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S.2 lifetime distributions and life products

A.1. Continuous cash flow at unit rate until death but for a minimum term of n.

A.2. (i)
∑
k≥1

(1 + i)−k(1− q)k =
1− q
1 + i

1

1− (1− q)/(1 + i)
=

1− q
i+ q

.

(ii)
∑
k≥1

(1 + i)−k(1 + g)k =
1 + g

1 + i

1

1− (1 + g)/(1 + i)
=

1 + g

i− g
.

(iii)
∑
k≥1

(1+i)−k(1+h)k(1−q)k =
(1+h)(1−q)

1+i

1

1− (1+h)(1−q)/(1+i)
=

(1+h)(1−q)
i+q−h(1−q)

.

A.3. By definition tpx = P(Tx > t). We defined the force of mortality as infinitesimal
survival probability and can write this in terms of tpx as

µx+t = lim
ε↓0

tpx − t+εpx
ε× tpx

= −
∂
∂t t
px

tpx
= − ∂

∂t
(log(tpx))

This differential equation is solved by simple integration

log(tpx) = −
∫ t

0

µx+sds+ c ⇒ tpx = ec exp

{
−
∫ t

0

µx+sds

}
.

From 0−px = P(Tx ≥ 0) = 1, we get c = 0, hence the result.

A.4. µ
(2)
x = 2µ

(1)
x . Think of µ(1) to be from a general life table, but of a population with

a certain disease or other risks causing their mortality to be higher than in that
lifetable. One way to express this increased mortality is by so-called proportional
hazards, here proportionality factor 2.

(i) We have

tp
(1)
x = exp

{
−
∫ x+t

x

µ(1)
y dy

}
,

where now ∫ x+t

x

µ(1)
y dy = Bcx

∫ t

0

czdz

= Bcx
∫ t

0

ez log(c)dz

=
Bcx

log(c)
(ct − 1).

This leads to the form gc
x(ct−1) for −B/ log(c) = log(g) as required.

(ii) np
(2)
x = exp{−2

∫ n
0
µ

(1)
x+sds} = (np

(1)
x )2 as required.
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(iii) Under the Gompertz law

np
(2)
x = g2cx(cn−1) = np

(1)
x+a = gc

x+a(cn−1)

if and only if ca = 2, i.e. a = log(2)/ log(c). This is saying that, under the
Gompertz law, the model with mortality doubled is the same as a model with
age shifted appropriately. The latter is another way of expressing the fact that
a population with higher mortality may behave like an older population. For
general mortality laws, these two models are different.

B.1. (i) This is similar, with the extra factor exp{−
∫ t

0
Ady} = st for s = e−A.

(ii) We have three equations in three unknowns s, c and g:

10p30 = s10gc
30(c10−1) =

`40

`30

=: α = 0.9912231

10p40 = s10gc
40(c10−1) =

`50

`40

=: β = 0.9740027

10p50 = s10gc
50(c10−1) =

`60

`50

=: γ = 0.919498.

First eliminate s by taking ratios, taking log then gives

c30(c10 − 1)2 log(g) = log(β/α) = −0.0175256

and
c40(c10 − 1)2 log(g) = log(γ/β) = −0.0575862

and again taking ratios yields c10 = log(γ/β)/ log(β/α) = 3.285833 and so
c = 1.1265.

Then the log(β/α)-equation gives log(g) = −9.4547× 10−5. So B = − log c×
log g = 1.1247× 10−5.

Finally, the first equation gives s10 = 0.998852 and then s = 0.9998852, so
that A = − log s = 1.149× 10−4.

B.2. (i) We split into death benefits during the period and survival to end of period,
then use qx+k = 1− px+k:

Ax:n| =
n−1∑
k=0

kpxqx+kv
k+1 + npxv

n

=
n−1∑
k=0

kpxv
k+1 −

n−2∑
k=0

kpxpx+kv
k+1

= väx:n| −
n−1∑
j=1

jpxv
k

= väx:n| − ax:n−1|.
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The first term pays a benefit of v at the beginning of every year 1, . . . , n
provided alive at the beginning. This is equivalent in value to paying a benefit
of 1 at the end of every year 1, . . . , n, still provided alive at the beginning.

The second term takes away the benefit of 1 if alive at the end of the year,
except in year n.

So the payments do not cancel in two cases: in the event that the life dies
sometime during the year, or in the event the life survives the final year.

This means a payment at the end of the year of death, or n if earlier; this is
the cash flow of an endowment assurance, as required.

(ii) We calculate

äx − d(Iä)x =
∞∑
k=0

kpxv
k − d

∞∑
k=0

kpxv
k(k + 1)

=
∞∑
k=0

kpxv
k(1− (1− v)(k + 1))

=
∞∑
k=0

kpxv
k+1(k + 1)−

∞∑
j=0

j+1pxv
j+1(j + 1)

=
∞∑
k=0

(kpx − k+1px)v
k+1(k + 1)

=
∞∑
k=0

kpxqx+kv
k+1(k + 1) = (IA)x.

(IA)x pays 1 for each beginning of a year we were alive, payment is at the end
of the year of death. äx pays one for each beginning of a year we were alive,
payment is at the beginning of each of these years. −d(Iä)x takes away the
interest we earn on the early payments so that the accumulation at the time
of death is (IA)x.

B.3. (a) We have

NPV[0,Tx](δ) =

∫ Tx

0

ρ(t)e−δtdt

E
(
NPV[0,Tx](δ)

)
= E

(∫ ∞
0

1{Tx>t}ρ(t)e−δtdt

)
=

∫ ∞
0

E(1{Tx>t})ρ(t)e−δtdt

=

∫ ∞
0

P (Tx > t)ρ(t)e−δtdt.

(b) Recall that

P (Tx > t) = exp

{
−
∫ t

0

µTx(s)ds

}
,
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since
d

dt
logP (Tx > t)) =

d

dt
logFTx(t) = − fTx(t)

FTx(t)
= −µTx(t)

and logP (Tx > x) = log 1 = 0.

So with the given form of µTx we have

P (Tx > t) = exp

{
−
∫ t

0

µTx(s)ds

}
=

{
e−0.01t 0 ≤ t ≤ 5
e−0.05−(t−5)0.02 5 < t ≤ 10

and the answer is given by solving the integral in (a) to give

E
(
NPV[0,Tx](δ)

)
= 5000

∫ 5

0

e−0.01te−δtdt+ 10000

∫ 10

5

e−0.05−(t−5)0.02e−δtdt

= . . . = 52851.69.

(c) Here the cash flow is C2 = (Tx, 1{Tx≤10}40000) and we calculate the probability
density function of Tx from the survival function:

fTx(t) = − d

dt
P (Tx > t) =

{
0.01e−0.01t 0 ≤ t ≤ 5
0.02e−0.05−(t−5)0.02 5 < t ≤ 10

.

Then

E (NPV (δ)) = 40000E
(
e−δTx1{Tx≤10}

)
= 40000

∫ 10

0

e−δtfTx(t)dt = . . . = 4228.14.

B.4. The present value of benefits is

2, 50020|ä40 = 2, 50020p40(1.04)−20ä60.

The present value of expenses is

.05P ä40:20| + 520p40(1.04)−20ä60,

where P is the annual premium. The present value of premiums is

P ä40:20|

The third quantity is paying for the sum of the first two, and we solve this equation
for P to get

P =
250520p40(1.04)−20ä60

.95ä40:20|
.

B.5. (a) Using dx = `x − `x+1 = 100, 000 for all x, we calculate

A50:10| =
1

`50

(
9∑

k=0

d50+kv
k+1

)
+
`60

`50

v10 = .645565
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and

ä50:10| =
1

`50

9∑
k=0

`50+kv
k = 7.443129

or more elegantly using Ax:n| = 1− däx:n| where d = i/(1 + i).

(b) Now the net annual premium is

25, 000
A50:10|

ä50:10|
= 2, 168.33.

The policy value at age 53 is

R53 = 25, 000A53:7| − 2, 168.33 ä53:7|,

where, as above

A53:7| = .72795 and ä50:7| =
1− A50:7|

d
= 5.71306,

so that R53 = 5810.96. Similarly, at age 54, R54 = 8016.91.

(c) Let the office premium be P , then

P ä50:10| = 25, 000A50:10| + 0.5P + 300 + 0.02Pa50:9| + 50a50:9|,

where
a50:9| = ä50:10| − 1 = 6.443129,

so that, when we solve for P , we get P = 2, 459.74.

B.6. (i) We have

Āx =

∫ ∞
y=0

exp(−yδ) exp

(
−
∫ y

0

µx+sds

)
µx+ydy,

āx =

∫ ∞
y=0

exp(−yδ) exp

(
−
∫ y

0

µx+sds

)
dy.

Integrating the expression for āx by parts one gets

āx =

[
exp

(
−
∫ y

0

µx+sds

)(
−exp(−yδ)

δ

)]∞
0

−
∫ ∞
y=0

[
−exp(−yδ)

δ

] [
−µx+y exp

(
−
∫ y

0

µx+sds

)]
dy

=
1

δ
− Āx

δ
,

which gives Āx = 1− δāx as required.

