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UNIFORM CONTROL OF LOCAL TIMES OF SPECTRALLY
POSITIVE STABLE PROCESSES1
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University of Washington,∗ University of Delaware† and University of Oxford‡

We establish two results about local times of spectrally positive stable
processes. The first is a general approximation result, uniform in space and
on compact time intervals, in a model where each jump of the stable process
may be marked by a random path. The second gives moment control on the
Hölder constant of the local times, uniformly across a compact spatial in-
terval and in certain random time intervals. For the latter, we introduce the
notion of a Lévy process restricted to a compact interval, which is a varia-
tion of Lambert’s Lévy process confined in a finite interval and of Pistorius’
doubly reflected process. We use the results of this paper to exhibit a class
of path-continuous branching processes of Crump–Mode–Jagers-type with
continuum genealogical structure. A further motivation for this study lies in
the construction of diffusion processes in spaces of interval partitions and R-
trees, which we explore in forthcoming articles. In that context, local times
correspond to branch lengths.

1. Introduction. Consider a spectrally positive Lévy process X = (Xt , t ≥ 0)

with Laplace exponent ψ(η) = η1+α and Lévy measure �(dx) = (1 +α)α(�(1 −
α))−1x−α−2 dx, for some α ∈ (0,1). We mark each jump (t,�Xt) indepen-
dently by a continuous random nonnegative path Zt = (Zt (s),0 ≤ s ≤ �Xt) with
Zt(0) = Zt(�Xt) = 0, using a marking kernel x �→ κq(x, ·) that has the follow-
ing self-similarity property for some q > 0. If Z has distribution κq(1, ·), then
(xqZ(s/x),0 ≤ s ≤ x) has distribution κq(x, ·). We consider the levels in the jump
interval [Xt−,Xt ] as the (vertical) time interval of the path, associating Zt(s) with
level Xt− + s. If we interpret each Zt(s) as a population size or mass at level
Xt− + s, the aggregate at time y associated with (Xt ,0 ≤ t ≤ T ) is given by

(1) Z[0,T ](y) = ∑
0≤t≤T

Zt(y − Xt−), y ∈ R, T ≥ 0,

with the convention that Zt(s) = 0 for s /∈ (0,�Xt).
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Structurally, (1) is the same as the sum of characteristics in a Crump–Mode–
Jagers (CMJ) model. In a CMJ model of a population, individuals survive for a
random amount of time and give birth to offspring at random times during their
lifetime. The offspring of an individual then evolve independently in the same way.
Moreover, each individual is equipped with a characteristic that can be observed
over time. For example, the characteristic of the individual i at age s could be the
indicator of whether or not individual’s lifetime exceeds s or it could be the fitness
of the individual when its age is s. In the original work on this model, Jagers [24,
25] considers the process

(2) Cy = ∑
i

χi(y − σi), y ≥ 0,

where the sum is over individuals i that ever exist and individual i has birth time
σi , lifetime λi and characteristic χi , which is a function χi : R → R whose sup-
port is contained in [0, λi]. The correspondence between (i, λi, σi) in (2) and
(ti,�Xti ,Xti−) in (1) is due to Lambert [31], who constructed X as a bounded-
variation Lévy process, in the binary homogeneous case, where the σi are distinct
and individuals give birth according to a Poisson process during their lifetimes.

Suitably rescaled, these Lévy processes converge to a spectrally positive stable
process, which is given a genealogical interpretation in [33], and [32] shows that
the rescaled number of individuals in the population converges to the local time of
the Lévy process. Our formula (1) is the analogue for these Lévy processes of the
sum of characteristics in a CMJ model. In Theorem 1 below, we show that the local
time of the Lévy process can be recovered from the characteristics. We remark that
Lévy processes marked by Poisson processes were studied by Delaporte [13, 14].

Our results also have a population genetics interpretation due to a connection
with infinitely-many-neutral-alleles diffusion models of Ethier and Kurtz [17] and
Petrov [37]; see [19]. In this setting, which we adopt for the remainder of this
paper, the fundamental quantities of interest are genetic types and the important
characteristic of a genetic type is its frequency. By thinking of the members of
a population with the same genetic type in aggregate as an “individual” which
gives birth to new genetic types via a birth mutation mechanism, one natural way
to model the genetic structure of a population is to use a CMJ model in which
“individuals” are genetic types and “characteristics” are type frequencies. Using
this correspondence, the number of individuals can be seen as a notion of diversity
of the population, varying as a function of time.

This notion, where each nonzero part in the sum (2) corresponds to an ex-
tant genetic type, can be extended to models (1) with infinitely many types by
taking suitable scaling limits. Specifically, popular models for type frequencies
include the two-parameter family of (Pi, i ≥ 1) ∼ GEM(β, θ), also ranked as
(P

↓
i , i ≥ 1) ∼ PD(β, θ), and associated partition-valued Chinese Restaurant Pro-

cesses (�n,n ≥ 1) obtained by sampling from frequencies (Pi, i ≥ 1) and record-
ing the types partitions �n with Kn = #�n types among the first n samples. In this
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framework, the β-diversity can be defined by any of the following limits:

Sβ = lim
n→∞

Kn

nβ
= �(1 − β) lim

i→∞ i
(
P

↓
i

)β
= �(1 − β) lim

h↓0
hβ#{i ≥ 1 : Pi ≥ h};

see, for example, [40], Definition 3.10 and Theorem 3.13, and [21], Theorem 2.1.
In the present paper, we will study the last of these limits in the model (1), with
sizes (Zt (y −Xt−),0 ≤ t ≤ T ) in the place of (Pi, i ≥ 1), and we will see that this
yields approximations of the local times of X.

Boylan [9] showed that X possesses jointly continuous local times (�y(t), y ∈
R, t ≥ 0). Barlow, Perkins and Taylor [2, 3] established several uniform approxi-
mations of local times. Our first goal in this paper is to give a new intrinsic approx-
imation of local times �y(t) using the marks at level y. We define for all h > 0,
y ∈ R and T ≥ 0,

mh(y,T ) = ∑
0≤t≤T

1
{
Zt(y − Xt−) ≥ h

}
= #

{
0 ≤ t ≤ T : Zt(y − Xt−) ≥ h

}
.

(3)

This sum can be seen as a sum over excursions of X away from level y. Since X

is spectrally positive, each such excursion has (at most) one jump across level y,
so each excursion contributes just one term to the sum.

THEOREM 1. Let α ∈ (0,1) and q > α. Suppose that Z ∼ κq(1, ·) is nontrivial
in the sense that P(Z ≡ 0) < 1 and γ -Hölder continuous for some γ ∈ (0, q), and
that the Hölder constant

Dγ := sup
0≤r<s≤1

|Z(s) − Z(r)|
|s − r|γ

has moments of all orders. Then c := (1 + α)(�(1 − α))−1E((Z(U))α/q) > 0,
where U is a uniform variable on [0,1] that is independent of Z, and the following
holds almost surely for a κq -marked spectrally positive stable Lévy process X with
Laplace exponent ψ(η) = η1+α :

lim
h↓0

sup
0≤t≤T

sup
y∈R

∣∣∣∣hα/q

c
mh(y, t) − �y(t)

∣∣∣∣ = 0 for all T > 0.

To prove this result, we use excursion theory. Some steps resemble arguments
of Khoshnevisan [27], who established rates of convergence of certain uniform
approximations of the local times of Brownian motion. While we also obtain some
rate of convergence results (Proposition 16) our arguments differ in several steps
and do not appear to give rates of convergence for Theorem 1.
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The case where κq gives squared Bessel bridges/excursions of dimension δ ∈ R

seems most compelling, in view of the branching structure (with immigration or
emigration) of these processes that make them natural models for population size
evolution, and in view of the Ray–Knight theorems. Specifically, the cases δ = 0
and δ = 2 appear in Ray–Knight theorems as distributions of Brownian local time
as a process in the spatial variable. Generalisations to perturbed Brownian motions
include other parameters; see, for example, [36, 43]. Squared Bessel processes and
their excursions and bridges have self-similarity parameter q = 1. Hölder continu-
ity of these processes is well known, and we show in Corollary 36 that the moment
assumption of Theorem 1 also holds for γ ∈ (0,1/2). We restate this special case
of Theorem 1 as Theorem 37.

