S. 4 Insurance and Saving

A.1. (a) Denoting the loss incurred by each member of a pool of size 2 and 3 by \tilde{x} and \tilde{y} respectively the pdf of these binomial random variables are:

$$
\begin{aligned}
\mathbb{P}[\tilde{x}=0] & =(1-p)^{2} \\
\mathbb{P}[\tilde{x}=100 / 2] & =2 p(1-p) \\
\mathbb{P}[\tilde{x}=200 / 2] & =p^{2} \\
\mathbb{P}[\tilde{y}=0] & =(1-p)^{3} \\
\mathbb{P}[\tilde{y}=100 / 3] & =3 p(1-p)^{2} \\
\mathbb{P}[\tilde{y}=200 / 3] & =3 p^{2}(1-p) \\
\mathbb{P}[\tilde{y}=300 / 3] & =p^{3}
\end{aligned}
$$

(b) Let the distribution of $\tilde{\varepsilon}$ conditional on outcomes of \tilde{y} be as follows

$$
\begin{aligned}
(\tilde{\varepsilon} \mid \tilde{y}=0) & =(0,1) \\
(\tilde{\varepsilon} \mid \tilde{y}=100 / 3) & =\left(-\frac{100}{3}, \frac{1}{3} ; \frac{50}{3}, \frac{2}{3}\right) \\
(\tilde{\varepsilon} \mid \tilde{y}=200 / 3) & =\left(-\frac{50}{3}, \frac{2}{3} ; \frac{100}{3}, \frac{1}{3}\right) \\
(\tilde{\varepsilon} \mid \tilde{y}=300 / 3) & =(0,1)
\end{aligned}
$$

Then $\mathbb{E}[\tilde{\varepsilon} \mid \tilde{y}]=0$ for any outcome of \tilde{y}. Moreover, $\tilde{y}+\tilde{\varepsilon}$ has the same three possible outcomes as \tilde{x} and these have the same probabilities:

$$
\begin{aligned}
\mathbb{P}[\tilde{y}+\tilde{\varepsilon}=0] & =\mathbb{P}[\tilde{y}=0 \cap \tilde{\varepsilon}=0]+\mathbb{P}[\tilde{y}=100 / 3 \cap \tilde{\varepsilon}=-100 / 3] \\
& =(1-p)^{3} \times 1+3 p(1-p)^{2} \times \frac{1}{3} \\
& =(1-p)^{2} \times(1-p+p)=(1-p)^{2}=\mathbb{P}[\tilde{x}=0] \\
\mathbb{P}[\tilde{y}+\tilde{\varepsilon}=50] & =\mathbb{P}[\tilde{y}=100 / 3 \cap \tilde{\varepsilon}=50 / 3]+\mathbb{P}[\tilde{y}=200 / 3 \cap \tilde{\varepsilon}=-50 / 3] \\
& =3 p(1-p)^{2} \times \frac{2}{3}+3 p^{2}(1-p) \times \frac{2}{3} \\
& =2 p(1-p)(1-p+p)=2 p(1-p)=\mathbb{P}[\tilde{x}=50] \\
\mathbb{P}[\tilde{y}+\tilde{\varepsilon}=100] & =\mathbb{P}[\tilde{y}=100 \cap \tilde{\varepsilon}=0]+\mathbb{P}[\tilde{y}=200 / 3 \cap \tilde{\varepsilon}=100 / 3] \\
& =p^{3} \times 1+3 p^{2}(1-p) \times \frac{1}{3} \\
& =p^{2}(p+1-p)=p^{2}=\mathbb{P}[\tilde{x}=100]
\end{aligned}
$$

So any risk averse individual with starting wealth w, will prefer a pool with $N=3$ to one with $N=2$.
B.1. The agent's expected utility on wagering w is

$$
\begin{aligned}
f(w) & =p u(X-w+2 w)+(1-p) u(X-w) \\
& =-p e^{-r(X+w)}-(1-p) e^{-r(X-w)}
\end{aligned}
$$

where

$$
\begin{aligned}
f^{\prime}(w) & =r p e^{-r(X+w)}-r(1-p) e^{-r(X-w)} \\
f^{\prime \prime}(w) & =-r^{2} p e^{-r(X+w)}-r^{2}(1-p) e^{-r(X-w)}<0
\end{aligned}
$$