[Alternative proof: āx = E
[

1−e−δTx
δ

]
= 1−E[e−δTx ]

δ
= 1−Āx

δ
]
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(ii) The premium for the insurance is paid continuously at rate P̄x = Āx/āx.

The reserve after time t has passed is equal to the expected present value of
future benefits minus the expected present value of future premiums, so that

tV̄x = Āx+t− P̄xāx+t = Āx+t−
Āx
āx
āx+t = 1−δāx+t− (1−δāx)

āx+t

āx
= 1− āxx+t

āx
.

C.1. (a) äx =
∞∑
k=0

vkkpx = 1 + vpx

∞∑
k=1

vk−1
k−1px+1 = 1 + vpxäx+1

(b) äx:n| =
n−1∑
k=0

vkkpx =
n∑
k=1

vkkpx + 1− vnnpx = ax:n| + 1− A 1
x:n|.

(c) väx − ax = v

∞∑
k=0

vkkpx −
∞∑
j=1

vjjpx =
∞∑
j=1

vj(j−1px − jpx) =
∞∑
j=1

vjj−1px(1 −

px+j−1) = Ax

C.2. (a) (i) C1 = ((n,B)) where B = I(K ≥ n).

(ii) C2 = ((k,Bk))k≥1 where Bk = I(k = K + 1).

(iii) C3 = (k,Bk)k=1,...,n, with Bk as in (ii).

(iv) C4 = (k,Bk)k=1,...,n, with Bk = I(k = K + 1 ≤ n) + I(k = n ≤ K).

(b) (i)A1(δ) = E(NPV1(δ)) = e−δnP (K ≥ n), V1 = V ar(NPV1(δ)) = E(NPV 2)−
E(NPV )2 = A1(2δ)− (A1(δ))2

(ii) A2(δ) = E(NPV2(δ)) =
∑∞

k=1 e
−δkP (K + 1 = k) = E(e−δ(K+1)),

V2 = V ar(NPV2(δ)) = A2(2δ)− (A2(δ))2

(iii) A3(δ) = E(NPV3(δ)) =
∑n

k=1 e
−δkP (K + 1 = k) = E(e−δ(K+1)1{K≤n−1}),

V3 = V ar(NPV3(δ)) = A3(2δ)− (A3(δ))2

(iv) A4(δ) = E(NPV4(δ)) =
∑n−1

k=1 e
−δkP (K + 1 = k) + e−δnP (K ≥ n − 1) =

E(e−δ(min(K+1,n))), V4 = V ar(NPV4(δ)) = A4(2δ)− (A4(δ))2

(c) C4 = C1 + C3, A4 = A1 + A3, V4 = V1 + V3 + 2Cov(NPV1(δ), NPV3(δ)) =
V1 + V3 − 2A1A3 since NPV1 ×NPV3 = 0 always.

(d) Only the pure endowment can still be expressed in the form asked for in part
(a): C1 = ((n,B)) where B = 1(T ≥ n). For (ii)-(iv), the time of the payment
is now a continuous random variable.

The expressions of for net premiums are essentially the same as in the discrete
case, but replacing the discrete probability mass function of K + 1 by the
density function of T , and integrating rather than summing. For example for
part (ii), Ã2(δ) =

∫∞
0
e−δtf(t)dt.

In each case the variance again has the form V = A(2δ)− A(δ)2.

C.3. First calculate the two factors

tV
1

x:n| = A 1
x+t:n−t| − P

1
x:n|äx+t:n−t| = A 1

x+t:n−t| −
A 1
x:n|

äx:n|
äx+t:n−t|

= vn−tn−tpx+t −
äx+t:n−t|

äx:n|
vnnpx
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and

P 1
x:t| =

A 1
x:t|

äx:t|
=

1

äx:t|
vttpx.

Now multiply these two and, for convenience, their denominators äx:n|äx:t| to
get

tV
1

x:n|P
1

x:t|äx:n|äx:t| = vnnpxäx:n| − vn+t
npxtpxäx+t:n−t|

= vnnpx
(
äx:n| − vttpxäx+t:n−t|

)
= vnnpx

(
äx:n| − (äx:n| − äx:t|)

)
= vnnpxäx:t| = A 1

x:n|äx:t|,

and we see that

tV
1

x:n|P
1

x:t| =
A 1
x:n|

äx:n|
= P 1

x:n|

does not depend on t.

By general reasoning, tV
1

x:n| is the amount that (on average) can be paid to
the holders of n-year pure endowments after t years. If they are paid out this
reserve, they realise a t-year pure endowment with sum assured tV

1
x:n| which

would have required an annual premium of tV
1

x:n|P
1

x:t| whereas they paid P 1
x:n|.

Therefore, the two must be equal.


