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S.3 Utility and Risk

A.1. (a) Denoting ARA(w) as the absolute level of risk aversion at wealth w,

ARA(w) = −u
′′(w)

u′(w)
=
a exp(−aw)

exp(−aw)
= a

(b) lima→0 u
′(w) = lima→0 exp(−aw) = 1

(c) lima→∞ Eu(x̃) = lima→∞
∑

x≥0

[
px

1−exp(−ax)
a

]
+
∑

x<0

[
px

1−exp(−ax)
a

]
= −∞

since lottery x includes negative payoffs.

A.2. (a) Denoting the risk premium of the lottery by π,

u(4− π) = (4− π)2 =
1

2
22 +

1

2
62 = 20

∴ π = 4 −
√

20 = −0.472. The risk premium is negative because the utility
function is convex over the range of interest (u′′ = 2 > 0), and therefore the
decision maker is willing to pay to take on a zero mean risk (‘risk loving’).

(b) Denoting the new risk premium of the lottery by π′,

v(4− π′) = (4− π′)4 =
1

2
24 +

1

2
64 = 656

∴ π′ = 4 − 4
√

656 = −1.061, i.e. the risk premium decreases (or equivalently
the decision maker is willing to pay a higher price to take on the zero mean
risk). v(w) = f(u(w)) where f(u) = u2, a convex function (f ′′(u) > 0).

A.3. A(w) := −u′′(w)
u′(w)

= − d
dw

lnu′(w). Integrating over [z0, z] gives
∫ z
z0
A(w)dw :=

− ln(u′(z)) + ln(u′(z0)), and so u′(z) = u′(z0) exp
{
−
∫ z
z0
A(w)dw

}
, which can be

rewritten in the desired form.

B.1. (a) E[ỹ] =
∫ 1

0
λyλ−1ydy = [ λ

λ+1
yλ+1]10 = λ

λ+1

E[ỹ2] =
∫ 1

0
λyλ−1y2dy = [ λ

λ+2
yλ+2]10 = λ

λ+2

∴ V ar[ỹ] = λ
λ+2
−
[

λ
λ+1

]2
(b) P[ỹ ≥ 0.5] =

∫ 1

0.5
λyλ−1dy = [yλ]10.5 = 1− 0.5λ

(c) u′(y) = (1 − r)y−r. u′′(y) = −r(1 − r)y−r−1 which is strictly negative for
r ∈ (0, 1) and so the consumer is strictly risk averse.

Eu(ỹ) =
∫ 1

0
λyλ−1y1−rdy = [ λ

λ−r+1
yλ−r+1]10 = λ

λ−r+1

u(E(ỹ)) =
(

λ
λ+1

)1−r
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Consider

ln

[
u(E(ỹ))

E(u(ỹ))

]
= ln

[(
λ

λ+ 1

)1−r

× λ− r + 1

λ

]

= (1− r) ln

[
λ

λ+ 1

]
+ ln

[
λ− r + 1

λ

]
ln

[
u(E(ỹ))

E(u(ỹ))

]
|r=0 = 0

ln

[
u(E(ỹ))

E(u(ỹ))

]
|r=1 = 0

d2

dr2
ln

[
u(E(ỹ))

E(u(ỹ))

]
= − 1

(λ− r + 1)2
< 0

So ln
[
u(E(ỹ))
E(u(ỹ))

]
is strictly concave and takes the value 0 at r = 0 and r = 1. We

must therefore have that u(E(ỹ)) > E(u(ỹ)) for 0 < r < 1.

B.2. Yi are i.i.d. with mean µ and variance σ2, so
∑n

i=1 Yi has mean nµ and variance
nσ2.

(a) Total premiums = nA = nµ + 10σ
√
n. The probability that claims exceed

premiums is

P
(∑

Yi > nA
)

= P
(∑

Yi − E
∑

Yi > 10σ
√
n
)
≤ Var (

∑
Yi)

100σ2n
= 1/100,

using Chebyshev’s inequality.

(b) As above, the probability that claims exceed premiums is

P
(∑

Yi − E
∑

Yi > 3σ
√
n
)
.

