S. 2 lifetime distributions and life products

A.1. Continuous cash flow at unit rate until death but for a minimum term of n.
A.2.

$$
\begin{aligned}
& \text { (i) } \sum_{k \geq 1}(1+i)^{-k}(1-q)^{k}=\frac{1-q}{1+i} \frac{1}{1-(1-q) /(1+i)}=\frac{1-q}{i+q} . \\
& \text { (ii) } \sum_{k \geq 1}(1+i)^{-k}(1+g)^{k}=\frac{1+g}{1+i} \frac{1}{1-(1+g) /(1+i)}=\frac{1+g}{i-g} . \\
& \text { (iii) } \sum_{k \geq 1}(1+i)^{-k}(1+h)^{k}(1-q)^{k}=\frac{(1+h)(1-q)}{1+i} \frac{1}{1-(1+h)(1-q) /(1+i)}=\frac{(1+h)(1-q)}{i+q-h(1-q)} .
\end{aligned}
$$

A.3. By definition ${ }_{t} p_{x}=\mathbb{P}\left(T_{x}>t\right)$. We defined the force of mortality as infinitesimal survival probability and can write this in terms of ${ }_{t} p_{x}$ as

$$
\mu_{x+t}=\lim _{\varepsilon \downarrow 0} \frac{{ }_{t} p_{x}-{ }_{t+\varepsilon} p_{x}}{\varepsilon \times{ }_{t} p_{x}}=-\frac{\frac{\partial}{\partial t} t p_{x}}{{ }_{t} p_{x}}=-\frac{\partial}{\partial t}\left(\log \left({ }_{t} p_{x}\right)\right)
$$

This differential equation is solved by simple integration

$$
\log \left({ }_{t} p_{x}\right)=-\int_{0}^{t} \mu_{x+s} d s+c \quad \Rightarrow \quad{ }_{t} p_{x}=e^{c} \exp \left\{-\int_{0}^{t} \mu_{x+s} d s\right\}
$$

From ${ }_{0-} p_{x}=\mathbb{P}\left(T_{x} \geq 0\right)=1$, we get $c=0$, hence the result.
A.4. $\mu_{x}^{(2)}=2 \mu_{x}^{(1)}$. Think of $\mu^{(1)}$ to be from a general life table, but of a population with a certain disease or other risks causing their mortality to be higher than in that lifetable. One way to express this increased mortality is by so-called proportional hazards, here proportionality factor 2 .
(i) We have

$$
{ }_{t} p_{x}^{(1)}=\exp \left\{-\int_{x}^{x+t} \mu_{y}^{(1)} d y\right\}
$$

where now

$$
\begin{aligned}
\int_{x}^{x+t} \mu_{y}^{(1)} d y & =B c^{x} \int_{0}^{t} c^{z} d z \\
& =B c^{x} \int_{0}^{t} e^{z \log (c)} d z \\
& =\frac{B c^{x}}{\log (c)}\left(c^{t}-1\right)
\end{aligned}
$$

This leads to the form $g^{c^{x}\left(c^{t}-1\right)}$ for $-B / \log (c)=\log (g)$ as required.
(ii) ${ }_{n} p_{x}^{(2)}=\exp \left\{-2 \int_{0}^{n} \mu_{x+s}^{(1)} d s\right\}=\left({ }_{n} p_{x}^{(1)}\right)^{2}$ as required.
(iii) Under the Gompertz law

$$
{ }_{n} p_{x}^{(2)}=g^{2 c^{x}\left(c^{n}-1\right)}={ }_{n} p_{x+a}^{(1)}=g^{c^{x+a}\left(c^{n}-1\right)}
$$

if and only if $c^{a}=2$, i.e. $a=\log (2) / \log (c)$. This is saying that, under the Gompertz law, the model with mortality doubled is the same as a model with age shifted appropriately. The latter is another way of expressing the fact that a population with higher mortality may behave like an older population. For general mortality laws, these two models are different.
B.1. (i) This is similar, with the extra factor $\exp \left\{-\int_{0}^{t} A d y\right\}=s^{t}$ for $s=e^{-A}$.
(ii) We have three equations in three unknowns s, c and g :

