S. 3 Utility and Risk

A.1. (a) Denoting $A R A(w)$ as the absolute level of risk aversion at wealth w,

$$
A R A(w)=-\frac{u^{\prime \prime}(w)}{u^{\prime}(w)}=\frac{a \exp (-a w)}{\exp (-a w)}=a
$$

(b) $\lim _{a \rightarrow 0} u^{\prime}(w)=\lim _{a \rightarrow 0} \exp (-a w)=1$
(c) $\lim _{a \rightarrow \infty} \mathbb{E} u(\tilde{x})=\lim _{a \rightarrow \infty} \sum_{x \geq 0}\left[p_{x} \frac{1-\exp (-a x)}{a}\right]+\sum_{x<0}\left[p_{x} \frac{1-\exp (-a x)}{a}\right]=-\infty$ since lottery x includes negative payoffs.
A.2. (a) Denoting the risk premium of the lottery by π,

$$
u(4-\pi)=(4-\pi)^{2}=\frac{1}{2} 2^{2}+\frac{1}{2} 6^{2}=20
$$

$\therefore \pi=4-\sqrt{20}=-0.472$. The risk premium is negative because the utility function is convex over the range of interest ($u^{\prime \prime}=2>0$), and therefore the decision maker is willing to pay to take on a zero mean risk ('risk loving').
(b) Denoting the new risk premium of the lottery by π^{\prime},

$$
v\left(4-\pi^{\prime}\right)=\left(4-\pi^{\prime}\right)^{4}=\frac{1}{2} 2^{4}+\frac{1}{2} 6^{4}=656
$$

$\therefore \pi^{\prime}=4-\sqrt[4]{656}=-1.061$, i.e. the risk premium decreases (or equivalently the decision maker is willing to pay a higher price to take on the zero mean risk). $v(w)=f(u(w))$ where $f(u)=u^{2}$, a convex function $\left(f^{\prime \prime}(u)>0\right)$.
A.3. $A(w):=-\frac{u^{\prime \prime}(w)}{u^{\prime}(w)}=-\frac{d}{d w} \ln u^{\prime}(w)$. Integrating over $\left[z_{0}, z\right]$ gives $\int_{z_{0}}^{z} A(w) d w:=$ $-\ln \left(u^{\prime}(z)\right)+\ln \left(u^{\prime}\left(z_{0}\right)\right)$, and so $u^{\prime}(z)=u^{\prime}\left(z_{0}\right) \exp \left\{-\int_{z_{0}}^{z} A(w) d w\right\}$, which can be rewritten in the desired form.
B.1. (a) $\mathbb{E}[\tilde{y}]=\int_{0}^{1} \lambda y^{\lambda-1} y d y=\left[\frac{\lambda}{\lambda+1} y^{\lambda+1}\right]_{0}^{1}=\frac{\lambda}{\lambda+1}$
$\mathbb{E}\left[\tilde{y}^{2}\right]=\int_{0}^{1} \lambda y^{\lambda-1} y^{2} d y=\left[\frac{\lambda}{\lambda+2} y^{\lambda+2}\right]_{0}^{1}=\frac{\lambda}{\lambda+2}$
$\therefore \operatorname{Var}[\tilde{y}]=\frac{\lambda}{\lambda+2}-\left[\frac{\lambda}{\lambda+1}\right]^{2}$
(b) $\mathbb{P}[\tilde{y} \geq 0.5]=\int_{0.5}^{1} \lambda y^{\lambda-1} d y=\left[y^{\lambda}\right]_{0.5}^{1}=1-0.5^{\lambda}$
(c) $u^{\prime}(y)=(1-r) y^{-r} . u^{\prime \prime}(y)=-r(1-r) y^{-r-1}$ which is strictly negative for $r \in(0,1)$ and so the consumer is strictly risk averse.

$$
\begin{aligned}
& \mathbb{E} u(\tilde{y})=\int_{0}^{1} \lambda y^{\lambda-1} y^{1-r} d y=\left[\frac{\lambda}{\lambda-r+1} y^{\lambda-r+1}\right]_{0}^{1}=\frac{\lambda}{\lambda-r+1} \\
& u(\mathbb{E}(\tilde{y}))=\left(\frac{\lambda}{\lambda+1}\right)^{1-r}
\end{aligned}
$$