Other interesting paths include some that are deterministic functions of the jump
height, so that marking does not introduce additional randomness. The following
example is obtained for deterministic z(s) = s ∧ (1 − s), 0 ≤ s ≤ 1, and κ(1, ·) =
δz, using q = 1 to scale z to zx(s) = s ∧ (x − s), 0 ≤ s ≤ x and κ(x, ·) = δzx :

COROLLARY 2. Consider a spectrally positive stable process of index 1 + α ∈
(1,2) and let

m◦
h(y, T ) = #{0 ≤ t ≤ T : Xt− + h ≤ y ≤ Xt − h}, h > 0, y ∈ R, T ≥ 0.

Let c◦ = 2α�(1 − α). Then the following holds almost surely for all T > 0:

lim
h↓0

sup
0≤t≤T

sup
y∈R

∣∣c◦hαm◦
h(y, t) − �y(t)

∣∣ = 0.

This is clearly related to approximations by counting upcrossings [11, 27] or by
jump heights. However, while we could obtain the latter by setting z(s) = 1, this
violation of the continuity requirement on z seriously affects our arguments. The
former cannot be expressed in this form, since whether an excursion contains an
upcrossing depends not only on the single jump across the level, but on the pre-
or post-jump parts of the excursion, as an upcrossing may be achieved by multiple
upward jumps.

Let us turn to our second main result. We denote by τy(s) = inf{t ≥ 0 : �y(t) >

s} the inverse local time of X in level y ∈ R. It is a well-known consequence of
the scaling property of X that τ 0 is a stable subordinator, and hence has infinite
mean. To obtain the following result, we restrict X to space [0, b] by making jumps
across b stop short at b, by excluding excursions above b and below 0, and sim-
ilarly treating jumps from below 0. Similar processes have been studied by Lam-
bert [30], Pistorius [38] and indeed very recently Lambert and Uribe Bravo [33]
proceeded similarly by restricting just at the upper boundary. See Section 5 for
a precise discussion. We can state the theorem without this notion of a restricted
Lévy process.
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THEOREM 3. Let α ∈ (0,1), b > 0, ν ∈ (0, α/2) and S a random variable
with moments of all orders. Then the local times of a spectrally positive stable
process of index 1 + α have a uniform Hölder constant

D[0,b]
ν

(
τ 0(S)

) := sup
0≤t≤τ 0(S)

sup
0≤x<y≤b

|�y(t) − �x(t)|
|y − x|ν

with moments of all orders.

Uniform Hölder continuity of local times was already obtained by Boylan [9].
The novelty of our result is in the finiteness of moments of the Hölder constant,
which appears to be a fundamental fact about Lévy processes. The finiteness
of Hölder constants is useful when dealing with families of scaled independent
copies. We will apply Theorem 3 in this way in forthcoming work.

In Proposition 5, we provide a less technical illustration of this idea in the set-
ting of Theorem 1, where Hölder constants of the κq -marks of the stable Lévy
process have moments of all orders. Specifically, we devote the remainder of this
introduction to the exploration of some auxiliary results, which may also be of
independent interest. In particular, we will apply some of the auxiliary results to
study some properties of the process (y, t) �→ Z[0,t](y) of (1).

Consider the Itô excursion measure n of X away from 0. Denote by A and
B the undershoot and overshoot of the unique jump across level 0 under n, by
H = A + B the jump size and by U = A/H the relative undershoot. The classical
study of excursions away from 0 was recently complemented by Pardo et al. [34].
In the stable case, we can be slightly more explicit and deduce the following result.
Symmetry under time-reversal is due to Getoor and Sharpe [20].

PROPOSITION 4. We have n(A ∈ dy,B ∈ dz) = (1 + α)α(�(1 − α))−1(y +
z)−α−2 dzdy and n(H ∈ dx,U ∈ du) = (1 + α)α(�(1 − α))−1x−α−1 dx du. In
particular, under n(· | H = x), U is uniform on [0,1]. Under n(· | A = y,B = z),
the pre- and post-jump parts of the excursion are independent. The post-jump part
is a stable process starting from z until hitting 0. The pre-jump part is the negative
of the time-reversal of a stable process starting from y until hitting 0.

Recall that Theorem 1 assumes the existence of moments for the Hölder con-
stants of the random paths under κq(1, ·). The κq -marked stable process contains a
countably infinite collection of scaled independent copies of this random path. We
can use the moments on the Hölder constants assumed in Theorem 1 in a simple
Poisson sum over jumps to obtain uniform Hölder constants (not with all moments
since the stable Lévy measure has a heavy tail).

PROPOSITION 5. In the setting of Theorem 1, the uniform Hölder constant for
all paths Zt is finite a.s.: for all T > 0,

D[0,T ] := sup
0≤t≤T

sup
0≤x<y≤�Xt

|Zt(y) − Zt(x)|
|y − x|γ < ∞.
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This is remarkable, since the unbounded variation of X means that the jump
heights are not summable, hence the time intervals of the processes Zt , 0 ≤ t ≤ T ,
add up to infinite length. We can further improve on this proposition, as follows,
to facilitate the aggregation (1) of mass at level y, for all levels y ∈ R.

PROPOSITION 6. In the setting of Theorem 1, let γ < q − α. Then the set {t ∈
[0, T ] : �Xt > 0} of jump times may a.s. be partitioned into sequences {J k

j , j ≥ 1},
k ≥ 1, in such a way that:

(a) the jump intervals [X(J k
j −),X(J k

j )], j ≥ 1, are disjoint for each k ≥ 1;

(b) Hölder constants Dk[0,T ] = supj≥1 sup0≤x<y≤�X(J k
j )

|Z
Jk
j
(y)−Z

Jk
j
(x)|

|y−x|γ are

summable in k ≥ 1.

Let us return to the aggregate process (1) of Crump–Mode–Jagers-type. We
begin by noting some properties that illustrate the genealogical complexity. Jagers’
[24] framework is very general, but only covers branching processes with a discrete
genealogy that is represented by a subset of the infinite Ulam–Harris tree U =⋃

n≥0 N
n. Lambert [31] used this framework to encode a class of CMJ processes

in bounded-variation Lévy processes with negative drift, in such a way that the
jumps correspond to the members of U. Since all jumps happen at local minima,
there is a unique previous jump across that local minimum level that corresponds
to the parent. From any given jump, this yields a finite number of ancestors down
to level 0.

In our framework, X has unbounded variation, no jumps occur from local min-
ima (see, e.g., [4], Chapter VII), hence no direct parent for any jump can be iden-
tified in this way, but a collection of ancestral intervals and a continuum of limit
levels between these can be put together to a continuum genealogy. This is very
delicate and properly addressed in [33]. By marking the jumps of the stable pro-
cess, we have bypassed the subtleties of the continuum genealogy and set up Z[0,T ]
directly building on the jump structure of the stable process, which by [33] allows
the CMJ-type interpretation.

The results and methods we have discussed yield some properties of Z[0,T ],
while an exhaustive study of this interesting new class of processes is beyond the
scope of the present paper.

COROLLARY 7. In the setting of Theorem 1 with γ < q − α, the process y �→
Z[0,T ](y) of (1) is a.s. γ -Hölder.

