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1. Overview. This supplement contains some technical details of no-
tions and results that we use in the main paper. Specifically, the structure
of this supplement is, as follows. In Section 2 we formalise the notion of dis-
integration and an existence result in the context of a scaling operation. In
Section 3 we discuss random counting measures and establish that various
counting measures are boundedly finite. In Section 4 we show the measura-
bility of the skewer map, cutoff functions and associated point measures of
clades, and we prove some related technical results.

2. Scaling and disintegration. In Section 2.1.A of the main paper
we briefly discussed disintegration and scaling. Here is a formal definition
and a fuller discussion of the relevant notions.

Definition 1 (Pushforward and disintegration). Let (S,Σ(S), µ) be a
σ-finite measure space and φ : S → T a measurable function into a measur-
able space (T ,Σ(T )). We use notation µ(φ ∈ B) := φ∗µ(B) := µ(φ−1(B)),
B ∈ Σ(T ), for the pushforward of µ under φ. A φ-disintegration of µ is a
map y 7→ µy from T to probability measures on (S,Σ(S)) with the following
properties.

(i) For each A ∈ Σ(S) fixed, the map y 7→ µy(A) is Σ(T )-measurable.
(ii) For each y ∈ T , we have µy{x ∈ S : φ(x) 6= y} = 0.

(iii) Writing ν = φ∗µ, we have

µ(A) =

∫
µy(A)dν(y) for every A ∈ Σ(S).
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This is narrower in several respects than the most general definition of a
disintegration. In general, disintegrations are not required to give probability
kernels. For an excellent, broader treatment, see [3].

In the setting of excursion theory, it is a standard technique to view a σ-
finite excursion measure as a product between a σ-finite measure on (0,∞)
and a probability distribution on the space of normalized excursions. This
is possible when the excursion measure has an invariance property relative
to some scaling map. This product decomposition is equivalent to a unique
disintegration: to each a > 0 we associate a probability distribution on
excursions of length a, by scaling the random normalized excursion by a
factor of a. See [4] for work related to this method in the setting of stable
Lévy processes. Williams’ decomposition of Brownian excursion fits into this
framework, with excursions normalized by amplitude rather than length; see
[9, Theorem 22.15] or [10, Theorems XII.4.2 and XII.4.5].

Here is a more general statement of this principle that scaling maps give
rise to unique disintegrations. We leave its proof to the reader.

Lemma 2 (Scaling and disintegration). Let (S,Σ(S), µ) be a σ-finite
measure space and θ : S→(0,∞) a measurable function. Suppose � : (0,∞)×
S → S is a measurable scaling map in the sense that there exists some p > 0
such that, for every b, c > 0, x ∈ S, and A ∈ Σ(S),

b� (c� x) = bc� x, 1� x = x, and µ(c� A) = c−pµ(A).

Suppose further that there exists some q > 0 such that for every c > 0 and
x ∈ S,

θ(c� x) = cqθ(x) and µ{x ∈ S : θ(x) > 1} <∞.
Then there exists a θ-disintegration of µ, which we denote by a 7→ µa,

unique with the property that for every a > 0, if X has law µa then a−1/q�X
has law µ1. Moreover, for each b > 0, the measure µ1 equals the pushforward
of µ( · | θ(x) > b) under the map x 7→ θ(x)−1/q � x.

In the context of Lemma 2, we write µ( · | θ = a) to denote the measure
called µa in the statement of the lemma. In the main paper, we apply this
result to several σ-finite (intensity) measures to disintegrate along certain
one-dimensional statistics such as excursion length and more general mea-
surable functions such as the scaffolding map ξ that associates with suitable
point measures N a path g = ξ(N) in Skorokhod space.

3. Boundedly finite counting measures. As indicated in Section
2.1.B, our main reference for random counting measures is [5, 6]. To rig-
orously apply their results, we need to check that some of our counting
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measures are boundedly finite in suitable metric spaces. We also include
here some measurability results we need. We begin in the context of excur-
sion theory. In Lemma 2.7 we describe the Pitman–Yor excursion measure
Λ of BESQ(−2α).

Proposition 3. We define a metric dAD on E via dAD(f, g) := dD(f, g) +∣∣A(f)−1 − A(g)−1
∣∣, where dD is the Skorokhod metric and A the amplitude

defined in (2.13). This metric is topologically equivalent to dD on E. More-
over, (E , dAD) is separable and complete and Λ is boundedly finite under this
metric, i.e. Λ(B) <∞ for all measurable B ⊂ E that are bounded in (E , dAD).