By the CLT for the i.i.d. variables Yi, this probability tends to P(Z > 3) as
n → ∞, where Z has a standard normal distribution. From the table, the
probability on the RHS is 0.00135, so for large n the probability that claims
exceed premiums is less than 0.01 as required.

B.3. (a) Denoting the certainty equivalent and risk premium of x by CEx and RPx
respectively,

u(10−RPx) = u(10+CEx) = (10+CEx)
1/2 = Eu(10+x̃) =

1

2
u(4)+

1

2
u(16) = 3

∴ CEx = 9− 10 = −1 and RPx = +1.

(b) The Arrow-Pratt approximation of the risk premium

R̂P x =
1

2
Ex̃2ARA(10) =

1

2
× 36×

1
4
10−3/2

1
2
10−1/2

=
36

40
= 0.9
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(c) ARA(w) = − u′(w)
u′′(w)

=
1
4
w−3/2

1
2
w−1/2 = 1

2w
which is positive and decreasing with w.

RRA(w) = −w u′(w)
u′′(w)

= 1
2

which is constant.

(d) Denoting the certainty equivalent and risk premium of x by CEx and RPx
respectively,

v(10−RPx) = v(10 + CEx) = (10 + CEx)
1/4 = Ev(10 + x̃)

=
1

2
v(4) +

1

2
v(16) =

1√
2

+ 1 = 1.707 (4sf)

∴ CEx = 1.7074 − 10 = −1.507 and RPx = +1.507. The risk premium has
increased substantially. Note that w1/4 is a concave transformation of w1/2

and so v is more risk averse than u in the sense of Arrow-Pratt.

(e) The Arrow-Pratt approximation of the risk premium

R̂P x =
1

2
Eỹ2ARA(10) =

1

2
× 9×

1
4
10−3/2

1
2
10−1/2

=
9

40
=

0.9

4

The risk premium is proportional to the squared magnitude of the risk, which
has decreased by a factor of 4 since the magnitude of the risk has decreased
by a factor of 2.

B.4. If the decision maker has preferences that satisfy constant relative risk aversion
then preferences can be represented by a utility function u(w) = w1−γ

1−γ for some

γ ∈ R (or ln(w) for the case of γ = 1).

Utility of certain wealth w is w1−γ

1−γ and expected utility of lottery w(1 + x̃) is

E [u(w(1 + x̃))] = Ex̃
[

[w(1 + x̃)]1−γ

1− γ

]
=
w1−γ

1− γ
× Ex̃

[
(1 + x̃)1−γ]

and so the lottery will be (strictly) preferred to certain wealth iff E [(1 + x̃)1−γ] ≥
(>)1. This condition does not depend on w.

Similarly, for logarithmic utility function u(w) = ln(w), E[u(w(1 + x̃))] = ln(w) +
E[ln(1 + x̃)] which is (strictly) greater than ln(w) iff E[ln(1 + x̃)] ≥ (>)0. Again,
this condition does not depend on w.

B.5. (a) See the following figure
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(b) Both distributions have support on the interval [−1, 1]. We have∫ θ

−1

Fx̃(z)dz =

∫ θ

−1

z + 1

2
dz =

[
z2

4
+
z

2

]θ
−1

=
θ2

4
+
θ

2
+

1

4∫ θ

−1

Fỹ(z)dz =

∫ θ

−1

1

2
dz =

[z
2

]θ
−1

=
θ

2
+

1

2

∴
∫ θ

−1

Fỹ(z)− Fx̃(z)dz =
1− θ2

4

{
= 0 for θ = 1

≥ 0 for θ ∈ [−1, 1)

x̃ therefore second order stochastically dominates ỹ, and so ỹ is said to be
riskier than x̃.

(c) For each outcome x of x̃ add a zero mean noise ε̃x := {1−x, 1+x
2

;−(1+x), 1−x
2
}.

