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S.4 Insurance and Saving

A.1. (a) Denoting the loss incurred by each member of a pool of size 2 and 3 by x̃ and
ỹ respectively the pdf of these binomial random variables are:

P[x̃ = 0] = (1− p)2

P[x̃ = 100/2] = 2p(1− p)
P[x̃ = 200/2] = p2

P[ỹ = 0] = (1− p)3

P[ỹ = 100/3] = 3p(1− p)2

P[ỹ = 200/3] = 3p2(1− p)
P[ỹ = 300/3] = p3

(b) Let the distribution of ε̃ conditional on outcomes of ỹ be as follows

(ε̃|ỹ = 0) = (0, 1)

(ε̃|ỹ = 100/3) = (−100

3
,
1

3
;
50

3
,
2

3
)

(ε̃|ỹ = 200/3) = (−50

3
,
2

3
;
100

3
,
1

3
)

(ε̃|ỹ = 300/3) = (0, 1)

Then E[ε̃|ỹ] = 0 for any outcome of ỹ. Moreover, ỹ + ε̃ has the same three
possible outcomes as x̃ and these have the same probabilities:

P[ỹ + ε̃ = 0] = P[ỹ = 0 ∩ ε̃ = 0] + P[ỹ = 100/3 ∩ ε̃ = −100/3]

= (1− p)3 × 1 + 3p(1− p)2 × 1

3
= (1− p)2 × (1− p+ p) = (1− p)2 = P[x̃ = 0]

P[ỹ + ε̃ = 50] = P[ỹ = 100/3 ∩ ε̃ = 50/3] + P[ỹ = 200/3 ∩ ε̃ = −50/3]

= 3p(1− p)2 × 2

3
+ 3p2(1− p)× 2

3
= 2p(1− p)(1− p+ p) = 2p(1− p) = P[x̃ = 50]

P[ỹ + ε̃ = 100] = P[ỹ = 100 ∩ ε̃ = 0] + P[ỹ = 200/3 ∩ ε̃ = 100/3]

= p3 × 1 + 3p2(1− p)× 1

3
= p2(p+ 1− p) = p2 = P[x̃ = 100]

So any risk averse individual with starting wealth w, will prefer a pool with
N = 3 to one with N = 2.

B.1. The agent’s expected utility on wagering w is

f(w) = pu(X − w + 2w) + (1− p)u(X − w)

= −pe−r(X+w) − (1− p)e−r(X−w)
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where

f ′(w) = rpe−r(X+w) − r(1− p)e−r(X−w)

f ′′(w) = −r2pe−r(X+w) − r2(1− p)e−r(X−w) < 0

Since f is twice differentiable with f ′′(w) < 0 for all w, the optimal choice of w,
w∗, will solve f ′(w∗) = 0.

rpe−r(X+w∗) − r(1− p)e−r(X−w∗) = 0

∴
p

1− p
= er(X+w∗)−r(X−w∗)

∴ w∗ =
1

2r
ln

(
p

1− p

)

B.2. (a) Working in units of £1 million, the premium is 1
4
× 8× (1 + 0.2) = 2.4.

(b) Denoting the expected utility on choosing coinsurance level β by f(β), we have

f(β) =
3

4
ln(12− 2.4β) +

1

4
ln(12− 2.4β − 8(1− β))

f ′(β) = −3

4

2.4

12− 2.4β
+

1

4

5.6

4 + 5.6β

f ′′(β) = −3

4

2.42

(12− 2.4β)2
− 1

4

5.62

(4 + 5.6β)2
< 0

So, f is twice differentiable and strictly concave, and so the optimal β, β∗

solves f ′(β∗) = 0 (or is at an endpoint β∗ = 0 or β∗ = 1):

− 3

4

2.4

12− 2.4β∗
+

1

4

5.6

4 + 5.6β∗
= 0

∴7.2(4 + 5.6β∗) = 5.6(12− 2.4β∗)

∴β∗ =
5.6× 12− 7.2× 4

7.2× 5.6 + 5.6× 2.4
=

38.4

53.76
= 0.714 (3 s.f.)

Since this β∗ ∈ [0, 1] and f is concave, the optimal solution will be β∗, not 0
or 1. (We will confirm this in the next part of the question.)

(c)

f(0) =
3

4
ln(12) +

1

4
ln(4) = 2.210 (4 s.f.)

f(β∗) =
3

4
ln

(
12− 2.4

38.4

53.76

)
+

1

4
ln

(
4 + 5.6

38.4

53.76

)
= 2.268 (4 s.f.)

f(1) = ln(12− 2.4) = 2.262 (4 s.f.)

(d) Full insurance (β∗ = 1) is optimal if loading is zero (Mossin’s Theorem).
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B.3. For the standard portfolio problem let the utility function be u, satisfying u′ > 0,
u′′ < 0, and initial wealth be w0. Since the risk free (risky) investment earns return
zero (x̃) an investment in the risky asset of α leads to realised wealth of w0 + αx̃
and expected utility, f(α), of:

f(α) := E [u(w0 + αx̃)]

f is strictly concave and so the unique optimal α∗ is the solution to the first order
condition

f ′(α∗) = E [x̃u′(w0 + α∗x̃)] = 0.

(a) Now, let ỹ := (x̃, q; 0, 1 − q), and let β denote the optimal amount of (new)
asset ỹ to purchase. The new first order condition is

Eỹ [ỹu′(w0 + β∗ỹ)] = 0

Applying the law of total expectation (EY (Y ) = EX(EY (Y |X)) we find

Eỹ [ỹu′(w0 + β∗ỹ)] = Ex̃ [Eỹ [ỹu′(w0 + β∗ỹ)|x̃]]

= Ex̃ [qx̃u′(w0 + β∗x̃) + (1− q)× 0]

= qEx̃ [x̃u′(w0 + β∗x̃)]

Now the unique solution to this is β∗ = α∗, that is you purchase the same
amount of the risky asset as you would have in the original problem. Note
that this comes from the Independence Axiom: you prefer w0 + α∗x̃ to any
other w0 + αx̃ and therefore prefer any stochastic mix of w0 + α∗x̃ and the
risk-free asset to any stochastic mix of w0 +αx̃ and the risk-free asset, and so
α∗ is the optimal amount to purchase in both problems.

(b) Let z̃ := qx̃, and let γ denote the optimal amount of (new) asset z̃ to purchase.
The new first order condition is

Ez̃ [z̃u′(w0 + γ∗z̃)] = 0

∴Ex̃ [qx̃u′(w0 + γ∗qx̃)] = 0

From the definition of α∗, we have γ∗q = α∗, and therefore γ∗ = α∗

q
.

B.4. The question did not specify whether α can be negative, or whether the expected
excess return from the risky asset was positive. We don’t impose any restrictions
in this solution.

(a) Let w0 denote initial wealth and α denote the demand for the risky asset. The
optimisation problem is

max
α

p ln(w0(1 + r)− α(r − a)) + (1− p) ln(w0(1 + r) + α(b− r))
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This is strictly concave in α and so the optimal choice of α, α∗ satisfies first
order condition

− p(r − a)

w0(1 + r)− α∗(r − a)
+

(1− p)(b− r)
w0(1 + r) + α∗(b− r)

= 0

∴p(r − a)(w0(1 + r) + α∗(b− r)) = (1− p)(b− r)(w0(1 + r)− α∗(r − a))

∴α∗[p(r − a)(b− r) + (1− p)(r − a)(b− r)] = w0(1 + r)[(1− p)(b− r)− p(r − a)]

∴α∗ = w0(1 + r)

[
1− p
r − a

− p

b− r

]
= w0(1 + r)

[
(1− p)(b− r) + p(a− r)

(r − a)(b− r)

]
(Note that α∗ is the same sign as the excess expected return of the risky asset
over the risk-free asset.)

(b) Yes, for a < r < b.

(c)
dα∗

dw0

=
α∗

w0

So a small increase in initial wealth increases the magnitude of α∗; if α∗ is
positive it becomes more positive, if α∗ is negative it becomes more negative.

(d)
dα∗

dr
=

α∗

1 + r
− w0(1 + r)

[
1− p

(r − a)2
+

p

(b− r)2

]
An increase in the risk free rate of return has two effects on the optimal choice
of α. First there is a ‘wealth’ effect of α∗

1+r
, whereby by increasing the risk-

free rate of return effectively increases the ex-post wealth of the individual,
increasing the magnitude of α. Second by making the risky asset relatively
less attractive it reduces α.

(e)

dα∗

da
= w0(1 + r)

1− p
(r − a)2

≥ 0

dα∗

db
= w0(1 + r)

p

(b− r)2
≥ 0

An increase (decrease) in a or b leads to a first order stochastic dominant
improvement (deterioration) in the returns from the risky asset, thereby in-
creasing (decreasing) optimal demand.

(f) Let c := (1− p)(b− r) + p(a− r) and so r − a = (1−p)(b−r)−c
p

. Then

α∗ = w0(1 + r)

[
p

b− r − c
1−p
− p

b− r

]
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Differentiating α∗ with respect to b whilst holding expected excess return c
constant gives

∂α∗

∂b
= w0(1 + r)p

[
− 1

(b− r − c
1−p)2

+
1

(b− r)2

]

Since b− r > 0 and r − a > 0, and therefore b− r − c
1−p > 0 we have ∂α∗

∂b
has

the opposite sign to c, and therefore the opposite sign to α∗. So an increase in
b whilst holding the expected excess return of the risky asset constant reduces
the magnitude of α∗.

B.5. (a) The budget constraint is 1 = vc1 + v2c2 and so, substituting the budget con-
straint into the objective function, Sally’s optimisation problem may be writ-
ten as

max
c1

p1

1 + δ
ln[c1] +

p2

(1 + δ)2
ln[(1 + i)2 − (1 + i)c1]

This is strictly concave in c1 and so the optimal c1 satisfies

p1

(1 + δ)c∗1
− p2

(1 + δ)2((1 + i)− c∗1)
= 0

∴p1(1 + δ)((1 + i)− c∗1) = p2c
∗
1

∴c∗1 =
p1(1 + δ)(1 + i)

p2 + p1(1 + δ)
= 0.741 (3 s.f.)

c∗2 = (1 + i)2 − (1 + i)c∗1 = 0.395 (3 s.f.)

∴U(c∗1, c
∗
2) =

p1

1 + δ
ln[c∗1] +

p2

(1 + δ)2
ln[c∗2] = −0.512 (3 s.f.)

(b) Now the budget constraint is 1 = p1vc1 +p2v
2c2 and the optimisation problem

is

max
c1

p1

1 + δ
ln[c1] +

p2

(1 + δ)2
ln

[
(1 + i)2 − p1(1 + i)c1

p2

]
which is also strictly concave and has first order condition

p1

(1 + δ)c∗∗1
− p2p1

(1 + δ)2((1 + i)− p1c∗∗1 )
= 0

∴(1 + δ)((1 + i)− p1c
∗∗
1 ) = p2c

∗∗
1

∴c∗∗1 =
(1 + δ)(1 + i)

p2 + p1(1 + δ)
= 0.988 (3 s.f.)

c∗∗2 =
(1 + i)2 − (1 + i)c∗1

p2

= 0.988 (3 s.f.)

∴U(c∗∗1 , c
∗∗
2 ) =

p1

1 + δ
ln[c∗∗1 ] +

p2

(1 + δ)2
ln[c∗∗2 ] = −0.012 (3 s.f.)