Proof. Note that E ∪ {0} is complete under dD and 1/A is continuous
under dD on E . Hence, a dD-Cauchy sequence in E with non-zero limit con-
verges to the same limit in dAD, and a sequence converging to 0 under dD
cannot be Cauchy under dAD. This proves the completeness of dAD and its
topological equivalence to dD. Separability follows from topological equiva-
lence. The reader may confirm that Λ is boundedly finite under dAD.

In Definition 2.13, we define various sets of counting measures. The fol-
lowing proposition records some measurability results.

Proposition 4. The σ-algebra Σ
(
N
(
[0,∞) × E

))
on N

(
[0,∞) × E

)
generated by the evaluation maps is the Borel σ-algebra of a Polish topology.
The sets N sp and N sp

fin are Borel-measurable subsets of N
(
[0,∞)× E

)
.

Proof. By Proposition 3, (E , dAD) is complete and separable. Thus, the
first assertion follows from [5, Theorem A2.6.III]. The measurability of con-
dition (i) in Definition 2.13 follows from the existence of measurable enu-
merations of points of counting measures; see [6, Proposition 9.1.XII]. Fi-
nally, the measurability of conditions (ii) and (iii) in Definition 2.13 fol-
lows from the measurability of the evaluation maps N 7→ N(B), B ∈
Σ
(
N
(
[0,∞)× E

))
.

In (4.3)–(4.4), we define two subsets Dstb and Dexc of Skorokhod space.

Proposition 5. Dstb and Dexc are Borel sets in (D, dD).

This is a straightforward exercise in topology and measure theory, starting
by expressing the conditions on N of Definition 2.13 in terms of the càdlàg
function g = ξ(N).

Adapting the definition of dAD of Proposition 3, we equip Dexc \ {0} with
the metric dAD(f, g) = dD(f, g)+|A(f)−1−A(g)−1|, where A is the amplitude
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of g given by A(g) := sup{|g(t)|, t ≥ 0}. With this definition, the following
result follows from [1, Theorems IV.8 and IV.10].

Proposition 6. The Stable(1 + α) excursion measure νstb defined in
(4.8) is boundedly finite for (Dexc \ {0}, dAD), and it satisfies the integrability
condition

∫
(len(g) ∧ 1)dνstb(g) <∞.

Finally, we turn to point measures of clades and bi-clades such as F y(N)
and F≥y(N), as defined in Definition 4.7.

Lemma 7. There exists a metric dAN on N sp
fin and a set Ñ sp ⊂ N sp with

the following properties.

(i) (N sp
fin , d

A
N ) is isometric to a Borel subset of a complete, separable met-

ric space.
(ii) The Borel σ-algebra generated by dAN equals that generated by the eval-

uation maps on measurable subsets of [0,∞)× E.
(iii) For y ∈ R, the maps F y, F y0 , F

≤y, F≤y0 , F≥y, and F≥y0 are measur-

able maps from Ñ sp to N
(
[0,∞)×N sp

fin

)
, where the latter is the space

of counting measures that are boundedly finite on [0,∞)×N sp
fin .

(iv) N sp
fin ⊂ Ñ

sp, and the law of the PRM(Leb⊗ ν) on [0,∞)×E is supported

on Ñ sp.

Proof. By Proposition 4 there is a complete, separable metric dN on
N
(
[0,∞)×E

)
that generates the same σ-algebra as the evaluation maps. Fol-

lowing Proposition 3, we define a modified metric dAN (N,M) := dN (N,M)+

|Â(ξ(N))−1 − Â(ξ(M))−1| on N sp
fin , where for g 6= 0, Â(g) = A(g) denotes

amplitude, and we set Â(0) := −1. Let Ñ sp :=
⋂
y∈RN y where

N y := N sp
fin ∪

{
N ∈N sp : `yN (t) exists ∀t>0, lim

t↑∞
`yN (t)=∞

}
.

(i) Consider N
(
[0,∞) × E

)
× ({−1} ∪ [0,∞)) under the sum of dN in

the first coordinate plus the Euclidean metric in the second coordinate.
This space is complete and separable. Moreover, (N sp

fin , d
A
N ) is isometric to

a measurable subset of this space via the map N 7→ (N, Â(ξ(N))−1).
(ii) Since dAN is stronger than dN , it follows that Σ(N sp

fin ) is contained in
the Borel σ-algebra generated by dAN . By separability of (N sp

fin , d
A
N ), open

sets under dAN can be described as countable unions of sets of the form
BN (N, r)∩BA(N, r), where this denotes the intersection of a ball under dN
with a ball under the pseudometric |Â(ξ(·))−1−Â(ξ(·))−1|. Thus, it suffices to
confirm that BA(N, r) ∈ Σ(N sp

fin ) for every N ∈ N sp
fin and r > 0. Indeed, balls
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in the pseudometric |A(·)−1 − A(·)−1| are open in the Skorokhod topology
on {g ∈ Dstb : len(g) ∈ (0,∞)}. Finally, since Proposition 2.14 establishes
that ξ : N sp

fin \ {0} → {g ∈ Dstb : len(g) ∈ (0,∞)} is a measurable map, the
BA(N, r) are measurable.