Recall that excursions of X away from level y have (at most) one jump across
level y, while local time �y remains constant during each excursion. Therefore,
inverse local time τy is a natural time scale for processes t �→ mh(y, t), and indeed
for t �→ Z[0,t](y).
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PROPOSITION 8. In the setting of Theorem 1, we have for each y ∈ R the
following subordinators:

(i) The process s �→ Z[0,τ y(s)](y) − Z[0,τ y(0)](y) is a stable subordinator with
index α/q . Its Laplace exponent is �(ξ) = c�(1 − α/q)ξα/q .

(ii) The process s �→ mh(y, τ y(s)) − mh(y, τ y(0)) is a Poisson process of rate
ch−α/q independent of mh(y, τ y(0)) = 1{ZT≥y (y − XT≥y−) > h}, where T≥y =
inf{t > 0 : Xt ≥ y}.

In particular, we deduce from (i) that (Z[0,τ y(s)](y),0 ≤ s < �y(T )) is a stopped
stable subordinator. It is well known [40, 42] that its ranked relative jump sizes
have Poisson–Dirichlet distribution, and that its β-diversity (for β = α/q) can be
approximated by the number of jumps/blocks exceeding threshold h, that is, by
mh(y,T ). Hence, Theorem 1 shows that this β-diversity process coincides with the
local time process of X, and Theorem 3 is a statement on the Hölder-continuity of
the β-diversity process as a function of y, expressing the evolution of the diversity
of subpopulations Zt(y − Xt−), 0 ≤ t ≤ T , in Z[0,T ](y). See Ruggiero et al. [45]
for another recent study that exhibits continuous diversity processes.

A further motivation for this study lies in the construction of diffusion processes
in spaces of interval partitions and R-trees, which we explore in forthcoming work;
see [19]. Specifically, local times correspond to branch lengths in the context of R-
trees.

This paper is structured, as follows. In Section 2, we discuss some fluctuation
theory of Lévy processes and prove Proposition 4. In Section 3, we prove Propo-
sition 5, Proposition 8, Theorem 1 and Corollary 2. In Section 4, we establish
Proposition 6 and Corollary 7 using a local time approximation by jump heights,
which is uniform on a sequence of refining spatial lattices in regions where local
time is bounded below. Section 5 studies spectrally positive Lévy processes re-
stricted to an interval and proves Theorem 3. Finally, Section 6 establishes Hölder
constants with all moments for squared Bessel processes, excursions and bridges
and related processes. This provides a class of examples to which the main results
of this paper apply.

2. Preliminaries on spectrally positive stable Lévy processes. Recall the
occupation density formula that characterises the local times (�y(t), y ∈ R, t ≥ 0)

of X: ∫ T

0
f (Xt) dt =

∫ ∞
−∞

f (y)�y(T ) dy

a.s., for all f : R →R bounded measurable, T ≥ 0.

The following lemma is easily obtained using the positivity parameter 1 − 1/(1 +
α), spatial homogeneity and scaling properties of X; see, for example, Bertoin [4],
Sections V.1,VIII.1, for background.
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LEMMA 9. The Laplace exponent of the inverse local time τ 0 of X is (1 +
α)ξ1−1/(1+α).

Denote by n, n̂ and n̂ the excursion measures of X, X̂ = −X and X̂ − Î =
S − X away from 0, where Ît = inf{X̂s, s ≤ t} and St = sup{Xs, s ≤ t}, t ≥ 0,
are the running infimum and supremum of X̂ and X, respectively. We denote by
H(ω) = A(ω)+B(ω) the size of the jump of an excursion ω across level 0, where
A(ω) = −ω(T≥0−) and B(ω) = ω(T≥0) are the undershoot and overshoot at the
crossing time T≥0(ω) = inf{t > 0 : ω(t) ≥ 0}. Similarly, Â(ω) = ω(T≤0−) and
B̂(ω) = −ω(T≤0) for T≤0(ω) = inf{t > 0 : ω(t) ≤ 0}. We are interested in the
relative undershoot U = A/H jointly with H under n, equivalently Û = Â/Ĥ

jointly with Ĥ = Â + B̂ under n̂. Under n̂, the relevant crossing is the end of the
excursion, at T0(ω) = inf{t > 0 : ω(t) = 0}.

PROOF OF PROPOSITION 4. By [34], Theorem 3, we have

n̂
(
1{t<T≤0}f

(
ω(T≤0−),−ω(T≤0)

))
= n̂

(
1{t<T0}

∫
f (y,−z)K

(
ω(t), dy, dz

))
,

where K(x, dy, dz) = (W(x) − W(x − y))�(dz − y)dy on (−∞,0) × (0,∞),
with W(x) = (�(1 + α))−1xα , x > 0, the scale function of X and �(dx) =
(1 + α)α(�(1 − α))−1x−α−2 dx the Lévy measure of X. We also denote by
u(t, x) = px(t) the bivariate renewal density of the decreasing ladder processes
of X, where py(t) is the density of σy at t for a σ = (σy, y ≥ 0) with Laplace
exponent �(ξ) = ξ1/(1+α). Specifically, we can read from [28], Sections 7.3,
8.1 and 8.2, that

∫∞
0 e−ηyW(y)dy = 1/η1+α and

∫∞
0

∫∞
0 e−ξ t−ηxu(t, x) dx dt =

1/(ξ1/(1+α) + η), and these Laplace transforms are easily inverted. From [16],
equation (5.2.5), we take the entrance law n̂(t < T0,ω(t) ∈ dx) = c′u(t, x) dx, up
to a constant c′ ∈ (0,∞). Hence,

n̂

(
1{t<T0}

∫
f (y,−z)K

(
ω(t), dy, dz

))

= c′α(1 + α)�(1 + α)

�(1 − α)

×
∫ ∞

0
px(t)

(∫ x

0

(
xα − (x − y)α

) ∫ 0

−∞
f (y,−z)(y − z)−α−2 dzdy

+
∫ ∞
x

xα
∫ 0

−∞
f (y,−z)(y − z)−α−2 dzdy

)
dx.

To compute this, and to let t ↓ 0, we apply Fubini’s theorem and first consider the
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x-integral over the (x − y)α-term:∫ ∞
y

px(t)(x − y)α dx

=
∫ ∞

0
pr+y(t)r

α dr

=
∫ ∞

0
p1

(
(r + y)−α−1t

)
(r + y)−α−1rα dr

= t−α/(1+α) 1

1 + α

∫ ty−1−α

0
p1(s)s

−1/(1+α)(t1/(1+αs−1/(1+α) − y
)α

ds

≤ 1

1 + α

∫ ∞
0

1{s≤ty−1−α}p1(s)s
−1 ds,

by the dominated convergence theorem, as the integral without the indicator equals
�(1/α)/α (see, e.g., [40], equation (0.40)). The remaining terms yield, using sim-
ilar substitutions,

c′α(1 + α)�(1 + α)

�(1 − α)

× 1

1 + α

∫ ∞
0

p1(s)s
−1 ds

∫ ∞
0

∫ 0

−∞
f (y,−z)(y − z)−α−2 dzdy

= c′�(1 + α)�(1/α)

�(1 − α)

∫ ∞
0

∫ ∞
0

f (y, z)(y + z)−α−2 dzdy.

We conclude that under the excursion measure n of X = −X̂, undershoot A and
overshoot B satisfy

n(A ∈ dy,B ∈ dz) = c′�(1 + α)�(1/α)

�(1 − α)
(y + z)−α−2 dzdy

and hence H = A + B and U = A/H satisfy

n(H ∈ dx,U ∈ dr) = c′�(1 + α)�(1/α)

�(1 − α)
x−α−1 dx dr.