Since f is twice differentiable with $f^{\prime \prime}(w)<0$ for all w, the optimal choice of w, w^{*}, will solve $f^{\prime}\left(w^{*}\right)=0$.

$$
\begin{aligned}
& \quad \quad r p e^{-r\left(X+w^{*}\right)}-r(1-p) e^{-r\left(X-w^{*}\right)}=0 \\
& \therefore \frac{p}{1-p}=e^{r\left(X+w^{*}\right)-r\left(X-w^{*}\right)} \\
& \therefore w^{*}=\frac{1}{2 r} \ln \left(\frac{p}{1-p}\right)
\end{aligned}
$$

B.2. (a) Working in units of $£ 1$ million, the premium is $\frac{1}{4} \times 8 \times(1+0.2)=2.4$.
(b) Denoting the expected utility on choosing coinsurance level β by $f(\beta)$, we have

$$
\begin{aligned}
& f(\beta)=\frac{3}{4} \ln (12-2.4 \beta)+\frac{1}{4} \ln (12-2.4 \beta-8(1-\beta)) \\
& f^{\prime}(\beta)=-\frac{3}{4} \frac{2.4}{12-2.4 \beta}+\frac{1}{4} \frac{5.6}{4+5.6 \beta} \\
& f^{\prime \prime}(\beta)=-\frac{3}{4} \frac{2.4^{2}}{(12-2.4 \beta)^{2}}-\frac{1}{4} \frac{5.6^{2}}{(4+5.6 \beta)^{2}}<0
\end{aligned}
$$

So, f is twice differentiable and strictly concave, and so the optimal β, β^{*} solves $f^{\prime}\left(\beta^{*}\right)=0\left(\right.$ or is at an endpoint $\beta^{*}=0$ or $\left.\beta^{*}=1\right)$:

$$
\begin{aligned}
& \quad-\frac{3}{4} \frac{2.4}{12-2.4 \beta^{*}}+\frac{1}{4} \frac{5.6}{4+5.6 \beta^{*}}=0 \\
& \therefore 7.2\left(4+5.6 \beta^{*}\right)=5.6\left(12-2.4 \beta^{*}\right) \\
& \therefore \beta^{*}=\frac{5.6 \times 12-7.2 \times 4}{7.2 \times 5.6+5.6 \times 2.4}=\frac{38.4}{53.76}=0.714 \text { (3 s.f.) }
\end{aligned}
$$

Since this $\beta^{*} \in[0,1]$ and f is concave, the optimal solution will be β^{*}, not 0 or 1. (We will confirm this in the next part of the question.)
(c)

$$
\begin{aligned}
f(0) & =\frac{3}{4} \ln (12)+\frac{1}{4} \ln (4)=2.210(4 \text { s.f. }) \\
f\left(\beta^{*}\right) & =\frac{3}{4} \ln \left(12-2.4 \frac{38.4}{53.76}\right)+\frac{1}{4} \ln \left(4+5.6 \frac{38.4}{53.76}\right)=2.268 \text { (4 s.f.) } \\
f(1) & =\ln (12-2.4)=2.262(4 \text { s.f. })
\end{aligned}
$$

(d) Full insurance $\left(\beta^{*}=1\right)$ is optimal if loading is zero (Mossin's Theorem).
B.3. For the standard portfolio problem let the utility function be u, satisfying $u^{\prime}>0$, $u^{\prime \prime}<0$, and initial wealth be w_{0}. Since the risk free (risky) investment earns return zero (\tilde{x}) an investment in the risky asset of α leads to realised wealth of $w_{0}+\alpha \tilde{x}$ and expected utility, $f(\alpha)$, of:

$$
f(\alpha):=\mathbb{E}\left[u\left(w_{0}+\alpha \tilde{x}\right)\right]
$$

f is strictly concave and so the unique optimal α^{*} is the solution to the first order condition

$$
f^{\prime}\left(\alpha^{*}\right)=\mathbb{E}\left[\tilde{x} u^{\prime}\left(w_{0}+\alpha^{*} \tilde{x}\right)\right]=0 .
$$