Conditional on any x, there are two potential outcomes, x + 1 − x = +1
and x − (1 + x) = −1, and E[ε̃x] = 0. By symmetry, and over all possible
outcomes of x, these two outcomes of x̃+ ε̃ have equal probability of 1

2
, where

conditional on x̃, ε̃ has distribution ε̃x, and so x̃+ ε̃ ∼ (−1, 1
2
; +1, 1

2
), which is

the distribution of ỹ.

B.6. Let Ã = (80, 1
4
; 100, 1

4
; 120, 1

4
; 140, 1

4
), B̃ = (90, 1

2
; 130, 1

2
) and ε̃ = (+10, 1

2
;−10, 1

2
),

and B̃ and ε̃ independent. Then B̃ + ε̃ ∼ Ã. Conditional on each outcome of B̃,
ε̃ has zero mean. Therefore by the Rothschild-Stiglitz Theorem, Project B SSD
Project A.

B.7. (a) Since g(x) is a probability density function with support [0, 1], we must have∫ 1

0

g(x)dx = 1⇒ c

∫ 1

0

x2 − x+
1

4
dx = c

[
x3

3
− x2

2
+
x

4

]1

0

=
c

12
= 1

and so c = 12.

∫ 1

0

x g(x)dx = 12

∫ 1

0

x3−x2+
x

4
dx = 12

[
x4

4
− x3

3
+
x2

8

]1

0

= 12

(
6

24
− 8

24
+

3

24

)
=

1

2

This shows that the mean of Lb is equal to the mean of La.

Defining the interval I :=
[

1
2
−
√

1/12, 1
2

+
√

1/12
]

and denoting the pdf of

La as f , we therefore have g(x) ≥ f(x) for x ∈ [0, 1]\I (the set [0, 1] excluding
elements in I), and g(x) ≤ f(x) for x ∈ I. Distribution g(x) can be obtained
from distribution f(x) by moving some probability mass from the interval I
to outside of I without changing the mean, and so Lb is a mean-preserving
spread of La.

(b) No. The cdf of lottery La is F (x) = x, x ∈ [0, 1] and the cdf of lottery Lb is

G(x) =

∫ x

0

g(z)dz = 12

[
x3

3
− x2

2
+
x

4

]
G(1/4) = 0.4375 > 0.25 = F (1/4) and G(3/4) = 0.5625 < 0.75 = F (3/4).
Therefore neither G(x) ≥ F (x)∀x ∈ [0, 1] nor G(x) ≤ F (x)∀x ∈ [0, 1].
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C.1. We are required to calculate the risk premium π(w0, u, ỹ) when u(w) = − exp{−Aw}
and ỹ ∼ N(0, σ2). We have

u(w0 − π) = − exp{−A(w0 − π)}

= −
∫ ∞
−∞

1√
2πσ2

exp{− y2

2σ2
} exp{−A(w0 + y)}dy

= −
∫ ∞
−∞

1√
2πσ2

exp{−y
2 + 2σ2A(w0 + y)

2σ2
}dy

= −
∫ ∞
−∞

1√
2πσ2

exp{−(y + σ2A)2

2σ2
} exp{−Aw0 +

1

2
σ2A2}dy

= − exp{−Aw0 +
1

2
σ2A2}

∴ π =
1

2
σ2A

Since ỹ has zero mean, E[y2] = σ2, and since u satisfies CARA, A(w0) = A, and so
we have the required result.

C.2 Let ỹ denote the distribution of final wealth under the perfect diversification strat-
egy. Now under any alternative feasible strategy A = (α1, . . . , αn) we have

n∑
i=1

αix̃i = ỹ +
n∑
i=1

(
αi −

1

n

)
x̃i

From the Rothschild-Stiglitz theorem we are done if we can show that
∑n

i=1

(
αi − 1

n

)
x̃i

has a zero mean conditional on ỹ. Now, by joint independence of x̃i and symmetry
of ỹ, E[x̃i|ỹ] is independent of i. We may denote it k. Then, we have

E

[
n∑
i=1

(
αi −

1

n

)
x̃i|ỹ

]
=

n∑
i=1

(
αi −

1

n

)
E[x̃i|ỹ]

= k

n∑
i=1

(
αi −

1

n

)
= 0

This proves that the alternative strategy is second order stochastically dominated
by the perfect diversification strategy.