In particular, U = A/(A + B) is uniformly distributed under n(· | H = x) for a.e.
x > 0 and indeed for all x > 0 by the scaling property. The remaining results are
classical. The independence claim is a consequence of the Markov property under
n (see, e.g., [4], Section IV.4) as is the conditional distribution of the post-jump
process under n(· | A = y,B = z). The claim about the pre-jump process follows
by time-reversal [20]. Since the two first hitting times are downward level passage
times, their sum has Laplace transform given by

n
(
exp(−ξT0) | A = y,B = z

) = exp
(−(y + z)�(ξ)

)
.
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On the other hand, by Lemma 9, the Laplace exponent of τ 0 is (1 + α)ξ1−1/(1+α).
Therefore,

n
(
1 − exp(−ξT0)

) = (1 + α)ξ1−1/(1+α)

=
∫ ∞

0

(
1 − exp

(−xξ1/(1+α))) (1 + α)α

�(1 − α)
x−α−1 dx,

so we require

c′�(1 + α)�(1/α)

�(1 − α)
x−α−1 = (1 + α)α

�(1 − α)
x−α−1,

that is,

c′ = (1 + α)α

�(1 + α)�(1/α)
. �

3. Uniform approximation of local times. We will use notation m̂h(y, r) =
mh(y, τ y(r)) − mh(y, τ y(0)). The purpose of this section is to prove Theorem 1.
The argument is inspired by Khoshnevisan [27], who studies rates of convergence.
We only need weaker results. Weaker results have also been obtained by differ-
ent methods for different classes of processes, for example, [2, 3, 12, 35], but
Khoshnevisan’s methods seem most adaptable to our setting. Khoshnevisan uses
excursion theory to study intrinsic approximations of Brownian local times based
on excursion lengths. Excursion lengths while intrinsic to the level set are not
intrinsic to the population sizes Zt(y − Xt−), 0 ≤ t ≤ T , at level y, while our
approximations in Theorem 1 have this latter property.

3.1. Proofs of Proposition 5 and Proposition 8.

PROOF OF PROPOSITION 5. First, note that κq(x, ·) is the distribution of
(xqZ(s/x),0 ≤ s ≤ x) with Hölder constant

sup
0≤r<s≤x

|xqZ(s/x) − xqZ(r/x)|
|s − r|γ = xq−γ Dγ .

For all t ∈ [0, T ] with �Xt > 0, denote the associated Hölder constant by

dt = sup
0≤r<s≤�Xt

|Zt(s) − Zt(r)|
|s − r|γ ,

and set dt = 0 if �Xt = 0. Now clearly, for all p > 0,(
sup{dt : 0 ≤ t ≤ T })p

≤ max
{(

sup
{
d

p
t : 0 ≤ t ≤ T ,�Xt > 1

})p
,

∑
0≤t≤T : �Xt≤1

d
p
t

}
,
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and by the compensation formula for Poisson point processes,

E

( ∑
0≤t≤T : �Xt≤1

d
p
t

)
= T

(1 + α)α

�(1 − α)
E
(
(Dγ )p

) ∫ 1

0
xp(q−γ )−α−2 dx < ∞,

provided that p > (1 + α)/(q − γ ). This completes the proof, since there are at
most finitely many jumps of size exceeding 1 in [0, T ], as their rate is finite in the
Poisson point process. �

Using the same argument, we also obtain the following result.

LEMMA 10. Let θ ∈ (0, γ ] and let d̂t denote the θ -Hölder constant of Zt

d̂t := sup
0≤r<s≤�Xt

|Zt(s) − Zt(r)|
(s − r)θ

.(4)

For every ε > 0, there is some nonrandom Cε > 0 such that for every z ∈ (0,1],
E
(

sup
0≤t≤T : 0<�Xt≤z

d̂t

)
< Cεz

q−θ−ε.(5)

PROOF. Fix θ ∈ (0, γ ] and let p > (1 + α)/(q − θ). When also p ≥ 1, we
apply Jensen’s inequality and argue as in the proof of Proposition 5, via the scaling
invariance of κq , to find that

E
(

sup
0≤t≤T : �Xt≤z

d̂t

)
≤
(
E

( ∑
0≤t≤T : �Xt≤z

d̂
p
t

))1/p

=
(
E

( ∑
0≤t≤T : �Xt≤z

(�Xt)
(q−θ)p

))1/p(
E
(
D

p
θ

))1/p

= (
E
(
D

p
θ

))1/p
(∫ z

0
x(q−θ)p (1 + α)αT

�(1 − α)
x−α−2 dx

)1/p

= (
E
(
D

p
θ

))1/p
C′

pzq−θ−(1+α)/p,

where C′
p is a finite deterministic term that depends on p. Since Dθ has moments

of all orders, the RHS above is finite for all p > (1 + α)/(q − θ), p ≥ 1. To obtain
(5), we take p > (1 + α)/ε. �

PROOF OF PROPOSITION 8. First, consider y = 0. Recall notation n for the
Itô excursion measure of X away from 0, H for the size of the jump across 0 and U

for the relative undershoot of that jump across 0. We applied the marking kernel κq

to the Poisson point process of all jumps of X, and this induces a κq -mark ZT≥0 of
the jump (T≥0,H) under n. We write n+(dω, df ) = κq(H(ω), df )n(dω) for the
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intensity measure of the Itô excursion process with marked jump across 0. Recall
the joint density of (H,U) under n from Proposition 4.

By (1), the jumps of t �→ Z[0,t](0) will be of the form Jt = Zt(−Xt−), where
−Xt− is the undershoot of any jump of X at time t across level 0. Since X is spec-
trally positive, there is at most one such jump per excursion. A standard mapping
argument shows that those jumps form a Poisson point process in the inverse local
time parametrisation of the Itô excursion process, with intensity measure

n+
({

(ω,f ) : f
(
H(ω)U(ω)

)
> h

})
=

∫ ∞
0

∫ 1

0
P
(
xqZ(u) > h

) (1 + α)α

�(1 − α)
x−α−1 dx du

=
∫ ∞

0
P
(
Z(U) > z

) (1 + α)α

�(1 − α)q
h−(1+α)/q+1/qz(1+α)/q−1/q−1 dz

= 1 + α

�(1 − α)
h−α/qE

((
Z(U)

)α/q) = ch−α/q,

identifying c as given in the statement of Theorem 1. We note that this establishes
part (ii) of Proposition 8. For (i), we obtain that the Jt are summable for q > α,
as we recognise the tail of the stable Lévy measure of index α/q , with Laplace
exponent:

�(ξ) =
∫
(0,∞)

(
1 − e−ξh)n+

(
f
(
H(ω)U(ω)

) ∈ dh
) = c�(1 − α/q)ξα/q .

The generalisation from y = 0 to general y ∈ R follows by spatial homogeneity
of X and by the strong Markov property of X at Ty = inf{t > 0 : Xt = y}, since
Ty ≥ T≥y a.s. �

3.2. Auxiliary results for the proof of Theorem 1. To prove Theorem 1, we
will need a moderate deviations result for Poisson processes, which we deduce
from standard large deviations results as can be found, for example, in Dembo and
Zeitouni [15].

LEMMA 11. Let (Nt , t ≥ 0) be a standard Poisson process with Nt ∼ Poi(t).
Then for all z > δ > 0, there is t0 ≥ 1 such that, for all t ≥ t0,

P
(|Nt − t | ≥

√
t log(t)

√
2z
) ≤ t−z+δ.