(a) Now, let $\tilde{y}:=(\tilde{x}, q ; 0,1-q)$, and let β denote the optimal amount of (new) asset \tilde{y} to purchase. The new first order condition is

$$
\mathbb{E}_{\tilde{y}}\left[\tilde{y} u^{\prime}\left(w_{0}+\beta^{*} \tilde{y}\right)\right]=0
$$

Applying the law of total expectation $\left(\mathbb{E}_{Y}(Y)=\mathbb{E}_{X}\left(\mathbb{E}_{Y}(Y \mid X)\right)\right.$ we find

$$
\begin{aligned}
\mathbb{E}_{\tilde{y}}\left[\tilde{y} u^{\prime}\left(w_{0}+\beta^{*} \tilde{y}\right)\right] & =\mathbb{E}_{\tilde{x}}\left[\mathbb{E}_{\tilde{y}}\left[\tilde{y} u^{\prime}\left(w_{0}+\beta^{*} \tilde{y}\right) \mid \tilde{x}\right]\right] \\
& =\mathbb{E}_{\tilde{\tilde{x}}}\left[q \tilde{x} u^{\prime}\left(w_{0}+\beta^{*} \tilde{x}\right)+(1-q) \times 0\right] \\
& =q \mathbb{E}_{\tilde{x}}\left[\tilde{x} u^{\prime}\left(w_{0}+\beta^{*} \tilde{x}\right)\right]
\end{aligned}
$$

Now the unique solution to this is $\beta^{*}=\alpha^{*}$, that is you purchase the same amount of the risky asset as you would have in the original problem. Note that this comes from the Independence Axiom: you prefer $w_{0}+\alpha^{*} \tilde{x}$ to any other $w_{0}+\alpha \tilde{x}$ and therefore prefer any stochastic mix of $w_{0}+\alpha^{*} \tilde{x}$ and the risk-free asset to any stochastic mix of $w_{0}+\alpha \tilde{x}$ and the risk-free asset, and so α^{*} is the optimal amount to purchase in both problems.
(b) Let $\tilde{z}:=q \tilde{x}$, and let γ denote the optimal amount of (new) asset \tilde{z} to purchase. The new first order condition is

$$
\begin{aligned}
& \mathbb{E}_{\tilde{z}}\left[\tilde{z} u^{\prime}\left(w_{0}+\gamma^{*} \tilde{z}\right)\right]=0 \\
\therefore & \mathbb{E}_{\tilde{x}}\left[q \tilde{x} u^{\prime}\left(w_{0}+\gamma^{*} q \tilde{x}\right)\right]=0
\end{aligned}
$$

From the definition of α^{*}, we have $\gamma^{*} q=\alpha^{*}$, and therefore $\gamma^{*}=\frac{\alpha^{*}}{q}$.
B.4. The question did not specify whether α can be negative, or whether the expected excess return from the risky asset was positive. We don't impose any restrictions in this solution.
(a) Let w_{0} denote initial wealth and α denote the demand for the risky asset. The optimisation problem is

$$
\max _{\alpha} p \ln \left(w_{0}(1+r)-\alpha(r-a)\right)+(1-p) \ln \left(w_{0}(1+r)+\alpha(b-r)\right)
$$

This is strictly concave in α and so the optimal choice of α, α^{*} satisfies first order condition

$$
\begin{aligned}
& -\frac{p(r-a)}{w_{0}(1+r)-\alpha^{*}(r-a)}+\frac{(1-p)(b-r)}{w_{0}(1+r)+\alpha^{*}(b-r)}=0 \\
\therefore & p(r-a)\left(w_{0}(1+r)+\alpha^{*}(b-r)\right)=(1-p)(b-r)\left(w_{0}(1+r)-\alpha^{*}(r-a)\right) \\
\therefore & \alpha^{*}[p(r-a)(b-r)+(1-p)(r-a)(b-r)]=w_{0}(1+r)[(1-p)(b-r)-p(r-a)] \\
\therefore & \alpha^{*}=w_{0}(1+r)\left[\frac{1-p}{r-a}-\frac{p}{b-r}\right] \\
& =w_{0}(1+r)\left[\frac{(1-p)(b-r)+p(a-r)}{(r-a)(b-r)}\right]
\end{aligned}
$$

(Note that α^{*} is the same sign as the excess expected return of the risky asset over the risk-free asset.)
(b) Yes, for $a<r<b$.
(c)

$$
\frac{d \alpha^{*}}{d w_{0}}=\frac{\alpha^{*}}{w_{0}}
$$

So a small increase in initial wealth increases the magnitude of α^{*}; if α^{*} is positive it becomes more positive, if α^{*} is negative it becomes more negative.
(d)

$$
\frac{d \alpha^{*}}{d r}=\frac{\alpha^{*}}{1+r}-w_{0}(1+r)\left[\frac{1-p}{(r-a)^{2}}+\frac{p}{(b-r)^{2}}\right]
$$

An increase in the risk free rate of return has two effects on the optimal choice of α. First there is a 'wealth' effect of $\frac{\alpha^{*}}{1+r}$, whereby by increasing the riskfree rate of return effectively increases the ex-post wealth of the individual, increasing the magnitude of α. Second by making the risky asset relatively less attractive it reduces α.
(e)

$$
\begin{aligned}
\frac{d \alpha^{*}}{d a} & =w_{0}(1+r) \frac{1-p}{(r-a)^{2}} \geq 0 \\
\frac{d \alpha^{*}}{d b} & =w_{0}(1+r) \frac{p}{(b-r)^{2}} \geq 0
\end{aligned}
$$

An increase (decrease) in a or b leads to a first order stochastic dominant improvement (deterioration) in the returns from the risky asset, thereby increasing (decreasing) optimal demand.
(f) Let $c:=(1-p)(b-r)+p(a-r)$ and so $r-a=\frac{(1-p)(b-r)-c}{p}$. Then

$$
\alpha^{*}=w_{0}(1+r)\left[\frac{p}{b-r-\frac{c}{1-p}}-\frac{p}{b-r}\right]
$$

Differentiating α^{*} with respect to b whilst holding expected excess return c constant gives

$$
\frac{\partial \alpha^{*}}{\partial b}=w_{0}(1+r) p\left[-\frac{1}{\left(b-r-\frac{c}{1-p}\right)^{2}}+\frac{1}{(b-r)^{2}}\right]
$$

Since $b-r>0$ and $r-a>0$, and therefore $b-r-\frac{c}{1-p}>0$ we have $\frac{\partial \alpha^{*}}{\partial b}$ has the opposite sign to c, and therefore the opposite sign to α^{*}. So an increase in b whilst holding the expected excess return of the risky asset constant reduces the magnitude of α^{*}.
B.5. (a) The budget constraint is $1=v c_{1}+v^{2} c_{2}$ and so, substituting the budget constraint into the objective function, Sally's optimisation problem may be written as

$$
\max _{c_{1}} \frac{p_{1}}{1+\delta} \ln \left[c_{1}\right]+\frac{p_{2}}{(1+\delta)^{2}} \ln \left[(1+i)^{2}-(1+i) c_{1}\right]
$$

This is strictly concave in c_{1} and so the optimal c_{1} satisfies

$$
\begin{aligned}
& \frac{p_{1}}{(1+\delta) c_{1}^{*}}-\frac{p_{2}}{(1+\delta)^{2}\left((1+i)-c_{1}^{*}\right)}=0 \\
& \therefore p_{1}(1+\delta)\left((1+i)-c_{1}^{*}\right)=p_{2} c_{1}^{*} \\
& \therefore c_{1}^{*}=\frac{p_{1}(1+\delta)(1+i)}{p_{2}+p_{1}(1+\delta)}=0.741(3 \text { s.f. }) \\
& c_{2}^{*}=(1+i)^{2}-(1+i) c_{1}^{*}=0.395(3 \text { s.f. }) \\
& \therefore U\left(c_{1}^{*}, c_{2}^{*}\right)=\frac{p_{1}}{1+\delta} \ln \left[c_{1}^{*}\right]+\frac{p_{2}}{(1+\delta)^{2}} \ln \left[c_{2}^{*}\right]=-0.512(3 \text { s.f. })
\end{aligned}
$$

(b) Now the budget constraint is $1=p_{1} v c_{1}+p_{2} v^{2} c_{2}$ and the optimisation problem is

$$
\max _{c_{1}} \frac{p_{1}}{1+\delta} \ln \left[c_{1}\right]+\frac{p_{2}}{(1+\delta)^{2}} \ln \left[\frac{(1+i)^{2}-p_{1}(1+i) c_{1}}{p_{2}}\right]
$$

which is also strictly concave and has first order condition

$$
\begin{aligned}
& \quad \frac{p_{1}}{(1+\delta) c_{1}^{* *}}-\frac{p_{2} p_{1}}{(1+\delta)^{2}\left((1+i)-p_{1} c_{1}^{* *}\right)}=0 \\
& \therefore(1+\delta)\left((1+i)-p_{1} c_{1}^{* *}\right)=p_{2} c_{1}^{* *} \\
& \therefore c_{1}^{* *}=\frac{(1+\delta)(1+i)}{p_{2}+p_{1}(1+\delta)}=0.988 \text { (3 s.f.) } \\
& c_{2}^{* *}=\frac{(1+i)^{2}-(1+i) c_{1}^{*}}{p_{2}}=0.988(3 \text { s.f. }) \\
& \therefore U\left(c_{1}^{* *}, c_{2}^{* *}\right)=\frac{p_{1}}{1+\delta} \ln \left[c_{1}^{* *}\right]+\frac{p_{2}}{(1+\delta)^{2}} \ln \left[c_{2}^{* *}\right]=-0.012(3 \text { s.f. })
\end{aligned}
$$

(c) Define

$$
f(c)=\frac{p_{1}}{1+\delta} \ln [c]+\frac{p_{2}}{(1+\delta)^{2}} \ln [c]-(-0.512)
$$

We wish to find c^{*} such that $f\left(c^{*}\right)=0$. By interpolation we find $c^{*}=0.603$. So the individual is indifferent between a strategy which uses the risk free asset only and one which achieves consumption of $\left(c_{1}, c_{2}\right)=(0.603,0.603)$. This can be achieved with life insurance using wealth of only $1 \times \frac{0.603}{0.988}$. The individual would therefore be willing to forego up to $\frac{0.988-0.603}{0.988}=38.9 \%$ of initial wealth of 1 for an actuarially fair market in life insurance. Equivalently, if life insurance was priced with loading less than $\frac{0.988}{0.603}-1=63.8 \%$ then the individual could attain higher utility from purchasing life insurance, than from investing in the risk-free asset.
C.1. (a) Nya has a utility function of the form $u(w)=-\exp (-a w)$ and so she chooses α to maximise $\mathbb{E}\left[-\exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}\right)\right)\right]$.

$$
\begin{aligned}
H_{N}(\alpha) & =\mathbb{E}\left[-\exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}\right)\right)\right] \\
H_{N}^{\prime}(\alpha) & =\mathbb{E}\left[a \tilde{y} \exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}\right)\right)\right] \\
H_{N}^{\prime \prime}(\alpha) & =\mathbb{E}\left[-a^{2} \tilde{y}^{2} \exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}\right)\right)\right]<0 \\
H_{N}^{\prime}\left(\alpha_{N}^{*}=\frac{w_{0}}{2}\right) & =0
\end{aligned}
$$

Now we repeat for Lloyd with the presence of the background risk

$$
\begin{aligned}
H_{L}(\alpha) & =\mathbb{E}\left[-\exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}+\tilde{\varepsilon}\right)\right)\right] \\
H_{L}^{\prime}(\alpha) & =\mathbb{E}\left[a \tilde{y} \exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}+\tilde{\varepsilon}\right)\right)\right] \\
H_{L}^{\prime \prime}(\alpha) & =\mathbb{E}\left[-a^{2} \tilde{y}^{2} \exp \left(-a\left((1+r) w_{0}+\alpha \tilde{y}+\tilde{\varepsilon}\right)\right)\right]<0 \\
H_{L}^{\prime}(\alpha) & =\iint f_{\tilde{\varepsilon}}(\varepsilon) f_{\tilde{y}}(y) a y e^{-a\left((1+r) w_{0}+\alpha y+\varepsilon\right)} \mathrm{d} y \mathrm{~d} \varepsilon \\
& =\int f_{\tilde{\varepsilon}}(\varepsilon) e^{-a \varepsilon} \int f_{\tilde{y}}(y) a y e^{-a\left((1+r) w_{0}+\alpha y\right)} \mathrm{d} y \mathrm{~d} \varepsilon \\
& =\int f_{\tilde{\varepsilon}}(\varepsilon) e^{-a \varepsilon} H_{N}^{\prime}(\alpha) \mathrm{d} \varepsilon
\end{aligned}
$$

If we choose $\alpha=\alpha *_{N}$ then the internal integral will be zero, and so the overall integral is zero. We have shown that the solution is unique because H is concave in α, so this is unique solution. Lloyd will invest the same (absolute) amount in the risky asset as Nya, despite the presence of the background risk.
C.2. (a) $\mathbb{E}[\tilde{x}]=0 \times \frac{7}{10}+4 \times \frac{1}{10}+8 \times \frac{1}{10}+10 \times \frac{1}{10}=2.2$
(b) $\mathbb{E}[\max (0, \tilde{x}-3)]=0 \times \frac{7}{10}+1 \times \frac{1}{10}+5 \times \frac{1}{10}+7 \times \frac{1}{10}=1.3$
$\mathbb{E}[\max (0, \tilde{x}-6)]=0 \times \frac{7}{10}+0 \times \frac{1}{10}+2 \times \frac{1}{10}+4 \times \frac{1}{10}=0.6$
The actuarially fair premium is not proportional to the inverse of the deductible and so one would not expect a doubling of the deductible to halve the premium.
(c) Denoting the coinsurance rate β_{d} which gives the same premium as the premium with deductible d, $\beta_{3}=\frac{1.3}{2.2}=0.591$ (3 s.f.) and $\beta_{6}=\frac{0.6}{2.2}=0.273$ (3 s.f.).
(d) For loss outcomes $(0,4,8,10)$ net wealth on purchasing insurance with a deductible of 6 is $(9.4,5.4,3.4,3.4)$ and net wealth on purchasing coinsurance with level of β_{6} is $(9.40,6.49,3.58,2.13)$. Denoting the cdf of final wealth if deductible is 6 by F and the cdf of final wealth if coinsurance is β_{6} by G then the figure of cdfs is as follows:

Define $S(w):=\int_{0}^{w} G(s)-F(s) d s$. Clearly $S(2.13)=0$. Also $S(9.4)=0$ since both products have the same mean wealth. Moreover $G(s)-F(s) \geq 0$ for $s<3.4$ and $G(s)-F(s) \leq 0$ for $s \geq 3.4$ and so it must be that $S(w)$ is weakly increasing from 0 from $w=2.13$ to $w=3.4$, and weakly decreasing to 0 from $w=3.4$ to $w=9.4$. By continuity of S, S must always be nonnegative between 2.13 and 9.4.

