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S.1 Time value of money

A.1. There are four payments which accumulate under compound interest to

100(1.09) + 100(1.09)3/4 + 100(1.09)1/2 + 100(1.09)1/4 = 422.26

A.2. (a) i = eδ − 1 ≈ 7.788%

(b) i = eδ − 1 = (1− v)/v = d/(1− d) ≈ 9.890%

(c) i = (1 + i(2)/2)2 − 1 = 8.16%

(d) i = (1 + i(12)/12)12 − 1 ≈ 9.381%

A.3. Just calculate from the definition of the accumulation factor

Val2((0, 1000)) = 1, 000 exp

{∫ 2

0

0.06(t+ 1)dt

}
= 1, 000 exp {0.24} = 1, 271.25

A.4. (i) Present value of quarterly payments in arrears, of £0.25 each for 67 years:

a
(4)

67| =
67×4∑
r=1

1

4
(1 + i)−r/4 =

1

4
(1 + i)−1/4 1− (1 + i)−67

1− (1 + i)−1/4
= 23.5391.

Notice also a
(4)

67| = i
i(4)
a67|, See Garrett, section 4.2 for a fuller explanation.

(ii) Terminal accumulated value of monthly payments in arrears, of £1/12 each
for 18 years:

s
(12)

18| = (1 + i)18a
(12)

18| = (1 + i)18 1

12
(1 + i)−1/12 1− (1 + i)−18

1− (1 + i)−1/12
= 26.1122.

(iii) Present value of quarterly payments in advance, of £0.25 each for 16.5 years
(198 months):

ä
(4)

16.5| =
16.5×4−1∑
r=0

1

4
(1 + i)−r/4 =

1

4

1− (1 + i)−16.5

1− (1 + i)−1/4
= 12.2078.

(iv) Accumulated value of monthly payments in advance, of £1/12 each for 15.25
years (61 quarters):

s̈
(12)

15.25| = (1 + i)15.25ä
(12)

15.25| = (1 + i)15.25 1

12

1− (1 + i)−15.25

1− (1 + i)−1/12
= 20.9079.

B.1. The fund is to provide three payments of amount X, say, at times 4, 12 and 16,
if we define the death time as time 0 and the time unit as half-years. The sum
of discounted present values of the three future payments must equal the present
value of the fund which is £50,000:

(1.06)−4X + (1.06)−12X + (1.06)−16X = 50, 000⇒ X = 29, 713.99

Each of the children obtain £29.713.99 when they turn 21.

This is not “fair” if there is inflation, as one would expect. Money will be worth
less when the younger ones turn 21.
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B.2. (i) One easily derives the following table from the definitions.

δ i v d

δ = δ log(1 + i) − log(v) − log(1− d)

i = eδ − 1 i
1− v
v

d

1− d

v = e−δ
1

1 + i
v 1− d

d = 1− e−δ i

1 + i
1− v d

(ii) d = vi means that a discount of d at time 0 has the same value as interest of
i at time 1.

(iii) 1 + i = eδ ⇒ δ = log(1 + i) = i− i2/2 + o(i2) by log expansion,

d = vi = i/(1 + i) = i(1− i+ o(i)) = i− i2 + o(i2) by geometric expansion,

d = 1 − v = 1 − e−δ = 1 − (1 − δ + δ2/2 + o(δ2)) = δ − δ2/2 + o(δ2) by exp
expansion.

B.3. We calculate from the definition of the discount factor

v(t) = exp

{
−
∫ t

0

δ(y)dy

}
= exp

{
−
∫ t

0

(
p+ s− rsesy

1 + resy

)
dy

}
= exp {−(p+ s)t} 1 + rest

1 + r

=
1

1 + r
e−(p+s)t +

r

1 + r
e−pt

and we can read off v1 = e−(p+s), v2 = e−p and λ = 1/(1 + r).

This means that cash-flow valuations in this time-dependent interest model can be
made by calculating weighted averages of fixed rate models.