PROOF. We apply [15], Theorem 3.7.1, to independent centred Poisson vari-
ables Yi = Ni − Ni−1 − 1, i ≥ 1 and an = (2z log(n))−1, n ≥ 1. Since an → 0 and
nan → ∞ as n → ∞, we find that for any ε > 0, there is n0 ≥ 1 such that for all
n ≥ n0:

P

(
n∑

i=1

Yi ≥
√

n

an

)
≤ exp

(
− 1

2an

)
= n−z.
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To pass from integer n ≥ 1 to real t ≥ 2, we note that

P
(
Nt − t ≥

√
t log(t)

√
2z
)

≤ P
(
N�t� − �t� ≥ −1 +

√(�t� − 1
)

log
(�t� − 1

)√
2z
)

is of the same form, with
√

n/an replaced by√
n/bn = −1 +

√
(n − 1) log(n − 1)

√
2z,

and another application of [15], Theorem 3.7.1, yields, for n = �t�,

P
(
Nt − t ≥

√
t log(t)

√
2z
) ≤ exp

(
− 1

2bn

)
≤ �t�−z+δ/2 ≤ t−z+δ/2,

for t ≥ n0, for a possibly increased n0. A similar argument deals with P(t − Nt ≥√
t log(t)

√
2z), and together, possibly increasing n0 again, we obtain the stated

result. �

By Proposition 8, we have m̂h(y, r) ∼ Poi(rch−α/q). Moreover, t �→ Nt(y, r) =
m̂(rct−1)q/α (y, r), t > 0 is a standard Poisson process, by independence properties
of the Poisson point process of jumps of s �→ Z[0,τ y(s)](y). We will apply the
previous lemma to a variation of this Poisson process. Following Khoshnevisan
[27], Lemmas 5.1–5.3, we consider an independent λ ∼ Exp(1).

LEMMA 12. Let Ty = inf{t ≥ 0 : Xt = y}, y ∈ R. Then for all y > 0, we have

P(T−y < λ) = exp(−y)

and

P(Ty < λ) = 1 + α

π

∫ ∞
0

sin(πα)s1+α

s2(1+α) + 2s1+α cos(πα) + 1
e−ys ds.

PROOF. Let y > 0. Since X is spectrally positive, we have T−y = inf{t ≥
0 : Xt ≤ −y), and it is well known that P(T−y < λ) = E(e−T−y ) = exp(−y); see,
for example, Bertoin [4], Chapter VII, for first passage problems of spectrally neg-
ative Lévy processes such as −X. On the other hand, Simon [46] showed that,
T1 ∼ RT−1, where R is independent of T−1 with probability density function

fR(t) = sin(πα)t1/(1+α)

π(t2 + 2t cos(πα) + 1)
1{t≥0}.

By scaling, Ty ∼ y1+αT1 ∼ y1+αRT−1 ∼ RT−y . With this, we obtain

P(Ty < λ) = P(T−yR < λ)

= 1

π

∫ ∞
0

sin(πα)t1/(1+α)

t2 + 2t cos(πα) + 1
P(tT−y < λ)dt
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= 1

π

∫ ∞
0

sin(πα)t1/(1+α)

t2 + 2t cos(πα) + 1
P(T−yt1/(1+α) < λ)dt

= 1

π

∫ ∞
0

sin(πα)t1/(1+α)

t2 + 2t cos(πα) + 1
e−yt1/(1+α)

dt

= 1 + α

π

∫ ∞
0

sin(πα)s1+α

s2(1+α) + 2s1+α cos(πα) + 1
e−ys ds. �

LEMMA 13. For all y ∈ R, we have

P
(
�y(λ) > r

) = P(Ty < λ) exp
(−(1 + α)r

)
.

PROOF. By the strong Markov property and spatial homogeneity of X, we
have

P
(
�y(λ) > a

) = P(Ty < λ)P
(
�0(λ) > a

)
.

To calculate P(�0(λ) > a), note that by the strong Markov property of X at inverse
local times, �0(λ) is exponentially distributed, and by Lemma 9,

E
(
�0(λ)

) =
∫ ∞

0
E
(
�0(t)

)
e−t dt =

∫ ∞
0

∫ ∞
0

P
(
�0(t) > s

)
dse−t dt

=
∫ ∞

0

∫ ∞
0

P
(
τ 0(s) < t

)
e−t dt ds

=
∫ ∞

0
E
(
e−τ 0(s))ds = 1

1 + α
,

that is, �0(λ) has distribution Exp(1 + α), as claimed. �

Recall notation m̂h(y, r) = mh(y, τ y(r))−mh(y, τ y(0)) for the Poisson count-
ing process of level-y excursions of X with path-mark exceeding h at the crossing
level, parametrised by level-y local time r ≥ 0. Recall from Proposition 8(ii) that
its rate is ch−α/q . Note that for each y ∈R, the inverse local time τy(0) equals the
first hitting time Ty of level y a.s., and that mh(y, τ y(0)) = 1 if the single jump of
X across level y before Ty has a path-mark exceeding h, while mh(y, τ y(0)) = 0
otherwise.

We will study mh(y,λ) by first investigating m̂h(y, �y(λ)−), that is, the excur-
sion count stopped just before the excursion straddling the independent exponen-
tial time λ. On the event {λ ≤ Ty}, we have �y(λ) = 0 and m̂h(y, �y(λ)−) = 0. On
the event {λ > Ty}, we consider λ as a further mark of the excursion of X strad-
dling λ, and we can represent the stopped excursion count as a thinned Poisson
process r �→ m̃h(y, r) stopped at an independent time �y(λ), which by Lemma 13
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has distribution Exp(1 + α). The thinned Poisson process has rate ch−α/q − ah for
some ah ∈ [0,1 + α]. Specifically,

ah =
∫ ∞

0

∫ 1

0
P
(
xqZ(u) > h

) α(1 + α

�(1 − α)
x−α−1(1 − e−x)dudx,

where 1 − e−x = P(λ < x) is the thinning probability and Z ∼ κq(1, ·). See, for
example, [44], Section VI.49, for details on the thinning of excursion processes.

Finally, note that mh(y,λ)−mh(y, τ y(0))−m̂h(y, �0(λ)−) = 1 if the excursion
straddling λ has crossed before λ with a path-mark exceeding h at the crossing
level, while mh(y,λ)−mh(y, τ y(0))−m̂h(y, �0(λ)−) = 0 otherwise. In summary,
we have for each y ∈ R,

(6) m̂h

(
y, �y(λ)−) ≤ mh(y,λ) ≤ m̂h

(
y, �y(λ)−)+ 2 a.s.

LEMMA 14. For all r0 > 0, θ > 0, ε > 0, there is h0 > 0 such that for all
h ≤ h0, y ∈ R,

P

(∣∣∣∣hα/q

c
m̂h

(
y, �y(λ)−)− �y(λ)

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c
hα/2q

√
log

(
1

h

)√
�y(λ), �y(λ) ≥ r0

)
≤ hθ .

PROOF. Recall that q > α. Let r0 > 0 and θ > 0 and, without loss of general-
ity, ε > 0 so small that we have εq(θ + ε)(2 + 7ε2 + 4ε4) < q −α. Then we apply
the strong Markov property of X at Ty and the spatial homogeneity of X to find
that

ph := P

(∣∣∣∣hα/q

c
m̂h

(
y, �y(λ)−)− �y(λ)

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c
hα/2q

√
log

(
1

h

)√
�y(λ), �y(λ) ≥ r0

)

= P(Ty < λ)P

(∣∣∣∣hα/q

c
m̂h

(
0, �0(λ)−)− �0(λ)

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c
hα/2q

√
log

(
1

h

)√
�0(λ), �0(λ) ≥ r0

)

≤
∫ ∞
r0

P

(∣∣∣∣hα/q

c
m̃h(0, r) − r

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c
hα/2q

√
log

(
1

h

)√
r

)
P
(
�0(λ) ∈ dr

)
,
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where m̃h(0, ·) is the thinning of m̂h(0, ·) independent of �0(λ) as discussed above
the statement of the lemma. As a function of h > 0, for fixed r , we can write
m̃h(0, r) = N(r(ch−α/q − ah)) in terms of a unit rate Poisson process N , to which
Lemma 11 applies. Due to the thinning, we need to recentre to get a deviation
probability from the mean in the integrand above:

P

(∣∣N(
r
(
ch−α/q − ah

))− rch−α/q
∣∣

≥
√

rch−α/q log
(

1

h

)√
2(θ + ε)(1 + 2ε)

)

≤ P

(∣∣N(
r
(
ch−α/q − ah

))− r
(
ch−α/q − ah

)∣∣
≥
√

rch−α/q log
(

1

h

)√
2(θ + ε)(1 + 2ε) − rah

)
.

