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Abstract

We embed Duquesne and Le Gall’s stable tree into a binary compact continuum random tree (CRT)
n a way that solves an open problem posed by Goldschmidt and Haas. This CRT can be obtained by
pplying a recursive construction method of compact CRTs as presented in earlier work to a specific
istribution of a random string of beads, i.e. a random interval equipped with a random discrete measure.
e also express this CRT as a tree built by replacing all branch points of a stable tree by i.i.d. copies

f a Ford CRT, each rescaled by a factor intrinsic to the stable CRT.
2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Stable tree; Line-breaking construction; String of beads; Continuum random tree; Marked metric space;
Recursive distribution equation

1. Introduction

1.1. Motivation and main results

Stable trees were introduced by Duquesne and Le Gall [14] as a family of continuum random
rees (CRTs) parametrised by a self-similarity parameter α ∈ (1, 2] to describe the genealogical

structure of continuous-state branching processes with branching mechanism λ ↦→ λα . As such
they form a subclass of Lévy trees [32] and contain Aldous’s Brownian CRT [1–3] as a special
case (α = 2). They were studied by Miermont and others [14,15,22,24,25,32,34,35] in the
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context of self-similar fragmentations and by several authors to establish invariance princi-
ples [6,11,13,23,29] and other properties [8,10]. Furthermore, they have deeper connections to
random maps and Liouville quantum gravity [12,31,37].

We represent trees as R-trees, i.e. compact metric spaces (T , d) such that any two points
x, y ∈ T are connected by a unique path [[x, y]] in T , which is furthermore required to have
length d(x, y). All our R-trees are rooted at a distinguished ρ ∈ T . We refer to a rooted R-tree
(T , d, ρ) equipped with a probability measure µ as a weighted R-tree (T , d, ρ, µ), and equip
sets of isometry classes of R-trees and weighted R-trees with the Gromov–Hausdorff and the
Gromov–Hausdorff–Prokhorov topology, respectively.

Ever since Aldous [3], such trees have been built sequentially from a single branch [[ρ,Σ0]],
grafting further branches (line segments) ]]Jk−1,Σk]] to build trees Tk spanned by a growing

umber of points ρ,Σ0, . . . ,Σk , k ≥ 1, finally passing to the closure/completion T of
⋃

k≥0 Tk .
n a given weighted R-tree (T , d, ρ, µ), a natural sequence (Σk, k ≥ 0) may be obtained
s an independent sample from µ. For the Brownian CRT, Aldous [3] gave an autonomous
escription of the resulting tree-growth process (Tk, k ≥ 0) by breaking the half-line [0, ∞) at
he points (Sk, k ≥ 0) of an inhomogeneous Poisson process with linearly growing intensity
dt on [0, ∞), each segment ]Sk, Sk+1] grafted in a point Jk chosen uniformly from the length
easure on the structure Tk already built, with T0 = [0, S0].
In Aldous’s construction, the branch points Jk , k ≥ 0, are distinct, the trees binary.

his construction reveals some of the local complexity of the limiting tree, since elementary
hinning of Poisson processes shows that every branch receives a dense set of branch points.
oldschmidt and Haas [20] generalised this line-breaking construction to all stable trees
T , d, ρ, µ), which are not binary for α ∈ (1, 2). They describe

Tk =

k⋃
i=0

[[ρ,Σi ]], k ≥ 0, for a sample Σi ∼ µ, i ≥ 0, (1.1)

ot quite autonomously, as Aldous does in the special case α = 2, but by assigning weights

W (i)
k , i ∈ [bk], k ≥ 0, (1.2)

o each branch point vi of Tk , where (vi , i ≥ 1) is the sequence of distinct branch points in
heir order of appearance in (Tk, k ≥ 0), and bk ≥ 0 is the number of branch points of Tk .
ere, [b] := {1, . . . , b} with the convention that [0] = ∅.
Specifically, it will be convenient to change the usual parametrisation of the stable trees

rom a parameter α ∈ (1, 2] to an index β = 1 − 1/α ∈ (0, 1/2]. For k ≥ 0, the sum of the
ranch point weights (W (i)

k , i ∈ [bk]) and the total length Lk = Leb(Tk) of Tk is given by Sk ,
here (Sk, k ≥ 0) is the Mittag-Leffler Markov chain [20,24,27] with parameter β, starting

rom S0 ∼ ML(β, β) with transition density

fSk+1|Sk=z (y) = f (z, y) =
1 − β

Γ (1/β)
(y − z)1/β−2 ygβ(y)

gβ(z)
, 0 < z < y, k ≥ 0.

ere, ML(α, θ) denotes the Mittag-Leffler distribution with parameters 0 < α < 1 and θ > −α

cf. Section 2.3), and gβ(·) is the density of ML(β, 0). Then Sk = W (1)
k + · · · + W (bk )

k + Lk ∼

L(β, β + k).

lgorithm 1.1 (Goldschmidt–Haas [20], Line-Breaking Construction II). Let β ∈ (0, 1/2].
e grow discrete random R-trees Tk with weights W (i)

k in the branch points vi , i ∈ [bk], of Tk ,
nd edge lengths between vertices, as follows.
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0. Let (T0, ρ) be isometric to ([0, S0], 0), where S0 ∼ ML(β, β); let b0 = 0 and W (i)
0 = 0,

i ≥ 1.

iven (T j , (vi , i ∈ [b j ]), (W (i)
j , i ∈ [b j ])), 0 ≤ j ≤ k, and Sk = Lk + W (1)

k +· · ·+ W (bk )
k , where

Lk = Leb(Tk),

1. select Ik = i for each branch point vi of Tk with probability proportional to W (i)
k ,

i ∈ [bk]; or select an edge Ek ⊂ Tk with probability proportional to its length and
let bk+1 = bk + 1, Ik = bk+1;

2. if an edge Ek is selected, sample vbk+1 from the normalised length measure on Ek ;
3. sample Sk+1 with density f (Sk, ·) and an independent Bk ∼ Beta(1, 1/β − 2); attach to

Tk at Jk := vIk a new branch of length (Sk+1 − Sk)Bk to form Tk+1; increase the weight
of Jk = vIk to W (Ik )

k+1 = W (Ik )
k + (Sk+1 − Sk)(1 − Bk), and set W ( j)

k+1 = W ( j)
k , j ̸= Ik .

When β = 1/2, we understand Bk = 1, so W (i)
k = 0 for all i ≥ 1, k ≥ 0, and Lk = Sk for

ll k ≥ 0. We obtain a sequence of compact binary R-trees whose evolution is determined by
ttachment points chosen uniformly at random according to the length measure, and the total
ength given by the Mittag-Leffler Markov chain of parameter β = 1/2, which can be seen to
orrespond to an inhomogeneous Poisson process of rate 1

2 tdt . Hence, this reduces to Aldous’s
line-breaking construction of the Brownian CRT [3].

It was shown in [20] that the sequence of trees (Tk, k ≥ 0) in Algorithm 1.1 has the same
distribution as the sequence of trees from (1.1), i.e. we can formally define the stable tree of
index β ∈ (0, 1/2] as the (Gromov–Hausdorff) limit T of Tk , as k → ∞. See also [20] for an
lternative line-breaking construction of the sequence (Tk, k ≥ 0), where branch point selection
s based on vertex degrees instead of weights.

Goldschmidt and Haas [20] asked if there was a sensible way to associate a notion of length
ith the branch point weights in Algorithm 1.1. We answer this question by using the branch
oint weights to build rescaled Ford trees whose lengths correspond to these weights. Ford
rees arise in the scaling limit of Ford’s alpha model studied in [18,24] and in the context of
he alpha–gamma model [7] for γ = α, which is also related to the stable tree in the case when
= 1−α. Ford trees are examples of binary self-similar CRTs and have also been constructed

ia line-breaking:

lgorithm 1.2 (Haas–Miermont–Pitman–Winkel [24,39]). Let β ′
∈ (0, 1). We grow random

R-trees Fm , m ≥ 1:

0. Let (F1, ρ) be isometric to ([0, S′

1], 0), where S′

1 ∼ ML(β ′, 1 − β ′).

Given F j , 1 ≤ j ≤ m, let S′
m = Leb(Fm) denote the length of Fm ;

1. select an edge Em ⊂ Fm with probability proportional to its length;
2. if Em is external, sample Dm ∼ Beta(1, 1/β ′

− 1) and place Jm ∈ Em to split Em into
length proportions Dm and 1 − Dm ; otherwise, sample Jm from the normalised length
measure on Em ;

3. sample S′

m+1 with density f (S′
m, ·); attach to Fm at Jm an edge of length S′

m+1 − S′
m to

form Fm+1.

The sequence of trees (Fm, m ≥ 1) has as its (Gromov–Hausdorff) limit a CRT F as
k → ∞, a so-called Ford CRT of index β ′

∈ (0, 1), see [24,39]. We refer to the trees Fm ,
m ≥ 1, as Ford trees. In the case when β ′

= 1/2, Algorithm 1.2 corresponds to Aldous’s

construction of the Brownian CRT.
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We combine the line-breaking constructions of Algorithm 1.1 and Algorithm 1.2 in the
ramework of ∞-marked R-trees, which we introduce in Section 2.2 as a natural extension of

iermont’s notion of k-marked trees [36]. An ∞-marked R-tree (T , (R(i), i ≥ 1)) is an R-tree
T , d, ρ) with non-empty closed connected subsets R(i)

⊂ T , i ≥ 1. We will refer to this
etting as a two-colour framework, meaning that the marked set

⋃
i≥1 R(i) and the unmarked

emainder T \
⋃

i≥1 R(i) are associated with two different colours. The marked components in
he line-breaking construction below correspond to rescaled Ford trees with lengths equal to the
ranch point weights in Algorithm 1.1 and the unmarked remainder gives rise to a stable tree.
election of a branch point in Algorithm 1.1 corresponds to an insertion into the respective
arked component in the enhanced line-breaking construction given by Algorithm 1.3.

lgorithm 1.3 (Two-Colour Line-Breaking Construction). Let β ∈ (0, 1/2]. We grow random
-marked R-trees (T ∗

k , (R(i)
k , i ≥ 1)), k ≥ 0, as follows.

0. Let (T ∗

0 , ρ) be isometric to ([0, S0], 0), where S0 ∼ ML(β, β); let r0 = 0 and R(i)
0 = {ρ},

i ≥ 1.

Given (T ∗

j , (R(i)
j , i ≥ 1)), 0 ≤ j ≤ k, let Sk = Leb(T ∗

k ) be the length of T ∗

k and

k = #{i ≥ 1 :R(i)
k ̸= {ρ}};

1. select an edge E∗

k ⊂ T ∗

k with probability proportional to its length; if E∗

k ⊂ R(i)
k for

some i ∈ [rk], let Ik = i ; otherwise, i.e. if E∗

k ⊂ T ∗

k \
⋃

i∈[rk ] R
(i)
k , let rk+1 = rk + 1,

Ik = rk+1;
2. if E∗

k is an external edge of R(i)
k , sample Dk ∼ Beta(1, 1/β −2) and place J ∗

k to split E∗

k
into length proportions Dk and 1− Dk , with proportion Dk closer to the root; otherwise,
i.e. if E∗

k ⊂ T ∗

k \
⋃

j∈[rk ] R
( j)
k or if E∗

k is an internal edge of R(i)
k , sample J ∗

k from the
normalised length measure on E∗

k ;
3. sample Sk+1 with density f (Sk, ·) and an independent Bk ∼ Beta(1, 1/β − 2); attach to

T ∗

k at J ∗

k a new branch of length Sk+1 − Sk to form T ∗

k+1, and add to R(Ik )
k the part of

length (Sk+1 − Sk)(1 − Bk) closest to the root to form R(Ik )
k+1; set R( j)

k+1 = R( j)
k , j ̸= Ik .

Indeed, we obtain the correspondence of the branch point weights in Algorithm 1.1 and the
engths of the marked subtrees in Algorithm 1.3, as well as marked subtrees as in Algorithm 1.2,
p to scaling:

heorem 1.4 (Weight-Length Representation). Let (Tk, (W (i)
k , i ≥ 1), k ≥ 0) be as in

lgorithm 1.1. Consider a sequence (T ∗

k , (R(i)
k , i ≥ 1), k ≥ 0) of ∞-marked R-trees

constructed as in Algorithm 1.3, and let W̃ (i)
k = Leb(R(i)

k ) denote the length of R(i)
k , i ≥ 1,

respectively. For k ≥ 1, contract each component R(i)
k to a single branch point ṽi by using an

equivalence relation, and denote the resulting quotient space by T̃k . Then(
T̃k,

(
W̃ (i)

k , i ≥ 1
)

, k ≥ 0
)

d
=

(
Tk,

(
W (i)

k , i ≥ 1
)

, k ≥ 0
)

. (1.3)

See Fig. 1. Moreover, there exist positive random variables C (i) and subsequences (k(i)
m , m ≥ 1),

≥ 1, such that the rescaled marked subtrees grow like Ford trees of index β ′
= β/(1 − β),

i.e. (
C (i)R(i)

k(i)
m

, m ≥ 1
)

d
= (Fm, m ≥ 1) , (1.4)

for all i ≥ 1 where (C (i)R(i)
(i) , m ≥ 1), i ≥ 1, are independent of each other.
km
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Fig. 1. Example of T̃4 with three branch points v1, v2, v3; branch point weights W (1)
4 , W (2)

4 , W (3)
4 are represented

s lengths W̃ (1)
4 , W̃ (2)

4 , W̃ (3)
4 of marked subtrees R(1)

4 ,R(2)
4 ,R(3)

4 in T ∗

4 , respectively.

To obtain limiting ∞-marked CRTs, we build on [36] to define a suitable metric d∞

GH in
ection 2.2.

heorem 1.5 (Convergence of Two-Colour Trees). Let (T ∗

k , (R(i)
k , i ≥ 1), k ≥ 0) be as above.

hen

lim
k→∞

(
T ∗

k ,
(
R(i)

k , i ≥ 1
))

=
(
T ∗,

(
R(i), i ≥ 1

))
a.s. (1.5)

ith respect to d∞

GH, where (T ∗, (R(i), i ≥ 1)) is a compact ∞-marked R-tree. Furthermore,

• the tree T̃ , obtained from T ∗ by contracting each component R(i) to a single branch
point ṽi , is a stable tree of parameter β;

• there exist T̃ -measurable scaling factors (C (i), i ≥ 1) such that C (i)R(i), i ≥ 1, are i.i.d.
copies of a Ford CRT F of index β ′

= β/(1 − β), and the trees C (i)R(i), i ≥ 1, are
independent of T̃ .

The scaling factors C (i) can be given explicitly in terms of the masses of the subtrees of the
table tree T̃ above the branch point ṽi . We can in fact use this, with the ingredients listed in
heorem 1.5, to construct the two-colour tree (T ∗, (R(i), i ≥ 1)) from a stable tree (T , µ) by

eplacing each branch point by a rescaled independent copy of a Ford CRT:

heorem 1.6 (Branch Point Replacement in a Stable Tree). Let (T , d, ρ, µ) be a stable tree
f index β ∈ (0, 1/2] equipped with an i.i.d. sequence of labelled leaves (Σk, k ≥ 0) sampled
rom µ. Consider the reduced trees (Tk, k ≥ 0) as in (1.1) with branch points (vi , i ≥ 1) in
rder of appearance. For each i ≥ 1, consider the path from the root to the leaf with the
mallest label above vi and the following variables:

• the total mass P (i)
=
∑

j≥1 P (i)
j of the subtrees rooted at vi on this path with masses

(P (i)
j , j ≥ 1), in the order of their smallest labels;

• the random variable D(i)
= limn→∞

(
1 −

∑
j∈[n] P (i)

j /P (i)
)1−β(1 − β)β−1nβ derived from

(P (i)
j , j ≥ 1).

or i ≥ 1, replace vi by an independent Ford tree F (i) of index β ′
= β/(1 − β) with distances(

(i)
)−1 (

(i)
)β ( (i)

)β/(1−β) (
(i) ∑ (i))β −β β2/(1−β)
escaled by C = P D = limn→∞ P − j∈[n] Pj (1 − β) n .
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Specifically, the root of F (i) is identified with vi and the subtrees rooted at vi are attached to
leaves of F (i) in the order of their appearance in Algorithm 1.2. Then the tree T ∗ obtained
here in the limit after all replacements has the same distribution as the tree T ∗ in Theorem 1.5.

We will formalise this construction in Section 5.3. The random variable D(i) is the so-called
1−β)-diversity of the mass partition (P (i)

j /P (i), j ≥ 1) ∼ GEM(1−β, −β), where GEM(α, θ)
denotes the Griffiths–Engen–McCloskey distribution with parameters α ∈ [0, 1), θ > −α,
whose ranked version is the Poisson–Dirichlet distribution PD(α, θ). Note that, when β = 1/3,
we have β ′

= 1/2, which means that we replace the branch points of the stable tree by rescaled
i.i.d. Brownian CRTs. This should be compared with Le Gall [31], who effectively contracts
subtrees in the middle of a Brownian CRT to obtain a stable tree of parameter 3/2. Neither his
subtrees nor our T ∗ appear to be rescaled Brownian CRTs.

1.2. Main ideas for the proofs and further results

The proofs of our main results, Theorems 1.5 and 1.6, in particular the compactness of T ∗,
are based on an embedding of T ∗

k , k ≥ 0, into a compact CRT whose existence follows from
earlier work [42] where we constructed CRTs via i.i.d. copies of a random string of beads, see
Section 3.3 for details. Specifically, in [42], we introduced a recursive method to construct a
CRT via bead splitting, i.e., from independent copies of random strings of beads, which are
intervals equipped with discrete mass measures. The algorithm starts with a single string of
beads. In the first step, each bead is replaced by a rescaled independent copy of a string of
beads, whose distribution is fixed throughout the algorithm. The method is applied recursively,
i.e., the beads of the tree obtained after n steps are replaced by rescaled independent copies of
the string of beads. We have shown the convergence of the resulting trees to a (compact) CRT.
To apply this setup in the context of this paper, we need to find the ‘right’ string of beads.
More precisely, the string of beads will have two components: one scaled marked string of
beads that leads to rescaled Ford trees, and one unmarked component that leads to a stable tree
after contracting all marked components to single branch points.

Mathematically, the distribution ν of the string of beads we use to obtain this CRT combines
two (β, θ)-strings of beads (for θ = β and θ = 1 − 2β), which arise in the framework of
ordered (β, θ)-Chinese restaurant processes as introduced in [39]. A (β, θ)-string of beads
is an interval of length K ∼ ML(β, θ) equipped with a discrete probability measure whose
atom sizes are PD(β, θ), arranged in a random order that yields a regenerative property. It is
crucial for our argument to equip each reduced tree with a measure, which effectively captures
projected subtree masses.

This naturally leads to a new description of the sequence of weighted trees as a bead splitting
process, in the terminology of [39], which converges to the stable tree. This only uses (β, β)-
strings of beads ([0, K ], µ), in which µ =

∑
i≥1 PiδKUi for (Pi , i ≥ 1) ∼ PD(β, β) and

i ∼ Unif(0, 1), i ≥ 1, independent. In this description, the selection of the attachment point
Jk is based on bead masses rather than branch lengths, and only a proportion of the mass in
Jk is spread over the new branch, depending on the degree deg(Jk, Tk) of Jk in Tk .

Algorithm 1.7 (Bead-Splitting Construction of the Stable Tree). Let β ∈ (0, 1/2]. We grow
eighted R-trees (Tk, µk), k ≥ 0, as follows (cf. Fig. 2).

0. Let (T0, µ0) be isometric to a (β, β)-string of beads.

Given (T , µ ) with µ =
∑

µ (x)δ , 0 ≤ j ≤ k,
j j j x∈T j j x
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Fig. 2. Example of (T3, µ3) and (T4, µ4) constructed via bead splitting. To build (T4, µ4) from (T3, µ3), the
ttachment point J3 is selected via sampling from µ3, and a Q3 proportion of the mass of the selected bead is
plit up into a rescaled independent copy of the initial string of beads (T0, µ0), which is attached to J3.

1.–2. sample Jk from µk ;
3. given deg(Jk, Tk) = d ≥ 2, let Qk ∼ Beta(β, (d − 2)(1 − β) + 1 − 2β), and let ξk be an

independent (β, β)-string of beads; to form (Tk+1, µk+1), remove Qkµk(Jk)δJk from µk

and attach to Tk at Jk an isometric copy of ξk with measure rescaled by Qkµk(Jk) and
metric rescaled by (Qkµk(Jk))β .

heorem 1.8. In Algorithm 1.7, we have limk→∞(Tk, µk) = (T , µ) a.s. in the Gromov–
ausdorff–Prokhorov topology, where (T , µ) is a stable tree of index β.

In fact, part of our argument is to show that the sequence of unweighted trees (Tk, k ≥ 0) has
he same distribution as the sequence in (1.1) (and as in Algorithm 1.1), and that the projected

ass measures are as required. This claim for k = 0 is well-known in different terminology
n [25, Corollary 10(3)]. See also [39, discussion after Corollary 8].

We conclude this section by complementing the growth of CRTs by discrete two-colour tree
rowth. Marchal [33] introduced a tree growth model related to the stable tree. Specifically,
e built a sequence of discrete trees (Tn, n ≥ 0), which we view as R-trees with unit edge
engths equipped with the graph distance, i.e. the distance between two vertices x, y ∈ Tn is
he number of edges between x and y.

lgorithm 1.9 (Marchal’s Algorithm). Let β ∈ (0, 1/2]. We grow discrete trees Tn , n ≥ 0, as
ollows.

0. Let T0 consist of a root ρ and a leaf Σ0, connected by an edge.

iven Tn , with leaves Σ0, . . . ,Σn ,

1. distribute a total weight of n +β by assigning (d −2)(1−β)−β to each vertex of degree
d ≥ 3 and β to each edge of Tn; select a vertex or an edge in Tn at random according to
these weights;

2. if an edge is selected, insert a new vertex, i.e. replace the selected edge by two edges
connecting the new vertex to the vertices of the selected edge; proceed with the new
vertex as the selected vertex;

3. in all cases, add a new edge from the selected vertex to a new leaf Σ to form T .
n+1 n+1
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Strengthening a result by Marchal [33], Curien and Haas [8] showed that the sequence of
rees (Tn, n ≥ 0) has the stable tree T of index β as its a.s. scaling limit, in the following
trong sense:

lim
n→∞

n−β Tn = T a.s. in the Gromov–Hausdorff topology.

In a manner similar to the algorithms for the alpha–gamma model of [7], we can obtain the
wo-colour trees (T ∗

k , (R(i)
k , i ≥ 1)), k ≥ 0, as a.s. scaling limits of the following discrete tree

rowth process in the space of ∞-marked R-trees with unit edge lengths.

efinition 1.10 (The Discrete Two-Colour Model). Let β ∈ (0, 1/2]. We grow random discrete
two-colour trees (T ∗

n , (R(i)
n , i ≥ 1)), n ≥ 0, as follows.