(iii) Fix y ∈ R, N ∈ N y, and ε > 0. By the right-continuity of ξ(N),
this process can only have finitely many excursions of amplitude at least
ε up to any inverse local time τyN (s), s ≥ 0. Thus, the desired bounded
finiteness follows from the property that sequences of bi-clades Ni with
limi↑∞A(ξ(Ni)) = 0 cannot be bounded in dAN . As for measurability, this
follows from the measurability of the local time process (`yN (t), t ≥ 0), Def-
inition A.1 of V y

0 (N), and the straightforward measurability of restriction
maps on N sp and E .

(iv) It is immediate from our definition of Ñ sp that N sp
fin ⊂ Ñ

sp. The

second claim, that the PRM law is supported on Ñ sp, follows from Theorem
2.16 and [7, Lemma 20].

4. Skewer and cutoff functions. In Proposition 3.5, we claim the
measurability of the map skewer from (N sp,∗

fin ,Σ(N sp,∗
fin )) to C([0,∞), I)

equipped with the Borel σ-algebra generated by uniform convergence.

Lemma 8. The map N 7→ skewer(y,N) is measurable on the set N sp,◦
fin

of point processes of spindles N ∈ N sp
fin that satisfy conditions (i) and (ii)

of Definition 3.4 of N sp,∗
fin .

Proof. We have established in Proposition 2.20 that N 7→ ξ(N) is a
measurable map from (N sp,Σ(N sp)) to (Dstb,Σ(Dstb)). By Definition 3.1
of the aggregate mass process, we deduce the measurability of the map
N 7→ My

N,ξ(N)(t) from N sp
fin to [0,∞], for (y, t) fixed. Let D∗ denote the set

of non-decreasing càdlàg functions that are supported on intervals [0, L],
L ∈ [0,∞) and whose closed ranges have zero Lebesgue measure. Since
My
N,ξ(N)(t) is non-decreasing in t, we conclude that for fixed y the map

N 7→ (My
N,ξ(N)(t), t ∈ [0, len(N)]) is measurable from N sp

fin to D∗.
Consider the map G that takes β ∈ IH to the closed, bounded, Lebesgue-

null set G(β) = [0, ‖β‖]\
⋃
U∈β U . The map g 7→ G−1(range(g)) is continuous

from the Skorokhod topology on D∗ to the Hausdorff topology on IH . Thus,
N 7→ skewer(y,N) is measurable from N sp,◦

fin to (IH , dH) for fixed y. From
[8, Theorem 2.3(c)], the Borel σ-algebra generated by dI on I equals that
generated by the Hausdorff metric, dH . Thus, the map N 7→ skewer(y,N)
is measurable from N sp,◦

fin to (I, dI) for y fixed.

Proof of Proposition 3.5. By Theorem 2.3, (I, dI) is separable. From
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this it follows that the σ-algebra on C([0,∞), I) generated by uniform con-
vergence equals that generated by the evaluation maps [2, Theorem 14.5].
Hence, Proposition 3.5 is a consequence of Lemma 8.

Lemma 4.8 includes the measurability of the functions cutoff≤ (y,N)
and cutoff≥ (y,N), as functions of F≤y0 (N) and F≥y0 (N), and that the level
filtration Fy on N sp, of Definition 4.6(i) is, up to PRM-null sets, generated
by the anti-clade counting measure F≤y0 defined in Definition 4.7.

Proof of measurability claims of Lemma 4.8. We establish mea-
surability by expressing the concatenation formulas in terms of integrals.
For convenience, we write F≤y0,N := F≤y0 (N). Setting

τ≤yN (s−) :=

∫
[0,s)×N sp

len(N ′)dF≤y0,N (r,N ′),

cutoff≤ (y,N) =

∫ ∫
δ
(
τ≤yN (s−) + t, f

)
dN ′(t, f)dF≤y0,N (s,N ′),

and correspondingly for cutoff≥ (y,N). Finally, F≤y0 generates Fy up to
events on which level y is not nice for N , which by Proposition A.3 are null
for the PRM.

In Proposition 5.3(iv) we claim that F≥0
0 is measurable on the (measur-

able) set S of point measures where skewer(0, N) ∈ I, and that β 7→
P

(α)
β (F≥0

0 ∈ · ) is a stochastic kernel.

Proof of Proposition 5.3(iv). First, skewer(0,Nβ) = β for every

β ∈ I, so the laws P
(α)
β are supported on S. Now, we need only construct

the desired measurable map φ, as the stochastic kernel claim follows from
this and Proposition 5.3(ii). We present φ(N) in the case N = Nβ, but this
construction applies to any N ∈ S. Define

G1 :=
∑

[a,b]∈V 0
0 (Nβ)

δ
(
a,Nβ|←[a,b),m

0
(
Nβ|←[a,b)

))
.

Then for each U ∈ β we get NU = Nβ|←[a,b) for some [a, b] ∈ V 0
0 (Nβ), and

Dβ(U) = Γ(1− α/q) lim
h↓0

hα/qG1

(
[0, a)×N sp

±cld × (h,∞)
)

=: D[a,b].

Finally, F≥0
0 (Nβ) = φ(Nβ) :=

∑
[a,b]∈V 0

0 (Nβ) δ
(
D[a,b],Nβ|←[a,b)

)
. The measur-

ability of the preceding transformations follows from the measurability of
restriction maps and the existence of measurable enumerations of points of
a point process, per [6, Proposition 9.1.XII].
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Lemma 5.4 collects several statements relating the skewer process to cutoff
processes and point processes of clades.

Proof of Lemma 5.4. (i). This follows from the definitions in (4.16).
See Figure 4.2.

Before proceeding to prove (ii) we note that, in the general setting of (i),
we make no claim in the case y = z. These formulas fail in cases where
y = z and this is a level at which a spindle of N is born or dies discontinu-
ously. For example, if a spindle ft of N dies discontinuously at level z, then
there is no broken spindle f̂zt incorporated into cutoff≥ (z,N). Thus, while
skewer(z,N) has a block of size ft((z − ξN (t−))−) corresponding to this
spindle, skewer(0,cutoff≥ (z,N) ,cutoff≥ (z, ξ(N))) has no such block.

Also, we claim that for N a PRM
(

Leb⊗ ν(−2α)
BESQ

)
, it is a.s. the case that for

every t ≥ 0,

skewer
(
y,N

∣∣
[0,t]

)
=

{
skewer

(
y,cutoff≤

(
z,N|[0,t]

) )
if y ≤ z,

skewer
(
y − z,cutoff≥

(
z,N|[0,t]

))
if y ≥ z.

The same holds for Nβ, for any β ∈ IH , with z > 0.
To show this, the argument in the proof of Proposition 5.3(iii) also shows

that

ξ
(
cutoff≤

(
z,N|[0,t]

))
= cutoff≤

(
z, ξ(N)|[0,t]

)
ξ
(
cutoff≤

(
z,Nβ|[0,t]

))
= cutoff≤

(
z, ξ(Nβ)|[0,t]

)
,

and likewise for cutoff≥ (z, · ). In particular, that argument uses the a.s.
summability of lifetimes of leftmost spindles ζ(fU ) to show that the concate-
nation of the scaffoldings of clades ?Uξ(NU ) equals the scaffolding of their
concatenation ξ(?UNU ). The same argument applies here.

Next, since no spindles in N or Nβ are born or die discontinuously at any
level above 0, every spindle ft of N or Nβ that is alive at level z > 0 has

non-trivial broken components f̌zt and f̂zt about level z. Thus, the statement
of (i) still holds a.s. for Nβ if we replace strict inequalities on the conditions
for the two expressions by weak inequalities.

(ii). This follows from assertion (i) via Lemma 4.8, which relates the cutoff
function cutoff≥ (y, · ) to F≥y0 , and via the observation that the skewer map
commutes with concatenation of bi-clades.

(iii). Definition 5.2 of F≥0
0 (Nβ) has the property that, if β is nice in the

sense described in the assertion, then F≥0
0 (Nβ) does not have two points

coinciding at the same time. Thus, the conclusion of Lemma 4.8 applies to
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it, and cutoff≥ (0,Nβ), which equals Nβ, may be recovered from F≥0
0 (Nβ).

Thus, the claim follows by the same argument as when proving the claim
established in the proof of (i) above.

(iv). This follows from the last assertion of Lemma 4.8.
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