The deviation threshold is not quite of the form to which Lemma 11 applies either,
but after a few more steps, we will apply Lemma 11 for z := (θ + ε)(1 − 2ε2 −
7ε4 −4ε6)q/α and δ := z−θq/α−ε = ε(q/α−1−ε(θ +ε)(2+7ε2 +4ε4)q/α),
which satisfy z > δ > 0 by the restriction we have put onto ε. Let t0 ≥ 1 be ob-
tained from Lemma 11 and set

h0 := min
{

1

e
,

( √
c

1 + α
ε2
√

2(θ + ε)(1 + 2ε)

)2(1−2ε)q/α(1−3ε)

,

c−(1−2ε)q/αε,

(
cr0

(1 + α)r0 + t0

)q/α}
.

Now let r ≤ h−εα/q(1−2ε). First, we turn the rah term on the right-hand side into
ε2 times the square-root term: for all h ≤ h0,

ah ≤ 1 + α,
√

r ≤ h−εα/2q(1−2ε) and 1 ≤ log(1/h),

using the first bound on h0 and find that our claim is equivalent to the second
bound on h0. Then we check that by the third bound on h0

c ≤ h−εα/q(1−2ε) and hence log
(

1

h

)
≥ q

α
(1 − 2ε) log

(
rch−α/q),

for all h ≤ h0. Finally, we estimate rch−α/q ≥ rch−α/q − rah and note that
rch−α/q − rah ≥ t0 ≥ 1 for all h ≤ h0 is equivalent to the fourth bound on h0.
Hence, Lemma 11 applies and yields an upper bound for our integrand of

P

(∣∣N(
r
(
ch−α/q − ah

))− r
(
ch−α/q − ah

)∣∣
≥
√

r
(
ch−α/q − ah

)
log

(
r
(
ch−α/q − ah

))√2(θ + ε)(1 − 4ε2)(1 + ε2)2q

α

)
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≤ (
r
(
ch−α/q − ah

))−θq/α−ε

≤ (
c − (1 + α)h

α/q
0

)−θq/α−ε
hθ+εα/qr−θq/α−ε,

so that ph is bounded above by(
c − (1 + α)h

α/q
0

)−θq/α−ε
hθ+εα/q

∫ h−εα/q(1−2ε)

r0

r−θq/α−εP
(
�0(λ) ∈ dr

)
+ P

(
�0(λ) > h−εα/q(1−2ε))

≤ (
r0c − r0(1 + α)h

α/q
0

)−θq/α−ε
hθ+εα/q

+ exp
(−(1 + α)h−εα/q(1−2ε))

≤ hθ

for all h ≤ h0, possibly by decreasing h0 further to accommodate the last inequal-
ity. �

Now fix r0 > 0, ε > 0 and θ > 0. Following Khoshnevisan [27], we define for
any μ > 0, R > 0, h > 0 and y ∈ R the lattice K(μ,R) = (−R,R) ∩ μZ and the
events G(y,h) given by{∣∣∣∣hα/q

c
m̂h

(
y, �y(λ)−)− �y(λ)

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c
hα/2q

√
log(1/h)

√
�y(λ), �y(λ) ≥ r0

}
.

COROLLARY 15. For any w > 0 and r > 0, let ρ(k) = k−w and μ(k) =
(ρ(k))r = k−wr . Then

lim sup
k→∞

sup
y∈K(μ(k),R)

| (ρ(k))α/q

c
mρ(k)(y, λ) − �y(λ)|

(ρ(k))α/2q
√

log(1/ρ(k))
1{�y(λ)≥r0}

≤
√

2(r + 1/w)

c

√
�∗(λ) a.s.,

where �∗(λ) = supy∈R �y(λ).

PROOF. First, note by (6) and the triangular inequality that it is equiva-
lent to prove the statement with mρ(k)(y, λ) replaced by m̂ρ(k)(y, �y(λ)−), since
2(ρ(k))α/q/c(ρ(k))α/2q

√
log(1/ρ(k)) → 0. Then this proof becomes a simple ap-

plication of the Borel–Cantelli lemma: for all θ > r + 1/w,∑
k≥1

P

( ⋃
y∈K(μ(k),R)

G
(
y,ρ(k)

)) ≤ 2R
∑
k≥1

(ρ(k))θ

μ(k)
< ∞
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implies that a.s.

lim sup
k→∞

sup
y∈K(μ(k),R)

| (ρ(k))α/q

c
mρ(k)(y, λ) − �y(λ)|

(ρ(k))α/2q
√

log(1/ρ(k))
1{�y(λ)≥r0}

≤
√

2(θ + ε)(1 + 2ε)

c

√
�∗(λ),

and considering countable sequences εn ↓ 0 and θn ↓ r +1/w, we obtain the bound
given. �

We seek to strengthen the corollary by replacing the supremum over K(μ(k),R)

by a supremum over [−R,R].
PROPOSITION 16. For all R > 0 and r0 > 0, we have

lim sup
h↓0

sup
y∈[−R,R]

|hα/q

c
mh(y,λ) − �y(λ)|

hα/2q
√

log(1/h)
1{�y(λ)≥2r0}

≤
√

2q + α(γ + 1)

qγ c

√
�∗(λ) a.s.

PROOF. Let D[0,λ] be as in Proposition 5, for T = λ. We will work on the event
of probability 1, where D[0,λ] < ∞, y �→ �y(λ) satisfies Boylan’s [9] modulus of
continuity |�y(λ) − �x(λ)| ≤ Kλ| log |y − x||(|y − x|)α/2 and where the bound
of the preceding corollary holds. There is k0 ≥ 2 for which the following two
estimates hold. First, we can guarantee for all k ≥ k0 that

D[0,λ]
(
μ(k − 1)

)γ ≤ ρ(k − 1) − ρ(k)

and

D[0,λ]
(
μ(k + 1)

)γ ≤ ρ(k) − ρ(k + 1),

provided that r > (1 + 1/w)/γ . Second, we can guarantee that |�y(λ) − �z(λ)| ≤
r0 for all y, z ∈ [−R,R] with |y − z| ≤ μ(k0). For y ∈ [−R,R] and k ≥ 1, let
gk(y) ∈ K(μ(k),R) with |gk(y) − y| ≤ μ(k). Then for all k ≥ k0, we have on the
chosen event of probability 1,

�y(λ) − (ρ(k))α/q

c
mρ(k)(y, λ)

≤
(

ρ(k)

ρ(k − 1)

)α/q(
�gk−1(y)(λ) − (ρ(k − 1))α/q

c
mρ(k−1)

(
gk−1(y), λ

))

+ ∣∣�y(λ) − �gk−1(y)(λ)
∣∣+ (

1 −
(

ρ(k)

ρ(k − 1)

)α/q)
�∗(λ).
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We divide both sides by (ρ(k))α/2q
√

log(1/ρ(k)) and take suprema y ∈ [−R,R].
Adding indicators 1{�y(λ)≥2r0} on the LHS, we may add indicators 1{�gk−1(y)(λ) ≥
r0} on the first term of the RHS. With these denominators, suprema and indica-
tors, the first term of the RHS has lim sup as stated in the preceding corollary,
for all k ≥ k0, since ρ(k)/ρ(k − 1) → 1, The other two terms vanish in the limit,
since r > 1/γ > 1/q , provided that w ≤ 2q/α, which implies (1 − (ρ(k)/ρ(k −
1))α/q)/(ρ(k)α/2q log(1/ρ(k))) → 0. Similarly, the suprema y ∈ [−R,R] of the
following bounds have bounded limsup when adding the analogous indicators and
denominators:

(ρ(k))α/q

c
mρ(k)(y, λ) − �y(λ)

≤
(

ρ(k)

ρ(k + 1)

)α/q((ρ(k + 1))α/q

c
mρ(k+1)

(
gk+1(y), λ

)− �gk+1(y)(λ)

)

+ ∣∣�y(λ) − �gk+1(y)(λ)
∣∣+ ((

ρ(k)

ρ(k + 1)

)α/q

− 1
)
�∗(λ).