0. Let T ∗

0 consist of a root ρ and a leaf Σ0 connected by an edge, let R(i)
0 = {ρ}, i ≥ 1, and

r0 = 0.

Given (T ∗
n , (R(i)

n , i ≥ 1)), with leaves Σ0, . . . ,Σn and rn = #{i ≥ 1 : R(i)
n ̸= {ρ}},

1. distribute a total weight of n + β by assigning β to each unmarked and each internal
marked edge of T ∗

n , and 1 − 2β to each external marked edge of T ∗
n ; select an edge in

T ∗
n at random according to these weights;

2. if the selected edge is unmarked, replace it by two unmarked edges connecting the new
vertex to the vertices of the selected edge and set In = rn + 1; if the selected edge is
a marked edge of R(i)

n for some i ≥ 1, replace it by two marked edges and set In = i ;
proceed with the new vertex as the selected vertex;

3. add a new degree-2 vertex, connect it to the selected vertex by a marked edge, and to
a new leaf Σn+1 by an unmarked edge; add the marked edge to R(In )

n to form R(In )
n+1; set

R(i)
n+1 = R(i)

n for i ̸= In .

Proposition 1.11 (Convergence of the Discrete Two-Colour Model). Consider the discrete
wo-colour tree growth process (T ∗

n , (R(i)
n , i ≥ 1), n ≥ 0) from Definition 1.10, which we view

s a sequence of ∞-marked R-trees with unit edge lengths. For all k ≥ 0, denote the reduced
ree spanned by the root ρ and the leaves Σ0, . . . ,Σk by R(T ∗

n , (R(i)
n , i ≥ 1),Σ0, . . . ,Σk). Then

lim
n→∞

n−βR
(
T ∗

n ,
(
R(i)

n , i ≥ 1
)
,Σ0, . . . ,Σk

)
=

(
T ∗

k ,
(
R(i)

k , i ≥ 1
))

a.s.

ith respect to the distance d∞

GH, where (T ∗

k , (R(i)
k , i ≥ 1), k ≥ 0) is as in Algorithm 1.3.

Conditionally given that T ∗

k has rk marked components R(i)
k ̸= {ρ} with d1 − 2, . . . , drk − 2

eaves, the distribution of the edge lengths of (T ∗

k , (R(i)
k , i ≥ 1)) is given by S∗

k Dk , where
S∗

k ∼ ML(β, β + k) and

Dk ∼ Dirichlet (1, . . . , 1, 1/β − 2, . . . , 1/β − 2)

ith weight 1 for each unmarked edge and each internal marked edge, and weight 1/β −2 for
ach external marked edge, are conditionally independent.

This proposition can be proved using exactly the same techniques as the proof of the
orresponding result for the alpha–gamma model, cf. [7, Propositions 21 and 22], and the
esult for (α, θ)-tree growth processes, cf. [39, Proposition 14]. We omit the details.

emark 1.12. One can obtain mass measures µ∗

k on T ∗

k , k ≥ 0, as scaling limits of the
mpirical measures on the leaves of T ∗, projected onto the reduced trees, using the same
n
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methods as in [39]. In particular, each edge equipped with limiting relative projected subtree
masses is a rescaled (β, θ)-string of beads where θ = β for internal marked and unmarked
dges, and θ = 1 − 2β for external marked edges. It can be shown directly that these strings
f beads are independent of each other and of the mass split on T ∗

k , which has distribution
irichlet(β, . . . , β, 1 − 2β, . . . , 1 − 2β), with parameter β for each internal marked and
nmarked edge, and parameter 1−2β for each external marked edge of T ∗

k , cf. Proposition 3.3.

There has been a recent sequence of papers by Sénizergues that relates to our work in
several ways. Building on a generalised line-breaking construction constructed by Curien and
Haas [9], Sénizergues [43,44] develops more general algorithms that grow random graphs or
more general metric spaces by gluing substructures. When using preferential attachment, this
includes Marchal’s algorithm and related line-breaking constructions. See also further joint
work [21] for related constructions of stable graphs and [45] for branch point replacement
constructions.

This paper is structured as follows. We introduce the framework of ∞-marked R-trees
in Section 2 and also collect some preliminary results on strings of beads and stable trees.
Section 3 introduces the limiting tree of the two-colour line-breaking construction and states
the auxiliary bead-splitting constructions, which are the keys to analysing the two-colour line-
breaking construction in Section 4. Section 5 completes the proofs of our main results. An
appendix includes the technical proof of a result postponed from an earlier section.

2. Preliminaries on marked R-trees, strings of beads and stable trees

2.1. R-Trees and the Gromov–Hausdorff topology

A compact metric space (T , d) is called an R-tree [16,30] if for each x, y ∈ T the following
holds.

(i) There is an isometry fx,y : [0, d(x, y)] → T such that fx,y(0) = x and fx,y(d(x, y)) = y.
(ii) For all injective paths g : [0, 1] → T with g(0) = x and g(1) = y, we have g([0, 1]) =

fx,y([0, d(x, y)]).

We denote the range of fx,y by [[x, y]] := fx,y ([0, d(x, y)]). All our R-trees will be rooted
at a distinguished element ρ, the root of T . We call two R-trees (T , d, ρ) and (T ′, d ′, ρ ′)
equivalent if there is an isometry from T to T ′ that maps ρ onto ρ ′. We denote by T the set
of equivalence classes of rooted R-trees, which we equip with the Gromov–Hausdorff distance
dGH [17] to obtain the Polish space (T, dGH). The Gromov–Hausdorff distance between two
R-trees (T , d, ρ) and (T ′, d ′, ρ ′) is defined as

dGH
(
(T , d, ρ) ,

(
T ′, d ′, ρ ′

))
:= inf

ϕ,ϕ′

{
max

{
δ
(
ϕ (ρ) , ϕ′

(
ρ ′
))

, δH
(
ϕ (T ) , ϕ′

(
T ′
))}}

,

(2.1)

where the infimum is taken over all metric spaces (M, δ) and all isometric embeddings
ϕ : T → M, ϕ′

: T ′
→ M into the common metric space (M, δ), and δH is the Hausdorff

distance between compact subsets of (M, δ). It is well-known that the Gromov–Hausdorff
distance only depends on equivalence classes of rooted R-trees, and we equip T with the Borel
σ -algebra B(T) induced by dGH.

We can enhance a rooted R-tree by considering a probability measure µ on its Borel
sets B(T ), and call (T , d, ρ, µ) a weighted R-tree. We call (T , d, ρ, µ) and (T ′, d ′, ρ ′, µ′)
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equivalent if there is an isometry from T to T ′ such that ρ is mapped onto ρ ′ and µ′ is the
push-forward of µ under this isometry. We let Tw denote the set of equivalence classes of
weighted R-trees. Then Tw is Polish when equipped with the Gromov–Hausdorff–Prokhorov
distance dGHP induced by

dGHP
(
(T , d, ρ, µ) ,

(
T ′, d ′, ρ ′, µ′

))
:= inf

ϕ,ϕ′

{
max

{
δ
(
ϕ (ρ) , ϕ′

(
ρ ′
))

, δH
(
ϕ (T ) , ϕ′

(
T ′
))

, δP
(
ϕ∗µ, ϕ′

∗
µ′
)}} (2.2)

for weighted R-trees (T , d, ρ, µ), (T ′, d ′, ρ ′, µ′), where ϕ, ϕ′, δH are as in (2.1), ϕ∗µ, ϕ′
∗
µ

are the push-forwards of µ, µ′ via ϕ, ϕ′, respectively, and δP is the Prokhorov distance on the
space of Borel probability measures on (M, δ) given by

δP
(
µ, µ′

)
= inf

{
ϵ > 0 : µ(D) ≤ µ′(Dϵ) + ϵ for all D ⊂ M closed

}
,

where Dϵ
= {x ∈ M : infy∈D δ(x, y) ≤ ϵ} denotes the ϵ-thickening of D.

While some of our developments are more easily stated in (T, dGH) or (Tw, dGHP), others
benefit from more explicit embeddings into a particular metric space (M, δ), which we will
mostly choose as

M = l1(N2
0) :=

⎧⎨⎩(si, j )i, j∈N0 ∈ [0, ∞)N
2
0 :

∑
i, j∈N0

si, j < ∞

⎫⎬⎭
with the metric induced by the l1-norm. This is a variation of Aldous’s [1–3] choice M = l1(N).
We denote by Temb the space of all compact R-trees T ⊂ l1(N2

0) with root 0 ∈ T , which
we equip with the Hausdorff metric δH, and by Temb

w the space of all weighted compact
R-trees (T , µ) with T ∈ Temb, which we equip with the metric δHP((T , µ), (T ′, µ′)) =

max{δH(T , T ′), δP(µ, µ′)}.
For T ∈ Temb and c > 0, we define cT := {cx : x ∈ T }. More generally for any R-tree

(T , d), we slightly abuse notation and denote by cT the metric space (T , cd) obtained when
all distances are multiplied by c. We consider random R-trees whose equivalence class in T
has the distribution of a stable or Ford tree, and also refer to these trees as stable or Ford trees,
and to the associated law on T as their distribution.

If x ∈ T \ {ρ} is such that T \ {x} is connected, we call x a leaf of T . A branch point
is an element x ∈ T such that T \ {x} has at least three connected components. We refer
to the number of these components as the degree deg(x, T ) of x . We denote the sets of all
leaves and branch points by Lf(T ) and Br(T ). If T \ Br(T ) has only finitely many connected
components, we call T a discrete R-tree and these components (with or without one or both
endpoints) edges. We denote the set of edges by Edg(T ), and call #Lf(T ) the size of T . Also,
|T | := #Edg(T ). We call the discrete graph with the edge set Edg(T ) the shape of T .

In the case of discrete weighted R-trees it will often be of interest how the total mass
of 1 is distributed between the edges, with possibly some mass in branch points, which for
convenience we will also write in the form E = {v}. For any weighted R-tree (T , µ) with n
edges/branch points E1, . . . , En , the vector (X1, . . . , Xn) with X i := µ(Ei ), i ∈ [n], is called
the mass split in T . We will also consider mass splits in subtrees R ⊂ T , i.e. mass splits in
(R, µ(R)−1µ ↾R), where for any Borel set A ∈ B(T ), we define µ ↾R (A) = µ(A ∩ R). To
distinguish mass splits in the “big” tree T and in “small” subtrees, we will speak of the total
and internal (or relative) mass splits, respectively.

The limiting trees of the weighted R-trees in our constructions will be continuum trees, i.e.

weighted R-trees (T , d, µ) such that the probability measure µ on T satisfies the following
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three properties: (i) µ is supported by the set Lf(T ) of leaves of T ; (ii) µ is non-atomic, i.e.
or any x ∈ Lf(T ), µ(x) = 0; (iii) For any x ∈ T \ Lf(T ) and Tx := {σ ∈ T : x ∈ [[ρ, σ ]]},

we have µ(Tx ) > 0.
It is an immediate consequence of (i)–(iii) that, for any continuum tree (T , d), the set of

leaves Lf(T ) is uncountable and that it has no isolated points. Finally, we introduce the notion
of a reduced subtree

R(T , x1, . . . , xn) :=

⋃
i∈[n]

[[ρ, xi ]] (2.3)

of an R-tree T spanned by the root and x1, x2, . . . , xn ∈ Lf(T ). Note that R(T , x1, . . . , xn)
is a discrete R-tree with root ρ and leaves x1, . . . , xn . We further consider the projection map
that projects the tree onto the closest part of the reduced tree

πk : T → R(T , x1, . . . , xk), y ↦→ fρ,y
(
sup{t ≥ 0 : fρ,y(t) ∈ R(T , x1, . . . , xk)}

)
,

(2.4)

where fρ,y : [0, d(ρ, y)] → T is the unique isometry with fρ,y(0) = ρ and fρ,y(d(ρ, y)) = y
rom the definition of an R-tree. The push-forward of a probability measure µ on T via this
rojection map is denoted by (πk)∗µ, i.e.

(πk)∗µ (D) = µ
(
π−1

k (D)
)
, D ⊂ R(T , x1, . . . , xk) Borel measurable. (2.5)

ore details on R-trees and proofs for the statements made in this section can be found
n [5,16,30].

.2. ∞-marked R-trees

We introduce ∞-marked R-trees to capture the framework of an R-tree with infinitely many
arked components. This is a generalisation of Miermont’s concept of a k-marked metric

pace, [36, Section 6.4]. In the context of the two-colour line-breaking construction, the marked
omponents correspond to the rescaled Ford trees by which we replace the branch points in the
table line-breaking construction. Each Ford tree, i.e. each connected red component, is related
o a new marked subset of the ∞-marked R-tree.

A k-marked R-tree (T , d, ρ, (R(1), . . . ,R(k))), k ≥ 1, is a rooted R-tree (T , d, ρ) with
non-empty closed connected subsets R(1), . . . ,R(k)

⊂ T . We call two k-marked R-trees
(T , d, ρ, (R(1), . . . ,R(k))) and (T ′, d ′, ρ, (R′(1), . . . ,R′(k))) equivalent if there exists an isom-
etry from T to T ′ such that each R(i) is mapped onto R′(i), i ∈ [k], respectively, and ρ is

apped onto ρ ′. If T and T ′ are equipped with mass measures µ and µ′, we speak of weighted
k-marked R-trees, and we call them equivalent if there is an isometry from T to T ′ such that
each R(i) is mapped onto R′(i), i ∈ [k], ρ is mapped to ρ ′ and µ′ is the push-forward of µ

under this isometry. The set of equivalence classes of k-marked R-trees is denoted by T[k], and
T[k]

w is the set of equivalence classes of weighted k-marked R-trees.
For k-marked R-trees (T , d, ρ, (R(1), . . . ,R(k))), (T ′, d ′, ρ ′, (R′(1), . . . ,R′(k))) ∈ T[k], let

d[k]
GH

((
T , d, ρ,

(
R(1), . . . ,R(k)

))
,
(
T ′, d ′, ρ′,

(
R′(1), . . . ,R′(k)

)))
:= inf

ϕ,ϕ′

{
max

{
δH
(
ϕ (T ) , ϕ′

(
T ′
))

, max
1≤i≤k

δH

(
ϕ
(
R(i)

)
, ϕ′

(
R′(i)

))
, δ
(
ϕ (ρ) , ϕ

(
ρ′
))}}
(2.6)
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where the infimum is taken over all isometric embeddings ϕ, ϕ′ of T , T ′ into a common metric
space (M, δ), and δH is the Hausdorff distance on (M, δ). It was shown in [36] that d [k]

GH is a
metric on T[k].

Lemma 2.1 ([36, Proposition 9(ii)]). The space (T[k], d [k]
GH) is separable and complete.

We extend the notion of a k-marked R-tree to an ∞-marked R-tree (T , d, ρ, (R(i), i ≥ 1)).
The marked components R(i), i ≥ 1, of an ∞-marked R-tree (T , (R(i), i ≥ 1)) are themselves
R-trees when equipped with the metric to R(i), and rooted at the point of R(i) closest to the
root of T , i ≥ 1. We will consider ∞-marked R-trees (T , d, ρ, (R(i), i ≥ 1)) with a discrete
branching structure, and distinguish between internal and external edges of R(i). External edges
of R(i) are edges connecting a branch point/root and a leaf of R(i), internal edges connect two
branch points or the root and a branch point.

As in the case of k-marked R-trees, ∞-marked R-trees (T , d, ρ, (R(i), i ≥ 1)) and
(T ′, d ′, ρ ′, (R′(i), i ≥ 1)) are equivalent if there is an isometry from T to T ′ such that ρ

is mapped onto ρ ′, and each R(i) is mapped onto R′(i), i ≥ 1, respectively. We write T∞

for the set of equivalence classes of compact ∞-marked R-trees, and equip it with the metric
d∞

GH :=
∑

k≥1 2−kd [k]
GH, i.e. for (T , d, ρ, (R(i), i ≥ 1)), (T ′, d ′, ρ ′, (R′(i), i ≥ 1)) ∈ T∞,

d∞

GH

((
T , d, ρ,

(
R(i), i ≥ 1

))
,
(
T ′, d ′, ρ ′,

(
R′(i), i ≥ 1

)))
:=

∑
k≥1

2−kd [k]
GH

((
T ,
(
R(i), . . . ,R(k))) , (T ′,

(
R′(1), . . . ,R′(k)))) . (2.7)

Corollary 2.2. The space (T∞, d∞

GH) is separable and complete.

Proof. This can be deduced from Lemma 2.1. We leave the details to the reader. □

We can extend d [k]
GH to a metric on T[k]

w by adding a Prokhorov component to d [k]
GH. For any

k ∈ {1, 2, . . .} and (T , (R(1), . . . ,R(k)), µ), (T ′, (R′(1), . . . ,R′(k)), µ′) ∈ T[k], we define

d[k]
GHP

((
T ,
(
R(1), . . . ,R(k)

)
, µ
)

,
(
T ′,

(
R′(1), . . . ,R′(k)

)
, µ′

))
:= inf

ϕ,ϕ′

{
max

{
δH
(
ϕ (T ) , ϕ′

(
T ′
))

, max
1≤i≤k

δH

(
ϕ
(
R(i)

)
, ϕ′

(
R′(i)

))
, δ
(
ϕ (ρ) , ϕ′

(
ρ′
))

, δP
(
ϕ∗µ, ϕ′

∗µ
′
)}}

here ϕ, ϕ′ and ϕ∗µ, ϕ′
∗
µ′ are as in (2.2) and (2.6). In the spirit of (2.7), we define

d∞

GHP

((
T ,
(
R(i), i ≥ 1

)
, µ
)

,
(
T ′,

(
R′(i), i ≥ 1

)
, µ′

))
=

∑
k≥1

2−kd[k]
GHP

((
T ,
(
R(1), . . . ,R(k)

)
, µ
)

,
(
T ′,

(
R′(1), . . . ,R′(k)

)
, µ′

))
(2.8)

or two weighted ∞-marked R-trees (T , (R(i), i ≥ 1), µ) and (T ′, (R′(i), i ≥ 1), µ′).

emma 2.3. The function d [k]
GHP defines a metric on T[k]

w , and the space (T[k]
w , d [k]

GHP) is separable
nd complete, for any k ∈ {0, 1, 2, . . . ; ∞}.

roof. For k ∈ {0, 1, 2, . . .}, the proof is a direct generalisation of the proof of Lemma 2.1. In
articular, it is straightforward to generalise the results about dGHP in [36, Section 6.2/6.3]
o d [k]

GHP. For k = ∞, the claim can then be deduced from the finite-k case, as for

orollary 2.2. □
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Remark 2.4. Miermont [36] introduced the more general concept of a k-marked metric space,
nd studied the space M[k] of equivalence classes of k-marked metric spaces. T[k] is a closed
ubset of M[k+1] ([17, Lemma 2.1]), i.e. the results on (T[k], d [k]

GH) presented here follow from
his study of (M[k], d [k]

GH), k ≥ 0.

2.3. Dirichlet and Mittag-Leffler distributions

In this section, we recall well-known distributional relationships that are key for our
constructions. A random variable L follows a (generalised) Mittag-Leffler distribution with
parameters (α, θ) for α > 0 and θ > −α if its pth moment is given by

E
[
L p]

=
Γ (θ + 1)Γ (θ/α + 1 + p)
Γ (θ/α + 1)Γ (θ + pα + 1)

, p ≥ 1, (2.9)

or short L ∼ ML(α, θ). The moments (2.9) uniquely characterise ML(α, θ), cf. [38].
The Mittag-Leffler distribution naturally appears when we study lengths in the trees

onsidered in this paper. To analyse mass and length splits across the branches of these trees
e have to consider Dirichlet distributions. We will be able to relate mass and length splits on

he edges using the following result.

roposition 2.5 ([20] Proposition 4.2). Let β ∈ (0, 1). For n ≥ 2, let θ1, . . . , θn > 0
nd let θ :=

∑
i∈[n] θi . Consider S ∼ ML(β, θ) and an independent vector (Y1, . . . , Yn) ∼

irichlet(θ1/β, . . . , θn/β). Then,

S · (Y1, . . . , Yn)
d
=

(
Xβ

1 S(1), . . . , Xβ
n S(n)

)
(2.10)

here (X1, . . . , Xn) ∼ Dirichlet(θ1, . . . , θn) and S(i)
∼ ML(β, θi ), i ∈ [n], are independent.

We will also need some standard properties of the Dirichlet distribution.

roposition 2.6. Let n ∈ N, θ1, . . . , θn > 0 and X := (X1, . . . , Xn) ∼ Dirichlet(θ1, . . . , θn).

(i) Symmetry. For any permutation σ : [n] → [n],
(
Xσ (1), . . . , Xσ (n)

)
∼ Dirichlet(

θσ (1), . . . , θσ (n)
)
.

(ii) Aggregation and deletion. Let m ∈ [n − 1]. Then X ′
:= (

∑
i∈[m] X i , Xm+1, . . . , Xn) ∼

Dirichlet
(∑

i∈[m] θi , θm+1, . . . , θn
)

and X∗
:= (X1/

∑
i∈[m] X i , . . . , Xm/

∑
i∈[m] X i ) ∼

Dirichlet (θ1, . . . , θm) are independent.
(iii) Decimation. Let i ∈ [n], m ∈ N, and let θi,1, . . . , θi,m > 0 be such that

∑
j∈[m] θi, j = θi .

Consider an independent random vector (P1, . . . , Pm) ∼ Dirichlet
(
θi,1, . . . , θi,m

)
. Then

X ′′
:= (X1, . . . , X i−1, P1 X i , . . . , Pm X i , X i+1, . . . , Xn)

∼ Dirichlet
(
θ1, . . . , θi−1, θi,1, . . . , θi,m, θi+1, . . . , θn

)
.