$$
\begin{aligned}
& { }_{10} p_{30}=s^{10} g^{c^{30}\left(c^{10}-1\right)}=\frac{\ell_{40}}{\ell_{30}}=: \alpha=0.9912231 \\
& { }_{10} p_{40}=s^{10} g^{c^{40}\left(c^{10}-1\right)}=\frac{\ell_{50}}{\ell_{40}}=: \beta=0.9740027 \\
& { }_{10} p_{50}=s^{10} g^{c^{50}\left(c^{10}-1\right)}=\frac{\ell_{60}}{\ell_{50}}=: \gamma=0.919498
\end{aligned}
$$

First eliminate s by taking ratios, taking log then gives

$$
c^{30}\left(c^{10}-1\right)^{2} \log (g)=\log (\beta / \alpha)=-0.0175256
$$

and

$$
c^{40}\left(c^{10}-1\right)^{2} \log (g)=\log (\gamma / \beta)=-0.0575862
$$

and again taking ratios yields $c^{10}=\log (\gamma / \beta) / \log (\beta / \alpha)=3.285833$ and so $c=1.1265$.
Then the $\log (\beta / \alpha)$-equation gives $\log (g)=-9.4547 \times 10^{-5}$. So $B=-\log c \times$ $\log g=1.1247 \times 10^{-5}$.
Finally, the first equation gives $s^{10}=0.998852$ and then $s=0.9998852$, so that $A=-\log s=1.149 \times 10^{-4}$.
B.2. (i) We split into death benefits during the period and survival to end of period, then use $q_{x+k}=1-p_{x+k}$:

$$
\begin{aligned}
A_{x: \bar{n} \mid} & =\sum_{k=0}^{n-1}{ }_{k} p_{x} q_{x+k} v^{k+1}+{ }_{n} p_{x} v^{n} \\
& =\sum_{k=0}^{n-1}{ }_{k} p_{x} v^{k+1}-\sum_{k=0}^{n-2}{ }_{k} p_{x} p_{x+k} v^{k+1} \\
& =v \ddot{a}_{x: \bar{n} \mid}-\sum_{j=1}^{n-1}{ }_{j} p_{x} v^{k} \\
& =v \ddot{a}_{x: \bar{n} \mid}-a_{x: \overline{n-1} \mid} .
\end{aligned}
$$

The first term pays a benefit of v at the beginning of every year $1, \ldots, n$ provided alive at the beginning. This is equivalent in value to paying a benefit of 1 at the end of every year $1, \ldots, n$, still provided alive at the beginning.
The second term takes away the benefit of 1 if alive at the end of the year, except in year n.
So the payments do not cancel in two cases: in the event that the life dies sometime during the year, or in the event the life survives the final year.
This means a payment at the end of the year of death, or n if earlier; this is the cash flow of an endowment assurance, as required.
(ii) We calculate

$$
\begin{aligned}
\ddot{a}_{x}-d(I \ddot{a})_{x} & =\sum_{k=0}^{\infty}{ }_{k} p_{x} v^{k}-d \sum_{k=0}^{\infty}{ }_{k} p_{x} v^{k}(k+1) \\
& =\sum_{k=0}^{\infty}{ }_{k} p_{x} v^{k}(1-(1-v)(k+1)) \\
& =\sum_{k=0}^{\infty}{ }_{k} p_{x} v^{k+1}(k+1)-\sum_{j=0}^{\infty}{ }_{j+1} p_{x} v^{j+1}(j+1) \\
& =\sum_{k=0}^{\infty}\left({ }_{k} p_{x}-{ }_{k+1} p_{x}\right) v^{k+1}(k+1) \\
& =\sum_{k=0}^{\infty}{ }_{k} p_{x} q_{x+k} v^{k+1}(k+1)=(I A)_{x} .
\end{aligned}
$$

$(I A)_{x}$ pays 1 for each beginning of a year we were alive, payment is at the end of the year of death. \ddot{a}_{x} pays one for each beginning of a year we were alive, payment is at the beginning of each of these years. $-d(I \ddot{a})_{x}$ takes away the interest we earn on the early payments so that the accumulation at the time of death is $(I A)_{x}$.
B.3. (a) We have

$$
\begin{aligned}
N P V_{\left[0, T_{x}\right]}(\delta) & =\int_{0}^{T_{x}} \rho(t) e^{-\delta t} d t \\
E\left(N P V_{\left[0, T_{x}\right]}(\delta)\right) & =E\left(\int_{0}^{\infty} 1_{\left\{T_{x}>t\right\}} \rho(t) e^{-\delta t} d t\right) \\
& =\int_{0}^{\infty} E\left(1_{\left\{T_{x}>t\right\}}\right) \rho(t) e^{-\delta t} d t \\
& =\int_{0}^{\infty} P\left(T_{x}>t\right) \rho(t) e^{-\delta t} d t .
\end{aligned}
$$

(b) Recall that

$$
P\left(T_{x}>t\right)=\exp \left\{-\int_{0}^{t} \mu_{T_{x}}(s) d s\right\}
$$

since

$$
\left.\frac{d}{d t} \log P\left(T_{x}>t\right)\right)=\frac{d}{d t} \log F_{T_{x}}(t)=-\frac{f_{T_{x}}(t)}{F_{T_{x}}(t)}=-\mu_{T_{x}}(t)
$$

and $\log P\left(T_{x}>x\right)=\log 1=0$.
So with the given form of $\mu_{T_{x}}$ we have

$$
P\left(T_{x}>t\right)=\exp \left\{-\int_{0}^{t} \mu_{T_{x}}(s) d s\right\}= \begin{cases}e^{-0.01 t} & 0 \leq t \leq 5 \\ e^{-0.05-(t-5) 0.02} & 5<t \leq 10\end{cases}
$$

and the answer is given by solving the integral in (a) to give

$$
\begin{aligned}
E\left(N P V_{\left[0, T_{x}\right]}(\delta)\right) & =5000 \int_{0}^{5} e^{-0.01 t} e^{-\delta t} d t+10000 \int_{5}^{10} e^{-0.05-(t-5) 0.02} e^{-\delta t} d t \\
& =\ldots=52851.69
\end{aligned}
$$

(c) Here the cash flow is $C_{2}=\left(T_{x}, 1_{\left\{T_{x} \leq 10\right\}} 40000\right)$ and we calculate the probability density function of T_{x} from the survival function:

$$
f_{T_{x}}(t)=-\frac{d}{d t} P\left(T_{x}>t\right)=\left\{\begin{array}{ll}
0.01 e^{-0.01 t} & 0 \leq t \leq 5 \\
0.02 e^{-0.05-(t-5) 0.02} & 5<t \leq 10
\end{array} .\right.
$$

Then

$$
\begin{aligned}
E(N P V(\delta)) & =40000 E\left(e^{-\delta T_{x}} 1_{\left\{T_{x} \leq 10\right\}}\right) \\
& =40000 \int_{0}^{10} e^{-\delta t} f_{T_{x}}(t) d t=\ldots=4228.14
\end{aligned}
$$

B.4. The present value of benefits is

$$
2,500_{20} \mid \ddot{a}_{40}=2,500_{20} p_{40}(1.04)^{-20} \ddot{a}_{60} .
$$

The present value of expenses is

$$
.05 P \ddot{a}_{40: \overline{20} \mid}+5_{20} p_{40}(1.04)^{-20} \ddot{a}_{60},
$$

where P is the annual premium. The present value of premiums is

$$
P \ddot{a}_{40: \overline{20}}
$$

The third quantity is paying for the sum of the first two, and we solve this equation for P to get

$$
P=\frac{2505_{20} p_{40}(1.04)^{-20} \ddot{a}_{60}}{.95 \ddot{a}_{40: \overline{20}}} .
$$

B.5. (a) Using $d_{x}=\ell_{x}-\ell_{x+1}=100,000$ for all x, we calculate

$$
A_{50: \overline{10} \mid}=\frac{1}{\ell_{50}}\left(\sum_{k=0}^{9} d_{50+k} v^{k+1}\right)+\frac{\ell_{60}}{\ell_{50}} v^{10}=.645565
$$

and

$$
\ddot{a}_{50: \overline{10} \mid}=\frac{1}{\ell_{50}} \sum_{k=0}^{9} \ell_{50+k} v^{k}=7.443129
$$

or more elegantly using $A_{x: \bar{n} \mid}=1-d \ddot{a}_{x: \bar{n} \mid}$ where $d=i /(1+i)$.
(b) Now the net annual premium is

$$
25,000 \frac{A_{50: \overline{10} \mid}}{\ddot{a}_{50: \overline{10} \mid}}=2,168.33 .
$$

The policy value at age 53 is

$$
R_{53}=25,000 A_{53: \overline{7} \mid}-2,168.33 \ddot{a}_{53: \overline{7} \mid},
$$

where, as above

$$
A_{53: \overline{7} \mid}=.72795 \quad \text { and } \quad \ddot{a}_{50: \overline{7} \mid}=\frac{1-A_{50: \overline{7} \mid}}{d}=5.71306
$$

so that $R_{53}=5810.96$. Similarly, at age $54, R_{54}=8016.91$.
(c) Let the office premium be P, then

$$
P \ddot{a}_{50: \overline{10} \mid}=25,000 A_{50: \overline{10} \mid}+0.5 P+300+0.02 P a_{50: \overline{9} \mid}+50 a_{50: \overline{9} \mid},
$$

where

$$
a_{50: \overline{9} \mid}=\ddot{a}_{50: \overline{10} \mid}-1=6.443129,
$$

so that, when we solve for P, we get $P=2,459.74$.
B.6. (i) We have

$$
\begin{aligned}
& \bar{A}_{x}=\int_{y=0}^{\infty} \exp (-y \delta) \exp \left(-\int_{0}^{y} \mu_{x+s} d s\right) \mu_{x+y} d y \\
& \bar{a}_{x}=\int_{y=0}^{\infty} \exp (-y \delta) \exp \left(-\int_{0}^{y} \mu_{x+s} d s\right) d y
\end{aligned}
$$

Integrating the expression for \bar{a}_{x} by parts one gets

$$
\begin{aligned}
\bar{a}_{x}= & {\left[\exp \left(-\int_{0}^{y} \mu_{x+s} d s\right)\left(-\frac{\exp (-y \delta)}{\delta}\right)\right]_{0}^{\infty} } \\
& -\int_{y=0}^{\infty}\left[-\frac{\exp (-y \delta)}{\delta}\right]\left[-\mu_{x+y} \exp \left(-\int_{0}^{y} \mu_{x+s} d s\right)\right] d y \\
= & \frac{1}{\delta}-\frac{\bar{A}_{x}}{\delta}
\end{aligned}
$$

which gives $\bar{A}_{x}=1-\delta \bar{a}_{x}$ as required.
[Alternative proof: $\left.\bar{a}_{x}=\mathbb{E}\left[\frac{1-e^{-\delta T_{x}}}{\delta}\right]=\frac{1-\mathbb{E}\left[e^{-\delta T_{x}}\right]}{\delta}=\frac{1-\bar{A}_{x}}{\delta}\right]$
(ii) The premium for the insurance is paid continuously at rate $\bar{P}_{x}=\bar{A}_{x} / \bar{a}_{x}$.

The reserve after time t has passed is equal to the expected present value of future benefits minus the expected present value of future premiums, so that

$$
{ }_{t} \bar{V}_{x}=\bar{A}_{x+t}-\bar{P}_{x} \bar{a}_{x+t}=\bar{A}_{x+t}-\frac{\bar{A}_{x}}{\bar{a}_{x}} \bar{a}_{x+t}=1-\delta \bar{a}_{x+t}-\left(1-\delta \bar{a}_{x}\right) \frac{\bar{a}_{x+t}}{\bar{a}_{x}}=1-\frac{\bar{a}_{x_{x}+t}}{\bar{a}_{x}} .
$$

C.1. (a) $\ddot{a}_{x}=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x}=1+v p_{x} \sum_{k=1}^{\infty} v^{k-1}{ }_{k-1} p_{x+1}=1+v p_{x} \ddot{a}_{x+1}$
(b) $\ddot{a}_{x: \bar{n} \mid}=\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{x}=\sum_{k=1}^{n} v^{k}{ }_{k} p_{x}+1-v^{n}{ }_{n} p_{x}=a_{x: \bar{n} \mid}+1-A_{x: \bar{n}}$.
(c) $v \ddot{a}_{x}-a_{x}=v \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x}-\sum_{j=1}^{\infty} v^{j}{ }_{j} p_{x}=\sum_{j=1}^{\infty} v^{j}\left({ }_{j-1} p_{x}-{ }_{j} p_{x}\right)=\sum_{j=1}^{\infty} v^{j}{ }_{j-1} p_{x}(1-$ $\left.p_{x+j-1}\right)=A_{x}$
C.2. (a) (i) $C_{1}=((n, B))$ where $B=I(K \geq n)$.
(ii) $C_{2}=\left(\left(k, B_{k}\right)\right)_{k \geq 1}$ where $B_{k}=I(k=K+1)$.
(iii) $C_{3}=\left(k, B_{k}\right)_{k=1, \ldots, n}$, with B_{k} as in (ii).
(iv) $C_{4}=\left(k, B_{k}\right)_{k=1, \ldots, n}$, with $B_{k}=I(k=K+1 \leq n)+I(k=n \leq K)$.
(b) (i) $A_{1}(\delta)=E\left(N P V_{1}(\delta)\right)=e^{-\delta n} P(K \geq n), V_{1}=\operatorname{Var}\left(N P V_{1}(\delta)\right)=E\left(N P V^{2}\right)-$ $E(N P V)^{2}=A_{1}(2 \delta)-\left(A_{1}(\delta)\right)^{2}$
(ii) $A_{2}(\delta)=E\left(N P V_{2}(\delta)\right)=\sum_{k=1}^{\infty} e^{-\delta k} P(K+1=k)=E\left(e^{-\delta(K+1)}\right)$, $V_{2}=\operatorname{Var}\left(N P V_{2}(\delta)\right)=A_{2}(2 \delta)-\left(A_{2}(\delta)\right)^{2}$
(iii) $A_{3}(\delta)=E\left(N P V_{3}(\delta)\right)=\sum_{k=1}^{n} e^{-\delta k} P(K+1=k)=E\left(e^{-\delta(K+1)} 1_{\{K \leq n-1\}}\right)$, $V_{3}=\operatorname{Var}\left(N P V_{3}(\delta)\right)=A_{3}(2 \delta)-\left(A_{3}(\delta)\right)^{2}$
(iv) $A_{4}(\delta)=E\left(N P V_{4}(\delta)\right)=\sum_{k=1}^{n-1} e^{-\delta k} P(K+1=k)+e^{-\delta n} P(K \geq n-1)=$ $E\left(e^{-\delta(\min (K+1, n))}\right), V_{4}=\operatorname{Var}\left(N P V_{4}(\delta)\right)=A_{4}(2 \delta)-\left(A_{4}(\delta)\right)^{2}$
(c) $C_{4}=C_{1}+C_{3}, A_{4}=A_{1}+A_{3}, V_{4}=V_{1}+V_{3}+2 \operatorname{Cov}\left(N P V_{1}(\delta), N P V_{3}(\delta)\right)=$ $V_{1}+V_{3}-2 A_{1} A_{3}$ since $N P V_{1} \times N P V_{3}=0$ always.
(d) Only the pure endowment can still be expressed in the form asked for in part (a): $C_{1}=((n, B))$ where $B=1(T \geq n)$. For (ii)-(iv), the time of the payment is now a continuous random variable.
The expressions of for net premiums are essentially the same as in the discrete case, but replacing the discrete probability mass function of $K+1$ by the density function of T, and integrating rather than summing. For example for part (ii), $\tilde{A}_{2}(\delta)=\int_{0}^{\infty} e^{-\delta t} f(t) d t$.
In each case the variance again has the form $V=A(2 \delta)-A(\delta)^{2}$.
C.3. First calculate the two factors

$$
\begin{aligned}
{ }_{t} V_{x: \bar{n} \mid}^{1} & =A_{x+t: \frac{1}{n-t \mid}}-P_{x: \bar{n} \mid} \ddot{a}_{x+t: \overline{n-t \mid}}=A_{x+t: \overline{n-t \mid}}-\frac{1}{A_{x: \bar{n} \mid}^{1}} \ddot{a}_{x: \bar{n} \mid} \ddot{a}_{x+t: \overline{n-t \mid}} \\
& =v^{n-t}{ }_{n-t} p_{x+t}-\frac{\ddot{a}_{x+t: \overline{n-t \mid}}}{\ddot{a}_{x: \bar{n} \mid}^{n}} v_{n} p_{x}
\end{aligned}
$$

and

Now multiply these two and, for convenience, their denominators $\ddot{a}_{x: \bar{n} \mid} \ddot{a}_{x: \bar{t} \mid}$ to get

$$
\begin{aligned}
{ }_{t} V_{x: \bar{n} \mid}{ }_{1} P_{x: \bar{t} \mid} \frac{1}{a_{x: \bar{n} \mid} \ddot{a}_{x: \bar{t} \mid}} & =v^{n}{ }_{n} p_{x} \ddot{a}_{x: \bar{n} \mid}-v^{n+t}{ }_{n} p_{x t} p_{x} \ddot{a}_{x+t: \overline{n-t \mid}} \\
& =v^{n}{ }_{n} p_{x}\left(\ddot{a}_{x: \bar{n} \mid}-v^{t}{ }_{t} p_{x} \ddot{a}_{x+t: \overline{n-t \mid}}\right) \\
& =v^{n}{ }_{n} p_{x}\left(\ddot{a}_{x: \bar{n} \mid}-\left(\ddot{a}_{x: \bar{n} \mid}-\ddot{a}_{x: \bar{t} \mid}\right)\right) \\
& =v^{n}{ }_{n} p_{x} \ddot{a}_{x: \bar{t} \mid}=A_{x: \bar{n} \mid} \ddot{a}_{x: \bar{t} \mid},
\end{aligned}
$$

and we see that

$$
{ }_{t} V_{x: \bar{n} \mid}^{1} P_{x: \bar{t} \mid}^{1}=\frac{A_{x: \bar{n} \mid}^{1}}{\ddot{a_{x}: \bar{n} \mid}}=P_{x: \overline{\bar{n}} \mid}
$$

does not depend on t.
By general reasoning, ${ }_{t} V_{x: \bar{n} \mid}^{1}$ is the amount that (on average) can be paid to the holders of n-year pure endowments after t years. If they are paid out this reserve, they realise a t-year pure endowment with sum assured ${ }_{t} V_{x: \bar{n} \mid}$ which would have required an annual premium of ${ }_{t} V_{x: \bar{n} \mid} P_{x: \bar{t} \mid}^{1}$ whereas they paid $P_{x: \bar{n} \mid}$. Therefore, the two must be equal.

