a first approximation by assuming the marriage rate is the unchanged over the first
three years, and then coming back to correct it. Our first step, then, is the multiple-decrement
table in Table 9.3. According to our usual approximation, we estimate the years at risk for the
first period as 1000 · 3 − 538 · 1.5 = 2193; and in the second period as 462 · 2 − 169 · 1 = 755.
The two decrement rates are then estimated by dividing the number of events by the number of
years at risk.
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Table 9.3: First approximation multiple decrement table.

x `x dM
x dS

x
˜̀
x µ̂M

x µ̂S
x

0–3 1000 300 238 2193 0.137 0.109
3–5 462 90 79 755 0.119 0.105

What correction do we need? We need to estimate the number of separations in the first year.
Our model says that we have two independent times S and M , the former with constant hazard
rate µS

1.5 on [0, 3], the other with rate µM
1
2

on [0, 1] and µM
2 on [1, 3]. Of the 238 separations in

[0, 3], we expect the fraction in [0, 1] to be about

P
{
S < 1

∣∣S < min{3,M}
}

=
P{min{S, M} < 1 &S < M}

P{min{S, M} < 1 &S < M}+ P{1 ≤ min{S, M} < 3 &S < M}
.

Since min{S, M} is exponential with rate µM
1
2

+ µS
1.5 on [0, 1] and rate µM

2 + µS
1.5 on [1, 3], and

independent of {S < M}, we have

P{min{S, M} < 1 &S < M} =
µS

1.5

µM
1
2

+ µS
1.5

(
1− e

−µM
1
2

−µS
1.5

)
;

P{1 < min{S, M} < 3 &S < M} =
µS

1.5

µM
2 + µS

1.5

e
−µM

1
2

−µS
1.5
(
1− e−2µM

2 −2µS
1.5

)
.

In Table 9.3 we have taken both values µM to be equal, the estimate being 0.137; were we to do
a second round of correction we could take the estimates to be distinct. We thus obtain

P{min{S, M} < 1 &S < M} ≈ 0.109
0.137 + 0.109

(
1− e−0.137−0.109

)
= 0.0966;

P{1 < min{S, M} < 3 &S < M} ≈ 0.109
0.137 + 0.109

e−0.137−0.109
(
1− e−2·0.137−2·0.109

)
= 0.135.

Thus, we allocate 0.418 ∗ 238 = 99.4 of the separations to the first period, and 138.6 to the
second. This way we can complete the life table by computing the total years at risk for each
period, and hence the hazard rate estimates.

In principle, we could do a second round of approximation, based on the updated hazard rate
estimates. In fact, there is no real need to do this. The approximations are not very sensitive to
the exact value of the hazard rate. If we do substitute the new values in, the estimated fraction
of separations occurring in the first year will shift only from 0.418 to 0.419.

We are now in a position to use the model to draw some potentially interesting conclusions.
For instance, we may be interested to know the probability that a cohabitation with children will
end in separation. We need to decide what to do with the lack of observations after 5 years. For
simplicity, let us assume that rates remain constant after that point, so that all cohabitations
would eventually end in one of these fates. Applying the formula (9.1), we see that

P
{
separate

}
=
∫ ∞

0
µS

x F̄ (x)dx.
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Table 9.4: Second approximation Multiple decrement life table.

x `x dM
x dS

x
˜̀
x µ̂M

x µ̂S
x

0–1 1000 180 99.4 860.2 0.209 0.116
1–3 720.6 120 138.6 1183 0.101 0.116
3–5 462 90 79 755 0.119 0.105

We have then

P
{
separate

}
= 0.116

∫ 1

0
e−0.325xdx + 0.116

∫ 3

1
e−0.325−0.217(x−1)dx + 0.105

∫ ∞

3
e−0.759−0.224(x−3)dx

=
0.116
0.325

[
1− e−0.325

]
+

0.116
0.217

[
e−0.325 − e−0.759

]
+

0.105
0.224

[
e−0.759

]
= 0.099 + 0.136 + 0.219
= 0.454.



Lecture 10

Continuous-time Markov chains

10.1 General Markov chains

Let S be a countable state space, and M = (Mn)n≥0 or X = (Xt)t≥0 a time-homogeneous
Markov chain with unknown transition probabilities/rates. In this lecture, we will develop
methods to construct maximum likelihood estimators for the transition probabilities/ rates.
You may think of a population model where birth rates and death rates may depend on the
population size, and also multiple births (or maybe immigration) and multiple deaths (accidents,
disasters, emigration) are allowed.

10.1.1 Discrete time, estimation of Π-matrix

Suppose we start a Markov chain at M0 = i0 and then observe (M0, . . . ,Mn) = (i0, . . . , in). The
general transition matrix Π = (πij)i,j∈S contains our parameters πij , i, j ∈ S, and we can write
down the likelihood (probability mass function) for our observations

n∏
k=1

πik−1,ik =
∏
i∈S

∏
j∈S

π
nij

ij (10.1)

where nij is the number of transitions from i to j. Now note that pii = 1−
∑

j 6=i pij so that, as
before, the maximum likelihood estimators are

p̂ij =
nij

ni
, provided ni =

∑
j∈S

nij = #{0 ≤ k ≤ n− 1 : ik = i} > 0. (10.2)

If ni = 0, then the likelihood is the same for all πij , j ∈ S.

10.1.2 Estimation of the Q-matrix

Suppose we start a continuous-time Markov chain at X0 = i0 and observe (Xs)0≤s≤Tn where
Tn is the nth transition time and record the data as successive holding times Tj − Tj−1 = hj−1

and sequence of states of the jump chain (i0, . . . , in). The general Q-matrix (qij)i,j∈S contains
the parameters qij , i, j ∈ S, and the likelihood, as a product of densities of holding times and
transition probabilities, is given by

n∏
k=1

λik−1
exp{−λik−1

hj−1}
qik−1,ik

λik−1

=
∏
i∈S

∏
j 6=i

q
nij

ij exp {−eiqij} , (10.3)
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where λi = −qii =
∑

j 6=i qij , nij is the number of transitions from i to j and ei is the total time
spent in i. This is maximised factor by factor by

q̂ij = q̂ij(i0, h0, i1, . . . , hn−1, in) =
nij

ei
, i 6= j. (10.4)

In fact, the holding times and transitions may come from several chains (with the same unknown
Q-matrix) without affecting the form of the likelihood, if we define

nij = n
(1)
ij + . . . + n

(r)
ij and ei = e

(1)
i + . . . + e

(r)
i (10.5)

for observed chains (X(k)
s )

0≤s≤T
(k)
nk

, 1 ≤ k ≤ r. This is useful to save time by simultaneous

observation, and to reach areas of the state space not previously visited (e.g. for reducible or
transient chains).

10.2 The induced Poisson process

In order to derive a rigorous estimation theory for a general finite-state Markov process, we
consider the embedded Poisson processes that comes from considering the process only when it
is in a given state. You might imagine a “state-x estimator” that is tasked with estimating the
transition rates to all other states from state x; its clock runs while the process is in state x,
and it counts the transitions, but it slumbers when the process is in any other state.

Suppose we run infinitely many copies of the Markov process, started in states X
(1)
0 , X

(2)
0 , . . .

for some lengths of time S(1), S(2), . . . . Suppose that the times S(i) are stopping times: That is,
they do not depend upon knowing the future of the process. (For a precise technical definition,
see any basic text on stochastic processes, such as [KT81].) The realisation i makes transitions
at times T

(i)
1 , . . . , T

(i)
Ni

to states X
(i)
1 , . . . , X

(i)
Ni

. (We do not wish to rule out the simple possibility
that there is only one run of a positive recurrent Markov process. To admit that alternative,
though, would complicate the notation. Instead, we may suppose that the single infinite run
is broken into infinitely many pieces, for instance by stopping after each full unit of time, and
restarting with X

(i+1)
0 = X

(i)
Ni

.) We assume that the realisations are independent, except that
the starting state of a realisation may be dependent on

Consider some fixed state x. Suppose all K realisations visit state x a total of Mx times,
and let τx(j) be the length of the j-th sojourn in x — so that Ex := τx(1) + · · · τx(Mx) is the
total of all the time intervals when the process is in state x. Of the sojourns in x, some end
with a transition to a new state, and some end because a stopping time S(i) intervened; define

δx(j) =

{
1 if sojourn j ends with a transition;
0 if sojourn j ends with a stopping time.

Consider now the random interval [0, Ex], and the set of points

Sx :=
{
τx(1) + · · ·+ τx(j) : s.t. δx(j) = 1

}
.

The idea is that we take the events that occur only while the process is waiting at state x
out, and stitch them together. Theorem 2 tells us that we obtain thereby a Poisson process. An
illustration may be found in Figure 10.1. We start with a strong restatement of the “memoryless”
property of the exponential distribution.
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Run 1

Run 2

Run 3

Run 4

T1
(1)

T2
(1) T3

(1) T4
(1) τ

T1
(2)

T2
(2) T3

(2) T4
(2) T5

(2) τ

T1
(3) T2

(3) T3
(3) T4

(3) T5
(3) τ

T1
(4) T2

(4) T3
(4) τ

Figure 10.1: Illustration of the “stitching-together” construction, by which the process confined
to a particular state generates a marked Poisson process. The Markov process has three states,
represented by red, green, and black. We are estimating the transition rates from the red state.
The diamond shapes represent the colour to which transitions are made. Stars represent censored
observations; that is, times at which a realisation of the process was ended (at the time τ) in
state R, without having transitioned out. The estimates based on these observations would be
q̂RG = 5/E and q̂RB = 1/E, where E is the total length of the red line at the bottom.
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Lemma 1. Suppose T1, T2, . . . is an i.i.d. sequence of exponential random variables with param-
eter λ, and S1, S2, . . . independent random variables such that each Si is a stopping time with
respect to Ti. That is, Ti − t is independent of Si on the event {Si ≤ t}, for any fixed t. Let
K = min{k : Tk ≤ Sk}. Then

T∗ := TK +
K−1∑
i=1

Si

is exponential with parameter λ.

Proof. The stopping-time property tells us that (Ti − Si) is independent of Si on the event
{Ti > Si}. Consequently, conditioned on {Ti > Si = s}, (Ti − Si) has the distribution of (Ti − s)
conditioned on {Ti > s}, which is exponential with parameter λ; and conditioned on {Ti ≤ s}, Ti

has exponential distribution with parameter λ. Conditioned on {K = 1}, then, it is immediately
true that T∗ = T1 has the correct distribution. Suppose now that T∗ has the correct distribution,
conditioned on {K = k}. Then conditioned on {K = k + 1}, T∗ := Tk+1 + Sk +

∑k−1
i=1 Si.

Note that Sk + Tk+1 conditioned on {K = k + 1} has the same distribution as Tk conditioned
on {K = k} (by the induction hypothesis). Since either of these is independent of

∑k−1
i=1 Si,

the distribution is the same T∗ conditioned on {K = k + 1} is identical to the distribution
conditioned on {K = k}, which completes the induction.

Theorem 2. The random set Sx is a Poisson process with rate qx :=
∑

y 6=x qxy, and the total
time Ex is a stopping time for the process. If we condition on (Ex : x ∈ X), the processes
corresponding to different states are independent. Finally, conditioned on Sx, the transitions
that take place at the times Sx are independent, with the probability of transitioning to y being
qxy/qx.

Proof. Consider the interarrival time between two points of Sx. By Lemma 1 it is exponential
with parameter qx. By the Markov property, the interarrival times are all independent. Hence,
these are independent Poisson processes. The independence of the transitions from the waiting
times is standard.

Define Nx(s) to be the number of visits to state x up to total time s (where total time is
measured by stitching together the processes X

(1)
· , followed by X

(2)
· , and so on) which end in a

transition (as opposed to ending in a stopping time, and shift to a new realisation of the process).
Let Nxy(s) be the number of visits to state x up to total time s which end in a transition to
state y. Let Ex(s) be the total amount of time spent in state x up to total time s. (Thus,∑

x∈X Ex(s) = s identically.)
Consequences of Theorem 2 are:

MLE The maximum likelihood estimator for the rate of a Poisson process is # events/total time.
Thus, if we observe realisations of the process which add up to total time S (where S may
be a random stopping time), the MLE for qxy is

q̂xy(S) =
Nxy(S)
Ex(S)

. (10.6)

Consistency lims→∞
Nxy(S)
Ex(S) = qxy, on the event {lims→∞ Ex(s) = ∞}. (Question to consider: How

would it be possible to arrange the realisations of the process so that the condition
{lims→∞ Ex(s) = ∞} does not have probability 1?)
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Sampling dist. Suppose we run realisations of the process until a random time S that we will call
Sx(t) := inf{s : Ex(s) = t}; that is, we run the process (in its various successive realisations)
until such time as the total time spent in x is exactly t. Then the estimator q̂xy(S) is equal
to Nxy(S)/Ex(S) = Nxy(S)/t. Since Nxy(S) has Poisson distribution with parameter tqxy,
this tells us the distribution of q̂xy(S). Its expectation is qxy, and its variance is qxy/t. As
t →∞, q̂xy(Sx(t)) converges to a normal distribution.

The sampling distribution is a complicated matter. If we have observed up to time Sx(t)
then we know the exact distribution of q̂xy, and we can compute approximate 100α% confidence
intervals as q̂xy ± z(1−α/2

√
q̂xy/t, where z is the appropriate quantile of the normal distribution.

Even then, we do not have the exact distribution even for the estimators of transition rates
starting from any other state.

Can this be a serious problem? Suppose we observe instead up to a constant total time s. Is
the distribution substantially different? In some respects it is, particularly in the tails. Suppose
we decompose the estimate by the number of visits to x.

q̂xy(s) =
Nxy(s)
Ex(s)

=
∞∑

n=0

1{Nx(s)=n}
Nxy(s)
Ex(s)

.

The summand corresponding to n = 0 is 0/0, which is problematic. Moving on to n = 1, we
have with probability qxy/qx the expression 1/E, where E is exponential with parameter qx.
This has expectation ∞. Consequently, q̂xy(s) also has infinite expectation. Other choices of a
random time S at which to observe the process can similarly distort the distribution.

On the other hand, this is only a problem with the expectation and variance, not with the
main bulk of the distribution. That is, as long as S is chosen so that there will be, with high
probability, a large number of visits to x, the normal approximation should be fairly accurate.

The general rule for estimating transition rates is

q̂xy =
# transitions x → y

total time spent in state x

Var(q̂xy) ≈
q̂xy

total time spent in state x

We compute an approximate 100α% confidence interval as q̂xy ± z1−α/2

√
Var(q̂xy).

If the number of transitions is not very large, we may do better estimating q̂xy from the Poisson
parameter estimated by Nxy. Exact confidence intervals may be computed, using the identity

P
{
k ≤ Ns

}
= P

{
Tk ≤ s

}
= P

{
2kµTk ≤ 2kµs

}
= α for µ = χ2k,α/(2ks).

This is carried out in the exercises.

10.3 Parametric and time-dependent models

So far, we have assumed that the Q-matrix was completely arbitrary, i.e. with entries qij ≥ 0,
j 6= i, and qii = −

∑
j:j 6=i qij > −∞. We estimated all “parameters” qij by observing a Markov
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chain with that unknown Q-matrix (or several independent Markov chains with the same
unknown Q-matrix).

On the other hand, we studied the multiple decrement model, which we can view as a
continuous-time Markov chain, where the Q-matrix contains lots of zeros, namely everywhere
except in the first row. Here, the maximum likelihood estimates that we derived were of the
same form

numbers of transitions from i to j

total time spent in i
, (10.7)

except that we did not specify the zero rows as estimates but as model assumptions.
Here, we will merge ideas and study more systematically Markov chain models where the

Q-matrices are not completely unknown. Instead, we assume/know some structure, e.g. certain
zero entries and/or that certain transition rates are the same or stand in a known relationship
to each other.

Secondly, we will incorporate time-dependent transition rates (as we had in the multiple
decrement model) into the general Markov model.

10.3.1 Example: Marital status model

A natural model for marital status consists of five states “bachelor” (B), “married” (M),
“widowed” (W ), “divorced” (D) and “dead” (∆).

We can set up a model with 9 parameters corresponding to the 9 possible transitions (B → M ,
B → ∆, M → W , M → D, M → ∆, W → M , W → ∆, D → M , D → ∆). Note that also
state ∆ is absorbing and there is no reason to continue to observe chains that have run into this
state. This means that we agree that four entries vanish:

q∆B = q∆M = q∆W = q∆D = 0. (10.8)

Furthermore, it is also impossible to have direct transitions between B, W and D or indeed to
go from M to B, so we also know in advance that

qBD = qDB = qBW = qWB = qDW = qWD = qMB = 0. (10.9)

With states arranged in the above order, this gives a Q-matrix

Q =


−α− µB α 0 0 µB

0 −ν − δ − µM ν δ µM

0 σ −σ − µW 0 µW

0 ρ 0 −ρ− µD µD

0 0 0 0 0

 . (10.10)

Alternatively, we can assume that the death rate does not depend on the current state B, M ,
W or D, so that the Q-matrix only contains 6 parameters as

Q =


−α− µ α 0 0 µ

0 −ν − δ − µ ν δ µ
0 σ −σ − µ 0 µ
0 ρ 0 −ρ− µ µ
0 0 0 0 0

 . (10.11)

Finally, we can allow age-varying transition rates by having Q(t), where now the parameters
α(t), µ(t), ν(t), δ(t), σ(t) and ρ(t) depend on age t.
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10.3.2 The general simple birth-and-death process

The general simple birth-and-death process is a continuous-time Markov chain with Q-matrix

Q =


−λ0 λ0 0 0 0 · · ·
µ1 −λ1 − µ1 λ1 0 0 · · ·
0 µ2 −λ2 − µ2 λ2 0 · · ·
...

. . . . . . . . . . . . . . .

 , (10.12)

where birth rates λj and death rates µj are in arbitrary (unknown) dependence on j. Note that
this model has an infinite number of parameters, but just as with unspecified maximal ages in
the single decrement model, we would only estimate (λ0, µ1, . . . , µmax, λmax), where indeed λmax

may be left unspecified or equal to zero for the highest observed population size.
This model has the same maximum likelihood estimators as the general Q-matrix with all

entries unknown, since that likelihood factorises completely, and given samples from simple
birth-and-death processes, there are no multiple births and deaths, so the maximum likelihood
estimates of the multiple birth and death rates (jumps of sizes two or higher) are zero. The
(remaining) likelihood is

n∏
k=1

qXTk−1
,XTk

exp{−
∑

j:j 6=XTk−1

qXTk−1
,j(Tk − Tk−1)} =

∏
i∈N

∏
|j−i|=1

q
Nij

ij exp {−Eiqij} , (10.13)

where now qi,i+1 = λi and qi,i−1 = µi, i ≥ 1. Nij is the number of transitions from i to j and Ei

is the total time spent in i. Note that we have taken the liberty and written the likelihood in
terms of the underlying random variables, not the realisations.

We note a general phenomenon: if transitions are impossible, and, in particular there are no
observations of such transitions in the samples, their likelihood contribution is maximised by a
zero rate. Note that vice versa, a given sample may not contain some other transitions although
they are possible. In this case, the estimate of the corresponding transition rate is zero, but not
usually the estimator, which is non-zero with positive probability for all transitions that are
possible within the given number of steps from the given initial values.

10.3.3 Lower-dimensional parametric models of simple birth-and-death pro-
cesses

Often population models come with some additional structure. The simplest structure is that
of independent individuals each giving birth repeatedly at rate λ until their death at rate µ.
Here λj = jλ and µj = jµ, j ∈ N, are all expressed in terms of two parameters λ and µ. The
likelihood in this model is the same as in the general model, but has to be factorised as

∏
i∈N

∏
|j−i|=1

q
Nij

ij exp {−Eiqij} =

(∏
i∈N

(iλ)Ni,i+1 exp {−Eiiλ}

)(∏
i∈N

(iµ)Ni,i−1 exp {−Eiiµ}

)
(10.14)

to separate the two parameters. This can best be maximised via the log likelihood, which for
the µ-factor is

∞∑
i=1

(Ni,i−1(log(i) + log(µ))− Eiiµ) . (10.15)
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Differentiation leads to the maximum likelihood estimator µ̂ = D/W where D =
∑

i Ni,i−1 is
the total number of deaths and W =

∑
i iEi is the weighted sum of exposure times at population

sizes i ∈ N. This quantity has again the interpretation as the total time spent at risk since in
state i there are i individuals at risk to die. Similarly, λ̂ = B/W , where B is the total number
of births. (W is also the total time spent at risk to give birth.)

Note that the state 0 is absorbing, so an nth transition may never come. This can be helped
by running several Markov chains. The likelihood function of the given sample is the one given,
if we understand that Nij are aggregate counts and Ei are aggregate waiting times, i, j ∈ N.

10.4 Time-varying transition rates

10.4.1 Maximum likelihood estimation

We take up the setting of a general Markov model (Xt)t≥0, but have the Q-matrix depend on t,
Q(t). For simplicity think of t as age. Denote the finite or countably infinite state space by S.
Given we have reached state i ∈ S aged exactly y ∈ [0,∞), the situation is exactly as for the
multiple decrement model, there are competing hazards qij(y + t), t ≥ 0, j 6= i, and the total
holding time in state i has hazard rate

− qii(y + t) =
∑
j:j 6=i

qij(y + t), t ≥ 0. (10.16)

Given the holding time is Z = t, the transition is from i to j with probability

P(Xy+Z = j|Xy = i, Z = t) =
qij(y + t)∑

j:j 6=i qij(y + t)
. (10.17)

To be able to estimate time-varying transition rates, we require more than one realisation of X,
say realisations (X(m)

t )
0≤t≤T

(m)
nm

, m = 1, . . . , r, where Tnm is the nmth transition time of X(m).
Then the likelihood is given by

r∏
m=1


nm∏
k=1

q
X

(m)

T
(m)
k−1

,X
(m)

T
(m)
k

(T (m)
k ) exp

−
∫ T

(m)
k

T
(m)
k−1

∑
j:j 6=X

(m)

T
(m)
k−1

q
X

(m)

T
(m)
k−1

,j
(s)ds


 (10.18)

If we also postulate simplifying assumptions such as piecewise constant transition rates qij(t) =
qij(x + 1

2), x ≤ t < x + 1, x ∈ N, we can reexpress this in a factorised form as∏
x∈N

∏
i∈S

∏
j 6=i

qij(x + 1
2)Nij(x) exp

{
−Ei(x)qij(x + 1

2)
}

, (10.19)

where Nij(x) is the number of transitions from i to j at an age x, i.e. aged t with x ≤ t < x + 1,
and Ei(x) is the total time spent in state i while aged x.

We read off the maximum likelihood estimators for all x ∈ N and i ∈ N with Ei(x) > 0:

q̂ij(x + 1
2) =

Nij(x)
Ei(x)

. (10.20)
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10.4.2 Example

Clearly, a reasonably complete set of reasonably reliable estimates can only be obtained if the
state space S is small and the number of observations is very large, e.g., in the illness-death
model with three states H=able, S=sick and D=dead, with age-dependent sickness rates σx

from H to S, recovery rates ρx from S to H and death rates δx from H to D and γx from S to
D.

Suppose, we observe r individuals over their whole life [0, τ
(m)
d ], then we get estimates

δ̂x+ 1
2

=
dx

vx
, γ̂x+ 1

2
=

cx

wx
, σ̂x+ 1

2
=

sx

vx
, ρ̂x+ 1

2
=

rx

wx
, (10.21)

where vx (wx) is the total waiting time of lives aged x in the able (ill) state, and dx, cx, sx, rx

are the aggregate counts of the respective transitions at age x.

10.4.3 Construction of the stochastic process (Xt)t≥0

This section is non-examinable and deals with the Probability behind minimal (ν, (Q(t))t≥0)
Markov chains, where ν is an initial distribution on S and (Q(t))t≥0 is a time-dependent Q-matrix.

We first give a construction analogous to the maze construction for continuous-time Markov
chains with constant transition rates, but note that the jump-chain holding description was
rather vague, so we will not ”prove” but only “indicate” why the process we construct does what
we want. In fact, you may wish to take the maze construction as the definition of a minimal
(ν, (Q(t))t≥0 Markov chain.

We construct counting processes (N (ij)
t )t≥0 for all pairs i, j ∈ S, i 6= j, independent. Fix i

and j and consider a Poisson process Ñ (ij) with unit rate. Then define

N
(ij)
t = Ñ

(ij)R t
0 qij(s)ds

(10.22)

This is a time-inhomogeneous Poisson process. It is obvious that N (ij) is still a counting process
since the jumps of N and Ñ are in 1− 1 correspondence

N
(ij)
t −N

(ij)
t− = Ñ

(ij)R t
0 qij(s)ds

− Ñ
(ij)R t
0 qij(s)ds−

. (10.23)

N still has independent increments with Poisson distributions, since

N
(ij)
tn −N

(ij)
tn−1

= Ñ
(ij)R tn
0 qij(s)ds

− Ñ
(ij)R tn−1
0 qij(s)ds

∼ Poi
(∫ tn

0
qij(s)ds−

∫ tn−1

0
qij(s)ds

)
= Poi

(∫ tn

tn−1

qij(s)ds

)
,

but note that these increments are no longer stationary for all increment lengths, unless
qij ≡ qij(s) does not depend on s, in which case N (ij) is simply a (homogeneous) Poisson process
with rate qij .

Next we define aggregate processes

N
(i)
t =

∑
j 6=i

N
(ij)
t ∼ Poi

(∫ t

0
λi(s)ds

)
, t ≥ 0, i ∈ S,



72 Lecture Notes – Part B Statistical Lifetime-Models – Oxford HT 2010-14

also inhomogeneous Poisson processes. Note that the first jump time T
(i)
1 of N (i) has survival

function

P(T (i)
1 > t) = P(N (i)

t = 0) = exp
{
−
∫ t

0
λi(s)ds

}
,

i.e. hazard rate λi(t). Also T
(i)
1 = inf{T (ij)

1 , j 6= i} is as for the multiple decrement model.
Similarly, for T

(i)
1 (x) = inf{t ≥ x : N

(i)
t 6= N

(i)
x }, we have

P
(
T

(i)
1 (x) > x + t

)
= P

(
N

(i)
x+t −N (i)

x = 0
)

= exp
{
−
∫ x+t

x
λi(s)ds

}
= exp

{
−
∫ t

0
λi(x + s)ds

}
,

and this identifies a hazard rate of λi(x + t). Furthermore, as calculated for T = min{Tj : 1 ≤
j ≤ m} in the multiple decrement model, we have for T

(i)
1 (x) = inf{T (ij)

1 (x), j 6= i}

P
(

T
(i)
1 (x) = T

(ij)
1 (x)

∣∣∣T (i)
1 (x) = t

)
=

qij(x + t)
λi(x + t)

.

The construction is as follows. Take M0 ∼ ν, independent from all Poisson processes
(N (ij)

t )t≥0, T0 = 0, and define inductively jump times

Tn+1 = inf{t > Tn : N
(Mn)
t 6= N

(Mn)
Tn

},

and jump destinations

Mn+1 = j ⇐⇒ N
(Mn,j)
Tn+1

6= N
(Mn,j)
Tn+1− ,

n ∈ N. Then specify X as

Xt = Mn ⇐⇒ Tn ≤ t < Tn+1.

In general, M is not a Markov chain, and holding times Tn+1 − Tn are not conditionally
independent given M , but X has been constructed from independent Poisson processes only, as
in the constant-Q case, and it can be shown that X has a Markov property, that we formulate
below.

First note that we can, more generally, construct a (ν, x, (Q(t))t≥0 chain (Xt)t≥x starting
at time x (rather than 0) from an initial distribution Xx ∼ ν, simply by changing T0 := 0 to
T0 := x, while keeping the remainder of the construction.

The Markov property of X now states that (Xx+t)t≥0 is conditionally independent of
(Xr)0≤r≤x given Xx = i. Given Xx = i, the post-x process is a (δi, x, (Q(t))t≥0) Markov chain,
where δi = (δij)j∈S is the Dirac probability mass function putting all mass in i, δii = 1. This
Markov property is again a consequence of the maze construction, since the post-x process only
depends on the current state and the (inhomogeneous, but independent-increment) Poisson
processes after time x.

We can then derive, under some further regularity conditions, as for the constant-rate case,
an infinitesimal description,

P(Xx+t = j|Xx = i) = P(T (i)
1 (x) ≤ x + t, T

(ij)
1 (x) = T

(i)
1 (x)) + o(t) = qij(x)t + o(t), (10.24)

for i 6= j, as t ↓ 0, and forward and backward equations

∂

∂t
P (s, t) = P (s, t)Q(t) and

∂

∂s
P (s, t) = Q(s)P (s, t), (10.25)

for the transition matrices P (s, t) = (pij(s, t))i,j∈S, where pij(s, t) = P(Xt = j|Xs = i).
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10.5 Occupation times

The last topic we consider is the generalisation of the formulas that we had earlier for life
expectancy. For a lifetime with constant mortality rate µ, the expected lifetime is µ−1. Consider
now the illness model described in section 10.4.2

H

S

D
δ

σ

ρ

γ

Figure 10.2: Diagram of the Illness model

We say that a matrix is negative-definite if all of its eigenvalues are negative. Define

Tx(t) := total time spent in state x up to time t,

and yEx(t) := Ey[Tx(t)], where Ey represents the expectation given that the process starts in
state y.

Theorem 3. Let Q be the (m + k)× (m + k) transition matrix for a continuous-time discrete-
space Markov process with m absorbing states and k non-absorbing states. Let Q∗ be the k × k
submatrix consisting of transition rates among the non-absorbing states. If Q∗ is irreducible and
some row has negative sum, then Q∗ is negative definite, and the process is eventually absorbed
with probability 1. Then

yEx(t) = Q−1
∗
(
etQ∗ − I

)
.

The limit yEx := limt→∞ yEx(t) is finite and given by the (y, x) entry of −Q−1
∗ .

Proof. The matrix of transition probabilities at time t is given by Pt = etQ. Then

yEx(t) = Ey

[∫ t

0
1{Xs=x}ds

]
=
∫ t

0
Ps(y, x)ds

=
[∫ t

0
EsQds

]
(y, x)

=
[∫ t

0
EsQ∗ds

]
(y, x) because the other states are absorbing

= Q−1
∗
(
etQ∗ − I

)
(y, x).

By negative-definiteness of Q∗ we have limt→∞ etQ∗ = 0, so this converges to −Q−1
∗ .
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We are also interested in the state that the process ends up in. We state the following result
in terms of the diagonalisation of Q. Of course, in the special case where Q is not diagonalisable,
we can carry out the same construction with the Jordan Normal Form.

Theorem 4. Let v1, . . . , vm be the right-eigenvectors (columns) of Q with eigenvalue 0 (in other
words, a basis for the kernel of Q), such that vi has a 1 in coordinate k + i and 0 for the
remainder of the absorbing states. Then

Pj

{
absorbed in state k + i

}
= (vi)j .

Proof. Fix some i, and let vj = Pj

{
absorbed in state k + i

}
. Let Xt be the position of the

process at time t. Then Ej′ [vXt ] = P t(j′, ·)v. Note that this function is constant in time (by the
Chapman-Kolmogorov equation). By the Forward Equation, for all t > 0

0 =
d

dt
P t(j′, ·)v = P t(j′, ·)Qv,

which implies that Qv = 0, since limt↓0 P t is the identity matrix. Obviously v has the stated
values on the absorbing states.

10.5.1 The multiple decrements model

The simplest application of this formula is to the multiple decrements model. In that case, we
have just a single non-absorbing state 0, and absorbing states 1, 2, . . . ,m. Then Q∗ = (−λ+), so
that the expected time spent in state 0 is 1/λ+, which we already knew.

The only non-trivial eigenvector is

(−1
λ1

λ+
· · · λm

λ+
).

Thus

R−1 =


−1 λ1

λ+

λ2
λ+

· · · λm
λ+

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Thus, the probability of ending up in state i is λi/λ+.

10.5.2 The illness model

Consider now the illness model, with σ = 0.1, δ = 0.1, γ = 0.5, and ρ = 0. The generator (taking
the states in the order H, S, D, is

Q =

−0.2 0.1 0.1
0 −0.5 0.5
0 0 0

 Q∗ =
(
−0.2 0.1

0 −0.5

)

We calculate

Q−1
∗ =

(
−5 −1
0 −2

)
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Thus, a sick individual survives on average 2 years. A healthy individual survives on average 6
years, of which 1 year, on average, is spent sick.

There is only one absorbing state. If we want to study the state that individuals died from
(sick or healthy), one approach is to make two absorbing states, one corresponding to death
after being healthy, the other after being sick. The core Q∗ matrix stays the same, but now Q
becomes 

−0.2 0.1 0.1 0
0 −0.5 0 0.5
0 0 0 0
0 0 0 0


The eigenvectors with eigenvalue 0 are

0.5
0
1
0

 ,


0.5
1
0
1


These tell us that someone who starts sick will with certainty die from the sick state (since there
is no recovery in this model), while an initially healthy individual will have probability 1/2 of
dying from the healthy or the sick state.

Suppose the recovery rate ρ now becomes 1. Then

Q =


−0.2 0.1 0.1 0

1 −1.5 0 0.5
0 0 0 0
0 0 0 0

 Q∗ =
(
−0.2 0.1

1 −1.5

)
Q−1
∗ =

(
−7.5 −.5
−5 −1

)

Thus, a healthy individual will now live, on average, 8 years, of which only 0.5 will be sick, and
someone who is sick will have 6 years on average, with 1 of those sick.

The eigenvectors with eigenvalue 0 are now
0.75
0.5
1
0

 ,


0.25
0.5
0
1

 .

Thus we see that when starting from state H, the probability of transitioning to D from H has
gone up to 3/4. Starting from S, the probability is now 1/2 of transitioning to D from S, and
1/2 of transitioning from H. This is consistent with the observation we make from the jump
chain, that the healthy person transitions to sick or to dead with equal probabilities. Thus,

PH(last state H) =
1
2

+
1
2
PS(last state H) =

1
2

+
1
4
.



Lecture 11

Survival analysis: Introduction

Reading: Cox and Oakes, chapter 1, 4, section 11.6, CT4 Unit 6.3-6.5, Klein and Moeschberger
sections 3.1–3.4, Chapter 4

11.1 [

Censoring and truncation]Incomplete observations: Censoring and truncation
We begin by considering simple analyses but we will lead up to and take a look at regression

on explanatory factors, as in linear regression part A. The important difference between survival
analysis and other statistical analyses which you have so far encountered is the presence of
censoring. This actually renders the survival function of more importance in writing down the
models.

Right censoring occurs when a subject leaves the study before an event occurs, or the
study ends before the event has occurred. For example, we consider patients in a clinical trial
to study the effect of treatments on stroke occurrence. The study ends after 5 years. Those
patients who have had no strokes by the end of the year are censored. If the patient leaves the
study at time te, then the event occurs in (te,∞) .

Left censoring is when the event of interest has already occurred before enrolment. This
is very rarely encountered.

Truncation is deliberate and due to study design.
Right truncation occurs when the entire study population has already experienced the

event of interest (for example: a historical survey of patients on a cancer registry).
Left truncation occurs when the subjects have been at risk before entering the study (for

example: life insurance policy holders where the study starts on a fixed date, event of interest is
age at death).

Generally we deal with right censoring & sometimes left truncation.
Two types of independent right censoring:
Type I: All subjects start and end the study at the same fixed time. All are censored at the

end of the study. If individuals have different but fixed censoring times, this is called progressive
type I censoring.

Type II: study ends when a fixed number of events amongst the subjects has occurred.
Type III or random censoring: Individuals drop out or are lost to followup at times

that are random, rather than predetermined. We generally assume that the censoring times are
independent of the event times, in which case there is no need to distinguish this from Type I.

Skeptical question: Why do we need special techniques to cope with incomplete observa-
tions? Aren’t all observations incomplete? After all, we never see all possible samples from the
distribution. If we did, we wouldn’t need any sophisticated statistical analysis.

76
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The point is that most of the basic techniques that you have learned assume that the observed
values are interchangeable with the unobserved values. The fact that a value has been observed
does not tell us anything about what the value is. In the case of censoring or truncation, there is
dependence between the event of observation and the value that is observed. In right-censoring,
for instance, the fact of observing a time implies that it occurred before the censoring time. The
distribution of a time conditioned on its being observed is thus different from the distribution of
the times that were censored.

There are different levels of independence, of course. In the case of random (type III)
censoring, the censoring time itself is independent of the (potentially) observed time. In Type
II censoring, the censoring time depends in a complicated way on all the observation times.

11.2 Likelihood and Censoring

If the censoring mechanism is independent of the event process, then we have an easy way of
dealing with it.

Suppose that T is the time to event and that C is the time to the censoring event.
Assume that all subjects may have an event or be censored, say for subject i one of a pair of

observations
(
t̃i, c̃i

)
may be observed. Then since we observe the minimum time we would have

the following expression for the likelihood (using independence)

L =
∏

eti<eci

f(t̃i)SC(t̃i)
∏
eci<eti

S(c̃i)fC(c̃i)

Now define the following random variable:

δ =
{

1 if T < C

0 if T > C

For each subject we observe ti = min
(
t̃i, c̃i

)
and δi, observations from a continuous random

variable and a binary random variable. In terms of these L becomes

L =
∏

i

h(ti)δiS(ti)
∏

i

hC(ti)1−δiSC(ti)

where we have used density = hazard × survival function.
NB If the censoring mechanism is independent (sometimes called non-informative) then we

can ignore the second product on the right as it gives us no information about the event time.
In the remainder of the course we will assume that the censoring mechanism is independent.

11.3 Data

Demographic v. trial data
Our models include a “time” parameter, whose interpretation can vary. First of all, in

population-level models (for instance, a birth-death model of population growth, where the state
represents the number of individuals) the time is true calendar time, while in individual-level
models (such as our multiple-decrement model of death due to competing risks, or the healthy-
sick-dead process, where there is a single model run for each individual) the time parameter is
more likely to represent individual age. Within the individual category, the time to event can



78 Lecture Notes – Part B Statistical Lifetime-Models – Oxford HT 2010-14

literally be the age, for instance in a life insurance policy. In a clinical trial it will more typically
be time from admission to the trial.

For example, consider the following data from a Sydney hospital pilot study, concerning the
treatment of bladder cancer:

Time to cancer Time to recurrence Time between Recurrence status
0.000 4.967 4.967 1
21.020 22.993 1.974 1
45.033 61.086 16.053 0
52.171 55.033 2.862 1
48.059 65.033 16.974 0

All times are in months. Each patient has their own zero time, the time at which the
patient entered the study (accrual time). For each patient we record time to event of interest or
censoring time, whichever is the smaller, and the status, δ = 1 if the event occurs and δ = 0 if
the patient is censored. If it is the recurrence that is of interest, so in fact the relevant time, the
“time between”, is measured relative to the zero time that is the onset of cancer.

11.4 Non-parametric survial estimation

11.4.1 Review of basic concepts

Consider random variables X1, . . . , Xn which represent independent observations from a distri-
bution with cdf F . Given a class F of possibilities for F , an estimator is a choice of the “best”,
on the basis of the data. That is, it is a function from Rn

+ to F which maps an collection of
observations (x1, . . . , xn) to F.

Estimators for distribution functions may be either parametric or non-parametric, de-
pending on the nature of the class F. The distinction is not always clear-cut. A parametric
estimator is one for which the class F depends on some collection of parameters. For example, it
might be the two-dimensional family of all gamma distributions. A non-parametric estimator is
one that does not impose any such parametric assumptions, but allows the data to “speak for
themselves”. There are intermediate non-parametric approaches as well, where an element of F

is not defined by any small number of parameters, but is still subject to some constraint. For
example, F might be the class of distributions with smooth hazard rate, or it might be the class
of log-concave distribution functions (equivalent to having increasing hazard rate). We will also
be concerned with semi-parametric estimators, where an underlying infinite-dimensional class
of distributions is modified by one or two parameters of special interest.

The disadvantage of parametrisation is always that it distorts the observations; the advantage
is that it allows the data from different observations to be combined into a single parameter
estimate. (Of course, if the data are known to come from some distribution in the parametric
family, the “distortion” is also an advantage, because the real distortion was in the data, due to
random sampling.)

We start by considering nonparametric estimators of the cdf. These have the advantage of
limiting the assumptions imposed upon the data, but the disadvantage of being too strictly
limited by the data. That is, taken literally, the estimator we obtain from a sample of observed
times will imply that only exactly those times actually observed are possible.

If there are observations x1, . . . , xn from a random sample then we define the empirical
distribution function

F̂ (x) =
1
n

# {xi : xi ≤ x}
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This is an appropriate non-parametric estimator for the cdf if no censoring occurs. However
if censoring occurs this has to be taken into account.

We measure the pair (X, δ) where X = min(T,C) and δ is as before

δ =
{

1 if T < C

0 if T > C

Suppose that the observations are (xi, δi) for i = 1, 2 . . . , n.

L =
∏

i

f(xi)δiS(xi)1−δi

=
∏

i

f(xi)δi (1− F (xi))
1−δi

What follows is a heuristic argument allowing us to find an estimator for S, the survival
function, which in the likelihood sense is the best that we can do. Notice first that there is no
MLE if we model the failure time as a continuous random variable. Suppose T has density f ,
with survival function S = 1− F

Suppose that there are failure times (t0 = 0 <)t1 < . . . < ti < . . . . Let si1, si2, · · · , sici be
the censoring times within the interval [ti, ti+1) and suppose that there are di failures at time ti
(allowing for tied failure times). Then the likelihood function becomes

L =
∏
fail

f(ti)di
∏

i

(
ci∏

k=1

(1− F (sik))

)

=
∏
fail

(F (ti)− F (ti−))di
∏

i

(
ci∏

k=1

(1− F (sik))

)

where we write f(ti) = F (ti)−F (ti−), the difference in the cdf at time ti and the cdf immediately
before it.

Since F (ti) is an increasing function, and assuming that it takes fixed values at the failure
time points, we make F (ti−) and F (sik) as small as possible in order to maximise the likelihood.
That means we take F (ti−) = F (ti−1) and F (sik) = F (ti).

This maximises L by considering the cdf F (t) to be a step function and therefore to come
from a discrete distrbution, with failure times as the actual failure times which occur. Then

L =
∏
fail

(F (ti)− F (ti−1))
di
∏

i

(1− F (ti))
ci

So we have showed that amongst all cdf’s with fixed values F (ti) at the failure times ti,
then the discrete cdf has the maximum likelihood, amongst those with di failures at ti and ci

censorings in the interval [ti, ti+1).

Let us consider the discrete case and let

P
{
fail at ti|survived to ti−

}
= hi
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Then

S (ti) = 1− F (ti) =
i∏
1

(1− hj),

f(ti) = hi

i−1∏
1

(1− hj)

Finally we have
L =

∏
ti

hdi
i (1− hi)ni−di

where ni is the number at risk at time ti. This is usually referred to as the number in the risk
set.

Note
ni+1 + ci + di = ni

11.4.2 Kaplan-Meier estimator

This estimator for S(t) uses the mle estimators for hi. Taking logs

l =
∑

i

di log hi +
∑

i

(ni − di) log(1− hi)

Differentiate with respect to hi

∂l

∂hi
=

di

hi
− ni − di

1− hi
= 0

=⇒ ĥi =
di

ni

So the Kaplan-Meier estimator is

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)

where

ni = #{in risk set at ti},
di = #{events at ti}.

Note that ci = #{censored in [ti, ti+1)}. If there are no censored observations before the first
failure time then n0 = n1 = #{in study}. Generally we assume t0 = 0.

11.4.3 Nelson-Aalen estimator and new estimator of S

The Nelson-Aalen estimator for the cumulative hazard function is

Ĥ(t) =
∑
ti≤t

di

ni

=
∑
ti≤t

ĥi
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This is natural for a discrete estimator, as we have simply summed the estimates of the hazards
at each time, instead of integrating, to get the cummulative hazard. This correspondingly gives
an estimator of S of the form

S̃(t) = exp
(
−Ĥ(t)

)
= exp

−∑
ti≤t

di

ni


It is not difficult to show by comparing the functions 1−x, exp(−x) on the interval 0 ≤ x ≤ 1,

that S̃(t) ≥ Ŝ(t).

11.4.4 Invented data set

Suppose that we have 10 observations in the data set with failure times as follows:

2, 5, 5, 6+, 7, 7+, 12, 14+, 14+, 14+ (11.1)

Here + indicates a censored observation. Then we can calculate both estimators for S(t) at all
time points. It is considered unsafe to extrapolate much beyond the last time point, 14, even
with a large data set.

Table 11.1: Computations of survival estimates for invented data set (11.1)

ti di ni ĥi Ŝ(ti) S̃(ti)

2 1 10 0.10 0.90 0.90
5 2 9 0.22 0.70 0.72
6 1 6 0.17 0.58 0.63
12 1 4 0.25 0.44 0.54



Lecture 12

Confidence intervals and left
truncation

We need to find confidence intervals (pointwise) for the estimators of S(t) at each time point.
We differentiate the log-likelihood and use likelihood theory,

l =
∑

i

di log hi +
∑

i

(ni − di) log(1− hi),

differentiated twice to find the Hessian matrix
{

∂2l
∂hi∂hj

}
.

Note that since l is a sum of functions of each individual hazard the Hessian must be diagonal.

The estimators
{

ĥ1, ĥ2, . . . , ĥn

}
are asymptotically unbiased and are asymptotically jointly

normally distributed with approximate variance I−1, where the information matrix is given by

I = E
(
−
{

∂2l

∂hi∂hj

})
.

Since the Hessian is diagonal, the covariances are all asymptotically zero, and coupled with
asymptotic normality, this ensures that all pairs ĥi, ĥj are asymptotically independent.

− ∂2l

∂h2
i

=
di

h2
i

+
ni − di

(1− hi)
2

We use the observed information J and so replace hi in the above by its estimator ĥi = di
ni

.
Hence we have

var ĥi ≈
di (ni − di)

n3
i

.

12.1 Greenwood’s formula

12.1.1 Reminder of the δ method

If the random variation of Y around µ is small (for example if µ is the mean of Y and varY has
order 1

n), we use:

g(Y ) ≈ g(µ) + (Y − µ)g′(µ) +
1
2

(Y − µ)2 g′′(µ) + . . .

82
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Taking expectations

E(g(Y )) = g(µ) + O

(
1
n

)
var(g(Y)) = g′(µ)2varY + o

(
1
n

)

12.1.2 Derivation of Greenwood’s formula for var(Ŝ(t))

log Ŝ(t) =
∑
ti≤t

log
(
1− ĥi

)
But

var ĥi ≈
di (ni − di)

n3
i

and ĥi
P−→ hi

so that, given g(hi) = log (1− hi) ,

g′(hi) =
−1

(1− hi)

we have

var log
(
1− ĥi

)
≈ 1

(1− hi)2
var ĥi

≈ 1
(1− di

ni
)2

di (ni − di)
n3

i

=
di

ni (ni − di)

Since ĥi, ĥj are asymptotically independent we can put all this together to get

var log
(
Ŝ(t)

)
=
∑
ti≤t

di

ni (ni − di)
(12.1)

Let Y = log Ŝ and note that we need var
(
eY
)
≈
(
eY
)2 varY , again using the delta-method.

Finally we have Greenwood’s formula

var
(
Ŝ(t)

)
≈ Ŝ(t)2

∑
ti≤t

di

ni (ni − di)
. (12.2)

Applying this to the same sort of argument to the Nelson-Aalen estimator and its extension
to the survival function we also see

var Ĥ(t) ≈
∑
ti≤t

di (ni − di)
n3

i
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and

varS̃(t) = var
(
exp(−Ĥ(t)

)
≈

(
e−H

)2∑
ti≤t

di (ni − di)
n3

i

≈
(
S̃(t)

)2∑
ti≤t

di (ni − di)
n3

i

Clearly these estimates are only reasonable if each ni is sufficiently large, since they rely heavily
on asymptotic calculations.

12.2 Left truncation

Left truncation is easily dealt with in the context of nonparametric survival estimation. Suppose
the invented data set comes from the following hidden process: There is an event time, and an
independent censoring time, and, in addition, a truncation time, which is the time when that
individual becomes available to be studied. For example, suppose this were a nursing home
population, and the time being studied is the number of years after age 80 when the patient first
shows signs of dementia. The censoring time might be the time when the person dies or moves
away, or when the study ends. The study population consists of those who have entered the
nursing home free of dementia. The truncation time would be the age at which the individual
moves into the nursing home.

Table 12.1: Invented data illustrating left truncation. Event times after the censoring time may
be purely nominal, since they may not have occurred at all; these are marked with *. The row
Observation shows what has actually been observed. When the event time comes before the
truncation time the individual is not included in the study; this is marked by a ◦.

Patient ID 5 2 9 0 1 3 7 6 4 8

Event time 2 5 5 * 7 * 12 * * *
Censoring time 10 8 7 8 11 7 14 14 14 14
Truncation time −2 3 6 0 1 0 6 6 −5 1

Observation 2 5 ◦ 8+ 7 7+ 12 14+ 14+ 14+

Table 12.2: Computations of survival estimates for invented data set of Table 12.1.

ti di ni ĥi Ŝ(ti) S̃(ti)

2 1 6 0.17 0.83 0.85
5 1 6 0.17 0.69 0.72
7 1 7 0.14 0.58 0.62
12 1 4 0.25 0.45 0.48
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We give a version of these data in Table 12.1. Note that patient number 9 was truncated
at time 6 (i.e., entered the nursing home at age 86) but her event was at time 5 (i.e., she had
already suffered from dementia since age 85), hence was not included in the study. In table
12.2 we give the computations for the Kaplan-Meier estimate of the survival function. The
computations are exactly the same as those of section 11.4.4, except for one important change:
The number at risk ni is not simply the number n −

∑
ti<t di −

∑
ti<t ki of individuals who

have not yet had their event or censoring time. Rather, an individual is at risk at time t if her
event time and censoring time are both ≥ t, and if the truncation time is ≤ t. (As usual, we
assume that individuals who have their event or are censored in a given year, were at risk during
that year. We are similarly assuming that those who entered the study at age x are at risk
during that year.) At the start of our invented study there are only 6 individuals at risk, so the
estimated hazard for the event at age 2 becomes 1/6.

In the most common cases of truncation we need do nothing at all, other than be careful
in interpreting the results. For instance, suppose we were simply studying the age after 80 at
which individuals develop dementia by a longitudinal design, where 100 healthy individuals 80
years old are recruited and followed for a period of time. Those who are already impaired at age
80 are truncated. All this means is that we have to understand (as we surely would) that the
results are conditional on the individual not suffering from dementia until age 80.

We can compute variances for the Kaplan-Meier and Nelson-Aalen estimators using Green-
wood’s formula exactly as before, only taking care to use the reinterpreted number at risk. The
one problem that arises is that individuals may enter into the study slowly, yielding a small
number at risk, and hence very wide error bounds, which of course will carry through to the end.

12.3 Example: The AML study

In the 1970s it was known that individuals who had gone into remission after chemotherapy
for acute lymphatic leukemia would benefit — by longer remission times — from a course of
continuing “maintenance” chemotherapy. A study [EEH+77] pointed out that “Despite a lack
of conclusive evidence, it has been assumed that maintenance chemotherapy is useful in the
management of acute myelogenous leukemia (AML).” The study set out to test this assumption,
comparing the duration of remission between an experimental group that received the additional
chemotherapy, and a control group that did not. (This analysis is based on the discussion in
[MGM01].)

The data are from a preliminary analysis of the data, before completion of the study. The
duration of complete remission in weeks was given for each patient (11 maintained, 12 non-
maintained controls); those who were still in remission at the time of the analysis are censored
observations. The data are given in Table 12.3. They are included in the survival package of
R, under the name aml.

Table 12.3: Times of complete remission for preliminary analysis of AML data, in weeks.
Censored observations denoted by +.

maintained 9 13 13+ 18 23 28+ 31 34 45+ 48 161+

non-maintained 5 5 8 8 12 16+ 23 27 30 33 43 45



86 Lecture Notes – Part B Statistical Lifetime-Models – Oxford HT 2010-14

The first thing we do is to estimate the survival curves. The summary data and computations
are given in Table 12.4. The Kaplan-Meier survival curves are shown in Figure 12.1. In Table
12.5 we show the computations for confidence intervals just for the Kaplan-Meier curve of the
maintenance group. The confidence intervals are based on the logarithm of survival, using (12.1)
directly. That is, the bounds on the confidence interval are

exp

log Ŝ(t)± z

√∑
ti≤t

di

ni(ni − di)

 ,

where z is the appropriate quantile of the normal distribution. Note that the approximation
cannot be assumed to be very good in this case, since the number of individuals at risk is too
small for the asymptotics to be reliable. We show the confidence intervals in Figure 12.2.

Table 12.4: Computations for the Kaplan-Meier and Nelson-Aalen survival curve estimates of
the AML data.

Maintenance Non-Maintenance (control)

ti ni di ĥi Ŝ(ti) Ĥi S̃(ti) ni di ĥi Ŝ(ti) Ĥi S̃(ti)

5 11 0 0.00 1.00 0.00 1.00 12 2 0.17 0.83 0.17 0.85
8 11 0 0.00 1.00 0.00 1.00 10 2 0.20 0.67 0.37 0.69
9 11 1 0.09 0.91 0.09 0.91 8 0 0.00 0.67 0.37 0.69
12 10 0 0.00 0.91 0.09 0.91 8 1 0.12 0.58 0.49 0.61
13 10 1 0.10 0.82 0.19 0.83 7 0 0.00 0.58 0.49 0.61
18 8 1 0.12 0.72 0.32 0.73 6 0 0.00 0.58 0.49 0.61
23 7 1 0.14 0.61 0.46 0.63 6 1 0.17 0.49 0.66 0.52
27 6 0 0.00 0.61 0.46 0.63 5 1 0.20 0.39 0.86 0.42
30 5 0 0.00 0.61 0.46 0.63 4 1 0.25 0.29 1.11 0.33
31 5 1 0.20 0.49 0.66 0.52 3 0 0.00 0.29 1.11 0.33
33 4 0 0.00 0.49 0.66 0.52 3 1 0.33 0.19 1.44 0.24
34 4 1 0.25 0.37 0.91 0.40 2 0 0.00 0.19 1.44 0.24
43 3 0 0.00 0.37 0.91 0.40 2 1 0.50 0.10 1.94 0.14
45 3 0 0.00 0.37 0.91 0.40 1 1 1.00 0.00 2.94 0.05
48 2 1 0.50 0.18 1.41 0.24 0 0

Important : The estimate of the variance is more generally
reliable than the assumption of normality, particularly for small

numbers of events. Thus, the first line in Table 12.5 indicates that the
estimate of log Ŝ(9) is associated with a variance of 0.009. The error in
this estimate is on the order of n−3, so it’s potentially about 10%. On

the other hand, the number of events observed has binomial
distribution, with parameters around (11, 0.909), so it’s very far from a
normal distribution. We could improve our confidence interval by using

the Poisson confidence intervals worked out in Problem Sheet 3,
question 2, or binomial confidence interval. We will not go into the

details in this course.
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Figure 12.1: Kaplan-Meier estimates of survival in maintenance (black) and non-maintenance
groups in the AML study.
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Figure 12.2: Greenwood’s estimate of 95% confidence intervals for survival in maintenance group
of the AML study.
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Table 12.5: Computations for Greenwood’s estimate of the standard error of the Kaplan-Meier
survival curve from the maintenance population in the AML data. “lower” and “upper” are
bounds for 95% confidence intervals, based on the log-normal distribution.

ti ni di
di

ni(ni−di)
Var(log Ŝ(ti)) lower upper

9 11 1 0.009 0.009 0.754 1.000
13 10 1 0.011 0.020 0.619 1.000
18 8 1 0.018 0.038 0.488 1.000
23 7 1 0.024 0.062 0.377 0.999
31 5 1 0.050 0.112 0.255 0.946
34 4 1 0.083 0.195 0.155 0.875
48 2 1 0.500 0.695 0.036 0.944

12.4 Actuarial estimator

The actuarial estimator is a further estimator for S(t). It is given as

S∗(t) =
∏
ti≤t

(
1− di

ni − 1
2ci

)

The intervals between consecutive failure times are usually of constant length, and it is generally
used by actuaries and demographers following a cohort from birth to death. Age will normally
be the time variable and hence the unit of time is 1 year.



Lecture 13

Semiparametric models: accelerated
life, proportional hazards

Reading: Cox & Oakes chapter 5.1–5.7, K & M chapter 8.1–8.4, 8.8, 12.1–5

13.1 Introduction to semiparametric modeling

We learned in section 6.3 how to compare observed mortality to a standard life table. In many
settings, though, we are interested to compare observed mortality (or more general event times)
between groups, or between individuals with different values of a quantitative covariate, and in
the presence of censoring. For example,

Often we are interested to compare two (or more) different lifetime distributions. An
approach that has been found to be effective is to think of there being a “standard” lifetime
which may be modified in various simple ways to produce the lifetimes of the subpopulations.
The standard lifetime is commonly estimated nonparametrically, while the modifications —
usually the characteristic of primary interest — is reduced to one or a few parameters. The
modifications may either involve a discrete collection of parameters — one parameter for each of
a small number of subpopulations — or a regression-type parameter multiplied by a continuous
covariate.

Examples of the former type would be clinical trials, where we compare survival time between
treatment and control groups, or an observational study where we compare survival rates of
smokers and non-smokers. An example of the second time would be testing time to appearance
of full-blown AIDS symptoms as a function of measured T-cell counts.

There are two popular general classes of model as in the heading above - AL and PH.

13.2 Accelerated Life models

Suppose there are (several) groups, labelled by index i. The accelerated life model has a survival
curve for each group defined by

Si(t) = S0(ρit)

where S0(t) is some baseline survival curve and ρi is a constant specific to group i.
If we plot Si against log t, i = 1, 2, . . . , k, then we expect to see a horizontal shift as

Si(t) = S0(elog ρi+log t) .

89
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13.2.1 Medians and Quantiles

Note too that each group has a different median lifetime, since, if S0(m) = 0.5,

Si(
m

ρi
) = S0(ρi

m

ρi
) = 0.5,

giving a median for group i of m
ρi

. Similarly if the 100α% quantile of the baseline survival
function is tα, then the 100α% quantile of group i is tα

ρi
.

13.3 Proportional Hazards models

In this model we assume that the hazards in the various groups are proportional so that

hi(t) = ρih0(t)

where h0(t) is the baseline hazard. Hence we see that

Si(t) = S0(t)ρi

Taking logs twice we get

log (− log Si(t)) = log ρi + log (− log S0(t))

So if we plot the RHS of the above equation against either t or log t we expect to see a vertical
shift between groups.

13.3.1 Plots

Taking both models together it is clear that we should plot

log
(
− log Ŝi(t)

)
against log t

as then we can check for AL and PH in one plot. Generally Ŝi will be calculated as the
Kaplan-Meier estimator for group i, and the survival function estimator for each group will be
plotted on the same graph.

(i) If the accelerated life model is plausible we expect to see a horizontal shift between groups.

(ii) If the proportional hazards model is plausible we expect to see a vertical shift between
groups.

13.4 AL parametric models

There are several well-known parametric models which have the accelerated life property. These
models also allow us to take account of continuous covariates such as blood pressure.
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Survival Hazard Density
Name S(t) h(t) f(t) = h(t)S(t)

Weibull exp(− (ρt)α) αραtα−1 αραtα−1e−(ρt)α

log-logistic 1
1+(ρt)α

αραtα−1

1+(ρt)α
αραtα−1

(1+(ρt)α)2

log-normal 1-Φ
(

log t+log ρ
σ

)
· · · 1

t
√

2πσ2
exp

(
− 1

2σ2 (log t + log ρ)2
)

exponential e−ρt ρ ρe−ρt

Remarks:
(i) Exponential is a submodel of Weibull with α = 1
(ii) log-normal is derived from a normal distribution with mean − log ρ and variance σ2. In

this distribution α = 1
σ has the same role as in the Weibull and log-logistic.

(iii) The shape parameter is α. The scale parameter is ρ.
Shape in the hazard function h(t) is important.

Weibull · · ·
{

h monotonic increasing α>1
h monotonic decreasing α<1

log-normal · · · h −→ 0 as t −→ 0,∞, one mode only
log-logistic · · · see problem sheet 5.
Comments:
a) to get a ”bathtub” shape we might use a mixture of Weibulls. This gives high initial

probability of an event, a period of low hazard rate and then increasing hazard rate for larger
values of t.

b) to get an inverted ”bathtub” shape we may have a mixture of log-logistics, or possibly a
single log-normal or single log-logistic.

To check for appropriate parametric model (given AL checked)
There are some distributional ways of testing for say Weibull v. log-logistic etc., but they

involve generalised F-distributions and are not in general use.
We can do a simple test for Weibull v. exponential as this simply means testing a null

hypothesis α = 1, and the exponential is a sub-model of the Weibull model. Hence we can use
the likelihood ratio statistic which involves

2 log L̂weib − 2 log L̂exp ∼ χ2(1), asymptotically.

13.4.1 Plots for parametric models

However most studies use plots which give a rough guide from shape. We should use a
straightline fit as this is the fit which the human eye spots easily.

1. Exponential - S = e−ρt, plot log S v. t

2. Weibull - S = e−(ρt)α

, plot log (− log S) v. log t

3. log-logistic - S = 1
1+(ρt)α , plot · · · see problem sheet 6

4. log-normal - S = 1 − Φ
(

log t+log ρ
σ

)
, plot Φ−1 (1− S) v. log t or equivalently

Φ−1 (S) v. log t

In each of the above we would estimate S with the Kaplan-Meier estimator Ŝ(t), and use
this to construct the plots.
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13.4.2 Regression in parametric AL models (assuming right censoring only)

In general studies each observation will have measured explanatory factors such as age, smoking
status, blood pressure and so on. We need to incorporate these into a model using some
sort of generalised regression. It is usual to do so by making ρ a function of the explanatory
variables. For each observation (say individual in a clinical trial) we set the scale parameter
ρ = ρ(β · x), where β · x is a linear predictor composed of a vector x of known explanatory
variables (covariates) and an unknown vector β of parameters which will be estimated. The
most common link function is

log ρ = β · x , equivalently ρ = eβ·x .

Censoring is assumed to be independent mechanism and is sometimes referred to as
non-informative.

The shape parameter α is assumed to be the same for each observation in the study.
There are often very many covariates measured for each subject in a study.
A row of data will have perhaps:-
response - event time ti , status δi (=1 if failure, =0 if censored)
covariates - age, sex, systolic blood pressure, treatment, and so a mixture of categorical

variables and continuous variables amongst the covariates.
Suppose that Weibull is a good fit. Then

S(t) = e−(ρt)α

and ρ = eβ·x

β.x = b0 + b1xage + b2xsex + b3xsbp + b4xtrt

where b0 is the intercept and all regression coefficients bi are to be estimated, as well as estimating
α. Note this model assumes that α is the same for each subject. We have not shown, but could
have, interaction terms such as xage ∗ xtrt. This interaction would allow a different effect of age
according to treatment group.

Suppose subject j has covariate vector xj and so scale parameter

ρj = eβ·xj .

This gives a likelihood

L(α, β) =
∏
j

(
αρα

j tα−1
j

)δj

e−(ρjtj)
α

=
∏
j

(
αeαβ·xj tα−1

j

)δj

e−
“
eβ·xj tj

”α

.

We can now compute MLEs for α and all components of the vector β, using numerical optimisation,

giving estimators α̂, β̂ together with their standard errors ( =
√

varα̂,

√
varβ̂j ) calculated from

the observed information matrix (see problem sheet 5). Of course, the same could have been
done for another parametric model instead of the Weibull.

As already noted we can test for α = 1 using

2 log L̂weib − 2 log L̂exp ∼ χ2(1), asymptotically.

Packages allow for Weibull, log-logistic and log-normal models, sometimes others.
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13.4.3 Linear regression in parametric AL models

The idea is to mirror ordinary linear regression and find a baseline distribution which does
not depend on ρ, similar to looking at the error term in least squares regression. We give the
derivation just for the Weibull distribution, but similar arguments work for all AL parametric
models. We have

S(t) = e−(ρt)α

= P
{
T > t

}
= P

{
log T > log t

}
= P

{
α (log T + log ρ) > α (log t + log ρ)

}
Now let Y = α (log T + log ρ) and y = α (log t + log ρ) .

P
{
Y > y

}
= SY (y)

= S(t)
= e−(ρt)α

= exp(−ey)

Hence we have
log T = − log ρ +

1
α

Y, where SY (y) = exp(−ey)

The distribution of Y is independent of the parameters ρ and α. And in the case of the Weibull
distribution its distribution is called the extreme value distribution and is as above.

In general we will write log T = − log ρ + 1
αY for all AL parametric models, and Y has a

distribution in each case which is independent of the model parameters.

Name S(t) Y SY (y) distribution

Weibull exp(− (ρt)α) log T = − log ρ + 1
αY exp(−ey): extreme value distrib.

log-logistic 1
1+(ρt)α log T = − log ρ + 1

αY (1 + ey)−1: logistic distribution

log-normal 1-Φ
(

log t+log ρ
σ

)
log T = − log ρ + σY 1− Φ(y): N(0, 1)

as before α = 1
σ , for the log-normal.

In recent years, a semi-parametric model has been developed in which the baseline survival
function S0 is modelled non-parametrically, and each subject has time t scaled to ρjt. This
model is beyond the scope of this course.
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Cox regression, Part I

Again each subject j has a vector of covariates xj and scale parameter ρj = ρj (β · xj) . The basic
assumption is that any two subjects have hazard functions whose ratio is a constant proportion
which depends on the covariates. Hence we may write

hj(t) = ρjh0(t)

where h0 is the baseline hazard function, β is a vector of regression coefficients to be estimated,
and ρj again depends on the linear predictor β.xj .

A general link could be used but in Cox regression ρj = eβ.xj . This model is termed semi-
parametric because the functional form of the baseline hazard is not given, but is determined
from the data, similarly to the idea for estimating the survival function by the Kaplan-Meier
estimator.

14.1 What is Cox Regression?

Cox regression is Proportional Hazards with a semi-parametric model.
Suppose the event times are given by 0 < t1 < t2 < · · · < tm. At this stage we assume no

tied event times (list does not include censored times).
Let [i] denote the subject with event at ti.
Definition: Risk Set
The risk set Ri is the set of those subjects available for the event at time ti.
Reminder : if we know that there are d subjects with hazard functions h1, · · · , hd then,

knowing there is an event at time t0, the probability that subject j has the event is

P
{
subject j

∣∣ t0} =
hj(t0)

h1(t0) + · · ·+ hd(t0)
.

Under the proportional hazards assumption we have

P
{
[i]
∣∣ ti} =

ρ[i]h0(ti)∑
j∈Ri

ρjh0(ti)
=

ρ[i]∑
j∈Ri

ρj

and the probability that [i] has the event given it occurs at time ti no longer depends on ti.
Under the Cox regression model we have

P
{
[i]
∣∣ ti} =

eβ·x[i]∑
j∈Ri

eβ·xj
.

94
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This probability only depends on the order in which subjects have the events.
The idea of the model is to specify a partial likelihood which depends only on the order in

which events occur, not the times at which they occur. This means that the functional form of
h0, the baseline hazard function, is not required.

Definition: Partial Likelihood

LP (β) =
∏
ti

eβ·x[i]∑
j∈Ri

eβ·xj

where Ri is the risk set at ti, and subject [i] is the subject with the event at ti.
We can think of the partial likelihood as the joint density function for subjects’ ranks in

terms of event order, if there were no censoring and no tied event times.
Consequently if we use the partial likelihood for estimation of parameters we are losing

information, because we are suppressing the actual times of events even though they are known,
hence the name “partial likelihood”.

Interestingly the partial likelihood acts in an exactly similar manner to the likelihood.
Compute β̂P such that

LP

(
β̂P

)
= sup

β

∏
ti

eβ·x[i]∑
j∈Ri

eβ·xj

Then β̂P maximises the partial likelihood and has all the usual properties.
Properties

(i) β̂P
P−→ β as m −→∞ ( and hence the number in the study tends to infinity also),

(ii) varβ̂P ≈ I−1
P , where IP is calculated from LP in exactly the same way as for the usual

information and likelihood,
(iii) asymptotic normality of β̂P also holds.

There are journal papers showing that the % information lost by ignoring actual event
times is smaller than one might expect. All of the above rests on the assumption that the Cox
regression model fits the data, of course.

14.2 Relative Risk

There is a big difference between deductions from AL parametric analysis and PH semi-parametric
analysis. In PH the intercept is non-identifiable and so we are estimating relative risk between
subjects, not absolute risk, when we estimate the model parameters.

Definition: relative risk
The relative risk at time t between two subjects with covariates x1, x2 and hazard functions

h2, h1 is defined to be
h2(t)
h1(t)

.

For the Cox regression model this becomes time independent and is given by

eβ.(x2−x1) .

The intercept is non-identifiable because

h(t;x) = eβ·xh0(t) = eα+β·x (e−αh0(t)
)
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for any α. This means that any such intercept α included with the regression expression β · x
simply cancels out in the partial likelihood. Hence an intercept is never included in the linear
regressor in this model.

14.3 Baseline hazard

However we do need to estimate the cumulative baseline hazard function and also the baseline
survival function.

Definition: Breslow’s estimator for the baseline cumulative hazard function
Suppose the baseline survival is given by

Ŝ0(t) = e−cH0(t),

where the discrete hazard estimation ĥ0 is given by

ĥ0(ti) =
1∑

j∈Ri

eβ·xj

Breslow’s estimator is given by

ĥ0 =
1∑

j∈Ri

eβ·xj
(14.1)

In some sense the discrete estimates for ĥ0(ti) can be thought of as the maximum likelihood
estimators from the full likelihood, provided we assume that the hazard distribution is discrete
(which of course it generally is not). When β̂ = 0 or when the covariates are all 0, this
reduces simply to the Nelson-Aalen estimator. Otherwise, we see that this is equivalent to a
modified Nelson-Aalen estimator, where the size of the risk set is weighted by the relative risks
of the individuals. In other words, the estimate of ĥ0 is equivalent to the standard estimate
# events/time at risk, but now time at risk is weighted by the relative risk.

The estimator may be loosely derived as follows:

`(h) =
∑
ti

log(1− e−h[i](ti))−
∑
j∈Ri

j 6=[i]

hj

=
∑
ti

log(1− e−ρ̂[i]h0(ti))−
∑
j∈Ri

j 6=[i]

ρ̂jh0(ti).

We estimate h0(ti) by

0 =
ρ̂[i]e

−ρ̂[i]ĥ0(ti)

1− e−ρ̂[i]ĥ0(ti)
−
∑
j∈Ri

j 6=[i]

ρ̂j

≈
ρ̂[i](1− ρ̂[i]ĥ0(ti))

ρ̂[i]ĥ0(ti)
−
∑
j∈Ri

j 6=[i]

ρ̂j

=
(1− ρ̂[i]ĥ0(ti))

ĥ0(ti)
−
∑
j∈Ri

j 6=[i]

ρ̂j .
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(In the second line we have assumed h0(ti) to be small.) Thus

1 ≈ ĥ0(ti)

∑
j∈Ri

ρ̂j

 ,

which is the same as (14.1).
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Cox regression, Part II

15.1 Dealing with ties

Until now in this section we have been assuming that the times of events are all distinct.
In situations where event times are equal, we can carry out the same computations for Cox
regression, only using a modified version of the partial likelihood. Suppose Ri is the set of
individuals at risk at time ti, and Di the set of individuals who have their event at that time.
We assume that the ties are not real ties, but only the result of discreteness in the observation.
Then the probability of having precisely those individuals at time ti will depend on the order
in which they actually occurred. For example, suppose there are 5 individuals at risk at the
start, and two of them have their events at time t1. If the relative risks were {ρ1, . . . , ρ5}, where
ρj = eβ·xj , then the first term in the partial likelihood would be

ρ1

ρ1 + ρ2 + ρ3 + ρ4 + ρ5
· ρ2

ρ2 + ρ3 + ρ4 + ρ5
+

ρ2

ρ1 + ρ2 + ρ3 + ρ4 + ρ5
· ρ1

ρ1 + ρ3 + ρ4 + ρ5
.

The number of terms is di!, so it is easy to see that this computation quickly becomes intractable.

A very good alternative — accurate and easy to compute — was proposed by B. Efron.
Observe that the terms differ in the denominator merely by a small change due to the individuals
lost from the risk set. If the deaths at time ti are not a large proportion of the risk set, then we
can approximate this by deducting the average of the risks that depart. In other words, in the
above example, the first contribution to the partial likelihood becomes

ρ1ρ2

(ρ1 + ρ2 + ρ3 + ρ4 + ρ5)(1
2(ρ1 + ρ2) + ρ3 + ρ4 + ρ5)

.

More generally, the partial likelihood becomes

LP (β) =
∏
ti

e
β·

P
j∈Di

xj

di−1∏
k=0

∑
j∈Ri

eβ·xj − k

di

∑
j∈Di

eβ·xj

−1

.

We take the same approach to estimating the baseline hazard:

ĥ0(ti) =
di−1∑
k=0

∑
j∈Ri

eβ̂·xj − k

di

∑
j∈Di

eβ̂·xj

−1

.
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Another approach, due to Breslow, makes no correction for the progressive loss of risk in the
denominator:

LBreslow
P (β) =

∏
ti

e
β·

P
j∈Di

xi

∑
j∈Ri

eβ·xi

−di

.

This approximation is always too small, and tends to shift the estimates of β toward 0. It is
widely used as a default in software packages (SAS, not R!) for purely historical reasons.

15.2 Plot for PH assumption with continuous covariate

Suppose we have a continuous covariate and we wish to check the proportional hazards assumption
for that covariate. We do not have natural groups of subjects with the same value of that
covariate.

Provided there is sufficient data we would group the subjects in quintiles of the covariate.
Then we have 5 groups and can find the Kaplan-Meier estimator for each group. As before we
plot

log(− log(Ŝk(t))) v. log t

for each k = 1, · · · , 5 on the same graph. There should be a roughly constant vertical separation
of groups. It generally is not a wonderful method, but is better than nothing.

15.3 The AML example

We continue looking at the leukemia study that we started to consider in section 12.3. First,
in Figure 15.1 we plot the iterated logarithm of survival against time, to test the proportional
hazards assumption. The PH assumption corresponds to the two curves differing by a vertical
shift. The result makes this assumption at least credible.

We code the data with covariate x = 0 for the maintained group, and x = 1 for the non-
maintained group. Thus, the baseline hazard will correspond to the maintained group, and eβ

will be the relative risk of the non-maintained group. From Table 12.4 we see that the Efron
approximate partial likelihood is given by

LP (β) =
(

e2β

(12eβ + 11)(11eβ + 11)

)(
e2β

(10eβ + 11)(9eβ + 11)

)
×
(

1
8eβ + 11

)(
eβ

8eβ + 10

)(
1

7eβ + 10

)(
1

6eβ + 8

)
×
(

eβ · 1
(6eβ + 7)(5.5eβ + 6.5)

)(
eβ

5eβ + 6

)(
eβ

4eβ + 5

)
×
(

1
3eβ + 5

)(
eβ

3eβ + 4

)(
1

2eβ + 4

)(
eβ

2eβ + 3

)(
eβ

eβ + 3

)(
1
2

)
(15.1)

A plot of LP (β) is shown in Figure 15.4.
In the one-dimensional setting it is straightforward to estimate β̂ by direct computation. We

see the maximum at β̂ = 0.9155 in the plot of Figure 15.4. In more complicated settings, there
are good maximisation algorithms built in to the coxph function in the survival package of R.
Applying this to the current problem, we obtain:
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Figure 15.1: Iterated log plot of survival of two populations in AML study, to test proportional
hazards assumption.
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Figure 15.2: Estimated baseline hazard under the PH assumption. The purple circles show the
baseline hazard; blue crosses show the baseline hazard shifted up proportionally by a multiple of
eβ̂ = 2.5. The dashed green line shows the estimated survival rate for the mixed population
(mixing the two estimates by their proportions in the initial population).
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Figure 15.3: Comparing the estimated population survival under the PH assumption (green
dashed line) with the estimated survival for the combined population (blue dashed line), found
by applying the Nelson-Aalen estimator to the population, ignoring the covariate.
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Figure 15.4: A plot of the partial likelihood from (15.1). Dashed line is at β = 0.9155.
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Table 15.1: Output of the coxph function run on the aml data set.

coxph(formula = Surv(time, status) ∼ x, data = aml)
coef exp(coef) se(coef) z p

×Nonmaintained 0.916 2.5 0.512 1.79 0.074

Likelihood ratio test=3.38 on 1 df p=0.0658 n= 23

The z is simply the Z-statistic for testing the hypothesis that β = 0, so z = β̂/SE(β̂). We
see that z = 1.79 corresponds to a p-value of 0.074, so we would not reject the null hypothesis
at level 0.05.

We show the estimated baseline hazard in Figure 15.2; the relevant numbers are given in
Table 15.2. For example, the first hazard, corresponding to t1 = 5, is given by

ĥ0(5) =
1

12eβ̂ + 11
+

1

11eβ̂ + 11
= 0.050,

substituting in β̂ = 0.9155.

Table 15.2: Computations for the baseline hazard LME for the AML data, in the proportional
hazards model, with maintained group as baseline, and relative risk eβ̂ = 2.498.

Maintenance Non-Maintenance Baseline
(control)

ti nM
i dM

i nN
i dN

i ĥ0(ti) Ĥ0(ti) S̃0(ti)

5 11 0 12 2 0.050 0.050 0.951
8 11 0 10 2 0.058 0.108 0.898
9 11 1 8 0 0.032 0.140 0.869
12 10 0 8 1 0.033 0.174 0.841
13 10 1 7 0 0.036 0.210 0.811
18 8 1 6 0 0.043 0.254 0.776
23 7 1 6 1 0.095 0.348 0.706
27 6 0 5 1 0.054 0.403 0.669
30 5 0 4 1 0.067 0.469 0.625
31 5 1 3 0 0.080 0.549 0.577
33 4 0 3 1 0.087 0.636 0.529
34 4 1 2 0 0.111 0.747 0.474
43 3 0 2 1 0.125 0.872 0.418
45 3 0 1 1 0.182 1.054 0.348
48 2 1 0 0 0.500 1.554 0.211



Lecture 16

Testing Hypotheses

Reading: C& O sections 8.6–8.7, K & M sections 7.1–7.3
A common question that we may have is, whether two (or more) samples of survival times may

be considered to have been drawn from the same distribution: That is, whether the populations
under observation are subject to the same hazard rate.

16.1 Tests in the regression setting

1) A package will produce a test of whether or not a regression coefficient is 0. It uses properties
of mle’s. Let the coefficient of interest be b say. Then the null hypothesis is HO : b = 0 and
the alternative is HA : b 6= 0. At the 5% significance level, HO will be accepted if the p-value
p > 0.05, and rejected otherwise.

2) In an AL parametric model if α is the shape parameter then we can test HO : log α = 0
against the alternative HA : log α 6= 0. Again mle properties are used and a p-value is produced
as above. In the case of the Weibull if we accept log α = 0 then we have the simpler exponential
distribution (with α = 1).

3) We have already mentioned that, to test Weibull v. exponential with null hypothesis HO :
exponential is an acceptable fit, we can use

2 log L̂weib − 2 log L̂exp ∼ χ2(1), asymptotically.

16.2 Non-parametric testing of survival between groups

16.2.1 General principles

We will consider only the case where the data splits into two groups. There is a relatively easy
extension to k > 2 groups.

We define the following notation

Event times are 0 < t1 < t2 < · · · < tm.

For i = 1, 2, . . . ,m, and j = 1, 2, dij = # events at ti in group j,

nij = # in risk set at ti from group j,

di = # events at ti,

ni = # in risk set at ti.

Thus, when the number of groups k = 2, we have di = di1 + di2 and ni = ni1 + ni2.

103
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Generally we are interested in testing the null hypothesis H0, that there is no difference
between the hazard rates of the two groups, against the two-sided alternative that there is
a difference in the hazard rates. The guiding principle is quite elementary, quite similar to
our approach to the proportional hazards model: We treat each event time ti as a new and
independent experiment. Under the null hypothesis, the next event is simply a random sample
from the risk set. Thus, the probability of the death at time ti being from group 1 is ni1/ni,
and the probability of it being from group 2 is ni2/ni.

This describes only the setting where the events all occur at distinct times: That is, di

are all exactly 1. More generally, the null hypothesis predicts that the group identities of the
individuals whose events are at time ti are like a sample of size di without replacement from
a collection of ni1 ‘1’s and ni2 ‘2’s. The distribution of di1 under such sampling is called the
hypergeometric distribution. It has

expectation = di
ni1

ni
, and

variance =: σ2
i =

ni1ni2(ni − di)di

n2
i (ni − 1)

.

Note that if di is negligible with respect to ni, this variance formula reduces to di(ni1
ni

)(ni2
ni

),
which is just the variance of a binomial distribution.

Conditioned on all the events up to time ti (hence on ni, ni1, ni2) and on di, the random
variable di1 − ni1

di
ni

has expectation 0 and variance σ2
i . If we multiply it by an arbitrary weight

W (ti), determined by the data up to time ti, we still have W (ti)(di1 − ni1
di
ni

) being a random
variable with (conditional) expectation 0, but now (conditional) variance W (ti)2σ2

i . This means
that if we define for k = 1, . . . ,m

Mk :=

(
k∑

i=1

W (ti)
(
di1 − ni1

di

ni

))m

k=1

,

these will be random variables with expectation 0 and variance
∑k

i=1 W (ti)2σ2
i . While the

increments are not independent, we may still apply a version of the Central Limit Theorem
to show that Mk is approximately normal when the sample size is large enough. (In technical
terms, the sequence of random variables Mk is a martingale, and the appropriate theorem is the
Martingale Central Limit Theorem. See [HH80] for more details.) We then base our tests on
the statistic

Z :=

∑m
i=1 W (ti)

(
di1 − ni1

di
ni

)√∑m
i=1 W (ti)2

ni1ni2(ni−di)di

n2
i (ni−1)

,

which should have a standard normal distribution under the null hypothesis.
Note that, as in the Cox regression setting, right censoring and left truncation are automati-

cally taken care of, by appropriate choice of the risk sets.

16.2.2 Standard tests

Any choice of weights W (ti) defines a valid test. Why do we need weights? Since any choice
of weights produces a correct test, there is no canonical choice. Changing the weights changes
the power with respect to different alternatives. Which alternative you choose — hence, which
weights you choose — should depend on what deviations from equality you are most interested
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in detecting. As always, the test should be chosen beforehand. Multiple testing makes the
interpretation of test results problematic.

Some common choices are:

1. W (ti) = 1,∀i. This is the log rank test, and is the test in most common use. The log
rank test is aimed at detecting a consistent difference between hazards in the two groups
and is best placed to consider this alternative when the proportional hazard assumption
applies. It is maximally asymptotically efficient in the proportional hazards context; in
fact, it is equivalent to the score test for the Cox regression parameter being 0, hence is
asymptotically equivalent to the likelihood ratio test. A criticism is that it can give too
much weight to the later event times when numbers in the risk sets may be relatively
small.

2. R. Peto and J. Peto [PP72] proposed a test which emphasises deviations that occur early on,
when there are more individuals under observation. Petos’ test uses a weight dependent
on a modified estimated survival function, estimated for the whole study. The modified
estimator is

S̃(t) =
∏
ti≤t

ni + 1− di

ni + 1

and the suggested weight is then

W (ti) = S̃(ti−1)
ni

ni + 1

This has the advantage of giving more weight to the early events and less to the later ones
where the population remaining is smaller.

3. W (ti) = ni has also been suggested (Gehan, Breslow). This again downgrades the effct of
the later times.

4. D. Harrington and T. Fleming [HF82] proposed a class of tests that include Petos’ test
and the logrank test as special cases. The Fleming-Harrington tests use

W (ti) =
(
Ŝ(ti−1)

)p (
1− Ŝ(ti−1)

)q

where Ŝ is the Kaplan-Meier survival function, estimated for all the data. Then p = q = 0
gives the logrank test and p = 1, q = 0 gives a test very close to Peto’s test and is called
the Fleming-Harrington test. If we were to set p = 0, q > 0 this would emphasise the later
event times if needed for some reason.

All of these tests may be written in the form∑
(Oi1 − Ei1)Wi√∑

σ2
i1W

2
i

,

where Oi and Ei are observed and expected numbers of events. Consequently, positive and
negative fluctuations can cancel each other out. This could conceal a substantial difference
between hazard rates which is not of the proportional hazards form, but where the hazard rates
(for instance) cross over, with group 1 having (say) the higher hazard early, and the lower hazard
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later. One way to detect such an effect is with a test statistic to which fluctuations contribute
only their absolute values. For instance, we could use the standard χ2 statistic

X :=
m∑

i=1

k∑
j=1

(Oij − Eij)2

Eij
.

Asymptotically, this should have the χ2 distribution with (k − 1)m degrees of freedom. Of
course, if the number of groups k = 2, this is the same as

X :=
m∑

i=1

(Oi1 − Ei1)2

di
ni1
ni

(1− ni1
ni

)
.

16.3 The AML example

We can use these tests to compare the survival of the two groups in the AML experiment
discussed in section 12.3. The relevant quantities are tabulated in Table 16.1.

Time ni1 ni2 di1 di2 σ2
i Peto weight

5 11 12 0 2 0.476 0.958
8 11 10 0 2 0.474 0.875
9 11 8 1 0 0.244 0.792

12 10 8 0 1 0.247 0.750
13 10 7 1 0 0.242 0.708
18 8 6 1 0 0.245 0.661
23 7 6 1 1 0.456 0.614
27 6 5 0 1 0.248 0.519
30 5 4 0 1 0.247 0.467
31 5 3 1 0 0.234 0.416
33 4 3 0 1 0.245 0.364
34 4 2 1 0 0.222 0.312
43 3 2 0 1 0.240 0.260
45 3 1 0 1 0.188 0.208

Table 16.1: Data for testing equality of survival in AML experiment.

When the weights are all taken equal, we compute Z = −1.84, whereas the Peto weights —
which reduce the influence of later observations — give us Z = −1.67. This yields one-sided
p-values of 0.033 and 0.048 respectively — a marginally significant difference — or two-sided
p-values of 0.065 and 0.096.

Applying the χ2 test yields X = 16.86, which needs to be compared to χ2 with 14 degrees of
freedom. The resulting p-value is 0.24, which is not at all significant. This should not be seen
as surprising: The differences between the two survival curves are clearly mostly in the same
direction, so we lose power when applying a test that ignores the direction of the difference.
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