(iv) Size-bias. Let I ∈ [n] be a random index such that P(I = i |X1, . . . , Xn) = X i a.s.
for i ∈ [n]. Then for any i ∈ [n], conditionally given I = i , we have X ∼ Dirichlet
(θ1, . . . , θi−1, θi + 1, θi+1, . . . , θn). Furthermore, we have P(I = i) = θi

/∑
j∈[n] θ j .

roof. We refer to [46, Propositions 13–14, Remark 15], and the Gamma variable represen-
ation for the Dirichlet distribution. □
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2.4. Chinese restaurant processes and strings of beads

We consider (α, θ)-strings of beads for α ∈ (0, 1), θ > 0, arising in the scaling limit of
rdered (α, θ)-Chinese restaurant processes (CRPs), cf. [26,38,39]. Consider customers labelled
y [n] := {1, . . . , n} sitting at a random number of tables as follows. Let customer 1 sit at the
rst table. At step n + 1, conditionally given that we have k tables with n1, . . . , nk customers,

he next customer labelled by n + 1

• sits at the i th occupied table with probability (ni − α)/(n + θ ), i ∈ [k];
• opens a new table to the left of the first table, or between any two tables with probability

α/(n + θ );
• opens a new table to the right of the last table with probability θ/(n + θ ).

his induces the ordered (α, θ)-CRP (Π̃n, n ≥ 1). The classical unordered (α, θ)-CRP (Πn, n ≥

) is obtained from (Π̃n, n ≥ 1) by ordering the blocks by least labels. For n ∈ N, we write
n = (Πn,1, . . . ,Πn,Kn ) and Π̃n = (Π̃n,1, . . . , Π̃n,Kn ) for the blocks of the two partitions
f [n], where Kn denotes the number of tables at step n. The block sizes at step n form
andom compositions of n, n ≥ 1, i.e. sequences of positive integers (n1, . . . , nk) with sum
=
∑

j∈[k] n j . The composition related to Π̃n , n ≥ 1, can be shown to be regenerative in the
ense of Gnedin and Pitman [19]. The number of tables Kn at step n, rescaled by nα , converges
.s., i.e. there is Lα,θ > 0 a.s. such that

Lα,θ = lim
n→∞

n−α Kn a.s.. (2.11)

he distribution of Lα,θ can be identified as ML(α, θ). Furthermore, there are limiting
roportions (P1, P2, . . .) of the relative table sizes n−1#Πn,i , i ∈ [Kn], as n → ∞ in order
f least labels, i.e.

lim
n→∞

(
n−1#Πn,1, . . . , n−1#Πn,Kn

)
= (P1, P2, P3, . . .) =

(
V1, V 1V2, V 1V 2V3, . . .

)
a.s.

(2.12)

here (Vi , i ≥ 1) are independent with Vi ∼ Beta(1 − α, θ + iα), and V i := 1 − Vi . The
istribution of the vector (P1, P2, . . .) is a Griffiths–Engen–McCloskey distribution GEM(α, θ).

Ranking (Pi , i ≥ 1) in decreasing order we obtain a Poisson–Dirichlet sequence (P↓

i , i ≥ 1) :=

Pi , i ≥ 1)↓ ∼ PD(α, θ). Each Pi , i ≥ 1, is further associated with a position on the limiting
interval [0, Lα,θ ] induced by the table order, in a way that we now describe.

Consider an ordered (α, θ)-CRP (Π̃n = (Π̃n,1, . . . , Π̃n,Kn ), n ≥ 1) for α ∈ (0, 1), θ > 0. Let
Nn, j :=

∑
i∈[ j] #Π̃n,i , j ∈ [n], be the number of customers at the first j tables from the left.

Then by [39, Proposition 6],

lim
n→∞

{
n−1 Nn, j , j ≥ 0

}
= Nα,θ :=

{
1 − e−Gt , t ≥ 0

}cl
a.s. (2.13)

with respect to the Hausdorff metric on closed subsets of [0, 1], where cl denotes the
closure in [0, 1], and (G t , t ≥ 0) is a subordinator with Laplace exponent Φα,θ (s) =

sΓ (s + θ )Γ (1 − α)/Γ (s + θ + 1 − α), and there is a continuous local time process L
= (L(u), u ∈ [0, 1]) for Ln(u) := #{ j ∈ [Kn] : n−1 Nn, j ≤ u}, u ∈ [0, 1], such that

lim sup |n−αLn(u) − L(u)| = 0 a.s.

n→∞ u∈[0,1]
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where Nα,θ is the set of points at which L increases a.s. We refer to the collection of open
ntervals in [0, 1] \ Nα,θ as the (α, θ)-regenerative interval partition associated with the local

time process L, where L(1) = Lα,θ a.s. Note that the joint law of ranked lengths of components
of this interval partition is PD(α, θ). The inverse local time

L−1
: [0, Lα,θ ) → [0, 1), L−1(x) := inf{u ∈ [0, 1] :L(u) > x}, (2.14)

is right-continuous increasing. We equip the random interval [0, Lα,θ ] with the Stieltjes measure
L−1.

efinition 2.7 (String of Beads). A string of beads (I, λ) is an interval I equipped with a
iscrete mass measure λ. A measure-preserving isometric copy of ([0, Lα,θ ], dL−1) associated
s above with an (α, θ)-regenerative interval partition [0, 1] \Nα,θ is called an (α, θ)-string of
eads, for α ∈ (0, 1), θ > 0.

We can view a string of beads ([0, K ], λ) as a weighted R-tree consisting of one single
ranch connecting the root 0 with a leaf at distance K .

Since the lengths of the interval components of an (α, θ)-regenerative interval partition
0, 1] \Nα,θ are the masses of the atoms of the associated (α, θ)-string of beads, we conclude
hat the joint law of the masses (P↓

i , i ≥ 1) of the atoms of an (α, θ)-string of beads ranked in
ecreasing order is PD(α, θ). It is well-known that the length Lα,θ ∼ ML(α, θ) of an (α, θ)-
tring of beads can be recovered from the ranked atom masses (P↓

i , i ≥ 1) or from the vector
Pi , i ≥ 1) of the stick-breaking representation (2.12) via

Lα,θ = lim
i→∞

iΓ (1 − α)(P↓

i )α = lim
k→∞

(
1 −

∑
i∈[k]

Pi

)α

α−αk1−α, (2.15)

hich is the so-called α-diversity of (P↓

i , i ≥ 1) ∼ PD(α, θ), cf. [38, Lemma 3.11].
One of the key properties of (α, θ)-strings of beads is the regenerative nature inherited from

the underlying regenerative interval partition, cf. [19]. Pitman and Winkel [39, Proposition 10]
developed a method (‘(α, θ)-coin-tossing sampling’) to sample an atom of an (α, θ)-string of
beads such that the two strings of beads obtained in this way are rescaled independent (α, α)-
and (α, θ)-strings of beads (the first one being the one closer to the origin). This sampling
procedure makes precise the idea of choosing the first marked bead seen from the bottom where
each bead is marked independently by a probability of xθ/(xθ + (1− x)α), where x is the size
of the bead relative to the residual mass of the string at and above this bead. The mass split
between the two induced interval components and the selected atom is Dirichlet(α, 1 − α, θ),
with parameters assigned in their order on the interval [0, Lα,θ ]. When θ = α, the special
sampling reduces to uniform sampling from the mass measure dL−1.

Proposition 2.8 ([39, Proposition 10/14(b), Corollary 15]). Let (I, λ) := ([0, Lα,θ ], dL−1)
e an (α, θ)-string of beads for some α ∈ (0, 1), θ > 0. Then there is a random variable

J ∈ (0, Lα,θ ), (which can be constructed explicitly using (α, θ)-coin-tossing) on a suitably
nlarged probability space such that the following are independent.

• The mass split (λ([0, J )), λ(J ), λ((J, Lα,θ ])) ∼ Dirichlet(α, 1 − α, θ);
• (the isometry class of) the (α, α)-string of beads (λ([0, J ))−α[0, J ), λ([0, J ))−1λ ↾[0,J ));
• (the isometry class of) the (α, θ)-string of beads (λ((J, Lα,θ ])−α(J, Lα,θ ], λ((J, Lα,θ ])−1λ

↾ ).
(J,Lα,θ ]
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In Section 3 we will formulate the algorithms of the introduction based on masses rather
han lengths. In particular, the attachment points in the update step will be mass-sampled, not
ength-sampled. The following lemma will imply that the algorithms based on masses induce
he length versions.

emma 2.9. Let (X1, . . . , Xn) ∼ Dirichlet(θ1, . . . , θn) for some θ1, . . . , θn > 0 and n ∈ N,
nd let ([0, L i ], λi ) be independent (α, θi )-strings of beads, respectively, i ∈ [n].

• Select I ′
= j ∈ [n] with probability X j and, conditionally given I ′

= j , select
L ′

∈ [0, L j ] via (α, θ j )-coin tossing sampling on ([0, L j ], λ j ).
• Select I ′′

= j ∈ [n] with probability proportional to Xα
j L j and, conditionally given

I ′′
= j , select L ′′

= BL j where B ∼ Beta(1, θ j/α) is independent.

hen the two random vectors
(
I ′, L1, . . . , L I ′−1, L ′, L I ′ − L ′, L I ′+1, . . . , Ln

)
and

I ′′, L1, . . . , L I ′′−1, L ′′, L I ′′ − L ′′, L I ′′+1, . . . , Ln
)

have the same distribution.

roof. We need to show that, for any bounded and continuous function f :Rn+2
→ R

E
[

f
(
I ′, L1, . . . , L I ′−1, L ′, L I ′ − L ′, L I ′+1, . . . , Ln

)]
= E

[
f
(
I ′′, L1, . . . , L I ′′−1, L ′′, L I ′′ − L ′′, L I ′′+1, . . . , Ln

)]
.

(2.16)

Conditioning on I ′
= j , and using Proposition 2.6(iv), the LHS of (2.16) is∑

j∈[n]

E
[

f
(
I ′, L1, . . . , L I ′−1, L ′, L I ′ − L ′, L I ′+1, . . . , Ln

)
| I ′

= j
] (

θ j

/∑
i∈[n]

θi

)
.

onditionally given I ′
= j , we select an atom of the (α, θ j )-string of beads via (α, θ j )-coin

ossing sampling. By Proposition 2.8 and Proposition 2.6(ii), the mass split
1 − λ j (L ′))−1

(
λ j
([

0, L ′
))

, λ j
((

L ′, L j
]))

∼ Dirichlet
(
α, θ j

)
and the (α, α)- and the (α, θ)-

trings of beads given by(
λ
([

0, L ′
))−α [0, L ′), λ

([
0, L ′

))−1
λ ↾[0,L ′)

)
,(

λ
((

L ′, L j
])−α (L ′, L j

]
, λ
((

L ′, L j
])−1

λ ↾(L ′,L j ]
)

,

espectively, are independent. By Proposition 2.5, we conclude that the relative length split
n [0, L j ] is L ′/L j ∼ Beta(1, θ j/α). To see (2.16), proceed likewise with the RHS of (2.16),
sing that, by Proposition 2.5, (L1, . . . , Ln) ∼ Dirichlet(θ1/α, . . . , θn/α). More precisely, note
hat P(I ′′

= j) = (θ j/α)/(
∑

i∈[n] θi/α) = θ j/
∑

i∈[n] θi , and that, conditionally given I ′′
= j ,

e have L ′′/L j ∼ Beta(1, θ j/α), as before. □

We will also need the following statement about sampling from Poisson–Dirichlet distribu-
ions.

roposition 2.10 (Sampling from PD(α, θ), [40, Proposition 34]). Let (Pi , i ≥ 1) ∼ PD(α, θ)
or some 0 ≤ α < 1 and θ > −α, and let N be an index such that

P (N = i | Pi , i ≥ 1) = Pi , i ≥ 1.

et (P ′

i , i ≥ 1) be obtained from P by deleting PN , and set P ′′

i := P ′

i /(1 − PN ) for i ≥ 1.
hen, P ∼ Beta(1 − α, α + θ ), and (P ′′, i ≥ 1) ∼ PD(α, α + θ ) is independent of P .
N i N
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2.5. Distributional properties of stable trees and ford trees

In this section, we collect some preliminary results on stable trees. Recall the line-breaking
onstruction of the stable tree given by Algorithm 1.1 yielding the sequence of compact R-trees
Tk, k ≥ 0). Leaves and branch points have a natural order induced by the time of appearance
n the sequence (Tk, k ≥ 0), i.e. we can write (vi , i ≥ 1) for the branch points, and W (i)

k for the
ranch point weight of vi in Tk (if vi /∈ Br(Tk) or i > bk , set W (i)

k = 0). We will list the edges
E (1)

k , . . . , E (|Tk |)
k of Tk and their lengths L (i)

k = Leb(E (i)
k ), i ∈ [|Tk |], in the order encountered

n a depth-first search directed by least labels.
Haas et al. [25] analysed the stable tree as an example of a self-similar CRT. Let (T , d, ρ)

ith mass measure µ be the stable tree of index β ∈ (0, 1/2], and let Σ ∼ µ be a leaf sampled
rom µ. Consider the spine, i.e. the path [[ρ,Σ ]] from the root to this leaf. Remove all vertices
f degree one or two from this path. This yields a sequence of connected components that can
.s. be ranked in decreasing order of mass, and which we denote by (S (i)

, i ≥ 1), rooted at
ertices ρi ∈ [[ρ,Σ ]] of a.s. infinite degree, i ≥ 1, respectively. Each S (i)

further separates
nto a sequence (S (i)↓

j , j ≥ 1) when removing ρi .

• The coarse spinal mass partition is
(
P

(i)
, i ≥ 1

)
:=
(
µ(S (i)

), i ≥ 1
)
,

• The fine spinal mass partition is
(
P

(i)↓
j , j ≥ 1, i ≥ 1

)↓
:=
(
µ
(
S (i)↓

j

)
, j ≥ 1, i ≥ 1

)↓, i.e.
the ranked sequence of masses of connected components obtained after removal of the
whole spine.

Lemma 2.11 (Mass Partition in the Stable Tree, [25, Corollary 10]).
Let β ∈ (0, 1/2], and let T be the stable tree of parameter β. Then the following statements

hold.

(i) The coarse spinal mass partition has a Poisson–Dirichlet distribution with parameters
(β, β), i.e.

(
P

(i)
, i ≥ 1

)
=
(
µ
(
S (i))

, i ≥ 1
)

∼ PD
(
β, β

)
.

(ii) The fine spinal mass partition is a (1 − β, −β)-fragmentation of the coarse spinal
mass partition, i.e. for each block µ(S (i)

) of the coarse partition, the relative part sizes
(µ(S (i)↓

j )/µ(S (i)
), j ≥ 1) are independent with distribution PD(1 − β, −β), i ≥ 1.

(iii) Conditionally given the fine spinal mass partition (µ(S (i)↓
j ), j ≥ 1, i ≥ 1)↓, the rescaled

trees equipped with restricted mass measures(
µ
(
S (i)↓

j

)−β

S (i)↓
j , µ(S (i)↓

j )−1µ ↾S(i)↓
j

)
, j ≥ 1, i ≥ 1, (2.17)

are i.i.d. copies of (T , µ).

The α-diversities of PD(α, θ) partitions can naturally be interpreted as lengths in trees. In
articular the β-diversity of the coarse spinal mass partition has distribution S0 ∼ ML(β, β),
hich is the starting point of Goldschmidt–Haas’ line-breaking constructions. The fragmenting
D(1 − β, −β) random partitions for each block of the coarse spinal mass partition capture

mportant information about the branch points that we relate to sizes of the Ford CRTs by
hich we replace them in Theorem 1.6.
The following result is essentially [25, Corollary 10(3)]. See also [39, discussion after

orollary 8].
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Lemma 2.12. Let (T , µ) be a stable tree of parameter β ∈ (0, 1/2], and let Σ0 ∼ µ. Consider
the spine T0 = [[ρ,Σ0]], and equip T0 with the mass measure µ0, capturing the masses of the
connected components of T \ T0 projected onto T0. Then (T0, µ0) is a (β, β)-string of beads.

Finally, our key to identifying Ford trees is the following distributional characterisation:

roposition 2.13 ([24, Proposition 18]). Consider the tree growth process (Fm, m ≥ 1) from
lgorithm 1.2 for some β ′

∈ (0, 1). The distribution of Fm is given in terms of three independent
andom variables: its shape, the total length S′

m ∼ ML(β ′, m − β ′) and the length split with
irichlet

(
1, . . . , 1, (1 − β ′)/β ′, . . . , (1 − β ′)/β ′

)
distribution, between the edges of Fm , where

parameter of 1 is assigned to each of the m−1 internal edges, and a parameter of (1−β ′)/β ′

o each of the m external edges of Fm .

. Bead-splitting constructions of marked stable trees

In this section we formulate two enhancements of the line-breaking constructions that,
espectively, include mass measures and embed in a limiting CRT. We will formulate these
nhancements as bead-splitting constructions in their own right and later show that they reduce
o line-breaking constructions.

.1. The autonomous binary two-colour bead-splitting construction

We present an enhanced version of Algorithm 1.3, which is based on sampling from the
ass measure. We will use this enhanced version to prove Theorem 1.4.
The following (1-marked) string of beads will be at the centre of our construction. For
∈ (0, 1/2], consider ([0, K1], λ1) and ([0, K2], λ2) two independent (β, 1 − 2β)- and (β, β)-

trings of beads, respectively, and an independent B ∼ Beta(1 − 2β, β). Then scale the two
trings by B and 1 − B, as follows: set

K := Bβ K1 + (1 − B)β K2, K ′
:= Bβ K1 (3.1)

nd consider the mass measure λ on [0, K ] given by

λ ([0, x]) =

{
Bλ1

([
0, B−β x

])
if x ∈

[
0, K ′

]
,

B + (1 − B) λ2
([

0, (1 − B)−β
(
x − K ′

)])
if x ∈

[
K ′, K

]
.

(3.2)

he string of beads ([0, K ], λ) is called a β-mixed string of beads [42]. We denote the
istributions of ([0, K ], λ) and ([0, K ], [0, K ′], λ) on Tw and T[1]

w by νβ and ν
[1]
β , respectively.

emark 3.1. By Proposition 2.5 with θ1 = 1 − 2β, θ2 = β, noting that (B, 1 − B) ∼

irichlet(1 − 2β, β), we have(
Bβ K1, (1 − B)β K2

) d
= L

(
B ′, 1 − B ′

)
(3.3)

here B ′
∼ Beta(1/β − 2, 1) is independent of L , and L ∼ ML(β, 1 − β). We conclude that

or each β-mixed string of beads ξ = ([0, K ], λ) we have (λ(x) : x ∈ [0, K ], λ(x) > 0)↓ ∼

D(β, 1 − β), cf. e.g. [41, Corollary 1.2]. Although the length of a β-mixed string of beads ξ

s ML(β, 1 − β) and the atom sizes are PD(β, 1 − β), we cannot expect that ξ is a (β, 1 − β)-
tring of beads when β ∈ (0, 1/2). Specifically, at the junction point in a (β, 1 − β)-string of
eads, we would expect a Beta(β, 1 − 2β) mass split into a rescaled (β, β)- and a rescaled
β, 1 − 2β)-string of beads in this order (and not vice versa).
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We will use the notation ξ =
(
[0, K ],

∑
i≥1 PiδXi

)
for any (α, θ)- or β-mixed string of

beads where K is the length of the string of beads with ranked atomic masses of sizes
1 > P1 > P2 > · · · > 0, a.s., in the points X i ∈ [0, K ], i ≥ 1, respectively.

Let us now explain how to attach a weighted R-tree onto another weighted R-tree. This
larifies in particular how to construct weighted R-trees by attaching strings of beads as a string
f beads can be interpreted as a weighted R-tree consisting of a single branch. For any weighted
R-tree (T , d, ρ, µ), a parameter β ∈ (0, 1/2], an element J ∈ T and another weighted R-tree
T +, d+, ρ+, µ+) with T ∩T +

= ∅, the tree (T ′, d ′, µ′) created from (T , d, µ) by attaching to
J the tree (T +, d+, ρ+, µ+) with mass measure µ+ rescaled by µ(J ) and metric d+ rescaled
by µ(J )β is defined as follows. Set T ′

:= T \ {J } ⊔ T + and equip T ′ with the metric

d ′(x, y) :=

⎧⎪⎨⎪⎩
d(x, y) if x, y ∈ T ,

d(x, J ) + (µ(J ))βd+(ρ+, y) if x ∈ T , y ∈ T +,

(µ(J ))βd+(x, y) if x, y ∈ T +,

(3.4)

the root ρ ′
= ρ and the mass measure µ′ given by µ′ ↾T \{J }= µ ↾T \{J }, µ′ (J ) = 0, µ′ ↾T +=

(J ) µ+.
Moreover, we will use an equivalence relation ∼ on an ∞-marked R-tree (T ∗

k , (R(i)
k , i ≥ 1))

o contract each marked component R(i)
k , i ≥ 1, of T ∗

k to a single point, i.e.

x ∼ y :⇔ x, y ∈ R(i)
k for some i ≥ 1. (3.5)

If for all i with R(i)
k ̸= {ρ}, x, y ∈ R(i)

k implies x, y ∈ R(i)
k′ for all k ′

≥ k, the equivalence
elation ∼ is consistent as k varies. This will be the case for us, by construction, and we denote
he equivalence class related to R(i)

k by ṽi := [R(i)
k ]∼, and let

T̃k := T ∗

k / ∼ (3.6)

enote the quotient space of T ∗

k , k ≥ 0, with the canonical quotient metric. Furthermore, for
≥ 0, let µ̃k be the push-forward of µ∗

k under the projection map from T ∗

k onto T̃k .
We are now ready to present the two-colour bead-splitting construction, cf. Fig. 3 for an

llustration.

lgorithm 3.2 (Two-Colour Bead-Splitting Construction). Let β ∈ (0, 1/2]. We grow
eighted ∞-marked R-trees (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ) with associated quotient trees (T̃k, µ̃k) as
n (Eq. (3.6)), k ≥ 0, as follows (cf. Fig. 3).