(c) Define

f(c) =
p1

1 + δ
ln[c] +

p2

(1 + δ)2
ln[c]− (−0.512)
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We wish to find c∗ such that f(c∗) = 0. By interpolation we find c∗ = 0.603.
So the individual is indifferent between a strategy which uses the risk free asset
only and one which achieves consumption of (c1, c2) = (0.603, 0.603). This can
be achieved with life insurance using wealth of only 1× 0.603

0.988
. The individual

would therefore be willing to forego up to 0.988−0.603
0.988

= 38.9% of initial wealth of
1 for an actuarially fair market in life insurance. Equivalently, if life insurance
was priced with loading less than 0.988

0.603
− 1 = 63.8% then the individual could

attain higher utility from purchasing life insurance, than from investing in the
risk-free asset.

C.1. (a) Nya has a utility function of the form u(w) = − exp(−aw) and so she chooses
α to maximise E [− exp (−a((1 + r)w0 + αỹ))].

HN(α) = E [− exp (−a((1 + r)w0 + αỹ))]

H ′N(α) = E [a ỹ exp (−a((1 + r)w0 + αỹ))]

H ′′N(α) = E
[
−a2 ỹ2 exp (−a((1 + r)w0 + αỹ))

]
< 0

H ′N

(
α∗N =

w0

2

)
= 0

Now we repeat for Lloyd with the presence of the background risk

HL(α) = E [− exp (−a((1 + r)w0 + αỹ + ε̃))]

H ′L(α) = E [a ỹ exp (−a((1 + r)w0 + αỹ + ε̃))]

H ′′L(α) = E
[
−a2 ỹ2 exp (−a((1 + r)w0 + αỹ + ε̃))

]
< 0

H ′L(α) =

∫ ∫
fε̃(ε)fỹ(y)a ye−a((1+r)w0+αy+ε)dy dε

=

∫
fε̃(ε)e

−aε
∫
fỹ(y)a ye−a((1+r)w0+αy)dy dε

=

∫
fε̃(ε)e

−aεH ′N(α) dε

If we choose α = α∗N then the internal integral will be zero, and so the overall
integral is zero. We have shown that the solution is unique because H is
concave in α, so this is unique solution. Lloyd will invest the same (absolute)
amount in the risky asset as Nya, despite the presence of the background risk.

C.2. (a) E[x̃] = 0× 7
10

+ 4× 1
10

+ 8× 1
10

+ 10× 1
10

= 2.2

(b) E[max(0, x̃− 3)] = 0× 7
10

+ 1× 1
10

+ 5× 1
10

+ 7× 1
10

= 1.3

E[max(0, x̃− 6)] = 0× 7
10

+ 0× 1
10

+ 2× 1
10

+ 4× 1
10

= 0.6

The actuarially fair premium is not proportional to the inverse of the de-
ductible and so one would not expect a doubling of the deductible to halve
the premium.
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(c) Denoting the coinsurance rate βd which gives the same premium as the pre-
mium with deductible d, β3 = 1.3

2.2
= 0.591 (3 s.f.) and β6 = 0.6

2.2
= 0.273 (3

s.f.).

(d) For loss outcomes (0, 4, 8, 10) net wealth on purchasing insurance with a de-
ductible of 6 is (9.4, 5.4, 3.4, 3.4) and net wealth on purchasing coinsurance
with level of β6 is (9.40, 6.49, 3.58, 2.13). Denoting the cdf of final wealth if
deductible is 6 by F and the cdf of final wealth if coinsurance is β6 by G then
the figure of cdfs is as follows:

0 2 4 6 8 10

0

0.5

1

Net wealth w

cd
fs

F (w)
G(w)

Define S(w) :=
∫ w

0
G(s) − F (s)ds. Clearly S(2.13) = 0. Also S(9.4) = 0

since both products have the same mean wealth. Moreover G(s) − F (s) ≥ 0
for s < 3.4 and G(s) − F (s) ≤ 0 for s ≥ 3.4 and so it must be that S(w) is
weakly increasing from 0 from w = 2.13 to w = 3.4, and weakly decreasing to
0 from w = 3.4 to w = 9.4. By continuity of S, S must always be nonnegative
between 2.13 and 9.4.