Consider

$$
\begin{aligned}
\ln \left[\frac{u(\mathbb{E}(\tilde{y}))}{\mathbb{E}(u(\tilde{y}))}\right] & =\ln \left[\left(\frac{\lambda}{\lambda+1}\right)^{1-r} \times \frac{\lambda-r+1}{\lambda}\right] \\
& =(1-r) \ln \left[\frac{\lambda}{\lambda+1}\right]+\ln \left[\frac{\lambda-r+1}{\lambda}\right] \\
\left.\ln \left[\frac{u(\mathbb{E}(\tilde{y}))}{\mathbb{E}(u(\tilde{y}))}\right]\right|_{r=0} & =0 \\
\left.\ln \left[\frac{u(\mathbb{E}(\tilde{y}))}{\mathbb{E}(u(\tilde{y}))}\right]\right|_{r=1} & =0 \\
\frac{d^{2}}{d r^{2}} \ln \left[\frac{u(\mathbb{E}(\tilde{y}))}{\mathbb{E}(u(\tilde{y}))}\right] & =-\frac{1}{(\lambda-r+1)^{2}}<0
\end{aligned}
$$

So $\ln \left[\frac{u(\mathbb{E}(\tilde{y}))}{\mathbb{E}(u(\tilde{y}))}\right]$ is strictly concave and takes the value 0 at $r=0$ and $r=1$. We must therefore have that $u(\mathbb{E}(\tilde{y}))>\mathbb{E}(u(\tilde{y}))$ for $0<r<1$.
B.2. Y_{i} are i.i.d. with mean μ and variance σ^{2}, so $\sum_{i=1}^{n} Y_{i}$ has mean $n \mu$ and variance $n \sigma^{2}$.
(a) Total premiums $=n A=n \mu+10 \sigma \sqrt{n}$. The probability that claims exceed premiums is

$$
\mathbb{P}\left(\sum Y_{i}>n A\right)=\mathbb{P}\left(\sum Y_{i}-\mathbb{E} \sum Y_{i}>10 \sigma \sqrt{n}\right) \leq \frac{\operatorname{Var}\left(\sum Y_{i}\right)}{100 \sigma^{2} n}=1 / 100
$$

using Chebyshev's inequality.
(b) As above, the probability that claims exceed premiums is

$$
\mathbb{P}\left(\sum Y_{i}-\mathbb{E} \sum Y_{i}>3 \sigma \sqrt{n}\right) .
$$

By the CLT for the i.i.d. variables Y_{i}, this probability tends to $\mathbb{P}(Z>3)$ as $n \rightarrow \infty$, where Z has a standard normal distribution. From the table, the probability on the RHS is 0.00135 , so for large n the probability that claims exceed premiums is less than 0.01 as required.
B.3. (a) Denoting the certainty equivalent and risk premium of x by $C E_{x}$ and $R P_{x}$ respectively,

$$
u\left(10-R P_{x}\right)=u\left(10+C E_{x}\right)=\left(10+C E_{x}\right)^{1 / 2}=\mathbb{E} u(10+\tilde{x})=\frac{1}{2} u(4)+\frac{1}{2} u(16)=3
$$

$\therefore C E_{x}=9-10=-1$ and $R P_{x}=+1$.
(b) The Arrow-Pratt approximation of the risk premium

$$
\hat{R P_{x}}=\frac{1}{2} \mathbb{E} \tilde{x}^{2} A R A(10)=\frac{1}{2} \times 36 \times \frac{\frac{1}{4} 10^{-3 / 2}}{\frac{1}{2} 10^{-1 / 2}}=\frac{36}{40}=0.9
$$

(c) $A R A(w)=-\frac{u^{\prime}(w)}{u^{\prime \prime}(w)}=\frac{\frac{1}{4} w^{-3 / 2}}{\frac{1}{2} w^{-1 / 2}}=\frac{1}{2 w}$ which is positive and decreasing with w. $R R A(w)=-w \frac{u^{\prime}(w)}{u^{\prime \prime}(w)}=\frac{1}{2}$ which is constant.
(d) Denoting the certainty equivalent and risk premium of x by $C E_{x}$ and $R P_{x}$ respectively,

$$
\begin{aligned}
v\left(10-R P_{x}\right) & =v\left(10+C E_{x}\right)=\left(10+C E_{x}\right)^{1 / 4}=\mathbb{E} v(10+\tilde{x}) \\
& =\frac{1}{2} v(4)+\frac{1}{2} v(16)=\frac{1}{\sqrt{2}}+1=1.707(4 \mathrm{sf})
\end{aligned}
$$

$\therefore C E_{x}=1.707^{4}-10=-1.507$ and $R P_{x}=+1.507$. The risk premium has increased substantially. Note that $w^{1 / 4}$ is a concave transformation of $w^{1 / 2}$ and so v is more risk averse than u in the sense of Arrow-Pratt.
(e) The Arrow-Pratt approximation of the risk premium

$$
\hat{R P_{x}}=\frac{1}{2} \mathbb{E} \tilde{y}^{2} A R A(10)=\frac{1}{2} \times 9 \times \frac{\frac{1}{4} 10^{-3 / 2}}{\frac{1}{2} 10^{-1 / 2}}=\frac{9}{40}=\frac{0.9}{4}
$$

The risk premium is proportional to the squared magnitude of the risk, which has decreased by a factor of 4 since the magnitude of the risk has decreased by a factor of 2 .
B.4. If the decision maker has preferences that satisfy constant relative risk aversion then preferences can be represented by a utility function $u(w)=\frac{w^{1-\gamma}}{1-\gamma}$ for some $\gamma \in \mathbb{R}$ (or $\ln (w)$ for the case of $\gamma=1$).
Utility of certain wealth w is $\frac{w^{1-\gamma}}{1-\gamma}$ and expected utility of lottery $w(1+\tilde{x})$ is

$$
\begin{aligned}
\mathbb{E}[u(w(1+\tilde{x}))] & =\mathbb{E}_{\tilde{x}}\left[\frac{[w(1+\tilde{x})]^{1-\gamma}}{1-\gamma}\right] \\
& =\frac{w^{1-\gamma}}{1-\gamma} \times \mathbb{E}_{\tilde{x}}\left[(1+\tilde{x})^{1-\gamma}\right]
\end{aligned}
$$

and so the lottery will be (strictly) preferred to certain wealth iff $\mathbb{E}\left[(1+\tilde{x})^{1-\gamma}\right] \geq$ $(>) 1$. This condition does not depend on w.
Similarly, for logarithmic utility function $u(w)=\ln (w), \mathbb{E}[u(w(1+\tilde{x}))]=\ln (w)+$ $\mathbb{E}[\ln (1+\tilde{x})]$ which is (strictly) greater than $\ln (w)$ iff $\mathbb{E}[\ln (1+\tilde{x})] \geq(>) 0$. Again, this condition does not depend on w.
B.5. (a) See the following figure

(b) Both distributions have support on the interval $[-1,1]$. We have

$$
\begin{gathered}
\int_{-1}^{\theta} F_{\tilde{x}}(z) d z=\int_{-1}^{\theta} \frac{z+1}{2} d z=\left[\frac{z^{2}}{4}+\frac{z}{2}\right]_{-1}^{\theta}=\frac{\theta^{2}}{4}+\frac{\theta}{2}+\frac{1}{4} \\
\int_{-1}^{\theta} F_{\tilde{y}}(z) d z=\int_{-1}^{\theta} \frac{1}{2} d z=\left[\frac{z}{2}\right]_{-1}^{\theta}=\frac{\theta}{2}+\frac{1}{2} \\
\therefore \int_{-1}^{\theta} F_{\tilde{y}}(z)-F_{\tilde{x}}(z) d z=\frac{1-\theta^{2}}{4}\left\{\begin{array}{l}
=0 \text { for } \theta=1 \\
\geq 0 \text { for } \theta \in[-1,1)
\end{array}\right.
\end{gathered}
$$

\tilde{x} therefore second order stochastically dominates \tilde{y}, and so \tilde{y} is said to be riskier than \tilde{x}.
(c) For each outcome x of \tilde{x} add a zero mean noise $\tilde{\varepsilon}_{x}:=\left\{1-x, \frac{1+x}{2} ;-(1+x), \frac{1-x}{2}\right\}$. Conditional on any x, there are two potential outcomes, $x+1-x=+1$ and $x-(1+x)=-1$, and $\mathbb{E}\left[\tilde{\varepsilon}_{x}\right]=0$. By symmetry, and over all possible outcomes of x, these two outcomes of $\tilde{x}+\tilde{\varepsilon}$ have equal probability of $\frac{1}{2}$, where conditional on \tilde{x}, $\tilde{\varepsilon}$ has distribution $\tilde{\varepsilon}_{x}$, and so $\tilde{x}+\tilde{\varepsilon} \sim\left(-1, \frac{1}{2} ;+1, \frac{1}{2}\right)$, which is the distribution of \tilde{y}.
B.6. Let $\tilde{A}=\left(80, \frac{1}{4} ; 100, \frac{1}{4} ; 120, \frac{1}{4} ; 140, \frac{1}{4}\right), \tilde{B}=\left(90, \frac{1}{2} ; 130, \frac{1}{2}\right)$ and $\tilde{\varepsilon}=\left(+10, \frac{1}{2} ;-10, \frac{1}{2}\right)$, and \tilde{B} and $\tilde{\varepsilon}$ independent. Then $\tilde{B}+\tilde{\varepsilon} \sim \tilde{A}$. Conditional on each outcome of \tilde{B}, $\tilde{\varepsilon}$ has zero mean. Therefore by the Rothschild-Stiglitz Theorem, Project B SSD Project A.
B.7. (a) Since $g(x)$ is a probability density function with support [0,1$]$, we must have

$$
\int_{0}^{1} g(x) d x=1 \Rightarrow c \int_{0}^{1} x^{2}-x+\frac{1}{4} d x=c\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x}{4}\right]_{0}^{1}=\frac{c}{12}=1
$$

and so $c=12$.
$\int_{0}^{1} x g(x) d x=12 \int_{0}^{1} x^{3}-x^{2}+\frac{x}{4} d x=12\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}+\frac{x^{2}}{8}\right]_{0}^{1}=12\left(\frac{6}{24}-\frac{8}{24}+\frac{3}{24}\right)=\frac{1}{2}$
This shows that the mean of L_{b} is equal to the mean of L_{a}.
Defining the interval $I:=\left[\frac{1}{2}-\sqrt{1 / 12}, \frac{1}{2}+\sqrt{1 / 12}\right]$ and denoting the pdf of L_{a} as f, we therefore have $g(x) \geq f(x)$ for $x \in[0,1] \backslash I$ (the set $[0,1]$ excluding elements in I), and $g(x) \leq f(x)$ for $x \in I$. Distribution $g(x)$ can be obtained from distribution $f(x)$ by moving some probability mass from the interval I to outside of I without changing the mean, and so L_{b} is a mean-preserving spread of L_{a}.
(b) No. The cdf of lottery L_{a} is $F(x)=x, x \in[0,1]$ and the cdf of lottery L_{b} is

$$
G(x)=\int_{0}^{x} g(z) d z=12\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x}{4}\right]
$$

$G(1 / 4)=0.4375>0.25=F(1 / 4)$ and $G(3 / 4)=0.5625<0.75=F(3 / 4)$.
Therefore neither $G(x) \geq F(x) \forall x \in[0,1]$ nor $G(x) \leq F(x) \forall x \in[0,1]$.
C.1. We are required to calculate the risk premium $\pi\left(w_{0}, u, \tilde{y}\right)$ when $u(w)=-\exp \{-A w\}$ and $\tilde{y} \sim N\left(0, \sigma^{2}\right)$. We have

$$
\begin{aligned}
u\left(w_{0}-\pi\right) & =-\exp \left\{-A\left(w_{0}-\pi\right)\right\} \\
& =-\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{y^{2}}{2 \sigma^{2}}\right\} \exp \left\{-A\left(w_{0}+y\right)\right\} d y \\
& =-\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{y^{2}+2 \sigma^{2} A\left(w_{0}+y\right)}{2 \sigma^{2}}\right\} d y \\
& =-\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y+\sigma^{2} A\right)^{2}}{2 \sigma^{2}}\right\} \exp \left\{-A w_{0}+\frac{1}{2} \sigma^{2} A^{2}\right\} d y \\
& =-\exp \left\{-A w_{0}+\frac{1}{2} \sigma^{2} A^{2}\right\} \\
\therefore \pi & =\frac{1}{2} \sigma^{2} A
\end{aligned}
$$