C.3. (a) u is piecewise linear with gradient u′(z) = 1 for z < z0 and u′(z) = a < 1 for
z > z0. We must show that for any z, z′ ∈ R, λ ∈ [0, 1],

λu(z) + (1− λ)u(z′) ≤ u(λz + (1− λ)z′).

If z, z′ ≥ z0 or z, z′ ≤ z0 then this weak inequality is satisfied with equality
since u is linear between z and z′. If z ≤ z0 and z′ ≥ z0 then from the definition
of u,

λu(z) + (1− λ)u(z′) = λz + (1− λ)az′ + (1− λ)(1− a)z0
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There are two cases. For λz + (1− λ)z′ ≤ z0,

u(λz + (1− λ)z′) = λz + (1− λ)z′

∴ λu(z) + (1− λ)u(z′)− u(λz + (1− λ)z′) = (1− a)(1− λ)(z0 − z′) ≤ 0

since z′ ≥ z0 by assumption, and in the second case, λz + (1− λ)z′ ≥ z0,

u(λz + (1− λ)z′) = (1− a)z0 + a(λz + (1− λ)z′)

∴ λu(z) + (1− λ)u(z′)− u(λz + (1− λ)z′) = (1− a)λ(z − z0) ≤ 0

since z ≤ z0 by assumption.

(b) Denoting the cdf of x̃ as F (x), where E[x̃] = 0, the risk premium π(z0, u, kx̃)
is nonnegative since u is concave, and therefore satisfies

u(z0 − π) = z0 − π = E[u(z0 + kx̃)]

=

∫ 0

−∞
(z0 + kx)dF (x) +

∫ ∞
0

((1− a)z0 + a(z0 + kx))dF (x)

= z0 + k

[∫ 0

−∞
xdF (x) + a

∫ ∞
0

xdF (x)

]
= z0 + k

[
E[x̃]− (1− a)

∫ ∞
0

xdF (x)

]
= z0 − k(1− a)

∫ ∞
0

xdF (x)

∴ π(z0, u, kx̃) = k(1− a)

∫ ∞
0

xdF (x)

For x̃ non-degenerate, E[x̃] = 0 implies
∫∞

0
xdF (x) is positive and finite and

so π(z0, u, kx̃) is linear in k and limk→0 π(z0, u, kx̃) = 0.

(c) Consider

φ(z) :=

{
z if z ≤ z0

z0 + b(z − z0) if z > z0

.

where 0 < b < 1. We therefore have

φ(u(z)) :=

{
z if z ≤ z)

z0 + ab(z − z0) if z > z0

.

φ is an increasing concave transformation from the first part of this exercise.

Now consider a decrease in parameter a of function u to a′. The new utility
function is the same as φ◦u where φ is defined with parameter b = a′/a ∈ [0, 1].
A reduction in a to a′ therefore increases the degree of risk aversion because
it can result from transforming u with an increasing, concave function φ.

(d) We prove by finding a pure risk with zero risk at wealth w0 and strictly positive
risk premium at wealth w′0 > w0. This is sufficient to show that u does not
exhibit decreasing absolute risk aversion.
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Let the pure risk to consider be the lottery x̃ :=
(
+x, 1

2
;−x, 1

2

)
and let w0, w0+

x ≤ z0. Then the risk premium is zero at wealth level w0 since from the
definition of the risk premium w0−π(w0, u, x̃) = 0.5(w0−x)+0.5(w0+x) = w0.

Now consider a level of wealth w′0 > w0 such that z0 − x < w′0 < z0. The risk
premium π(w′0, u, x̃) is defined by

0.5(w′0 − x) + 0.5((1− a)z0 + a(w′0 + x)) = w′0 − π(w′0, u, x̃)

∴ π(w′0, u, x̃) = 0.5(1− a)(w′0 + x− z0) > 0

since w′0 + x > z0 by construction and a ∈ (0, 1)