B.4. (i) We transform the definition of v(t) and differentiate∫ t

0

δ(s)ds = − log v(t) ⇒ δ(t) = −v
′(t)

v(t)
=

2t+ 2α + 1

(t+ α)(t+ α + 1)

(ii) The effective rate of interest for the period from time n to time n+ 1 is given
by

exp

{∫ n+1

n

δ(t)dt

}
− 1 = exp

{∫ n+1

0

δ(t)dt−
∫ n

0

δ(t)dt

}
− 1

=
v(n)

v(n+ 1)
− 1 =

2

n+ α
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(iii) The required present value is given by

n∑
r=1

v(r) =
n∑
r=1

α(α + 1)

(α + r)(α + r + 1)

The trick is to split the fraction

= α(α + 1)
n∑
r=1

(
1

r + α
− 1

r + α + 1

)
=

nα

n+ α + 1
.

(iv) Let P be the level annual premium. The present value of 12 annual premium
payments starting with year 0 is P (1+a(11)). The present value of the annuity
paying £1,800 from year 12 to 21 is 1, 800(a(21) − a(11)). These have to be
equal for the premium to be fair:

P (1 + a(11)) = 1, 800(a(21)− a(11)) ⇒ P = 608.11

The annual premium is £608.11.

The value of the annuity at time 0 is P (1 + a(11)) = 4, 324.34. For the value
at time 12 we just divide by v(12) to obtain £13, 621.66.

B.5. The second investment gives a rate of interest i given by

4, 000(1 + i)4 = 4, 400 ⇒ i = (4400/4000)1/4 − 1 ≈ 0.024 = 2.4%

For the first investment, we cannot calculate the rate of interest explicitly, but we
can see that if it was i = 2.4%, we’d have

−4, 000(1 + i)6 + 2, 000(1 + i)4 + 2, 400 = −14.76 < 0

so the actual rate must be lower to break even. Therefore, the second investment
gives the higher rate of interest.

B.6. We need to solve −X(1+y)−s+Y (1+y)−t = 0. This gives y = (Y/X)1/(t−s)−1. As
you would expect, the yield increases as Y increases or X decreases. If Y > X the
yield is positive, and then it decreases with the length of the term t− s; if Y < X
then the yield is negative and it increases towards zero as t− s increases.

B.7. Let C be the advertised price. Then the equation of discounted values at time 0 is

0.95C =
C

15
(1.05)12a

(12)

1.25|i

or

0.95

1.05
× 15 =

1− (1 + i)−1.25

(1 + i)1/12 − 1
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or

f(i) :=
1− (1 + i)−1.25

(1 + i)1/12 − 1
− 13.5714 = 0.

The function f(i) is decreasing in i and gives

f(10%) = 0.5134, f(20%) = −0.2595

and by linear interpolation

i ≈ 20%f(10%)− 10%f(20%)

f(10%)− f(20%)
≈ 16.6%

We quote this as an approximate answer (or check f(16.6%) ≈ −0.0137, which is
pretty good compared to f(10%) and f(20%), indeed it can be shown that 16.5%
is correct to 1 d.p.)

C.1. (a) Let ä∗n|i denote the value of this annuity at an annual rate of interest i. We
have

ä∗n|i =
n−1∑
k=0

(
1 + r

1 + i

)k
=

n−1∑
k=0

(1 + j)−k = än|j.

since

1 + j = 1 +
i− r
1 + r

=
1 + i

1 + r
.

(b) Let a∗n|i denote the value of this annuity at an annual rate of interest i. We
have

a∗n|i =
n∑
k=1

(1 + r)k−1

(1 + i)k
=

1

1 + r

n∑
k=1

(1 + j)−k =
1

1 + r
an|j.

Hence, the present value of this annuity is not equal to an|j (unless r = 0).

(c) Let the first annuity payment be X. The equation of value is

10, 000 = X(1.05)−1a20|j

where

1 + j =
1.09

1.05
⇒ j = 0.03810.

Now a20|j = 13.822455 so that

10, 000 = X(1.05)−1a20|j ⇒ X = £759.63.
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C.2. The income stream corresponds to interest at effective rate X/P paid on the in-
vestment P at the end of each time unit, with the capital P repaid at time n. So
the yield is simply X/P . This can be verified formally from the yield equation.

C.3. The values of the increasing annuity at time 0 and 1 are given by

(Ia)n| =
n∑
k=1

kvk and (1 + i)(Ia)n| =
n−1∑
j=0

(j + 1)vj.

Subtracting the two, we obtain

i(Ia)n| = än| − nvn ⇒ (Ia)n| =
än| − nvn

i
.