To strengthen the limit along h = ρ(k) → 0 to h ↓ 0, write h = min({ρ(k), k ≥
1} ∩ [h,∞)) and h = max({ρ(k), k ≥ 1} ∩ (0, h]). Then we can bound above

hα/q

c
mh(y,λ) − �y(λ)

≤
(

h

h

)α/q(hα/q

c
mh(y,λ) − �y(λ)

)
+
((

h

h

)α/q

− 1
)
�∗(λ),

similarly below. A straightforward argument completes the proof since w ≤ 2q/α

so that h/h → 1 can be strengthened to (h/h)α/q −1 = o(hα/2q log(1/h)) as h ↓ 0,
and with w = 2q/α and rn ↓ (1 + α/2q)/γ , we establish the bound (2q + α(γ +
1))/qγ c as claimed. �

Note that Proposition 16 is weaker than Theorem 1 in the sense that it is not
uniform in t and subject to a bound 2r0 on the local times. On the other hand,
Proposition 16 is stronger than Theorem 1 in the sense that it establishes rates
of convergence of at least hα/2q

√
log(1/h). In the proof of Theorem 1, we will

apply Proposition 16, but we could not avoid sacrificing the rate of convergence to
establish uniformity in t and to remove the restricting bound 2r0.

3.3. Proofs of Theorem 1 and Corollary 2.

PROOF OF THEOREM 1. For the proof of the theorem, first note that Proposi-
tion 16 gives a result at a single Exp(1) distributed random time. Now fix R > 0
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and consider for all t > 0 and r0 > 0 the events

A(t, r0,R) =
{

lim sup
h↓0

sup
y∈[−R,R]

|hα/q

c
mh(y, t) − �y(t)|

hα/2q
√

log(1/h)
1{�y(t)≥2r0}

≤
√

2q + α(γ + 1)

qγ c

√
�∗(t)

}
.

Then we have shown that 1 = P(A(λ, r0,R)) = ∫∞
0 P(A(t, r0,R))e−t dt , hence

P(A(t, r0,R)) = 1 for all t ≥ 0 except possibly on a Lebesgue null set. Let us give
a scaling argument to prove that this null set must be empty. Recall the scaling
property of the stable process X that Xa(t) = a−1/(1+α)X(at), t ≥ 0, is identical
in distribution to X, for all a > 0. This entails �

y
a(t) = a−α/(1+α)�a1/(1+α)y(at)

and ma
h(y, t) = maq/(1+α)h(a

1/(1+α)y, at) and Aa(t, r0,R) = A(at, aα/(1+α)r0,

a1/(1+α)R), using obvious notation. The arguments together yield that for
Lebesgue-a.e. s ≥ 0 and all a ∈ [1/2,2]

1 = P
(
Aa

(
s, r0/2α/(1+α),21/(1+α)R

))
= P

(
A
(
as, (a/2)α/(1+α)r0, (2a)1/(1+α)R

)) ≤ P
(
A(as, r0,R)

)
,

and this entails that P(A(t, r0,R)) = 1 for all t > 0, and, trivially, also for t = 0.
Now fix T > t > 0 and let ε > 0 with t, ε ∈ Q. With r0 = ε/2, we can a.s. find

h0 > 0 such that for all h < h0

sup
y∈[−R,R]

(
�y(t) − hα/q

c
mh(y, t)

)

≤ ε +
(
ε +

√
2q + α(γ + 1)

qγ c

√
�∗(t)

)
hα/2q

√
log

(
1

h

)
.

Taking lim suph↓0 and ε ↓ 0 along a sequence εn ↓ 0, we see that almost surely

(7) lim sup
h↓0

sup
y∈[−R,R]

(
�y(t) − hα/q

c
mh(y, t)

)
≤ 0.

But on the event {−R ≤ inf0≤t≤T Xt ≤ sup0≤t≤T Xt ≤ R}, this supremum is
actually supy∈R. Also, (7) holds for all t ∈ Q ∩ (0, T ] a.s. By continuity of
t �→ �y(t) (uniformly in y), and the monotonicity of t �→ mh(y, t), this holds for
all t ∈ [0,∞) a.s. Furthermore, for all ε > 0, there is δ > 0 so that for all y ∈ R

and all s < t in [0, T ], |s − t | < δ implies �y(t) − �y(s) < ε. So,

lim sup
h↓0

sup
y∈[−R,R]

sup
s∈δZ∩[0,T ]

(
�y(s) − hα/q

c
mh(y, s)

)
≤ 0

already entails

lim sup
h↓0

sup
y∈[−R,R]

sup
t∈[0,T ]

(
�y(t) − hα/q

c
mh(y, t)

)
≤ ε.



2612 FORMAN, PAL, RIZZOLO AND WINKEL

Taking a rational sequence εn ↓ 0, this limsup must vanish a.s. This argument
worked for fixed R > 0 on the event {−R ≤ inf0≤t≤T Xt ≤ sup0≤t≤T Xt ≤ R}.
Now taking the union of these events over a rational sequence Rn ↑ ∞, we con-
clude that we have the “upper bound”

lim sup
h↓0

sup
y∈R

sup
t∈[0,T ]

(
�y(t) − hα/q

c
mh(y, t)

)
≤ 0 a.s.

For the “lower bound”, we have similarly for all R > 0, t ∈ Q∩ [0,∞), r0 > 0,

lim sup
h↓0

sup
y∈[−R,R] : �y(t)≥2r0

(
hα/q

c
mh(y, t) − �y(t)

)
≤ 0 a.s.

Now let ε > 0 and choose r0 = ε/4. Let S > 0. On the event{
−R ≤ inf

0≤t≤T
Xt ≤ sup

0≤t≤T

Xt ≤ R
}

∩ {
�y(T + S) ≥ ε/2 for all y ∈ [−R,R]},

we find h0 such that for all h < h0

sup
y∈R

sup
t∈δZ∩[0,T +S] : �y(t)≥2r0

(
hα/q

c
mh(y, t) − �y(t)

)
≤ ε a.s.,

where we choose δ > 0 so small that |t − s| < δ in [0, T + S] implies that |�y(t)−
�y(s)| < ε. We define τy(ε) = inf{t ≥ 0 : �y(t) ≥ ε}. Then we conclude that

lim sup
h↓0

sup
y∈R

sup
t∈[0,T ]

(
hα/q

c
mh(y, t) − �y(t)

)
≤ 3ε

since for any y ∈ R and t ∈ [0, T ] with �y(t) < 2r0 and s the next lattice point in
δZ after τy(ε), we can estimate for h ≤ h0

hα/q

c
mh(y, t) − �y(t) ≤ hα/q

c
mh(y, τ y(ε/3)

)
≤ hα/q

c
mh

(
y, τ y(ε)

)− �y(s) + 2ε ≤ 3ε a.s.

For sequences εn ↓ 0 and Rn ↑ ∞, this completes the proof, as for the “upper
bound”. �

PROOF OF COROLLARY 2. This follows straight from Theorem 1. Just note
that by symmetry of z

1

c◦ = c = (1 + α)
(
�(1 − α)

)−12
∫ 1/2

0
sα ds

= 2
1

�(1 − α)

1

21+α
= 1

2α�(1 − α)
. �
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4. Uniform Hölder continuity of the paths in κq -marked stable processes.
To prove Proposition 6 and Corollary 7, we will use a local time approximation
based directly on jump height, which we present first.

4.1. Local time approximations based on jump heights. Consider the count
m′

h(y, T ) = #{0 ≤ t ≤ T : Xt− < y < Xt,�Xt > h}. As in Proposition 8, it fol-
lows from Proposition 4 that m̂′

h(y, r) = m′
h(y, τ y(r))−m′

h(y, τ y(0)) is a Poisson
process with rate c′h−α where c′ = (1 + α)α/�(1 − α), and the Poisson process
arguments in the proof of Lemma 14, as well as the Borel–Cantelli argument for
Corollary 15 apply again to give for an independent λ ∼ Exp(1).

LEMMA 17. For all r0 > 0, θ > 0, ε > 0, there is h0 > 0 such that for all
h ≤ h0, y ∈ R,

P

(∣∣∣∣hα

c′ m̂′
h

(
y, �y(λ)−)− �y(λ)

∣∣∣∣
≥
√

2(θ + ε)(1 + 2ε)

c′ hα/2

√
log

(
1

h

)√
�y(λ), �y(λ) ≥ r0

)
≤ hθ .

COROLLARY 18. For any w > 0 and r > 0, let ρ(k) = k−w and μ(k) =
(ρ(k))r = k−wr . Then

lim sup
k→∞

sup
y∈K(μ(k),R)

|ρ(k)α

c′ m′
ρ(k)(y, λ) − �y(λ)|

(ρ(k))α/2
√

log(1/ρ(k))
1{�y(λ)≥r0}

≤
√

2(r + 1/w)c′√�∗(λ) a.s.,

where �∗(λ) = supy∈R �y(λ).

The proof of Proposition 16, however, exploits uniform Hölder bounds on Zt ,
t ∈ [0, T ], to show that for all k large enough, we have

mρ(k−1)

(
gk−1(y), λ

) ≤ mρ(k)(y, λ) ≤ mρ(k+1)

(
gk+1(y), λ

)
,

where gk(y) is the nearest lattice point to y in K(μ(k),R). This argument would
need substantial change since a substitute for the Hölder bounds would need to
be found to control the number of jumps greater than ρ(k) that cross level y. It is,
however, straightforward to find much weaker upper bounds, such as the following,
which will be enough to prove Proposition 6.

PROPOSITION 19. We have almost surely for all T ≥ 0

(8) lim sup
h↓0

sup
y∈R

hαm′
h(y, T ) < ∞.
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PROOF. Let ε > 0. We first claim lim suph↓0 supy∈R hαm′
h(y, λ)1{�y(λ)≥2r0} ≤

2c′�∗(λ) a.s. By Corollary 18, there is k1 ≥ 1 such that for all k ≥ k1 and all y ∈
K(μ(k),R + 1) with �y(λ) ≥ r0

ρ(k)αm̂′
ρ(k)(y, λ)

≤ c′�y(λ) + c′(ρ(k)
)α/2

√
log

(
1/ρ(k)

)(√
2(r + 1/w)c′√�∗(λ) + ε

)
≤ c′�∗(λ) + c′(ρ(k)

)α/2
√

log
(
1/ρ(k)

)(√
2(r + 1/w)c′√�∗(λ) + ε

)
.

Let r > 1. Then we have μ(k) < ρ(k). For y ∈ [−R,R], let g+
k (y) = infK(μ(k),

R + 1) ∩ [y,∞) and g−
k (y) = supK(μ(k),R + 1) ∩ (−∞, y] be the lattice points

of K(μ(k),R + 1) nearest to y. As in the proof of Proposition 16, we find k0 ≥ k1
such that |�y(λ) − �z(λ)| ≤ r0 for all y, z ∈ [−R,R] with |y − z| ≤ μ(k0). Then
for all y ∈ [−R,R] with �y(λ) ≥ 2r0, we have �g+

k (y)(λ) ≥ r0 and �g−
k (y)(λ) ≥ r0.

For all 0 ≤ t ≤ T with Xt− < y < Xt and �Xt > ρ(k) > μ(k), we must have
Xt− < g+

k (y) < Xt or Xt− < g−
k (y) < Xt . Hence,

m′
ρ(k)(y, λ) ≤ m′

ρ(k)

(
g+

k (y), λ
)+ m′

ρ(k)

(
g−

k (y), λ
)
,

so that for all y ∈ [−R,R] with �y(λ) ≥ 2r0, we have

ρ(k)αm′
ρ(k)(y, λ)

≤ 2c′�∗(λ) + 2c′(ρ(k)
)α/2

√
log

(
1/ρ(k)

)(√
2(r + 1/w)c′√�∗(λ) + ε

)
.

To get from h = ρ(k) → 0 to h ↓ 0, recall notation h = min({ρ(k), k ≥ 1} ∩
[h,∞)) and h = max({ρ(k), k ≥ 1} ∩ (0, h]). Then we can bound above

hαm′
h(y, λ) ≤

(
h

h

)α

hαm′
h(y, λ)

and hence conclude by letting h ↓ 0 to see the upper bound independent of y tend
to 2c′�∗(λ) to find

(9) lim sup
h↓0

sup
y∈[−R,R]

hαm′
h(y, λ)1{�y(λ)≥2r0} ≤ 2c′�∗(λ) almost surely.

Since R = (Xt ,0 ≤ t ≤ λ) is bounded almost surely, the claim hence holds on the
events {R ⊂ [−R,R]} whose union over R ∈ N has probability 1, so it remains to
remove the indicator.

Now let T ≥ 0 and define the post-T process X̃t = XT +t −XT , with local times
�̃y(t) = �y−XT (T + t) − �y−XT (T ), y ∈ R, t ≥ 0. Note that X̃ is independent of
(Xt ,0 ≤ t ≤ T ) with the same distribution as X. For R ∈ N, let

ER = {
�̃y(λ) > 2r0 for all y ∈ [−R,R]}.
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If we can prove that each of these events ER has positive probability, we obtain
via (9) that

lim sup
h↓0

sup
y∈[XT −R,XT +R]

hαm′
h(y, T )

≤ lim sup
h↓0

sup
y∈[XT −R,XT +R]

hαm′
h(y, T + λ) < ∞

almost surely on ER . But ER is independent of (Xt ,0 ≤ t ≤ T ); thus, the term on
the LHS is a.s. finite for every R. Let M := ST −IT = sup{Xs, s ≤ t}− inf{Xs, s ≤
t}. This is a.s. finite. In the event {M < R}, the inequality above implies (8). Since
this event happens for some R ∈ N, (8) holds almost surely. It remains to show
that ER has positive probability, which we do restate and prove in the following
lemma. �

LEMMA 20. Let Z ∼ Exp(1). Then for all ε > 0 and all k > 0, the event ER

of the proof of Proposition 19 has positive probability. In particular, with proba-
bility 1, �y(t) → ∞ as t → ∞ for all y ∈ R, uniformly on compact y-intervals.

PROOF. Since τ 0 is a stable subordinator, �0(λ) > 0 a.s., hence there is ε > 0
such that �0(λ) > 2ε with positive probability. But then by continuity of y �→
�y(λ), there is R > 0 such that with positive probability, we have �y(λ) > ε for all
y ∈ [−R,R].

Now fix R > 0 and consider τ 0(j), j ≥ 1. Then the random variables
min{�y(τ 0(j)) − �y(τ 0(j − 1)), y ∈ [−R,R]}, j ