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S.4 Insurance and Saving

A.1. (a) Denoting the loss incurred by each member of a pool of size 2 and 3 by Z and
y respectively the pdf of these binomial random variables are:

(1-p)°
Plj = 100/3] = 3p(1 — p)?
P[g = 200/3] = 3p*(1 — p)

(b) Let the distribution of £ conditional on outcomes of § be as follows

(€lg =0)=(0,1)

100 1 50 2
~~:1 =({- - — ., -
(Ely =100/3) = (==~ 555 3)

50 2 100 1
~~:2 = (- - — —
(E15 = 200/3) = (-5, 53 75 3)

(€] = 300/3) = (0,1)

Then E[é]g] = 0 for any outcome of §. Moreover, § + ¢ has the same three
possible outcomes as £ and these have the same probabilities:

Plj+&=0=P[j=0n&=0]+P[j=100/3N& = —100/3]
(1—p)3><1+3p(1—p)2><%
(1—=p)Px(1=p+p) =(1-p)?=Pl=0
P

P[j + & = 50] = P[j = 100/3 N & = 50/3] + P[j = 200/3 N & = —50/3]
= 3p(1 —p)* x §+3p2(1 —p) X g
=2p(1 —p)(1 —p+p) = 2p(1 — p) = Pz = 50]
P[j + & = 100] = P[j = 100 N & = 0] + P[5 = 200/3 N & = 100/3]

1
=P’ X 1+3p°(1—p) x 5
=p*(p+1—p) =p* =Pz =100]

So any risk averse individual with starting wealth w, will prefer a pool with
N = 3 to one with N = 2.

B.1. The agent’s expected utility on wagering w is

fw) = pu(X —w+2w) + (1 = p)u(X — w)
— _pefr(X+w) . (1 . p>efr(X7w)
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where

f/(w> _ rpe—r(X-i-w) o 7“(1 . p)e—r(X—w)
f//(,w) _ _T,Qpe—r(X-‘rw) _ 7,.2<1 _ p)e—r(X—w) <0

Since f is twice differentiable with f”(w) < 0 for all w, the optimal choice of w,
w*, will solve f'(w*) = 0.

rpe” "X _ r(1— p)e_T(X_“’*) =0
p er(Xer*)fr(Xfw*)

s L (P
Swt=—ln | ——
v 2r 1—p

B.2. (a) Working in units of £1 million, the premium is § x 8 x (1 +0.2) = 2.4.
(b) Denoting the expected utility on choosing coinsurance level 8 by f(3), we have

£(8) = %111(12 —2.48) + iln(lQ — 248 - 8(1— B))

3 24 1 56
/ [ —— —
P8 =113 =245 T 111568
3 242 1 5.6
f(B) =—= S <0

4(12—-248)2  4(4+5.60)

So, f is twice differentiable and strictly concave, and so the optimal 3, g*
solves f'(5*) =0 (or is at an endpoint §* =0 or f* = 1):

3 24 1 56
T 112-24p5 111565
ST2(445.68%) = 5.6(12 — 2.48")

56x12—72x4 334

B = _ — 0714 (3 s,
= 56556 %24 5376~ 014 Bst)

Since this g* € [0,1] and f is concave, the optimal solution will be 5*, not 0
or 1. (We will confirm this in the next part of the question.)

1
f(0) = Zln(lQ) +7 In(4) = 2.210 (4 s.f.)
3 384\ 1 38.4
=2 (12 =240 ) £ Sl (445620 ) = 2.268 (4 5.t
J(5°) 4“( 53.76)+4n( +5653.76) 68 (4s.L)

F(1) =1In(12 — 2.4) = 2.262 (4 s.f.)

(d) Full insurance (8* = 1) is optimal if loading is zero (Mossin’s Theorem).
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B.3. For the standard portfolio problem let the utility function be w, satisfying v’ > 0,
u” < 0, and initial wealth be wy. Since the risk free (risky) investment earns return
zero (Z) an investment in the risky asset of a leads to realised wealth of wy + aZ
and expected utility, f(«), of:

fla) :=E [u(wy + at)]

f is strictly concave and so the unique optimal a* is the solution to the first order
condition

(a)

f'(a*) = E [/ (wo + 0" F)] = 0.

Now, let § := (%,¢;0,1 — ¢q), and let 5 denote the optimal amount of (new)
asset y to purchase. The new first order condition is

Eg [gu (wo + 579)] = 0
Applying the law of total expectation (Ey(Y) = Ex(Ey (Y]X)) we find

Eg [gu' (wo + 577)]

E;z [Ej [gu' (wo + 879)|Z]]
= E; [qZu'(wo + 5°%) 4+ (1 — ¢q) % 0]
qE; [Zu' (wo + 571)]

Now the unique solution to this is §* = a*, that is you purchase the same
amount of the risky asset as you would have in the original problem. Note
that this comes from the Independence Axiom: you prefer wy + o*% to any
other wy + a2 and therefore prefer any stochastic mix of wg + a*% and the
risk-free asset to any stochastic mix of wy 4+ a2 and the risk-free asset, and so
a* is the optimal amount to purchase in both problems.

Let Z := ¢Z, and let 7y denote the optimal amount of (new) asset Z to purchase.
The new first order condition is

E; [Zu'(wg +7"2)] = 0
~Ez [gu (wo +v7qT)] =0

*

From the definition of a*, we have v*q¢ = o*, and therefore v* = 0‘7.

B.4. The question did not specify whether a can be negative, or whether the expected
excess return from the risky asset was positive. We don’t impose any restrictions
in this solution.

(a)

Let wqy denote initial wealth and « denote the demand for the risky asset. The
optimisation problem is

mgxpln(wo(l +7)—a(r—a))+ (1 —p)n(wy(l +7r)+alb—r))
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This is strictly concave in a and so the optimal choice of «, o satisfies first
order condition

 pr—a) L-nb-r
wo(l+7)—a*(r—a)  we(l1+7)+a*(b—r)
sp(r—a)(we(l+7)+a*(b—71)) =1 —p)b—7r)(wy(l+7r)—a*(r—a))
safp(r—=a)(b—7r)+ (1 =p)(r—a)(b—r)] =wo(l+r)[(1 —p)(b—r)—p(r—a)]
l-p p }
r—a b-—r
(1—p)(b—7“)+p(a—7“)1
(r—a)(b—r)

(Note that a* is the same sign as the excess expected return of the risky asset
over the risk-free asset.)

o = wo(1+7) [

=wp(l+7r) [

(b) Yes, for a < r <b.

do* o

dwo Wo

So a small increase in initial wealth increases the magnitude of o*; if a* is
positive it becomes more positive, if a* is negative it becomes more negative.

dar* a* 1—p P
- —wp(1
dr 1+r wo(1+7) (r —a)? + (b—r)?

An increase in the risk free rate of return has two effects on the optimal choice
of a. First there is a ‘wealth’ effect of %, whereby by increasing the risk-
free rate of return effectively increases the ex-post wealth of the individual,
increasing the magnitude of a. Second by making the risky asset relatively

less attractive it reduces «.

da* 1—0p

— wo(l >
da wol —Hn)(r—a)? =0
da* D

= wy(1 >
i~ oG 20

An increase (decrease) in a or b leads to a first order stochastic dominant
improvement (deterioration) in the returns from the risky asset, thereby in-
creasing (decreasing) optimal demand.

(f) Let c:=(1—p)(b—7r)+pla—r) and so r —a = (1-;;)(%)—0‘ Then

P b
b—r— 1= b—r
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Differentiating o* with respect to b whilst holding expected excess return c
constant gives

804*_ (1+) B 1 N 1
R B R 1)

Since b—r > 0 and r — a > 0, and thereforeb—r—l%p > (0 we have % has
the opposite sign to ¢, and therefore the opposite sign to a*. So an increase in
b whilst holding the expected excess return of the risky asset constant reduces
the magnitude of o*.

B.5. (a) The budget constraint is 1 = ve; + vy and so, substituting the budget con-
straint into the objective function, Sally’s optimisation problem may be writ-
ten as p p
1 2 N2 .
1 ————In|(1 — (1
T +90 nled + (14 6)? a[(1 44" = (1 +d)e]

This is strictly concave in ¢; and so the optimal ¢, satisfies

4 P2

A+0)c A1+ —c) "
pi(1+0)((1+1i) —¢)) = p2cy
e = EOAED oy (568)

p2 +pi(1+9)
= (1+14)* - (1 +14)ct = 0.395 (3 s.f.)

~U(q,6) = 1 + 123 In[c}] + i _:5)2 In[c5] = —0.512 (3 s.f.)

(b) Now the budget constraint is 1 = pjve; + pav?cs and the optimisation problem
is

po 1+ —pm(l+i)c

In

max 2L Infe1] +

ee 146 (1 + 5)2 D2
which is also strictly concave and has first order condition
b1 P2p1 —0
(L+0)ei  (1+6)((1+i) —piet)
(L4 0)((L+14) — prey”) = pacy”
14+0)(1
T G ) [ S S (3 s.f)
p2+pi(1+9)
1 —(1+1)c]
= UFD =4I ogg (566
P2
U™, e5f) = b In[e*] + P2 In[c}*] = —0.012 (3 s.f.)
.. 1 %2 1_|_5 1 (1 +5)2 2

(c) Define

_ h D2 I
flc) = In[c] + TEE In[c] — (—0.512)
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C.1.

We wish to find ¢* such that f(c¢*) = 0. By interpolation we find ¢* = 0.603.
So the individual is indifferent between a strategy which uses the risk free asset
only and one which achieves consumption of (¢, ¢3) = (0.603,0.603). This can
be achieved with life insurance using wealth of only 1 x 0.603 The individual

0.988°

would therefore be willing to forego up to % = 38.9% of initial wealth of
1 for an actuarially fair market in life insurance. Equivalently, if life insurance
was priced with loading less than 8222 = 63.8% then the individual could
attain higher utility from purchasing life insurance, than from investing in the

risk-free asset.

Nya has a utility function of the form u(w) = — exp(—aw) and so she chooses
a to maximise E [— exp (—a((1 4+ r)wy + ag))].

Hy( E [—exp (—a((1 + r)wo + ag))]
Hy(a) =Elagexp (—a((1 +r)wy + af))]
( E[ a® g% exp (— ((1+r)w0+o¢gj))}<0
0

Hp(a) = E[—exp (—a((1 +r)wo + oy + €))]

Hi(a) =E[agexp (—a((1+ r)wy + ag + £))]
HY(0) = B [~ exp (—a((1 + r)uo + a + 2))] < 0
Hp(a) = // f=(e) f3(y)a ye~ @ AFnwotavte) gy qe

:/fg(s)e_“a/fg(y)aye—a((1+r)wo+ay)dyd5

— [ £ i) e

If we choose a@ = asxy then the internal integral will be zero, and so the overall
integral is zero. We have shown that the solution is unique because H is
concave in «, so this is unique solution. Lloyd will invest the same (absolute)
amount in the risky asset as Nya, despite the presence of the background risk.

Elf] =0x 55 +4X 156 +8x £ +10 x 15 = 2.2
E[max(O,:l:—fi)]zOX——|—1><——|—5><——|—7>< ==13
Emax(0,Z —6)] =0x ;5 +0X 15 +2 % 55 +4 X 5 = 0.6

The actuarially fair premium is not proportlonal to the inverse of the de-

ductible and so one would not expect a doubling of the deductible to halve
the premium.
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(c)

(d)

Denoting the coinsurance rate ; which gives the same premium as the pre-
mium with deductible d, 83 = £ = 0.591 (3 s.f.) and fs = 3% = 0.273 (3
s.f.).

For loss outcomes (0,4, 8,10) net wealth on purchasing insurance with a de-
ductible of 6 is (9.4,5.4,3.4,3.4) and net wealth on purchasing coinsurance
with level of g is (9.40,6.49,3.58,2.13). Denoting the cdf of final wealth if
deductible is 6 by F' and the cdf of final wealth if coinsurance is fg by G then
the figure of cdfs is as follows:

1 ° —Q—F(w)
-e-G(w)
205/ .
(&)
—o
®©o— - -
G.__.
07 | | | | | \7

0 2 4 6 8
Net wealth w

Define S(w) = [;" G(s) — F(s)ds. Clearly 5(2.13) = 0. Also S(9.4) = 0
since both products have the same mean wealth. Moreover G(s) — F(s) > 0
for s < 3.4 and G(s) — F(s) < 0 for s > 3.4 and so it must be that S(w) is
weakly increasing from 0 from w = 2.13 to w = 3.4, and weakly decreasing to

0 from w = 3.4 to w = 9.4. By continuity of S, S must always be nonnegative
between 2.13 and 9.4.