Since \tilde{y} has zero mean, $\mathbb{E}\left[y^{2}\right]=\sigma^{2}$, and since u satisfies CARA, $A\left(w_{0}\right)=A$, and so we have the required result.
C. 2 Let \tilde{y} denote the distribution of final wealth under the perfect diversification strategy. Now under any alternative feasible strategy $A=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we have

$$
\sum_{i=1}^{n} \alpha_{i} \tilde{x}_{i}=\tilde{y}+\sum_{i=1}^{n}\left(\alpha_{i}-\frac{1}{n}\right) \tilde{x}_{i}
$$

From the Rothschild-Stiglitz theorem we are done if we can show that $\sum_{i=1}^{n}\left(\alpha_{i}-\frac{1}{n}\right) \tilde{x}_{i}$ has a zero mean conditional on \tilde{y}. Now, by joint independence of \tilde{x}_{i} and symmetry of $\tilde{y}, \mathbb{E}\left[\tilde{x}_{i} \mid \tilde{y}\right]$ is independent of i. We may denote it k. Then, we have

$$
\begin{aligned}
\mathbb{E}\left[\left.\sum_{i=1}^{n}\left(\alpha_{i}-\frac{1}{n}\right) \tilde{x}_{i} \right\rvert\, \tilde{y}\right] & =\sum_{i=1}^{n}\left(\alpha_{i}-\frac{1}{n}\right) \mathbb{E}\left[\tilde{x}_{i} \mid \tilde{y}\right] \\
& =k \sum_{i=1}^{n}\left(\alpha_{i}-\frac{1}{n}\right)=0
\end{aligned}
$$

This proves that the alternative strategy is second order stochastically dominated by the perfect diversification strategy.
C.3. (a) u is piecewise linear with gradient $u^{\prime}(z)=1$ for $z<z_{0}$ and $u^{\prime}(z)=a<1$ for $z>z_{0}$. We must show that for any $z, z^{\prime} \in \mathbb{R}, \lambda \in[0,1]$,

$$
\lambda u(z)+(1-\lambda) u\left(z^{\prime}\right) \leq u\left(\lambda z+(1-\lambda) z^{\prime}\right)
$$

If $z, z^{\prime} \geq z_{0}$ or $z, z^{\prime} \leq z_{0}$ then this weak inequality is satisfied with equality since u is linear between z and z^{\prime}. If $z \leq z_{0}$ and $z^{\prime} \geq z_{0}$ then from the definition of u,

$$
\lambda u(z)+(1-\lambda) u\left(z^{\prime}\right)=\lambda z+(1-\lambda) a z^{\prime}+(1-\lambda)(1-a) z_{0}
$$

There are two cases. For $\lambda z+(1-\lambda) z^{\prime} \leq z_{0}$,

$$
\begin{aligned}
u\left(\lambda z+(1-\lambda) z^{\prime}\right) & =\lambda z+(1-\lambda) z^{\prime} \\
\therefore \lambda u(z)+(1-\lambda) u\left(z^{\prime}\right)-u\left(\lambda z+(1-\lambda) z^{\prime}\right) & =(1-a)(1-\lambda)\left(z_{0}-z^{\prime}\right) \leq 0
\end{aligned}
$$

since $z^{\prime} \geq z_{0}$ by assumption, and in the second case, $\lambda z+(1-\lambda) z^{\prime} \geq z_{0}$,

$$
\begin{aligned}
u\left(\lambda z+(1-\lambda) z^{\prime}\right) & =(1-a) z_{0}+a\left(\lambda z+(1-\lambda) z^{\prime}\right) \\
\therefore \lambda u(z)+(1-\lambda) u\left(z^{\prime}\right)-u\left(\lambda z+(1-\lambda) z^{\prime}\right) & =(1-a) \lambda\left(z-z_{0}\right) \leq 0
\end{aligned}
$$

since $z \leq z_{0}$ by assumption.
(b) Denoting the cdf of \tilde{x} as $F(x)$, where $\mathbb{E}[\tilde{x}]=0$, the risk premium $\pi\left(z_{0}, u, k \tilde{x}\right)$ is nonnegative since u is concave, and therefore satisfies

$$
\begin{aligned}
u\left(z_{0}-\pi\right) & =z_{0}-\pi=\mathbb{E}\left[u\left(z_{0}+k \tilde{x}\right)\right] \\
& =\int_{-\infty}^{0}\left(z_{0}+k x\right) d F(x)+\int_{0}^{\infty}\left((1-a) z_{0}+a\left(z_{0}+k x\right)\right) d F(x) \\
& =z_{0}+k\left[\int_{-\infty}^{0} x d F(x)+a \int_{0}^{\infty} x d F(x)\right] \\
& =z_{0}+k\left[\mathbb{E}[\tilde{x}]-(1-a) \int_{0}^{\infty} x d F(x)\right] \\
& =z_{0}-k(1-a) \int_{0}^{\infty} x d F(x) \\
\therefore \pi\left(z_{0}, u, k \tilde{x}\right) & =k(1-a) \int_{0}^{\infty} x d F(x)
\end{aligned}
$$

For \tilde{x} non-degenerate, $\mathbb{E}[\tilde{x}]=0$ implies $\int_{0}^{\infty} x d F(x)$ is positive and finite and so $\pi\left(z_{0}, u, k \tilde{x}\right)$ is linear in k and $\lim _{k \rightarrow 0} \pi\left(z_{0}, u, k \tilde{x}\right)=0$.
(c) Consider

$$
\phi(z):=\left\{\begin{array}{ll}
z & \text { if } z \leq z_{0} \\
z_{0}+b\left(z-z_{0}\right) & \text { if } z>z_{0}
\end{array} .\right.
$$

where $0<b<1$. We therefore have

$$
\phi(u(z)):=\left\{\begin{array}{ll}
z & \text { if } z \leq z_{)} \\
z_{0}+a b\left(z-z_{0}\right) & \text { if } z>z_{0}
\end{array} .\right.
$$

ϕ is an increasing concave transformation from the first part of this exercise.
Now consider a decrease in parameter a of function u to a^{\prime}. The new utility function is the same as $\phi \circ u$ where ϕ is defined with parameter $b=a^{\prime} / a \in[0,1]$. A reduction in a to a^{\prime} therefore increases the degree of risk aversion because it can result from transforming u with an increasing, concave function ϕ.
(d) We prove by finding a pure risk with zero risk at wealth w_{0} and strictly positive risk premium at wealth $w_{0}^{\prime}>w_{0}$. This is sufficient to show that u does not exhibit decreasing absolute risk aversion.

Let the pure risk to consider be the lottery $\tilde{x}:=\left(+x, \frac{1}{2} ;-x, \frac{1}{2}\right)$ and let $w_{0}, w_{0}+$ $x \leq z_{0}$. Then the risk premium is zero at wealth level w_{0} since from the definition of the risk premium $w_{0}-\pi\left(w_{0}, u, \tilde{x}\right)=0.5\left(w_{0}-x\right)+0.5\left(w_{0}+x\right)=w_{0}$. Now consider a level of wealth $w_{0}^{\prime}>w_{0}$ such that $z_{0}-x<w_{0}^{\prime}<z_{0}$. The risk premium $\pi\left(w_{0}^{\prime}, u, \tilde{x}\right)$ is defined by

$$
\begin{aligned}
0.5\left(w_{0}^{\prime}-x\right)+0.5\left((1-a) z_{0}+a\left(w_{0}^{\prime}+x\right)\right) & =w_{0}^{\prime}-\pi\left(w_{0}^{\prime}, u, \tilde{x}\right) \\
\therefore \pi\left(w_{0}^{\prime}, u, \tilde{x}\right) & =0.5(1-a)\left(w_{0}^{\prime}+x-z_{0}\right)>0
\end{aligned}
$$

since $w_{0}^{\prime}+x>z_{0}$ by construction and $a \in(0,1)$