0. Let (T ∗

0 , µ∗

0) be isometric to a (β, β)-string of beads; let r0 = 0 and R(i)
0 = {ρ}, i ≥ 1.

iven (T ∗

j , (R(i)
j , i ≥ 1), µ∗

j ), 0 ≤ j ≤ k, and rk = #{i ≥ 1 :R(i)
k ̸= {ρ}} = #{i ≥ 1 : ṽi ̸= {ρ}},

1.–2. select J̃k from µ̃k ; if J̃k ̸= ṽi for all i ∈ [rk], set J ∗

k = J̃k and Ik = rk + 1; otherwise,
if J̃k = ṽi for some i ∈ [rk], let Ik = i and sample an edge E∗

k of R(i)
k proportionally

to its mass µ∗

k (E∗

k ); if E∗

k is an internal edge of R(i)
k , sample J ∗

k from the normalised
mass measure on E∗

k ; if E∗

k is an external edge of R(i)
k , perform (β, 1−2β)-coin tossing

sampling on E∗

k to determine J ∗

k ∈ E∗

k ;
3. let (E+

k , R+

k , µ+

k ) be an independent β-mixed string of beads; to form (T ∗

k+1, µ
∗

k+1)
remove µ∗

k (J ∗

k )δJ∗
k

from µ∗

k and attach to T ∗

k at J ∗

k an isometric copy of (E+

k , µ+

k ) with
measure rescaled by µ∗

k (J ∗

k ) and metric rescaled by (µ∗

k (J ∗

k ))β ; add to R(Ik )
k \ {ρ} the

(image under the isometry of) R+ to form R(Ik ) ; set R(i)
= R(i), i ̸= I .
k k+1 k+1 k k
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Fig. 3. Example of two-colour bead splitting. To construct (T ∗

4 , (R(i)
4 , i ≥ 1), µ∗

4) from (T ∗

3 , (R(i)
3 , i ≥ 1), µ∗

3),
n element J ∗

3 ∈ T ∗

3 is selected, and a rescaled independent β-mixed string of beads is attached to J ∗

3 . (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)

To analyse Algorithm 3.2, we will need some more notation, in particular with regard to
he marked subtree growth processes (R(i)

k , k ≥ 0), i ≥ 1. Define the random subsequences
k(i)

m , m ≥ 1), i ≥ 1, by

k(i)
1 := inf

{
n ≥ 1 :R(i)

n ̸= R(i)
0

}
= inf

{
n ≥ 1 :R(i)

n ̸= {ρ}
}
, (3.7)

nd, for m ≥ 1,

k(i)
m+1 := inf

{
n ≥ k(i)

m :R(i)
n ̸= R(i)

k(i)
m

}
, (3.8)

.e. there is a change in (R(i)
k , k ≥ 1) when k = k(i)

m for some m ≥ 1. Note that the
nion

⋃
i≥1{k

(i)
m , m ≥ 1} = {1, 2, . . .} is a disjoint union, and that, for any i ≥ 1, R(i)

k is a
inary tree for any k ≥ 1. We will also note that R(i)

k = {ρ} for k < k(i)
1 by convention, but

hat ρ /∈ R(i)
k for k ≥ k(i)

1 . For k = k(i)
m − 1, we write

R+

k = [[J ∗

k ,Ω (i)
m ]] ⊂ E+

k = [[J ∗

k ,Σk+1]], i.e. ]]J ∗

k ,Ω (i)
m ]] = R(i)

k+1 \ R(i)
k .

n other words, at step k = k(i)
m − 1, Ω (i)

m and Σk+1 denote the leaves added to R(i)
k and T ∗

k ,
espectively.

We write ξ
(1)
k , ξ

(2)
k and γk for the random variables inducing the β-mixed string of beads

E+

k , R+

k , µ+

k ), i.e.
(
E+

k , R+

k , µ+

k

)
is built from independent ξ

(1)
k , ξ

(2)
k and γk in the same way

s ([0, K ], [0, K ′], λ) is built from independent ([0, K1], λ1), ([0, K2], λ2) and B in (3.1)–(3.2).
We can describe the distribution of the tree T ∗

k as follows.

roposition 3.3 (Distribution of T ∗

k ). Let (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) be as in Algorithm 3.2
or some β ∈ (0, 1/2]. The distribution of T ∗

k is characterised by the following independent
andom variables:

• the shape T ∗

k of T ∗

k obtained from the shape T̃k of T̃k and the shapes R(i)
k of R(i)

k , i ≥ 1,
are as follows;

– T̃k has the distribution of the shape of a stable tree Tk reduced to the first k leaves,
and
443



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472

P
P
p

i

p
w
d

p
m
β

t
c

B
g
v
a
a
D
t
(
i
t

(
i

– conditionally given that T̃k has ℓ branch points of degrees d1, . . . , dℓ, the shapes
R(1)

k , . . . , R(ℓ)
k are the shapes of Ford trees with m1 := d1 − 2, . . . , mℓ := dℓ − 2

leaves, respectively;

• the total mass split between the 3k + 1 edges of T ∗

k has a

Dirichlet (β, . . . , β, 1 − 2β, . . . , 1 − 2β) (3.9)

distribution, with parameter β for each internal marked and each unmarked edge, and
parameter 1 − 2β for each external marked edge with edges ordered according to depth-
first search (first run for unmarked and internal marked edges, then for external marked
edges);

• the 3k + 1 independent (β, θ)-strings of beads isometric to(
µ∗

k (E)−β E, µ∗

k (E)−1 µ∗

k ↾E
)
, E ∈ Edg

(
T ∗

k

)
, (3.10)

where θ = 1 − 2β if E is an external marked edge of R(i)
k for some i ∈ [ℓ], and θ = β

otherwise, again listed according to depth-first search.

roof. This proof is mainly an application of the properties of the Dirichlet distribution,
roposition 2.6, and of coin tossing sampling, Proposition 2.8. We give a brief sketch of the
roof via an induction on k.

For k = 0, the claim is trivial as (T ∗

0 , µ∗

0) is a (β, β)-string of beads by definition. For the
nduction step, suppose that the claim holds for some k ≥ 0.

We first consider the shape transition from T ∗

k to T ∗

k+1. Observe that, given T̃k has ℓ branch
oints of degrees d1, . . . , dℓ, we have a Dirichlet (β, . . . , β, w(d1), . . . , w(dℓ)) mass split in T̃k

ith weight β for each edge and weight w(d) = (d − 2)(1 − β) − β for each branch point of
egree d ≥ 3. Hence, the overall edge selection is as required.

Conditionally given that the i th branch point of T̃k is selected, an edge of R(i)
k is chosen

roportionally to the weights assigned by the relative Dirichlet (β, . . . , β, 1 − 2β, . . . , 1 − 2β)

ass split in R(i)
k , so that each internal, resp. external, edge is chosen with probability

/((di −2)(1−2β)+ (di −3)β), resp. (1−2β)/((di −2)(1−2β)+ (di −3)β). This corresponds
o the shape growth rule in a Ford tree growth process of index β/(1 − β), using obvious
ancellations, cf. Algorithm 1.2 and Proposition 2.13.

In the update step from T ∗

k to T ∗

k+1, we first select an edge of T ∗

k proportionally to mass.
y Proposition 2.6(iv), the parameter for this edge in the Dirichlet split (3.9), conditionally
iven that it has been selected, is then increased by 1. We select an atom J ∗

k on this edge
ia (β, θ)-coin tossing, where θ = 1 − 2β for external marked edges, and θ = β otherwise,
nd, by Proposition 2.8, the selected edge is split by J ∗

k into a rescaled independent (β, β)-
nd a rescaled independent (β, θ)-string of beads where the relative mass split on this edge is
irichlet(β, 1 − β, θ), which is conditionally independent of the total mass split. Furthermore,

he mass µ∗

k (J ∗

k ) is split by the independent random variable γk ∼ Beta(1−2β, β) into a marked
β, 1 − 2β)-string of beads, and an unmarked (β, β)-string of beads, which are independent,
.e., by Proposition 2.6(iii), the claims (3.9) and (3.10) follow, as statements conditionally given
ree shapes.

Finally, these conditional distributions of the Dirichlet mass split (3.9) and the independent
β, θ)-strings of beads (3.10) do not depend on the shape T ∗

k+1, and are hence unconditionally
ndependent. □
444



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472

A

3

a
µ

i

D

e

(

a
i
N
t
c
[

P
a

G

1

Remark 3.4. By Proposition 3.3 and Lemma 2.9 we see that Algorithm 3.2 reduces to
lgorithm 1.3. More specifically, the claim can be proved by induction:

• For k = 0, the two algorithms clearly give the same tree as the (β, β)-string of beads
from Algorithm 3.2 has length S0 ∼ ML(β, β) (as in Algorithm 1.3)

• Now assume that the trees obtained by the two algorithms are the same for some k ≥ 0.
By Proposition 3.3, there is a Dirichlet(β, . . . , β, 1 − 2β, . . . , 1 − 2β) mass split between
the edges of T ∗

k with a parameter of β for each internal marked and each unmarked
edge (which represent rescaled (β, β)-strings of beads), and a parameter of 1 − 2β

for each external marked edge (which represent rescaled (β, 1 − 2β)-strings of beads).
By Lemma 2.9 selecting the attachment point via sampling from the mass-measure
in combination with coin tossing (as in Algorithm 3.2) is the same as selecting the
attachment point from the length measure in combination with a suitable Beta-variable (as
in Algorithm 1.3). Further note that the attached β-mixed string of beads in Algorithm 3.2
has the same length as in Algorithm 1.3 given that the total lengths are the same at step
k and evolve in the same way (see Proposition 2.5).

.2. Two-colour bead-splitting construction using a given stable tree

We will identify Ford trees by carrying out the two-colour bead-splitting construction using
given stable tree (T , µ) equipped with a sequence of i.i.d. leaves (Σk, k ≥ 0) sampled from
, and i.i.d. sequences of i.i.d. ordered (β ′, 1−β ′)-Chinese restaurant processes (Π̃ (i,m)

n , n ≥ 1),
≥ 1, m ≥ 1, cf. Section 2.4.

efinition 3.5 (Labelled Bead Tree/string of Beads). A pair (x,Λ) is called a labelled bead if
x is a point in a metric space and Λ ⊂ N is an infinite label set. A weighted R-tree (R, µR)
quipped with a point process PR =

∑
i≥1 δ(xi ,Λi ) on some countable subset {xi , i ≥ 1} ⊂ R,

xi ̸= x j , i ̸= j , is called a labelled bead tree if (xi ,Λi ) is a labelled bead for every i ≥ 1. If
R, µR) is a string of beads we call (R, µR,PR) a labelled string of beads.

We will also speak of labelled (α, θ)-strings of beads for α ∈ (0, 1), θ > 0, as induced by
n ordered (α, θ)-Chinese restaurant process. Specifically, the label sets are the blocks Π∞,i ,
≥ 1, of the limiting partition of N, which we relabel by N\ {1} using the increasing bijection
→ N \ {1}. The locations X i are the locations of the corresponding atom of size Pi on

he string, i ≥ 1. A Ford tree growth process of index β ′
∈ (0, 1) as in Algorithm 1.2

an be represented in terms of labelled (β ′, 1 − β ′)-strings of beads ξ̂m , m ≥ 1, as follows
39, Corollary 16].

roposition 3.6 (Ford Tree Growth Via Labelled Strings of Beads). For β ′
∈ (0, 1), construct

sequence of labelled bead trees (Fm, νm,Pm, m ≥ 1) as follows.

0. Let (F1, ν1,P1) = ξ̂0 be a labelled (β ′, 1 − β ′)-string of beads with label set N \ {1}.

iven (F j , ν j ,P j ), 1 ≤ j ≤ m, with Pm =
∑

i≥1 δ(Xm,i ,Λm,i ), to construct (Fm+1, νm+1,Pm+1),

.–2. select the unique Xm,i ∈ Fm such that m + 1 ∈ Λm,i ;
3. to obtain (Fm+1, νm+1,Pm+1), remove νm(Xm,i )δXm,i from νm and δ(Xm,i ,Λm,i ) from Pm;

attach to F at X an independent copy ξ̂ of ξ̂ with metric rescaled by ν (X )β
′

,
m m,i m 0 m m,i
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mass measure by νm(Xm,i ), and label sets in ξ̂m relabelled by the increasing bijection
N \ {1} → Λm,i \ {m + 1}.

hen the tree growth process (Fm, m ≥ 1) is a Ford tree growth process of index β ′
∈ (0, 1).

It will be useful to represent two-colour trees in the space l1(N2
0) as follows. We denote

y ea,b, a, b ≥ 0, the unit coordinate vectors. We will use ek,0, k ≥ 0, to embed a given
table tree (T , d, ρ, µ), using ek,0 to embed Σk , k ≥ 0. Indeed, from now on we assume
T , d, ρ, µ) = (T , d, 0, µ) ∈ Temb

w is this embedded stable tree, with embedded leaves Σk ,
≥ 0. We will use em,i , i ≥ 1, m ≥ 1, to embed the mth branch of the i th marked component,

o the last step of Algorithm 3.2 is:

3. let ([0, Lk], [0, Lk B ′

k], µ+

k ) be an independent β-mixed string of beads in the notation
of (3.3); denote by Mk the size (number of leaves) of R(Ik )

k ; define the scaling factor
c = µ∗

k (J ∗

k ) and add the scaled string to T ∗

k using new directions eMk+1,Ik and ek+1,0 for
the marked and unmarked parts:

T ∗

k+1 := T ∗

k ∪
(
J ∗

k +]0, Lk B ′

kcβ ]eMk+1,Ik

)
∪
(
J ∗

k + Lk B ′

kcβeMk+1,Ik +]0, Lk(1 − B ′

k)cβ ]ek+1,0
)
.

Similarly, add the marked part to the Ik-th marked component and maintain all other
components:

R(Ik )
k+1 := R(Ik )

k ∪
(
J ∗

k +]0, Lk B ′

kcβ]eMk+1,Ik

)
, R(i)

k+1 := R(i)
k , i ̸= Ik .

Finally, distribute the atom at J ∗

k according to the scaled string mass: µ∗

k+1 := µ∗

k −

cδJ∗
k

+ λ+

k , where

λ+

k (J ∗

k +]cβs, cβ t]eMk+1,Ik ) = cµ+

k (]s, t]), 0 ≤ s < t ≤ Lk B ′

k,

λ+

k (J ∗

k + Lk B ′

kcβ
+]cβs, cβ t]eMk+1,Ik ) = cµ+

k (Lk B ′

k+]s, t]), 0 ≤ s < t ≤ Lk(1 − B ′

k).

e will now formulate a modification of Algorithm 3.2 starting from a given stable tree.
et (T , µ) be a stable tree of index β ∈ (0, 1/2] and (Σk, k ≥ 0) an i.i.d. sequence of

eaves sampled from µ. Consider the sequence of reduced weighted R-trees (Tk, µk, k ≥ 0)
here µk captures the masses of the connected components of T \ Tk projected onto Tk as

n (1.1). Let (vi , i ≥ 1) be the sequence of branch points of T in order of appearance in
Tk, k ≥ 0), and denote by (S (i)

j , j ≥ 1) the subtrees of T \ Tk(i) rooted at vi , i ≥ 1, where
(i)

= inf{k ≥ 0 : vi ∈ Tk} and where indices are assigned in increasing order of least leaf
abels min{ℓ ≥ k(i)

:Σℓ ∈ S (i)
j }, j ≥ 1. For i, j ≥ 1, set P (i)

j := µ(S (i)
j ),

D(i)
:= lim

n→∞

⎛⎝1 −

∑
j∈[n]

P (i)
j /P (i)

⎞⎠1−β

(1 − β)β−1nβ, where P (i)
:=

∑
j≥1

P (i)
j . (3.11)

his yields an i.i.d. sequence of (1 − β)-diversities (D(i), i ≥ 1) with D(i)
∼ ML(1 − β, −β),

f. Lemma 2.11 and (2.15). In the following algorithm, we build i.i.d. Ford trees in the branch
oints of the stable tree (T , µ) from i.i.d. labelled (β ′, 1 − β ′)-strings of beads ξ̂k, k ≥ 0, for
′
= β/(1 −β). To do so, we consider two separate mass measures: the measures (µ̂k, k ≥ 0),

hat equal µ on (shifted) subtrees of the stable tree, and the measures ν̂k on the Ford trees,
hich, restricted to each Ford tree separately, play the role of the mass measures νm , m ≥ 1,
n the construction in Proposition 3.6.
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Fig. 4. Example of initial steps in Algorithm 3.7. T̂0 is a stable tree, shown as the spine R(T̂0, Σ̂
(0)
0 ) with subtrees

planted in the beads. The subtree containing leaf Σ̂
(0)
1 is selected and a rescaled labelled (β ′, 1 − β ′)-string of

beads is inserted (with subtree order induced by the label sets which are not shown here). Next, the marked subtree
containing leaf Σ̂

(1)
2 is selected and a rescaled (β ′, 1 − β ′)-string of beads is inserted, leading, in this case, to a

growth step within the first marked subtree.

Algorithm 3.7 (Algorithm 3.2 with Subtrees from a Given Stable Tree). Let β ∈ (0, 1/2] and
′
= β/(1 − β). We construct a sequence of weighted ∞-marked R-trees

(
T̂k,

(
R̂(i)

k , i ≥ 1
)
,

µk, ν̂k,
(
Σ̂ (k)

n , n ≥ 0
)
, k ≥ 0

)
embedded in l1(N2

0), each equipped with a leaf sequence
Σ̂ (k)

n , n ≥ 0) and an additional finite measure ν̂k as follows (cf. Fig. 4).

0. Let (T̂0, (R̂(i)
0 , i ≥ 1), µ̂0, ν̂0, (Σ̂ (0)

n , n ≥ 0)) = (T , ({ρ}, i ≥ 1), µ, 0, (Σn, n ≥ 0)) be a
labelled stable tree.

iven (T̂ j , (R̂(i)
j , i ≥ 1), µ̂ j , ν̂ j , (Σ̂ ( j)

n , n ≥ 0)), 0 ≤ j ≤ k, let r̂k = #{i ≥ 1 :R(i)
k ̸= {ρ}};

.–2. let Ĵk ∈ T̂k be the closest point to the leaf Σ̂ (k)
k+1 in the reduced tree R(T̂k, Σ̂

(k)
0 , . . . , Σ̂ (k)

k );
if Ĵk ∈ R̂(i)

k for some i ∈ [̂rk], set Ik = i , otherwise let Ik = r̂k + 1; denote by Mk ≥ 0
the size of R̂(Ik )

k ;
3. let ξ̂k be an independent labelled (β ′, 1 − β ′)-string of beads with label set N \ {1};

if Mk ≥ 1, define the scaling factor ĉ = ν̂k( Ĵk), otherwise set ĉ = 1; write as
([0, Kk], νk,

∑
j≥1 δ(Xk, j ,Λk, j )) the string of beads ξ̂k with metric rescaled by the factor

ĉβ ′

(P (Ik ))β(D(Ik ))β
′

and mass measure rescaled by ĉ, where P (Ik ) and D(Ik ) are as in
(Eq. (3.11)); denote by Sk,m , m ∈ {0, 1, 2, . . . ; ∞}, the connected components of
T̂k \ { Ĵk}, where Sk,∞ contains the root and the other components are ordered by
least label; set T̂k+1 := Sk,∞ ∪ Sk,0 ∪

(
Ĵk + [0, Kk]eMk+1,Ik

)
∪
(
KkeMk+1,Ik + Sk,1

)
∪⋃

j≥1
⋃

m∈Λk, j

(
Xk, j eMk+1,Ik + Sk,m

)
; if Mk = 0, let R̂(Ik )

k+1 = Ĵk + [0, Kk]eMk+1,Ik , other-

wise add this shifted string to R̂(Ik )
k to form R̂(Ik )

k+1; retain the other marked components,
just shifted by the appropriate Xk, j eMk+1,Ik if R̂(i)

k ⊂ Sk, j . Finally, let µ̂k+1 denote the
mass measure obtained from µ̂k by appropriate shifting, and similarly for ν̂k+1, just with
the scaled mass measure νk of ξ̂k shifted onto Ĵk + [0, Kk]eMk+1,Ik replacing ν̂k( Ĵk)δ Ĵk

.
Denote by Σ̂ (k+1)

n , n ≥ 0, the leaves Σ̂ (k)
n , n ≥ 0, after the shifting operation.
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Remark 3.8. Note that the scaling factor (C (i))−1
:= (P (i))β(D(i))β/(1−β) can be rewritten as

(C (i))−1
= lim

n→∞

⎛⎝P (i)
−

∑
j∈[n]

P (i)
j

⎞⎠β

(1 − β)−βnβ2/(1−β)
= lim

n→∞

⎛⎝ ∑
j≥n+1

P (i)
j

⎞⎠β

(1 − β)−βnβ2/(1−β),

r, alternatively, using (2.15), as (C (i))−1
= lim j→∞ ( jΓ (β))β/(1−β)

(
P (i)↓

j

)β

.

The labels of the labelled strings of beads ξ̂k , k ≥ 0, are used to assign the connected
omponents of T̂k \ { Ĵk} to the labelled beads of the rescaled string. The reader may want to
onsider these labels as auxiliary labels, which are matched with those labels of the labelled
table tree that feature as a least label of a connected component (excluding the component
ontaining the root). This matching is induced by the increasing bijection from the set N∪ {0}

f auxiliary labels to the set of least component labels. This includes two additional auxiliary
abels 0 and 1, which are not assigned to a labelled bead. Indeed, while for each labelled bead
Xk, j ,Λk, j ), j ≥ 1, and each auxiliary label m ∈ Λk, j , the component Sk,m is shifted by Xk, j

n the direction eMk+1,Ik , the component Sk,1 is shifted by Kk , the full rescaled length of the
tring, while components Sk,0 and the root component Sk,∞ are not shifted. See Fig. 4.

The following result follows from the construction in Algorithm 3.7 and Proposition 3.6.

roposition 3.9. In the setting of Algorithm 3.7, there exists a sequence of i.i.d. Ford CRTs
F̂i , i ≥ 1) of index β ′

= β/(1 − β) which is independent of the stable tree (T , µ) such that,
or all i ≥ 1,

lim
k→∞

R̂(i)
k =: R̂(i)

=
(
C (i))−1 F̂i a.s. w.r.t. the Gromov–Hausdorff topology.

roof. Almost surely, the stable tree has infinitely many branch points, all of infinite degree.
his means that each of the infinitely many marked components in Algorithm 3.7 undergoes

nfinitely many growth steps, almost surely.
Now fix any i ≥ 1 and consider the increasing sequence (k(i)

m , m ≥ 1) of (3.8), i.e. let
k(i)

m − 1, m ≥ 1} = {k ∈ N∪{0} : Ik = i} contain the steps in which the i th marked component
rows. For all m ≥ 1, we enhance R(i)

k(i)
m

to a labelled bead tree (R(i)

k(i)
m

, ν
(i)

k(i)
m

,P (i)

k(i)
m

), as follows.

e define ν
(i)

k(i)
m

as the restriction of ν̂k(i)
m

to R(i)

k(i)
m

for all m ≥ 1, and we use the labels of labelled

trings (̂ξk(i)
m −1, m ≥ 1) like the strings (̂ξm, m ≥ 1) in Proposition 3.6 to define P (i)

k(i)
m

, m ≥ 1.

enote by S (i)
m,q , q ≥ 0, the connected components of T̂k(i)

m
\R(i)

k(i)
m

, not including the component
ontaining the root, enumerated in the order of least component labels. Inductively, we see that
his ensures that for each m ≥ 1,

• the combined set of (auxiliary!) labels in the beads of P (i)

k(i)
m

is N \ [m];

• the components S (i)
m,q , q ∈ [m], are subtrees rooted at the m leaves of R(i)

k(i)
m

;

• for each labelled bead (X,Λ) in P (i)

k(i)
m

, the components S (i)
m,q , q ∈ Λ, are rooted at X ;

• leaf Σ̂
(k(i)

m −1)

k(i)
m

of T̂k(i)
m −1 is in S (i)

m,m+1, which is a component of T̂k(i)
m −1 \ R(i)

k(i)
m −1

rooted at

Ĵ (i) ∈ R(i)
(i) .
km −1 km −1
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Therefore, the growth steps of the i th marked component are Ford growth steps as in
roposition 3.6, just with the metric scaled by C (i). By [39, Theorem 3], this entails the claimed
onvergence to Ford CRTs, for each i ≥ 1.

Finally note that the labelled strings of beads (̂ξk, k ≥ 0) and the labelled stable tree in
Algorithm 3.7 are jointly independent. This entails that the sequences (̂ξk(i)

m −1, m ≥ 1), i ≥ 1,
are independent sequences independent of the labelled stable tree. As the limiting Ford CRTs
Fi , i ≥ 1, are measurable functions of (̂ξk(i)

m −1, m ≥ 1), i ≥ 1, respectively, the claimed joint
independence follows. □

We also derive some further auxiliary results about labelled (α, θ)-strings of beads.

Lemma 3.10. Let P = (Pi , i ≥ 1) ∼ GEM(α, θ) with α-diversity S, and ξ̂ = ([0, K̂ ], µ̂, P̂ =∑
j≥1 δ(X j ,Λ̂ j )) an independent labelled (β ′, θ/α)-string of beads. Use ([0, K̂ ], µ̂, P̂) to coag-

ulate (Pi , i ≥ 1) into µ({X j }) :=
∑

i∈Λ̂ j
Pi , with relative part sizes Q( j)

m := Pπ j (m)/µ({X j }),
≥ 1, labelled by the increasing bijection π j :N → Λ̂ j , j ≥ 1. Then

• the string of beads ([0, Sβ ′

K̂ ], µ) is an (αβ ′, θ)-string of beads,
• the sequence of fragments (Q( j)

m , m ≥ 1) has a GEM(α, −αβ ′) distribution, for each
j ≥ 1,

• the string ([0, Sβ ′

K̂ ], µ) and the fragments (Q( j)
m , m ≥ 1) of µ({X j }), j ≥ 1, are

independent.

roof. This is an enriched instance of coagulation–fragmentation duality, see e.g.
38, Section 5.5]. We use a combinatorial approach, writing (x)n↑γ = x(x +γ ) · · · (x +(n−1)γ )
nd using known distributions of (ordered and unordered) Chinese restaurant partitions [38,39].
ix n ≥ 1.

What is the probability that an ordered (β ′, θ/α)-coagulation groups the tables of an un-
rdered (α, θ)-Chinese restaurant partition of [n] into m groups (n1,1, . . . , n1,k1 ), . . . , (nm,1, . . . ,

m,km )? If we denote by ℓ the number of new right-most groups opened, and (γ ) j↑δ :=

(γ + δ) · · · (γ + ( j − 1)δ), then it is

(θ + α)k1+···+km−1↑α

∏
i∈[m]

∏
j∈[ki ](1 − α)ni j ↑1

(1 + θ )n−1↑1

(β ′)m−ℓ−1(θ/α)ℓ
∏

i∈[m](1 − β ′)ki −1↑1

(1 + θ/α)k1+···+km−1↑1
.

hat is the probability that an unordered (α, −αβ ′)-fragmentation of an ordered (αβ ′, θ)-
hinese restaurant partition of [n] yields m tables further split into (n1,1, . . . , n1,k1 ), . . . , (nm,1,

. . , nm,km )? If we denote by ℓ the number of new right-most tables, then it is

(αβ ′)m−ℓ−1θ ℓ
∏

i∈[m](1 − αβ ′)ni,1+···+ni,ki −1↑1

(1 + θ )n−1↑1

∏
i∈[m]

(α − αβ ′)ki −1↑α

∏
j∈[ki ](1 − α)ni j −1↑1

(1 − αβ ′)ni,1+···+ni,ki −1↑1
.

lementary cancellations show that these two expressions are equal for all n ≥ 1. Since these
tructured partitions can be constructed in a consistent way, as n ≥ 1 varies, the statement
f the lemma merely records different aspects of the limiting arrangement, either asymptotic
requencies in size-biased order of least labels coagulated by a labelled strings of beads, or
espectively a string of beads with blocks further fragmented, with fragments in size-biased
rder of least labels. □

The following result can be proved using the same method.
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o

Lemma 3.11. Let P = (Pi , i ≥ 1) ∼ GEM(α, θ) and, for α ∈ (0, 1), θ > 0, let Λ̂ =

(Λ̂1, . . . , Λ̂r ) be an independent Dirichlet(θ1/α, . . . , θr/α) partition of N with
∑

i∈[r ] θi = θ .
Use (Λ̂1, . . . , Λ̂r ) to coagulate (Pi , i ≥ 1) into R j :=

∑
i∈Λ̂ j

Pi , with relative part sizes

Q( j)
m := Pπ j (m)/R j , m ≥ 1, labelled by the increasing bijection π j :N → Λ̂ j , j ∈ [r ]. Then

• the vector (R1, . . . , Rr ) of aggregate masses has a Dirichlet(θ1, . . . , θr ) distribution,
• the sequence of fragments (Q( j)

m , m ≥ 1) has a GEM(α, θ j ) distribution, for each j ∈ [r ],
• the vector (R1, . . . , Rr ) and the fragments (Q( j)

m , m ≥ 1) of R j , j ∈ [r ], are independent.

We will apply these results to the coagulations by Dirichlet and labelled string of beads
partitions of Ford trees applied to GEM sequences of relative frequencies of stable leaf labels
in subtrees.

3.3. Embedding of the two-colour bead-splitting construction into a binary compact CRT

In [42] we constructed CRTs recursively based on recursive distribution equations as
reviewed by Aldous and Bandyopadhyay [4]. This method applied to a β-mixed string of beads
yields a compact CRT (T ∗, µ∗) in which we can embed the two-colour bead-splitting construc-
tion. Let us briefly recall the recursive construction of (T ∗, µ∗) from
[42, Proposition 4.12] including some useful notation. We only outline the constructions
without going into the mathematical details for which we refer to [42].

For β ∈ (0, 1/2], consider a sequence of independent strings of beads (ξi, i ∈ U),

ξi =

⎛⎝[0, L i],
∑
j≥1

Pi jδX i j

⎞⎠ , i ∈ U,

where ξ∅ is a (β, β)-string of beads independent of the β-mixed strings of beads ξi, i ∈ U\{∅},
and U :=

⋃
n≥0 Nn is the infinite Ulam-Harris tree. Let (Ť0, µ̌0) = ξ∅, and for n ≥ 0,

conditionally given (Ťn, µ̌n) with µ̌n =
∑

i j∈Nn+1 P̌i jδX̌ i j
, attach to each X̌ i j an isometric copy

f the string of beads ξi j

• with metric rescaled by µ̌n(X̌ i j )β , and mass measure rescaled by µ̌n(X̌ i j ),
• so that the atom Pi jkδX i jk of ξi j is scaled to become an atom of Ťn+1 denoted by P̌i jkδX̌ i jk

,
k ≥ 1,

for all i j ∈ Nn+1 respectively. Denote the resulting tree by (Ťn+1, µ̌n+1).
By construction, (Ťn, µ̌n) only carries mass in the points X̌ i j , i j ∈ Nn+1, i.e. µ̌n(Ťn \Ťn−1) =

0 for n ≥ 0. Note that, for any X̌ i1i2···in+1 ∈ Ťn , n ≥ 0,

µ̌n

(
X̌ i1i2···in+1

)
= P̌i1i2···in+1 = Pi1 Pi1i2 · · · Pi1i2···in+1 .

This induces a recursive description of the trees (Ťn, µ̌n, n ≥ 0) via the strings of beads
(ξi, i ∈ U).

Theorem 3.12 ([42, Proposition 4.12]). Let β ∈ (0, 1/2] and (Ťn, µ̌n, n ≥ 0) as above. Then
there exists a compact CRT (T ∗, µ∗) such that

lim
n→∞

(
Ťn, µ̌n

)
=
(
T ∗, µ∗

)
a.s.

with respect to the Gromov–Hausdorff–Prokhorov topology.
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We will show that the increasing sequence (T ∗

k , k ≥ 0) of compact R-trees from
lgorithm 3.2 converges a.s. to a tree with the same distribution as T ∗. To do this and
andle the marked components, we will embed the sequence of weighted ∞-marked R-trees
T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) into a given (T ∗, µ∗).
Note that the strings of beads ξi, i ∈ U \ {∅}, are β-mixed strings of beads as used in

lgorithm 3.2 but are not elements of the space of (equivalence classes of) weighted 1-marked
-trees T[1]

w , as there is no marked component. As we would like to embed into (T ∗, µ∗) the
wo-colour line breaking construction which carries colour marks on β-mixed strings of beads,
e need to determine I1 = [0, K1] ⊂ I = [0, K ] such that (I, I1, λ) ∼ ν

[1]
β given some

= (I = [0, K ], λ) ∼ νβ , where νβ and ν
[1]
β were introduced at the beginning of Section 3 as

istributions on one-branch trees in Tw and T[1]
w , respectively. The existence of the conditional

istribution of the point of the colour change K1 given ξ is stated in the following lemma.

emma 3.13. Let ξ ∼ νβ . Then there exists a unique probability kernel κ from Tw to R such
hat

P (K1 ∈ ·|ξ) = κ (ξ, ·) a.s.. (3.12)

roof. This is a special case of Theorem 6.3 in [28], since R is a Borel space. □

Given the weighted R-tree (T ∗, µ∗), we will get a sequence of weighted ∞-marked R-trees(
T ∗

k ,
(
R(i)

k , i ≥ 1
)

, µ∗

k , k ≥ 0
)

ith the same distribution as (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) as an increasing sequence of subsets
T ∗

k ⊂ T ∗, k ≥ 0, where the mass measure µ∗

k captures the masses of the connected components
f T ∗

\ T ∗

k projected onto T ∗

k , k ≥ 0. The recursive structure ξi, i ∈ U, provides the i.i.d.
strings of beads needed in Algorithm 3.2, which the colour change kernel (3.12) turns into
i.i.d. 1-marked strings of beads.

Algorithm 3.14 (Two-Colour Embedding). Let β ∈ (0, 1/2]. We embed into the tree (T ∗, µ∗)
of Theorem 3.12 weighted ∞-marked R-trees (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ), k ≥ 0, as follows.

0. Let (T ∗

0, µ
∗

0) = ξ∅ be the initial (β, β)-string of beads; let r0 = 0 and R(i)
0 = {ρ}, i ≥ 1.

iven (T ∗

j , (R(i)
j , i ≥ 1), µ∗

j ) with µ∗

j =
∑

x∈T ∗

j
µ∗

j (x)δx , 0 ≤ j ≤ k, let r k = #{i ≥ 1 :R(i)
k ̸=

ρ}};

1. select an edge E
∗

k ⊂ T ∗

k with probability proportional to its mass µ∗

k (E
∗

k ); if E
∗

k ⊂ R(i)
k

for some i ∈ [r k], let I k = i ; otherwise, i.e. if E
∗

k ⊂ T ∗

k \
⋃

i∈[rk ] R
(i)
k , let r k+1 = r k +1,

I k = r k+1;
2. if E

∗

k is an external edge of R(i)
k , perform (β, 1 − 2β)-coin tossing sampling on E

∗

k to
determine J

∗

k ∈ E
∗

k ; otherwise, i.e. if E
∗

k ⊂ T ∗

k \
⋃

i∈[rk ] R
(i)
k or if E

∗

k is an internal edge

of R(i)
k , sample J

∗

k from the normalised mass measure on E
∗

k ;
3. let j ∈ U such that J

∗

k = X̌ j and µ∗

k (J
∗

k ) = P̌j; sample a point Ω k from κ(ξj, ·); to form
(T ∗

k+1, µ
∗

k+1), remove µ∗

k (J
∗

k )δJ∗

k
from µ∗

k and add to T ∗

k the scaled copy of the string

of beads ξj with Ω k embedded in T ∗; set R(I k )
k+1 = R(I k )

k ∪ [[J
∗

k ,Ω k]] and R(i)
k+1 = R(i)

k ,
i ̸= I .
k
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4. Identification of bead-splitting and line-breaking constructions

The following collection of results culminates in identifying the desired weight-length trans-
ormation, i.e. the branch point weights in Goldschmidt–Haas’ stable line-breaking construction
Algorithm 1.1) are indeed as the lengths of the marked subtrees in the two-colour bead-
plitting construction (Algorithm 3.2). We begin by related identifications of relevant parts
f Algorithm 3.2 with Algorithm 3.7 and Algorithm 3.14.

.1. Two-colour bead-splitting reduces to stable bead-splitting

roposition 4.1. Let the sequence (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) be as in Algorithm 3.2,
nd associate (T̃k, (̃vi = [R(i)

k ]∼, i ≥ 1), µ̃k, k ≥ 0) as in (3.6). Then the sequence of trees
ith mass measures from Algorithm 3.2 and (3.6) has the same distribution as the sequence in
lgorithm 1.7, i.e.(

T̃k, µ̃k, k ≥ 0
) d

= (Tk, µk, k ≥ 0) . (4.1)

roof. Recall the constructions of (T ∗

k , µ∗

k ) in Algorithm 3.2 and (T̃k, µ̃k) in (3.6). We couple
(Tk, µk, k ≥ 0) to (T ∗

k , µ∗

k , k ≥ 0) and identify the distribution as required for Algorithm 1.7:

• We couple the initial (β, β)-strings of beads to be equal (T0, µ0) = (T̃0, µ̃0) = (T ∗

0 , µ∗

0).
• Supposing that (Tk, µk) = (T̃k, µ̃k) for some k ≥ 0, set Jk := J̃k = [J ∗

k ]∼, ξk = ξ
(2)
k , and

Qk := (1 − γk) µ∗

k (J ∗

k )/µ̃k( J̃k),

where we recall that (1 − γk) ∼ Beta(β, 1 − 2β) is the independent scaling factor for
ξ

(2)
k in the construction of a β-mixed string of beads from ξ

(1)
k , ξ

(2)
k and γk , as at the

beginning of Section 3. If the selected atom J ∗

k is an element of a marked component,
Qk is the proportion of the mass of J ∗

k added to this marked component in the form of
a rescaled independent (β, β)-string of beads ξ

(2)
k , while a proportion of 1 − Qk is split

into an unmarked rescaled (β, 1 − 2β)-string of beads ξ
(1)
k .

ince J̃k was sampled from µ̃k , Jk is sampled from µk , as required for Algorithm 1.7. It remains
o check that the scaling factor Qkµ̃k( J̃k) induced by Algorithm 3.2, applied to the (β, β)-string
f beads ξk = ξ

(2)
k that is used in the attachment procedure, is as needed for Algorithm 1.7. We

ork conditionally given the event that T̃k has ℓ branch points ṽ j of sizes d j = deg(̃v j , T̃k),
j ∈ [ℓ], respectively.

• If J̃k ̸= ṽi for i ∈ [ℓ], then Jk = J̃k = J ∗

k , and a new branch point J̃k of degree
deg( J̃k, T̃k+1) = 3 = 1 + deg( J̃k, T̃k) is created. The mass µ∗

k (J ∗

k ) = µ̃k( J̃k) is split
by the independent random variable γk ∼ Beta(1 − 2β, β) into a branch point weight
µ̃k+1( J̃k) = γkµ̃k( J̃k) and the isometric copy of the (β, β)-string of beads ξ

(2)
k = ξk ,

scaled by µ̃k( J̃k)(1 − γk) = µ̃k( J̃k)Qk where Qk ∼ Beta(β, 1 − 2β) is conditionally
independent of ξk and (Tk, µk, Jk) given deg(Jk, Tk) = 2, as required.

• If J̃k = ṽi of degree deg(̃vi , T̃k) = di for some i ∈ [ℓ], we first select an edge E∗

k of
R(i)

k from µ∗

k restricted to R(i)
k . Conditionally given that E∗

k has been selected, we choose
J ∗

k ∈ E∗

k according to (β, θ)-coin tossing sampling, where θ = β if E∗

k is an internal
edge of R(i)

k , and θ = 1 − 2β otherwise. By Proposition 2.8 and Proposition 2.6(iii)–(iv),
conditionally given J ∗

k ∈ E∗

k , the relative mass split in R(i)
k is
Dirichlet (β, . . . , β, 1 − 2β, . . . , 1 − 2β, β, 1 − β, θ)
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with parameter β for each non-selected internal edge of R(i)
k , 1−2β for each non-selected

external edge of R(i)
k , β for the part of E∗

k closer to the root, θ for the other part of E∗

k ,
and 1 − β for the atom J ∗

k . In any case (i.e. no matter if E∗

k is internal or external), we
get by Proposition 2.6(i)–(ii) that, conditionally given J̃k = ṽi ,

µ∗

k (J ∗

k )/µ̃k( J̃k) ∼ Beta (1 − β, (di − 2)(1 − β))

is independent of µ̃k( J̃k), as the internal relative mass split in R(i)
k is independent of its

total mass, see Proposition 3.3 and Proposition 2.6(ii). Overall, still conditionally given
J̃k = ṽi , we have that

µ∗

k

(
J ∗

k

)
(1 − γk) = (1 − γk)

(
µ∗

k

(
J ∗

k

)
µ̃k
(
J̃k
)−1
)

µ̃k
(
J̃k
)

= Qkµ̃k
(
J̃k
)

where Qk ∼ Beta(β, di (1−β)−1), as is easily checked using Proposition 2.6(i)–(iii). Note
that Qk is also conditionally independent of µ̃k( J̃k) given J̃k = ṽi and deg(̃v j , T̃k) = di .
This is due to the fact that the mass split within R(i)

k , and the mass split between the
edges of T̃k and its branch points are conditionally independent given there are ℓ branch
points ṽ j with deg(̃v j , T̃k) = d j , j ∈ [ℓ]. □ □

4.2. Stable bead splitting reduces to stable line-breaking, proof of Theorem 1.8

Proposition 4.2. The sequence of weighted R-trees (Tk, µk, k ≥ 0) from Algorithm 1.7 has
the same distribution as the sequence of trees in (1.1) equipped with projected subtree masses,
i.e. with the mass measures (πk)∗µ, k ≥ 1, as in (2.4)–(2.5). Furthermore, conditionally given
|Tk | = k + 1 + ℓ, the edges of Tk equipped with the mass measure µk restricted to each edge,
are rescaled independent (β, β)-strings of beads given via(

µk

(
E (i)

k

)−β

E (i)
k , µk

(
E (i)

k

)−1
µk ↾E (i)

k

)
, i ∈ [k + 1 + ℓ], (4.2)

and the total mass distribution is(
µk

(
E (1)

k

)
, . . . , µk

(
E (k+1+ℓ)

k

)
, µk (v1) , . . . , µk (vℓ)

)
∼ Dirichlet (β, . . . , β, w (d1) , . . . , w (dℓ))

where vi , i ∈ [ℓ], are the branch points of Tk of degrees di = deg(vi , Tk), i ∈ [ℓ], w(di ) =

(di − 3)(1 − β) + (1 − 2β), i ∈ [ℓ], and where we number the edges E (i)
k , i ∈ [k + 1 + ℓ] by

depth-first search.

Proof of Theorem 1.8. Gromov–Hausdorff convergence in the setting of (1.1) follows straight
from the compactness of T and the fact that the support of µ is T . This entails Gromov–
Hausdorff–Prokhorov convergence since the approximating trees are equipped with the pro-
jections of the limiting mass measure. See e.g. [39, Lemma 17] and [36, Proposition 7]. By
Proposition 4.2, this convergence also holds in the setting of Algorithm 1.7. □

Proof of Proposition 4.2. Construction (1.1) and Algorithm 1.7 use the same notation. To
avoid confusion in this proof, we denote the sequence of trees of (1.1) by (T ′

k , µ′

k, k ≥ 0).
We will couple the construction of (Tk, µk, k ≥ 0) of Algorithm 1.7 to the given sequence
(T ′

k , µ′

k, k ≥ 0), specifically identifying the sequences (Jk, k ≥ 0) of attachment points, and
(Q , k ≥ 0) of update random variables.
k
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The coupling is as follows. Set (T0, µ0) = (T ′

0 , µ′

0), and, given (Tk, µk) = (T ′

k , µ′

k) for some
≥ 0, set Jk := J ′

k where

J ′

k := arg inf
{
d (ρ, x) : x ∈ T ′

k+1 \ T ′

k

}
,

et ξk :=
(
µ′

k+1(T ′

k+1 \ T ′

k )−βT ′

k+1 \ T ′

k , µ′

k+1(T ′

k+1 \ T ′

k )−1µ′

k+1 ↾T ′
k+1\T ′

k

)
and Qk = 1 −

′

k+1(J ′

k)/µ′

k(J ′

k).
By Lemma 2.12, (T ′

0 , µ′

0) is a (β, β)-string of beads, as required in Algorithm 1.7. Now
ssume that (Tk, µk) = (T ′

k , µ′

k) for some k ≥ 0 with the distribution claimed in Proposition 4.2.
enote the connected components of T \ T ′

k by S (i)↓
j , j ≥ 1, i ≥ 1, completed by their root

vertices ρi ∈ T ′

k , i ≥ 1, respectively. Note that µ′

k(ρi ) =
∑

j≥1 µ(S (i)↓
j ).

Since we sample Σk+1 from the mass measure µ on T , the conditional probability
that Σk+1 ∈ S (i)↓

j , given (T , µ), (T ′

k , µ′

k) and (S (i)↓
j , j ≥ 1, i ≥ 1), is µ(S (i)↓

j ) =

′

k(ρi )(µ(S (i)↓
j )/µ′

k(ρi )), i.e. we can sample J ′

k in two steps: first, select one of the atoms ρi

f T ′

k proportionally to µ′

k(ρi ), and second, select one of the components S (i)↓
j with root ρi

roportionally to relative mass µ(S (i)↓
j )/µ′

k(ρi ). By Lemma 2.11(ii) and Proposition 2.10, we
urther note that conditionally given (T ′

k , µ′

k) with µ′

k =
∑

i≥1 µ′

k(ρi )δρi , independently for all
≥ 1, that (µ(S (i)

j )/µ′

k(ρi ), j ≥ 1)↓ ∼ PD(1−β, (di −3)(1−β)+1−2β), with di = deg(ρi , T ′

k ).
We have J ′

k = ρi with probability µ′

k(ρi ), and hence Jk is sampled from µk , as required in
Algorithm 1.7. By Lemma 2.11(iii), the weighted R-trees(

µ
(
S (i)↓

j

)−β

S (i)↓
j , µ

(
S (i)↓

j

)−1
µ ↾S(i)↓

j

)
, j ≥ 1, i ≥ 1,

re independent copies of (T , µ), i.e. conditionally given Σk+1 ∈ S (i)↓
j , the sampling procedure

f Σk+1 ∈ S (i)↓
j from µ(S (i)↓

j )−1µ ↾S(i)↓
j

is like sampling Σ0 ∈ T from µ. Hence, ξk is an
ndependent (β, β)-string of beads, as required in Algorithm 1.7.

Let us consider the distribution of Qk . Conditionally given deg(J ′

k, T ′

k ) = 2, Σk+1 is a leaf of
a connected component S (i)↓

j of T \ T ′

k with root ρi = J ′

k , which is chosen independently and

proportionally to relative mass µ(S (i)↓
j )/µ′

k(ρi ). As noted above, the relative mass partition
above J ′

k is PD(1 − β, −β), i.e. by Proposition 2.10, Qk ∼ Beta(β, 1 − 2β), as required in
Algorithm 1.7.

Conditionally given deg(J ′

k, T ′

k ) = d for some d ≥ 3, Σk+1 is a leaf of a connected
component S (i)↓

j of T \ T ′

k with root ρi = J ′

k . Then the relative mass partition of the
connected components T \T ′

k with root ρi has distribution PD(1 −β, (d − 3)(1 −β) + 1 − 2β)
where we note that J ′

k must have been selected d − 2 times up step k in order to obtain
deg(J ′

k, T ′

k ) = d . Therefore, by Proposition 2.10, conditionally given deg(J ′

k, T ′

k ) = d , we have
Qk ∼ Beta(β, (d −3)(1−β)+1−2β), as required in Algorithm 1.7. Also, by Proposition 2.10,
Qk is conditionally independent of µ′

k(J ′

k) given deg(J ′

k, T ′

k ) = d . The mass split in (T ′

k+1, µ
′

k+1)
is easily found from Proposition 2.6, cf. the proof of Proposition 3.3 for a similar elementary
Dirichlet argument. □

We also record the following consequence of Algorithm 1.7 and Proposition 4.2.

Corollary 4.3. Let (T , µ) be a stable tree of index β ∈ (0, 1/2], and let (Tk, k ≥ 0)
be as in (1.1) with branch points (vi , i ≥ 1) in the order of their appearance in (Tk, k ≥ 0).

{ }
(i)
Let ki := inf k ≥ 0 : [[ρ,Σk]] ∩ [[ρ, vi ]] = [[ρ, vi ]] and let (S j , j ≥ 1) be the subtrees of
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T \ [[ρ,Σki ]] rooted at vi in increasing order of smallest leaf labels, i ≥ 1. Set P (i)
j := µ(S (i)

j )
nd P (i)

=
∑

j≥1 µ(S(i)
j ), i ≥ 1. Then the sequences (P (i)

j /P (i), j ≥ 1), i ≥ 1, are i.i.d. with
istribution GEM(1 − β, −β).

roof. This is a consequence of the stick-breaking representation (2.12) of GEM(1 − β, −β)
nd the random variables (Qk, k ≥ 0) splitting branch point mass into subtrees from
lgorithm 1.7. Specifically, conditionally given the branch point degrees in the sequence
Tk, k ≥ 0), for each branch point vi , we can find a sequence of random variables (Q(i)

m , m ≥ 1)
uch that

P (i)
j = µk(i)

1 −1 (vi ) Q(i)
j

∏
m∈[ j−1]

(
1 − Q(i)

m

)
, j ≥ 1,

here Q(i)
m := Qk(i)

m
∼ Beta(β, m(1 − β) − β) and k(i)

m = inf{k ≥ 1 : deg(vi , Tk) = m + 1}.

ote that, for m1, . . . , mi ≥ 1, the random variables Q(i)
j , j ∈ [mi ], i ≥ 1, have conditional

istributions given k(i)
j , j ∈ [mi ], i ≥ 1, that do not depend on k(i)

j , j ∈ [mi ], i ≥ 1, and are
ence unconditionally independent. □

.3. Two-colour bead splitting from a given stable tree reduces to two-colour bead splitting

roposition 4.4. Let (T̂k, (R̂(i)
k , i ≥ 1), µ̂k, (Σ̂ (k)

n , n ≥ 0), k ≥ 0) be as in Algorithm 3.7
nd (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) as in Algorithm 3.2, and consider the projection π̂k : T̂k →

(T̂k, Σ̂
(k)
0 , . . . , Σ̂ (k)

k ) as in (2.4). Then,(
R
(
T̂k , Σ̂

(k)
0 , . . . , Σ̂

(k)
k

)
,
(
R̂(i)

k , i ≥ 1
)

, (π̂k)∗µ̂k , k ≥ 0
)

d
=

(
T ∗

k ,
(
R(i)

k , i ≥ 1
)

, µ∗

k , k ≥ 0
)

.

(4.3)

urthermore, (P (x)
j , j ≥ 1) with P (x)

j := µ̂k

(
S (x)

j

)
/
∑

ℓ≥1 µ̂k

(
S (x)

ℓ

)
, j ≥ 1, are i.i.d.

EM(1 − β, −β) for all x ∈ R(T̂k, Σ̂
(k)
0 , . . . , Σ̂ (k)

k ) with (π̂k)∗µ̂k(x) > 0, where we denoted
y (S (x)

j , j ≥ 1) the connected components of T̂k \ R(T̂k, Σ̂
(k)
0 , . . . , Σ̂ (k)

k ) rooted at x ∈

(T̂k, Σ̂
(k)
0 , . . . , Σ̂ (k)

k ), ranked in increasing order of least leaf labels.

The following is a direct consequence of Proposition 4.4.

orollary 4.5. In Algorithm 3.2, the tree growth processes
(

C (i)R(i)

k(i)
m

, m ≥ 1
)

, i ≥ 1, are i.i.d.
ord tree growth processes of index β ′

= β/(1 − β) independent of the stable tree (T , µ) =

imk→∞(T̃k, µ̃k) of Corollary 4.8, where the scaling factors (C (i))−1
= (P (i))β(D(i))β/(1−β),

≥ 1, are as in Remark 3.8 and the random subsequences (k(i)
m , m ≥ 1), i ≥ 1, are defined as

n (3.8).

roof of Proposition 4.4. As the families of weighted discrete ∞-marked R-trees in (4.3),
uitably represented, are consistent and at step k uniquely determine the trees at all previous
teps 0, . . . , k − 1, it suffices to show that for fixed k ≥ 0(

R
(
T̂k, Σ̂

(k)
, . . . , Σ̂ (k)

)
,
(
R̂(i)

, i ≥ 1
)

, (π̂k)∗µ̂k

)
d
=

(
T ∗,

(
R(i)

, i ≥ 1
)

, µ∗

)
. (4.4)
0 k k k k k
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We will prove (4.4) by induction on k, showing that the LHS follows the characterisation of
he distribution of the two-colour tree on the RHS given in Proposition 3.3. The case k = 0

follows from Lemma 2.12 in combination with Corollary 4.3.
For general k ≥ 0, we obtain the shape Tk of a stable tree Tk reduced to the first k + 1

leaves from the stable tree growth processes with masses naturally embedded in Algorithm 3.7,
and conditionally given its shape with ℓ branch points v1, . . . , vℓ of degrees d1, . . . , dℓ, a

irichlet(β, . . . , β, m1 + (1 − 2β), . . . , mℓ + (1 − 2β)) mass split between edges and branch
oints as in Proposition 4.2 where mi := di −2, i ∈ [ℓ]. We further obtain rescaled independent
β, β)-strings of beads on the branches of the stable tree, i.e. the unmarked branches of

(T̂k, Σ̂
(k)
0 , . . . , Σ̂ (k)

k ), cf. Proposition 4.2 and Lemma 2.12.
From the stick-breaking representation (2.12) of GEM(·, ·) and Algorithm 1.7, the relative

asses of the subtrees of T \Tk rooted at vi indexed in increasing order of smallest leaf labels
orm an infinite vector with distribution GEM(1 − β, mi (1 − β) + (1 − 2β)), independently for
ach branch point, i ∈ [ℓ].

From the independent Ford tree growth processes via labelled strings of beads built from
he (̂ξk, k ≥ 0) in Algorithm 3.7, we have the shapes of conditionally independent Ford trees
ith m1, . . . , mℓ leaves, and for each Ford tree conditionally given the shape, independently a
irichlet(β ′, . . . , β ′, 1−β ′, . . . , 1−β ′) partition of N obtained by relabelling the edge-partition
f labels N\[mi ] by the increasing bijection N\[mi ] → N. These partitions are further split on
ach internal edge by a labelled (β ′, β ′)-string of beads, and on each external edge by a labelled
β ′, 1 −β ′)-string of beads, again all labelled by N and obtained by increasing bijections from

to the label sets of the edges.
We apply Lemma 3.11 with P as the GEM(1 − β, mi (1 − β) + (1 − 2β)) split into further

ubtree masses of the i th marked component and Λ̂ as the Dirichlet(β ′, . . . , β ′, 1−β ′, . . . , 1−
′) partition of marked Ford labels in the i th component. We note that we eventually place
ubtrees in their size-biased order in P into the further Ford leaves of the i th component.
herefore, the coagulation of Lemma 3.11 produces a Dirichlet(β, . . . , β, 1 − 2β, . . . , 1 − 2β)
ass split onto the edges and independent GEM(1 −β, β) and GEM(1 −β, 1 − 2β) sequences

f fragments of these edge masses.
We apply Lemma 3.10 for each edge, with P as the GEM(1−β, β) or GEM(1−β, 1−2β)

equence of fragments and with the labelled (β ′, β ′)- or (β ′, 1 − β ′)-string of beads as ξ̂ ,
independent. Again, we note that we eventually place subtrees in their size-biased order in P
according to the positions of the labels in the labelled string of beads. Therefore, the coagulation
of Lemma 3.10 produces a mass split according to a (β, β)- or (β, 1 − 2β)-string of beads,
respectively.

We obtain two-colour shapes as needed for the distribution of the RHS of (4.4) characterised
in Proposition 3.3. Conditionally given the two-colour shape, we obtain independent Dirichlet
splits onto edges that combine to a Dirichlet(β, . . . , β, 1−2β, . . . , 1−2β) split, with parameters

for unmarked and marked internal edges and 1 − 2β for marked external edges. Again
onditionally given the two-colour shape, we obtain, independently of the Dirichlet splits,
or each unmarked and marked internal edge an independent (β, β)-string of beads, and for
ach marked external edge a (β, 1 − 2β)-string of beads. If we arrange the edges in the tree
hape suitably by depth first search and sort the Dirichlet vectors and the vectors of strings
ccordingly, their joint conditional distribution does not depend on the two-colour shape, so
he two-colour shape, the overall Dirichlet split and the strings of beads are jointly independent.
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Finally, Algorithm 3.7 scales the strings of beads. We write (P (i))β(D(i))β
′

= (D(i)
mi

)β
′

(P (i)
(mi ))

β ,
here D(i)

mi
is the (1 − β)-diversity of P in the application of Lemma 3.11, independent of the

otal mass P (i)
(mi ) =

∑
j≥mi +1 P (i)

j on the i th component, which is further split according to the
irichlet distribution found above, as required. Altogether, the distribution is the same as in
roposition 3.3. □

.4. Embedded two-colour bead splitting reduces to two-colour bead splitting

roposition 4.6. The sequences of trees constructed in Algorithm 3.2 and Algorithm 3.14
ave the same distribution, i.e. (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) d
= (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0).

roof. Similarly to the proof of Proposition 4.1, let us couple so that the initial weighted
∞-marked R-trees coincide, i.e. let (T ∗

0 , (R(i)
0 , i ≥ 1), µ∗

0) := (T ∗

0, (R(i)
0 , i ≥ 1), µ∗

0). Then,
T ∗

0 , µ∗

0) is a (β, β)-string of beads, and R(i)
0 = {ρ} for all i ≥ 1, as required for Algorithm 3.2.

Supposing that (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ) = (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ) for some k ≥ 0, set J ∗

k :=

J
∗

k , Ik := I k , and if J
∗

k = X̌ i j , take as (E+

k , µ+

k ) the scaled copy of ξi j embedded in T ∗ and
R+

k = [[J
∗

k ,Ω k]]. We need to check that the induced update step from (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ) to
T ∗

k+1, (R(i)
k+1, i ≥ 1), µ∗

k+1) is as required in Algorithm 3.2. Selecting J
∗

k in Algorithm 3.14, we
rst select an edge E

∗

k of T ∗

k proportionally to µ∗

k (E
∗

k ), and perform (β, 1 − 2β)-coin tossing
f E

∗

k is an external marked edge, and uniform sampling from µk ↾E∗

k
otherwise, and since

µ∗

k = µ∗

k , this means that J ∗

k is sampled precisely as required for Algorithm 3.2. In particular
e have µ∗

k (J ∗

k ) = µ∗

k (J
∗

k ). Furthermore, (E+

k , R+

k , µ+

k ) is an independent β-mixed string of
eads, as it is obtained from ξi j and the transition kernel κ(ξi j , ·) of Lemma 3.13. Therefore,((

T ∗

k ,
(
R(i)

k , i ≥ 1
)

, µ∗

k

)
,
(
T ∗

k+1,
(
R(i)

k+1, i ≥ 1
)

, µ∗

k+1

))
as the same distribution as

(
(T ∗

k , (R(i)
k , i ≥ 1), µ∗

k ), (T ∗

k+1, (R(i)
k+1, i ≥ 1), µ∗

k+1)
)
, which

roves Proposition 4.6, as both Algorithm 3.2 and Algorithm 3.14 specify Markov chains. □

.5. Two-colour bead splitting reduces to stable line-breaking

heorem 4.7. In the setting of Proposition 4.1, the sequence of trees with marked component
engths from Algorithm 3.2 and (3.6) has the same distribution as the sequence of trees with
eights from Algorithm 1.1, i.e.(

T̃k,
(

W̃ (i)
k , i ≥ 1

)
, k ≥ 0

)
d
=

(
Tk,

(
W (i)

k , i ≥ 1
)

, k ≥ 0
)

, (4.5)

here W̃ (i)
k = Leb(R(i)

k ) is the length of R(i)
k , i ≥ 1, respectively. In particular, letting

S∗

k = Leb(T ∗

k ) denote the length of T ∗

k , the sequence (S∗

k , k ≥ 0) is a Mittag-Leffler Markov
hain starting from ML(β, β), i.e.

(
S∗

k , k ≥ 0
) d

= (Sk, k ≥ 0) .

orollary 4.8. In the setting of Proposition 4.1, limk→∞(T̃k, µ̃k) = (T , µ) a.s. with respect
o the Gromov–Hausdorff–Prokhorov distance, where (T , µ) is a stable tree of index β.

roof. Goldschmidt and Haas [20] showed this for the RHS of (4.5), in the Gromov–Hausdorff
ense, so this also holds for the LHS. This implies Gromov–Hausdorff–Prokhorov convergence,
s µ̃ is the projection of µ to T̃ . See e.g. [39, Lemma 17]. □
k k
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Proof of Theorem 4.7. Recall that the ingredients in Algorithm 1.1 to construct the sequence
n the RHS of (4.5) are the Mittag-Leffler Markov chain (Sk, k ≥ 0), attachment points
Jk, k ≥ 0), and i.i.d. random variables Bk , k ≥ 0, with B1 ∼ Beta(1, 1/β − 2). We recover
hese ingredients from the random variables incorporated in the construction of the LHS of
4.5) via the following coupling.

• Set S0 = S∗

0 , i.e. S0 ∼ ML(β, β) is the length of the initial (β, β)-string of beads
(T ∗

0 , µ∗

0) = (T̃0, µ̃0). For k ≥ 0, set Sk equal to the total length of T ∗

k , i.e. Sk = S∗

k .
• Set (Jk, k ≥ 0) = ( J̃k, k ≥ 0).
• Set (Bk, k ≥ 0) = (B∗

k , k ≥ 0), where B∗

k denotes the length split between the
unmarked and the marked part of the independent β-mixed string of beads (E+

k , R+

k , µ+

k )
built from ξ

(1)
k , ξ

(2)
k and γk . By Remark 3.1, (Bk, k ≥ 0) is an i.i.d. sequence with

B1 ∼ Beta(1, 1/β − 2), as required.

We will show that(
T̃k,

(
W̃ (i)

j , 0 ≤ j ≤ k, i ≥ 1
))

d
=

(
Tk,

(
W (i)

j , 0 ≤ j ≤ k, i ≥ 1
))

(4.6)

for all k ≥ 0, which implies (4.5) as the families of trees (T̃k, k ≥ 0) and (Tk, k ≥ 0) are
consistent, i.e. given the tree Tk at step k, we can recover the previous steps Tk−1, . . . , T0 of
the tree sequence.

We prove (4.6) by induction on k. For k = 0 the claim is trivial. Suppose that (4.6) holds
up to k. In the tree growth process (T̃k, k ≥ 0) edge and branch point selection is based on

asses, whereas in (Tk, k ≥ 0) edges are selected based on length and branch points based on
eights. We first prove the correspondence of the selection rules, where we work conditionally
iven the shape of the tree T̃k = Tk , in particular conditionally given that T ∗

k has ℓ marked
omponents R(i)

k ̸= {ρ}, i ∈ [ℓ], of sizes di − 2, i ∈ [ℓ], respectively, or, in other words, that
k̃ has ℓ branch points ṽi , i ∈ [ℓ], of degrees di , i ∈ [ℓ], respectively, and a total of k + ℓ + 1
dges. By Propositions 4.1 and 4.2, the total mass split in T̃k is(

µ̃k

(
E (1)

k

)
, . . . , µ̃k

(
E (k+ℓ+1)

k

)
, µ̃k (̃v1) , . . . , µ̃k (̃vℓ)

)
∼ Dirichlet (β, . . . , β, w(d1), . . . , w(dℓ))

(4.7)

here w(di ) = (di −3)(1−β)+1−2β for i ∈ [ℓ]. We denote the edge lengths and the branch
point weights in T̃k by

L̃k =

(
L̃ (1)

k , . . . , L̃ (k+ℓ+1)
k

)
, W̃k =

(
W̃ (1)

k , . . . , W̃ (ℓ)
k

)
, (4.8)

and, on the event { J̃k ∈ E ( j)
k }, we denote by Ṽk the length proportion of E ( j)

k below J̃k . We
use corresponding notation in Tk . We will show that the joint distributions of edge lengths,
weights and the selected attachment points J̃k and Jk in T̃k and Tk , respectively, are the same
in Algorithm 3.2 and Algorithm 1.1, i.e. for any k ≥ 0, and any continuous and bounded
functions f :Rk+2ℓ+1

→ R and g : [0, 1] → R,

E
[

f
(
L̃k , W̃k

)
1

{ J̃k∈E ( j)
k }

g(Ṽk )
]

= E
[

f (Lk , Wk)1
{Jk∈E ( j)

k }
g(Vk )

]
for any j ∈ [k + ℓ + 1], (4.9)

and E
[

f
(
L̃k , W̃k

)
1

{ J̃k=v j }

]
= E

[
f (Lk , Wk)1{Jk=v j }

]
for any j ∈ [ℓ]. (4.10)

Then, together with the coupling, this completes the induction step. It remains to prove (4.9)

and (4.10).

458



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472
• Proof of (4.9). Fix some j ∈ [k +ℓ+1], and consider the LHS of (4.9) first. Conditioning
on J̃k ∈ E ( j)

k , and using the mass split (4.7) and Proposition 2.6(iv), we obtain

E
[

f
(
L̃k, W̃k

)
1

{ J̃k∈E ( j)
k }

g(Ṽk)
]

=
β

k + β
E
[

f
(
L̃k, W̃k

)
g(Ṽk)

⏐⏐⏐⏐ J̃k ∈ E ( j)
k

]
.

By Proposition 2.6(iv) and (4.7), conditionally given J̃k ∈ E ( j)
k , the distribution of the

mass split(
X (1)

k , . . . , X ( j−1)
k , X ( j)

k , X ( j+1)
k , . . . , X (k+ℓ+1)

k , X (k+ℓ+2)
k , . . . , X (k+2ℓ+1)

k

)
(4.11)

with X (i)
k = µ̃k(E (i)

k ) for i ∈ [k + ℓ + 1] and X (i)
k = µ̃k (̃vi−(k+ℓ+1)) for i ∈ [k + 2ℓ + 1] \

[k + ℓ + 1] is

Dirichlet (β, . . . , β, 1 + β, β, . . . , β, w(d1), . . . , w(dℓ)) . (4.12)

Furthermore, still conditionally given J̃k ∈ E ( j)
k , J̃k is an atom of mass µ̃k( J̃k) =: U ( j)

k X ( j)
k

sampled from the rescaled independent (β, β)-string of beads related to E ( j)
k , splitting E ( j)

k
into two edges E ( j)

k+1 and E (k+ℓ+3)
k+1 of masses µ̃k(E ( j)

k+1) =: U (−)
k X ( j)

k and µ̃k(E (k+ℓ+3)
k+1 ) =:

U (+)
k X ( j)

k , respectively. By Proposition 2.8, the relative mass split on E ( j)
k is given by(

U (−)
k , U ( j)

k , U (+)
k

)
∼ Dirichlet (β, 1 − β, β) ,

and is independent of X ( j)
k = µ̃k(E ( j)

k ), since, by Propositions 4.1 and 4.2, the (β, β)-string
of beads((

X ( j)
k

)−β

E ( j)
k ,

(
X ( j)

k

)−1
µ̃k ↾

E ( j)
k

)
is independent of the scaling factor X ( j)

k . We obtain the refined mass split(
X

(1)
k , . . . , X

( j−1)
k , X

(−)
k , X

( j)
k , X

(+)
k , X

( j+1)
k , . . . , X

(k+2ℓ+1)
k

)
(4.13)

where X
(i)
k = X (i)

k , i ∈ [k + 2ℓ + 1] \ { j, +, −} and X
(−)
k = U (−)

k X ( j)
k , X

( j)
k = U ( j)

k X ( j)
k

and X
(+)
k = U (+)

k X ( j)
k . By Proposition 2.6(iii), the distribution of (4.13) is

Dirichlet (β, . . . , β, β, 1 − β, β, β, . . . , β,w(d1), . . . , w(dℓ)) .

Furthermore, the atom J̃k induces the two rescaled independent (β, β)-strings of beads((
X

(−)
k

)−β

E ( j)
k+1,

(
X

(−)
k

)−1
µ̃k ↾

E ( j)
k+1

)
,

((
X

(+)
k

)−β

E (k+ℓ+3)
k+1 ,

(
X

(+)
k

)−1
µ̃k ↾E (k+ℓ+3)

k+1

)
where X

(i)
k = U (i)

k X ( j)
k , i ∈ {−, +}, i.e. the edge E ( j)

k is split by J̃k into parts E ( j)
k+1 and

E (k+ℓ+3)
k+1 of lengths

L̃ (−)
k =

(
U (−)

k X ( j)
k

)β

M (−)
k , L̃ (+)

k =

(
U (+)

k X ( j)
k

)β

M (+)
k ,

respectively, where M (i)
k ∼ ML(β, β), i ∈ {−, +}, are independent, see Proposition 2.8.

Conditionally given J̃k ∈ E ( j)
k , by (4.6) and Proposition 2.5, the weights W̃ (i)

k of T̃k and
remaining lengths L̃ (i)

k are therefore

W̃ (i−(k+ℓ+1))
=

(
X (i)

)β

M (i)
, i ∈ [k+2ℓ+1]\[k+ℓ+1], L̃ (i)

=

(
X (i)

)β

M (i)
, i ∈ [k+ℓ+1]\{ j}.
k k k k k k
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for independent random variables

M (i)
k ∼

{
ML(β, β), i ∈ [k + ℓ + 1] \ { j} ∪ {−, +},

ML(β, w(di−(k+ℓ+1))), i ∈ [k + 2ℓ + 1] \ [k + ℓ + 1].

Also note that, by the definition of (S∗

k , k ≥ 0) and the attachment procedure,

S∗

k+1 − S∗

k = µ̃k
(
J̃k
)β

M∗

k =

(
U ( j)

k X ( j)
k

)β

M∗

k

where M∗

k ∼ ML(β, 1 − β) is the length of the attached, independent β-mixed string of
beads. We conclude by Proposition 2.5 and Proposition 2.6(i)–(ii) that S∗

k = A∗

k S∗

k+1 ∼

ML(β, k + β) where S∗

k+1 ∼ ML (β, k + 1 + β) and A∗

k ∼ Beta(k/β + 2, 1/β − 1) are
independent, and that, conditionally given J̃k ∈ E ( j)

k , we have(
L̃ (1)

k , . . . , L̃ ( j−1)
k , L̃ (−)

k , L̃ (+)
k , L̃ ( j+1)

k , . . . , L̃ (k+ℓ+1)
k , W̃ (1)

k , . . . , W̃ (ℓ)
k

)
= S∗

k+1 A∗

k Z̃ split
k ,

where

Z̃ split
k =

(
Z̃ (1)

k , . . . , Z̃ ( j−1)
k , Z̃ (−)

k , Z̃ (+)
k , Z̃ ( j+1)

k , . . . , Z̃ (k+ℓ+1)
k , Z̃ (k+ℓ+2)

k , . . . , Z̃ (k+2ℓ+1)
k

)
is Dirichlet(1, . . . , 1, 1, 1, 1, . . . , 1, w(d1)/β, . . . , w(dℓ)/β)-distributed and independent
of (S∗

k+1, A∗

k ). Now aggregating Z̃ (−)
k + Z̃ (+)

k = Z̃ ( j)
k yields a Dirichlet(1, . . . , 1, 2, 1,

. . . , 1, w(d1)/β, . . . , w(dℓ)/β) vector Z̃k = (Z̃ (1)
k , . . . , Z̃ k+2ℓ+1

k ) and independent
Dirichlet(1, 1) proportions, by Proposition 2.6(ii), so that Ṽk = Z̃ (−)

k /Z̃ ( j)
k = L̃ (−)

k /L̃ ( j)
k ∼

Unif(0, 1) is independent of Z̃k , all jointly independent from S∗

k . Hence,

E
[

f
(
L̃k, W̃k

)
1

{ J̃k∈E ( j)
k }

g
(
Ṽk
)]

=
β

k + β
E
[

f
(
S∗

k Z̃k
) ⏐⏐⏐⏐ J̃k ∈ E ( j)

k

]
E
[
g
(
Ṽk
)]

.

We now consider the RHS of (4.9). We condition on Jk ∈ E ( j)
k , and apply

[20, Proposition 3.2] and Proposition 2.6(iv) to obtain

E
[

f
(

L (1)
k , . . . , L (k+ℓ+1)

k , W (1)
k , . . . , W (ℓ)

k

)
1

{Jk∈E ( j)
k }

g(Vk)
]

=
β

k + β
E
[

f (Sk Zk)

⏐⏐⏐⏐Jk ∈ E ( j)
k

]
E [g(Vk)]

where Vk ∼ Unif(0, 1) and Sk ∼ ML(β, k + β) are independent and jointly independent
of

Zk =

(
Z (1)

k , . . . , Z ( j−1)
k , Z ( j)

k , Z ( j+1)
k , . . . , Z (k+ℓ+1)

k , Z (k+ℓ+2)
k , . . . , Z (k+2ℓ+1)

k

)
and Zk ∼ Dirichlet(1, . . . , 1, 2, 1, . . . , 1, w(d1)/β, . . . , w(dℓ)/β). Hence, we conclude
(4.9).

• Proof of (4.10). Consider now the LHS of (4.10). We follow the lines of the proof of
(4.9) and only sketch the argument. Conditionally given J̃k = ṽ j , the mass split (4.11)
has distribution

Dirichlet
(
β, . . . , β, w(d1), . . . , w(d j−1), 1 + w(d j ), w(d j+1), . . . , w(dℓ)

)
. (4.14)

Still conditionally given J̃k = ṽ j , Algorithm 3.2 samples an atom J ∗

k in the j th marked
component of T ∗

k . By Propositions 2.8 and 3.3, this entails further Dirichlet splits inside
the j th marked component into 2d − 1 parts, one of which is further split, at J ∗, into
j k
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three parts. By Proposition 2.6(iii), this refines the Dirichlet split to

Dirichlet
(
β, . . . , β, w(d1), . . . , w(d j−1), 1 − β, β, . . . , β, 1 − 2β, . . . , 1 − 2β, w(d j+1), . . . , w(dℓ)

)
,

(4.15)

first listing the µ̃k-masses of the edges and j − 1 branch points of T̃k , then the atom
µ∗

k (J ∗

k ), then µ∗

k -masses of d j internal and d j external edges and split edges of R( j)
k ,

then ℓ − j more µ̃k-masses of branch points of T̃k . Specifically, the size of this atom
µ∗(J ∗

k ) is a proportion U ( j)
k ∼ Beta(1 − β, w(d j ) + β) of µ̃k (̃v j ). Denoting again by

M∗

k ∼ ML(β, 1 − β) the length of the attached independent β-mixed string of beads,
we have S∗

k+1 − S∗

k = µ∗

k (J ∗

k )β M∗

k = (U ( j)
k µ̃k( J̃k))β M∗

k . The rest of the proof of (4.10)
is analogous to the proof of (4.9), with each component contributing a Mittag-Leffler
variable, and with the aggregation step now aggregating the entries of the Dirichlet length
split corresponding to the 2d j edges in the j th marked component. □

5. Proofs of the main results stated in the introduction

5.1. Weight-length representation, Ford trees, and the proof of Theorem 1.4

Proof of Theorem 1.4. We noted in Remark 3.4 that the sequence of two-colour trees of
Algorithm 3.2 without mass measures has the same joint distribution as the sequence of two-
colour trees of Algorithm 1.3. Hence, (4.5) is precisely (1.3) and it suffices to continue in the
richer setting of Algorithm 3.2.

It remains to identify the marked tree growth processes (R(i)
k , k ≥ 1), i ≥ 1, as rescaled i.i.d.

Ford tree growth processes of index β ′
= β/(1−β). Specifically, it follows from Proposition 4.4

and Corollary 4.5 that, in the setting of Algorithm 3.2, there exists a sequence of scaling factors
(C (i), i ≥ 1) such that limk→∞ R(i)

k = R(i) a.s., for all i ≥ 1, in the Gromov–Hausdorff topology
where (C (i)R(i), i ≥ 1) is a sequence of i.i.d. Ford CRTs of index β ′

= β/(1−β). Furthermore,
the sequence (C (i)R(i), i ≥ 1) is independent of the stable tree (T̃ , µ̃) = limk→∞(T̃k, µ̃k)
obtained from (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) as in Corollary 4.8. □

This identifies the tree growth processes (R(i)
k , k ≥ 1), i ≥ 1, as consistent families of

tree growth processes which obey the growth rules of a Ford tree growth process of index
β ′

= β/(1 − β). Rescaling these processes to obtain i.i.d. sequences of Ford trees requires
knowledge of the scaling factor which is incorporated in the limiting stable tree. It is, however,
possible to approximate this scaling factor using the tree constructed up to step k only. We
are further able to obtain i.i.d. marked subtree growth processes obeying the Ford growth rules
(but with wrong starting lengths) applying suitable scaling.

Theorem 5.1 (Embedded Ford trees). Let (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) as in Algorithm 3.2.

(i) The following normalised tree growth processes in the components, with projected
µ-masses, are i.i.d.:(

G(i)
m , µ(i)

m , m ≥ 1
)

=

(
µ∗

k(i)
1

(
R(i)

k(i)
1

)−β

R(i)

k(i)
m

, µ∗

k(i)
1

(
R(i)

k(i)
1

)−1
µ∗

k ↾R(i)
k

, m ≥ 1
)
, i ≥ 1.
(5.1)

461



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472

P

5

c
t
c
t

P
w

P

g

t
c

(ii) The processes
(
µ∗

k(i)
1

(
R(i)

k(i)
1

)−βR(i)

k(i)
m

, m ≥ 1
)
, without µ-masses are i.i.d. Ford tree growth

processes of index β ′
= β/1 − β as in Algorithm 1.2, i ≥ 1, but starting from

ML(β, 1 − 2β), not ML(β ′, 1 − β ′).
(iii) For i ≥ 1, let C (i)

m := (1 − β)β m−β2/(1−β)µ∗

k(i)
m

(
R(i)

k(i)
m

)−β . The processes (C (i)
m R(i)

k(i)
m

, m ≥ 1)

with scaling constant depending on m, i ≥ 1, are i.i.d., limm→∞ C (i)
m =

(
H (i)

)−β/(1−β)

µ∗

k(i)
1

(
R(i)

k(i)
1

)−β a.s., where H (i)
∼ ML(1 − β, 1 − 2β), and limm→∞ C (i)

m R(i)

k(i)
m

= F (i) a.s.

in the Gromov–Hausdorff topology where (F (i), i ≥ 1) are i.i.d. Ford CRTs of index β ′.

roof. See the appendix. □

.2. Convergence of two-colour trees, and the proof of Theorem 1.5

Proposition 4.1 and Corollary 4.5 demonstrate that the two-colour bead-splitting construction
ombines the stable tree growth process and infinitely many rescaled subtree growth processes
hat build rescaled independent Ford CRTs. We show that the tree growth process (T ∗

k , k ≥ 0)
onverges to a compact CRT with the same distribution as the CRT (T ∗, µ∗) constructed in
he beginning of Section 3.3, using the embedding of Algorithm 3.14 and Proposition 4.6:

roposition 5.2 (Convergence of (T ∗

k , µ∗

k , k ≥ 0)). Let (T ∗

k , µ∗

k , k ≥ 0) be the sequence of
eighted R-trees from Algorithm 3.2. Then, there is a compact CRT (T ∗, µ∗) such that

lim
k→∞

dGHP
((
T ∗

k , µ∗

k

)
,
(
T ∗, µ∗

))
= 0 a.s. (5.2)

roof. We prove the claim for the sequence of weighted R-trees (T ∗

k , µ
∗

k , k ≥ 0) embedded
in a given (T ∗, µ∗) as in Section 3.3. Then (5.2) will follow from Proposition 4.6.

By Proposition 4.1 and Corollary 4.8, we can couple (T ∗

k , µ
∗

k , k ≥ 0) with a stable tree
rowth process (T̃k, µ̃k) → (T , µ) in such a way that µ̃k is a push-forward of µ∗

k . In particular,

max{µ∗

k (x), x ∈ T ∗

k} ≤ max{µ̃k(x), x ∈ T̃k} → 0 a.s. (5.3)

On the other hand, µ∗

k is the pushforward of µ∗ under the projection map π∗

k : T ∗
→ T ∗

k . Now
assume, for contradiction that

⋃
k≥0 T

∗

k ̸= T ∗. Since all leaves are limit points of T ∗
\ Lf(T ∗)

and by Theorem 3.12, T ∗ is a CRT, there is x ∈ T ∗
\
⋃

k≥0 T
∗

k such that the subtree of T ∗ above

x has positive mass c := µ∗(T ∗
x ) > 0. Since

⋃
k≥0 T

∗

k is path-connected, T ∗
x ∩

⋃
k≥0 T

∗

k = ∅,
and hence all µ∗

k must have an atom greater than c, which contradicts (5.3).
We conclude that

⋃
k≥0 T

∗

k = T ∗. Since T ∗ is compact and the union is increasing in
k ≥ 0, this implies GH-convergence. The convergence in the GHP sense follows since the
mass measure µ∗

k is the projection of µ∗ onto T ∗

k , see the proof of [39, Corollary 23] for
details of this argument. □

Corollary 5.3 (Convergence of Two-Colour Trees). Let (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) be the
wo-colour tree growth process from Algorithm 3.2 for some β ∈ (0, 1/2]. Then there exist a
ompact CRT (T ∗, µ∗), an i.i.d. sequence (F (i), i ≥ 1) of Ford CRTs of index β ′

= β/(1 − β)
and scaling factors (C (i), i ≥ 1) as in Corollary 4.5 with limk→∞ d∞

GHP

((
T ∗

k ,
(
R(i)

k , i ≥ 1
)
, µ∗

k

)
,(

∗
((

(i)
)−1 (i)

)
∗
))
T , C F , i ≥ 1 , µ = 0 a.s.
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Proof. This is a direct consequence of Proposition 5.2 and Corollary 4.5. □

It will be convenient to use the representation of Algorithm 3.7. We note the following
consequences of the construction, in the light of Proposition 5.2.

Corollary 5.4. In the setting of Algorithm 3.7

(i) the closure T̂ in l1(N2
0) of the increasing union

⋃
k≥0 R(T̂k, Σ̂

(k)
0 , . . . , Σ̂ (k)

k ) is compact;
(ii) the natural projection of T̂ onto the subspace spanned by ek,0, k ≥ 0, is the stable tree

T ;
(iii) the natural projection of T̂ onto the subspace spanned by em,i , m ≥ 1, scaled by the

scaling factor C (i) of Remark 3.8, is a Ford CRT for each i ≥ 1.

Proof. (i) It follows from Propositions 4.4 and 5.2, that the closure T̂ in l1(N2
0) of the increasing

nion is compact. (ii) holds by construction since all steps of Algorithm 3.7 preserve this
rojection property for the trees T̂k , k ≥ 0. (iii) holds by Corollary 4.5 since the scaled
rojections of R(T̂k, Σ̂

(k)
0 , . . . , Σ̂ (k)

k ) are Ford tree growth processes whose mth growth step
s for k = k(i)

m , m ≥ 1, i ≥ 1. □

These two corollaries imply Theorem 1.5, the convergence of the two-colour line-breaking
onstruction.

.3. Branch point replacement in a stable tree, and the proof of Theorem 1.6

The aim of this section is to replace branch points of the stable tree by rescaled inde-
endent Ford CRTs. Let us denote the independent Ford tree growth processes underlying
orollary 5.4(iii) by (F (i)

m , m ≥ 1), and the Ford CRTs with leaf labels by (F (i),Ω (i)
m , m ≥ 1),

≥ 1, all embedded in the appropriate coordinates. Now fix i ≥ 1, and focus on the mth
ubtree of the i th branch point of T , suppose Σn is its smallest label. In Algorithm 3.7, each
nsertion into the i th marked component shifts some subtrees of the i th branch point, and the
ubtree we consider stops being shifted at the mth insertion.

The branch point replacement algorithm can be viewed as a change of order of the insertions
f Algorithm 3.7. The kth step of Algorithm 3.7 gets Σk into its final position Σ̂ (k)

k by inserting
ne branch of a marked component. The i th step of the branch point replacement algorithm
ets the smallest labelled leaf of all subtrees of the i th branch point into their final positions
y making all insertions into the i th component. This amounts to shifting the mth subtree of
he i th branch point by Ω (i)

m , m ≥ 1.

lgorithm 5.5 (Branch Point Replacement in the Stable Tree). We construct a sequence
f weighted i-marked R-trees (B(i), (R(1), . . . ,R(i)), µ(i)). Let (B(0), µ(0)) = (T , µ) be the
mbedded stable tree with leaves Σ (0)

n = Σn, n ≥ 0. For i ≥ 1, conditionally given
B(i−1), (R(1), . . . ,R(i−1)), µ(i−1), (Σ (i−1)

n , n ≥ 0)), shift the connected components S (i)
m , m ∈

0, 1, 2, . . . ; ∞), of B(i−1)
\ v

(i−1)
i of the i th branch point v

(i−1)
i :

B(i)
:= S (i)

∞
∪ S (i)

0 ∪

(
v

(i−1)
i +

(
C (i))−1 F (i)

)
∪

⋃((
C (i))−1

Ω (i)
m + S (i)

m

)

m≥1
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where F (i) is the independent Ford CRT with labelled Ford leaves (Ω (i)
m , m ≥ 1). Take

s µ(i) the measure µ(i−1) shifted with each of the connected components and set R(i)
:=

v
(i−1)
i +

(
C (i)

)−1 F (i)
)

.

Theorem 5.6 (Branch Point Replacement). The R-trees (B(i), (R(1), . . . ,R(i), {0}, {0}, . . .), µ(i)),
f Algorithm 5.5 converge in (T∞

w , d∞

GHP) to a limit with the same distribution as in
orollary 5.3, i.e.

lim
i→∞

d∞

GHP

((
B(i),

(
R(1), . . . ,R(i), {0}, . . .

)
, µ(i)

)
,

(
T ∗,

((
C (i)

)−1
F (i), i ≥ 1

)
, µ∗

))
= 0 a.s..

Proof. We already know (by Proposition 4.1 and Theorem 1.8) that the trees have the correct
distribution. To identify the weights, we provide a coupling argument. By construction, the
trees spanned by the first k leaves are the same in Algorithm 3.7 and Algorithm 5.5:(

R
(
T̂k,Σ

(k)
0 , . . . ,Σ (k)

k

)
,
(
R̂(i)

k , i ≥ 1
)

, µ̂∗

k , k ≥ 0
)

=

(
B(k)

k ,
(
U (i)

k , i ≥ 1
)

, λk, k ≥ 0
)

(5.4)

here B(k)
k := R(B(k),Σ (k)

0 , . . . ,Σ (k)
k ), U (i)

k := R(i)
∩ B(k)

k , and λk = (πB
k )∗µ(k) denotes the

rojected mass measure.
By Proposition 4.4 and Corollary 5.3, we have convergence of reduced trees to the claimed

imit. In particular, for all ε > 0, there is k0 ≥ 0 such that for all k ≥ k0,

d∞

GHP

((
B(k)

k ,
(
U (i)

k , i ≥ 1
)

, λk

)
,
(
T̂ ,
((

C (i))−1 F (i), i ≥ 1
)

, µ̂
))

< ε/3.

ut this is only possible if all connected components of T̂ \ B(k)
k have height less than 2ε/3.

y construction, the components of B(k)
\ B(k)

k are bounded in height by the corresponding
omponents of height less than 2ε/3. Since µ̂ and µ(k) have the same projection onto T̂k = B(k)

k ,
e conclude that also

d∞

GHP

((
B(k)

k ,
(
U (i)

k , i ≥ 1
)

, λk

)
,
(
B(k),

(
R(1), . . . ,R(k), {0}, . . .

)
, µ(k))) < 2ε/3.

y the triangle inequality, this completes the proof. □

This formalises and proves the branch point replacement claims made in Theorem 1.6.
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ppendix. Proof of Theorem 5.1

We present the proof postponed from an earlier part of this paper.
We first consider the evolution of marked subtrees (R(i)

k , k ≥ 1), i ≥ 1. Recall the notation
n Algorithm 3.2. Given that R(i)

k has size m, i.e. k(i)
m ≤ k ≤ k(i)

m+1 − 1, we denote the edges
nd the edge lengths of R(i)

k by

E =

(
E (1)

, . . . , E (2m−1)
)

, L =

(
L (1)

, . . . , L (2m−1)
)

, (A.1)
m,i m,i m,i m,i m,i m,i

464



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472

o

w(
P
n
i

C∑

w

a

w
o
M

P

B

respectively, where we note that R(i)
k is a binary tree, i.e. it has 2m − 1 edges for k(i)

m ≤ k ≤

k(i)
m+1 − 1. Recall that E ( j)

m,i is an internal edge of R(i)
k if 1 ≤ j ≤ m − 1, and an external edge

if m ≤ j ≤ 2m − 1.

Lemma 6.1 (Mass Split in Marked Subtrees). Let (T ∗

k , (R(i)
k , i ≥ 1), µ∗

k , k ≥ 0) be as in
Algorithm 3.2, and fix some i ≥ 1. Then, for m ≥ 1, conditionally given k(i)

m = k, the relative
mass split in R(i)

k given by

µ∗

k

(
R(i)

k

)−1 (
µ∗

k

(
E (1)

m,i

)
, . . . , µ∗

k

(
E (m−1)

m,i

)
, µ∗

k

(
E (m)

m,i

)
, . . . , µ∗

k

(
E (2m−1)

m,i

))
(6.2)

has a Dirichlet (β, . . . , β, 1 − 2β, . . . , 1 − 2β) distribution and is independent of µ∗

k (R(i)
k ) and

f the mass split in T ∗

k \ R(i)
k . Furthermore, for j ∈ [2m − 1],(

µ∗

k

(
E ( j)

m,i

)−β

E ( j)
m,i , µ

∗

k

(
E ( j)

m,i

)−1
µ∗

k ↾
E ( j)

m,i

)
(6.3)

is a (β, θ)-strings of beads, where θ = β for j ∈ [m − 1] and θ = 1 − 2β for j ∈

[2m − 1] \ [m − 1]. The strings of beads (6.3) are independent of each other and of the mass
split in R(i)

k given by (6.2). Conditionally given that k(i)
m+1 = k ′,

µ∗

k′

(
R(i)

k′

)
=
(
1 − Q(i)

m

)
µ∗

k

(
R(i)

k

)
(6.4)

here Q(i)
m ∼ Beta(β, m(1 − β) + 1 − 2β) is independent of

µ∗

k

(
R(i)

k′

)−β

R(i)
k′ , µ

∗

k

(
R(i)

k′

)−1
µ∗

k′ ↾R(i)
k′

)
.

roof. This is a direct consequence of Proposition 3.3, and Proposition 2.6(ii). To see (6.4),
ote that R(i)

k′ \R(i)
k = E (2 m)

m+1,i and that µ∗

k′ (E (2 m)
m+1,i ) = γkµ

∗

k (J ∗

k ) where γk ∼ Beta(1 − 2β, β) is
ndependent, and apply Proposition 2.6(i)–(ii). □

orollary 6.2 (Length Split in Marked Subtrees). In the setting of Lemma 6.1, let S̃m,i =

j∈[2m−1] L ( j)
m,i denote the total length of R(i)

k(i)
m

, m ≥ 1. Then, conditionally given k(i)
m = k,

(
L (1)

m,i , . . . , L (m−1)
m,i , L (m)

m,i , . . . , L (2m−1)
m,i

)
= µ∗

k

(
R(i)

k

)β

Sm,i ·

(
Z (1)

m,i , . . . , Z (m−1)
m,i , Z (m)

m,i , . . . , Z (2m−1)
m,i

)
(6.5)

here µ∗

k (R(i)
k ), Sm,i ∼ ML(β, (m − 1)(1 − β) + 1 − 2β) and(

Z (1)
m,i , . . . , Z (m−1)

m,i , Z (m)
m,i , . . . , Z (2m−1)

m,i

)
∼ Dirichlet (1, . . . , 1, 1/β − 2, . . . , 1/β − 2)

re independent. In particular, S̃m,i = µ∗

k (R(i)
k )β Sm,i . Furthermore, for m ≥ 1,

S̃m,i = Bm,i S̃m+1,i (6.6)

here Bm,i ∼ Beta(m(1/β−1), 1/β−2) and S̃m+1,i are independent, i.e. the sequence of lengths
f each marked subtree is a Markov chain with the same transition rule as the Mittag-Leffler
arkov chain with parameter β/(1 − β) starting from ML(β/(1 − β), (1 − 2β)/(1 − β)).

roof. Fix i ≥ 1, and set X j = µ∗

k(i)
m

(E ( j)
m,i ), j ∈ [2m − 1], so that

∑
j∈[2m−1] X j = µ∗

k(i)
m

(R(i)

k(i)
m

).
( j) ( j) β ( j)
y Lemma 6.1, the edge lengths Lm,i , j ∈ [2m − 1], are given by Lm,i = X j Mm where
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a
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µ

t

f

M ( j)
m ∼ ML(β, β) for j ∈ [m − 1], M ( j)

m ∼ ML(β, 1 − 2β) for j ∈ [2m − 1] \ [m − 1],
j∈[2m−1] X j and( ∑

j∈[2m−1]

X j

)−1

(X1, . . . , Xm−1, Xm, . . . , X2m−1) ∼ Dirichlet (β, . . . , β, 1 − 2β, . . . , 1 − 2β)

re independent. We apply Proposition 2.5 with n = 2m − 1, θ j = β for j ∈ [m − 1] and
j = 1 − 2β for j ∈ [2m − 1] \ [m − 1] to the vector

(
L (1)

m,i , . . . , L (2m−1)
m,i

)
=

( ∑
j∈[2m−1]

X j

)β
⎛⎝( X1∑

j∈[2m−1] X j

)β

M (1)
m , . . . ,

(
X2m−1∑

j∈[2m−1] X j

)β

M (2m−1)
m

⎞⎠
(6.7)

hen θ = (m − 1)(1 − β) + 1 − 2β, and hence (6.5) follows.
To see (6.6), recall that E (2 m)

m+1,i = R(i)

k(i)
m+1

\R(i)

k(i)
m

. By (6.7) for m+1, and Proposition 2.6(i)–(ii),

∗

k(i)
m

(
R(i)

k(i)
m

)β Sm,i = Bm,iµ
∗

k(i)
m+1

(
R(i)

k(i)
m+1

)β Sm+1,i where Sm+1,i ∼ ML(β, m(1−β)+1−2β), Bm,i ∼

Beta(m(1/β − 1), 1/β − 2) and µ∗

k(i)
m+1

(R(i)

k(i)
m+1

), are independent, i.e. S̃m,i = Bm,i S̃m+1,i . □

Proof of Theorem 5.1.
(i) Consider a space T[m] of weighted discrete R-trees (T , µ) with m leaves labelled by

[m] and mass measure µ of total mass µ(T ) ∈ (0, 1], m ≥ 1, see e.g. [39, Section 3.3] for
a formal introduction. We define transition kernels κm from T[m] to T[m+1], m ≥ 1: given any
(T , µ) ∈ T[m],

• select an edge E of T according to the normalised mass measure µ(T )−1µ; given E ,
select an atom J of µ ↾E according to (β, θ)-coin tossing sampling where θ = β if E is
internal, and θ = 1 − 2β if E is external; this determines a selection probability pm(x)
for each atom x ∈ T ;

• given J , let γ ∼ Beta(1 − 2β, β) be independent, and attach to J an independent
(β, 1 − 2β)-string of beads with mass measure rescaled by γµ(J ) and metric rescaled
by (γµ(J ))β , and label the new leaf by m + 1.

We use the convention that if no atom is selected, we apply a scaling factor of 0. Note that,
in our setting with (β, β)-strings of beads on internal edges and (β, 1 − 2β)-strings of beads
on external edges, this does not happen almost surely. Denote by κm((T , µ), ·) the distribution
of the resulting tree. We further consider the kernel κ0(·) = κ0(({ρ}, δρ), ·) taking the singleton
ree {ρ} of mass 1, and associating a (β, 1 − 2β)-string of beads with {ρ}. We will show that

each process in (5.1) evolves according to the transition kernels κm, m ≥ 1, starting from an
independent (β, 1 − 2β)-string of beads whose distribution is given by κ0(·).

More formally, for ℓ ≥ 1 and some mi ≥ 1, i ∈ [ℓ], we will show that

E

[∏
i∈[ℓ]

fi
((
G(i)

m , µ(i)
m

)
, m ∈ [mi ]

)]

=

∏
i∈[ℓ]

∫∫
· · ·

∫
fi
(
R1, . . . , Rmi

)
κmi −1

(
Rmi −1, d Rmi

)
· · · κ1 (R1, d R2) κ0 (d R1)

(6.8)

or any bounded continuous functions f :T × · · · × T → R, i ∈ [ℓ].
i [1] [mi ]

466



F. Rembart and M. Winkel Stochastic Processes and their Applications 163 (2023) 424–472

(
s

a

c

t

a
a
i

We first show Eq. (6.8) for ℓ = 1. For notational convenience, we write (Gm, µm) =

G(1)
m , µ(1)

m ) and f = f1. We further use the notation ξβ,β and ξβ,1−2β for (β, β)- and (β, 1−2β)-
trings of beads, respectively, and recall that we denote by pm(x) the selection probability of

x ∈ T for T ∈ T[m] using the edge selection rule in combination with coin tossing sampling,
s described above. Bβ,1−2β(·) denotes the density of Beta(β, 1 − 2β). We obtain,

E
[

f
(
G1, . . . ,Gm1

)]
=

∑
k(1)

1 =1,k(1)
2 ,...,k(1)

m1

∫
ξ0

∑
v∈ξ0

µ0 (v)

∫
x1

Bβ,1−2β (x1)

∫
ξ1

(1 − µ0 (v) (1 − x1))
k(1)

2 −k(1)
1 −1 µ0 (v) (1 − x1)

∑
w1∈R1

p1 (w1)

∫
x2

Bβ,1−2β (x2)

∫
ξ2

· · ·

(
1 − µ0 (v)

∏
i∈[m1−1]

(1 − x i )

)k(1)
m1 −k(1)

m1−1−1

µ0 (v)
∏

i∈[m1−1]

(1 − x i )

∑
wm1−1∈Rm1−1

pm1−1
(
wm1−1

) ∫
xm1

Bβ,1−2β (xm1 )
∫

ξm1

f
(
R1, . . . , Rm1

)
P
(
ξβ,1−2β ∈ dξm1

)
dxm1 · · ·P

(
ξβ,1−2β ∈ dξ2

)
dx2P

(
ξβ,1−2β ∈ dξ1

)
dx1P

(
ξβ,β ∈ dξ0

)
where

• µ0 is the mass measure of ξ0;
• R1 = ξ1 with mass measure µ

(1)
1 is the initial string of beads, and, for m ≥ 2, Rm with

mass measure µ(1)
m is created by attaching to wm−1 ∈ Rm−1 the string of beads ξm rescaled

by the proportion xm−1 of the mass of wm−1;

• the sequence (x i , i ≥ 1) is defined by x1 = x1, x i = 1−
µ

(1)
i−1(wi−1)

µ
(1)
i−1(Ri−1)

(1− xi ), i = 2, . . . , m1;

• the integrals are taken over the whole ranges of xi ∈ [0, 1] and the subspaces of ξi ∈ Tw
that correspond to strings of beads.

Note that µ0 (v)
∏

i∈[m−1](1 − x i ) is the relative remaining mass of the first marked
omponent after m transition steps have been carried out in this component.

We can move the sum over k(1)
1 , . . . , k(1)

m1
inside the integrals, and note that there is only one

erm which depends on k(1)
m1

. Moving the sum over k(1)
m1

in front of this factor, we obtain

∑
k(1)

m1 ≥k(1)
m1−1+1

(
1 − µ0 (v)

∏
i∈[m1−1]

(1 − x i )

)k(1)
m1 −k(1)

m1−1−1

µ0 (v)
∏

i∈[m1−1]

(1 − x i ) = 1

s this is the sum over the probability mass function of a geometric random variable (there
re infinitely many insertions into the first marked component almost surely). We can proceed
nductively and sum the corresponding geometric probabilities over k(1)

1 , . . . , k(1)
m1−1 to obtain

E
[

f
(
G1, . . . ,Gm1

)]
=

∫
ξ0

∑
v∈ξ0

µ0 (v)

∫
x1

Bβ,1−2β (x1)
∫

ξ1

∑
w1∈R1

p1 (w1)

∫
x2

Bβ,1−2β (x2)

∫
ξ2

· · ·

∑
wm1−1∈Rm1−1

pm1−1
(
wm1−1

) ∫
xm1

Bβ,1−2β (xm1 )
∫

ξm1

f
(
R1, . . . , Rm1

)
P
(
ξ ∈ dξ

)
dx · · ·P

(
ξ ∈ dξ

)
dx P

(
ξ ∈ dξ

)
dx P

(
ξ ∈ dξ

)
.
β,1−2β m1 m1 β,1−2β 2 2 β,1−2β 1 1 β,β 0
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We can now take the sum
∑

v∈ξ0
µ0(v) = 1 and the outer integral, as the inner terms are

independent of µ0(v) and ξ0. This results in

E
[

f
(
G1, . . . ,Gm1

)]
=

∫
x1

Bβ,1−2β (x1)
∫

ξ1

∑
w1∈R1

p1 (w1)

∫
x2

Bβ,1−2β (x2)∫
ξ2

· · ·

∑
wm1−1∈Rm1−1

pm1−1
(
wm1−1

) ∫
xm1

Bβ,1−2β (xm1 )
∫

ξm1

f
(
R1, . . . , Rm1

)
P
(
ξβ,1−2β ∈ dξm1

)
dxm1 · · ·P

(
ξβ,1−2β ∈ dξ2

)
dx2P

(
ξβ,1−2β ∈ dξ1

)
dx1.

e recognise the definition of the transition kernels κm, m ≥ 1, and rewrite this integral in the
orm

E
[

f
(
G1, . . . ,Gm1

)]
=

∫∫
· · ·

∫
f (R1, . . . , Rm) κm−1 (Rm−1, d Rm) · · · κ1 (R1, d R2) κ0 (d R1)

To see (6.8) in the general setting, we express the left-hand side in terms of the distribution
f (T ∗

0 , µ∗

0) and the two-colour transition kernels, which can be described via Algorithm 3.2,
s a sum over k(i)

j , j ∈ [mi ], i ∈ [ℓ]. Then we can proceed as follows.

• First integrate out irrelevant transitions which affect components i ≥ ℓ + 1 and parts
of earlier transitions such as unmarked strings of beads after the creation of the ℓth
component. These transitions do not affect the marked components i ∈ [ℓ].

• Move the sums over k(ℓ)
mℓ

, . . . , k(ℓ)
2 inside the integrals. Notice that there is only one term

depending on k(ℓ)
mℓ

, i.e. we obtain the sum over k(ℓ)
mℓ

≥ k(l)
mℓ−1, k(l)

mℓ
̸= k(i)

j , j ∈ [mi ], i ∈

[ℓ − 1] of the probabilities of selecting the ℓth marked component at step k(ℓ)
mℓ

, skipping
indices k(i)

j of insertions into other marked components i ∈ [ℓ − 1], i.e.

∑
k(ℓ)

mℓ
≥k(ℓ)

mℓ−1+1,k(l)
mℓ

̸=k(i)
j , j∈[mi ],i∈[ℓ−1]

(
1−µk(ℓ)

1 −1 (vℓ)
∏

r∈[mℓ−1]

(
1 − x (ℓ)

r

))k(m,ℓ)

µk(ℓ)
1 −1 (vℓ)

∏
r∈[mℓ−1]

(
1 − x (ℓ)

r

)
,

where k(m, ℓ) := k(ℓ)
mℓ

− k(ℓ)
mℓ−1 − #{k(ℓ)

mℓ−1 < k < k(ℓ)
mℓ

: k = k(i)
j , j ∈ [mi ], i ∈ [ℓ − 1]},

and where the sequences (x (ℓ)
i , i ≥ 1) and (x (ℓ)

i , i ≥ 1) are defined as (xi , i ≥ 1) and
(x i , i ≥ 1), respectively. Note that

µk(ℓ)
1 −1 (vℓ)

∏
r∈[m−1]

(
1 − x (ℓ)

r

)
is the mass of the ℓth marked component after m transition steps have been carried out
in this component. As we have a sum over the probability mass function of a geometric
random variable, no matter when insertions into components i ∈ [ℓ−1] happen, this sum
is 1. We can proceed inductively down to k(ℓ)

2 .
• The sum over the insertion point vℓ is just a sum over the bead selection probabilities

µk(ℓ)
1 −1(vℓ), k(ℓ)

1 ≥ k(ℓ−1)
1 + 1,

which sum to the probability of creating the ℓth component (no matter what the sizes
of the other components are at this step). The sum over k(ℓ)

1 is not geometric but it is a
sum over the probabilities of success in a Bernoulli sequence with increasing success
probability. This sum is again 1 (as we will open the ℓth marked component with
probability one).

• We can put the integrals over the ingredients for the ℓth subtree growth process in front
of the other integrals, as they do not depend on anything else.
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• Inductively, for j = ℓ − 1, . . . , 1, repeat these steps to lose all sums over insertion times
k( j)

i and first insertion points vi , i ∈ [ℓ].
• Finally, the integrand of the outer integral over the distribution of ξ0 is constant, so the

integral can be dropped. We obtain precisely the product form of the right-hand side (6.8).

(ii) Note that, by Lemma 6.1 (and Proposition 3.3), for each i and k = k(i)
m − 1 for some

≥ 1, we are in the situation of Lemma 2.9 with n = 2m − 1, θ1 = · · · = θm−1 = β,
θm = · · · = θ2m−1 = 1 − 2β, α = β. We recover Algorithm 1.2 with index β ′

= β/(1 −β) and
the “wrong” starting length ML(β, 1 − 2β), cf. Corollary 6.2.

(iii) First, note that, by Corollary 6.2, the lengths of the trees C (i)
m R(i)

k(i)
m

do not depend on

µ∗

k(i)
m

(R(i)

k(i)
m

). Fix some i ≥ 1 and recall from Lemma 6.1 that there are independent random

variables Q(i)
m ∼ Beta(β, m(1 − β) + 1 − 2β) such that

µ∗

k(i)
m+1

(
R(i)

k(i)
m+1

)
=
(
1 − Q(i)

m

)
µ∗

k(i)
m

(
R(i)

k(i)
m

)
, m ≥ 1.

Define P (i)
1 := Q(i)

1 ∼ Beta(β, 2 − 3β), and, for m ≥ 1, define P (i)
m := Q

(i)
1 Q

(i)
2 · · · Q

(i)
m−1 Q(i)

m ,
where Q = 1 − Q for any random variable Q. Note that P (i)

m is the proportion of the mass of
∗

k(i)
1

(R(i)

k(i)
1

) attached to the (m + 1)st leaf of the i th marked component.

We recognise the stick-breaking construction (2.12) of (P (i)
m , m ≥ 1)↓ ∼ PD(1 −β, 1 − 2β),

nd obtain the corresponding (1 − β)-diversity H (i) by

H (i)
= lim

m→∞

⎛⎝1 −

∑
j∈[m]

P (i)
j

⎞⎠1−β

(1 − β)−(1−β) mβ
∼ ML (1 − β, 1 − 2β) , (6.9)

s in (2.15). Now fix some m0 ≥ 1 and let k ≥ k(i)
m0

. We consider the reduced tree

R
(

C (i)
m R(i)

k(i)
m

,Ω (i)
1 , . . . ,Ω (i)

m0

)
(6.10)

panned by the root vi and the leaves Ω (i)
1 , . . . ,Ω (i)

m0
of R(i)

k . Recall from (i), Corollary 6.2 and
roposition 2.13 that the shape and the Dirichlet(1, . . . , 1, 1/β − 2, . . . , 1/β − 2) length split
etween the edges E (i)

m0,i , . . . , E (2m0−1)
m0,i of R(i)

k(i)
m0

are as required for the reduced tree associated

ith a Ford CRT of index β ′. Scaling by C (i)
m only affects the total length of the reduced

ree (6.10). We will show that the total length of (6.10) scaled by C (i)
m converges a.s. to some

S′
m0

∼ ML(β ′, m0 − β ′), which is the total length of the reduced tree spanned by the root and
he first m0 leaves of a Ford CRT of index β ′, i.e. that

lim
m→∞

Leb
(
R
(

C (i)
m R(i)

k(i)
m

,Ω (i)
1 , . . . ,Ω (i)

m0

))
= S′

m0
∼ ML

(
β ′, m0 − β ′

)
where we will use that

C (i)
m := (1 − β)β m−β2/(1−β)µ∗

k(i)
m

(
R(i)

k(i)
m

)−β

=

⎛⎝1 −

∑
P (i)

j

⎞⎠−β

(1 − β)β m−β2/(1−β)µ∗

k(i)
1

(
R(i)

k(i)
1

)−β

,

j∈[m]
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as 1−
∑

j∈[m] P (i)
j = µ∗

k(i)
m

(R(i)

k(i)
m

)/µ∗

k(i)
1

(R(i)

k(i)
1

). Then limm→∞ Ci (m) = (H (i))−β/(1−β)µ∗

k(i)
1

(R(i)
k )−β

.s. Note that H (i) is independent of µ∗

k(i)
1

(R(i)
k ) as it only depends on the sequence of

ndependent random variables (Qi , i ≥ 1) which is independent of µ∗

k(i)
1

(R(i)
k ).

The shape of R(i)

k(i)
m

has the same distribution as the shape of Fm where (Fm, m ≥ 1) is a
Ford tree growth process of index β ′. In particular, we already know that the number of edges
Nm +2m0 −1, m ≥ m0, of the reduced trees (6.10) as a subset of R(i)

k(i)
m

behaves like the number
of tables in a (β ′, m0 − β ′)-CRP, started at m0, i.e. by (2.11),

lim
m→∞

(m − m0)
−β/(1−β) Nm = lim

m→∞
m−β/(1−β) Nm = S′

m0
a.s. (6.11)

where S′
m0

∼ ML(β ′, m0 − β ′). By Lemma 6.1, we conclude that, in the limit, the length of
R(i)

k(i)
m0

is given by

lim
m→∞

µ∗

k(i)
m

(
R(i)

k(i)
m

)β ∑
j∈[Nm ]

(
X ′

j

)β M ( j)
= µ∗

k(i)
m0

(
R(i)

k(i)
m0

)β

Sm0,i = S̃m0,i (6.12)

where X ′
:= (X ′

1, . . . , X ′

m−1, X ′
m, . . . , X ′

2m−1) ∼ Dirichlet(β, . . . , β, 1 − 2β, . . . , 1 − 2β),
µ∗

k(i)
m

(R(i)

k(i)
m

), (Nm, m ≥ 1) and M ( j)
∼ ML(β, β), j ≥ 1, are independent. Note that we do

not consider the lengths of the m0 external edges leading to the leaves of the reduced tree
(6.10) and the initial m0 −1 internal edges, which does not affect the asymptotics. We will use
the representation of a Dirichlet vector X ′

∼ Dirichlet(β, . . . , β, 1 − 2β, . . . , 1 − 2β) in terms
of independent Gamma variables, i.e.

X ′ d
= Y −1 (Y1, . . . , Ym−1, Y ′

1, . . . , Y ′

m

)
for independent i.i.d. sequences (Y j , j ≥ 1), (Y ′

j , j ≥ 1) with Y1 ∼ Gamma(β, 1), Y1 ∼

Gamma(1 − 2β, 1), and Y =
∑

j∈[m−1] Y j +
∑

j∈[m] Y ′

j ∼ Gamma((m − 1)(1 − β) + 1 − 2β, 1).
By (6.12),

C (i)
m S̃m0,i = C (i)

m µ∗

k(i)
m

(
R(i)

k(i)
m

)β

⎛⎝ ∑
j∈[Nm+(m0−1)]

(
X ′

j

)β M ( j)
+

m0−1∑
j=0

(
X ′

j+m

)β M
( j)

⎞⎠
where M j , j ≥ 1, are i.i.d. with M

(1)
∼ ML(β, 1−2β) and independent of X ′ and Nm , m ≥ 1,

nd hence C (i)
m S̃m0,i has the same distribution as

Nm (1 − β)β

mβ/(1−β)

⎛⎝m−1

⎛⎝ ∑
j∈[m−1]

Y j +

∑
j∈[m]

Y ′

j

⎞⎠⎞⎠−β ⎛⎝N−1
m

⎛⎝ ∑
j∈[Nm+(m0−1)]

Y β
j M ( j)

+

∑
j∈[m0]

Y ′β
j M

( j)

⎞⎠⎞⎠ .

(6.13)

By the strong law of large numbers, we have limm→∞ N−1
m
∑

j∈[Nm ] Y β

j M ( j)
m = E[Y β

1 M ( j)
m ] =

a.s. since Nm → ∞ a.s., E[Y β

1 ] = Γ (2β)/Γ (β), and where we use the first moment of the
ittag-Leffler distribution (2.9). Furthermore, note that Y ′′

j := Y j +Y ′

j ∼ Gamma(1−β, 1), j ∈

m − 1], are i.i.d., and hence m−1(
∑

j∈[m−1] Y j +
∑

j∈[m] Y ′

j ) → E[Y ′′

1 ] = 1 − β a.s. By (6.11),
e conclude that the expression in (6.13) converges to S′

m0
a.s. where S′

m0
∼ ML(β ′, m0 −β ′).

e already know that R(i)
(i) and the scaling factor C (i) converge almost-surely, and hence, by
km
m
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Proposition 2.13,

lim
m→∞

C (i)
m R(i)

k(i)
m0

= F (i)
m0

a.s.

or (F (i)
m , m ≥ 1) are i.i.d. Ford tree growth processes of index β ′, i.e. (ii) follows as

0 → ∞. □
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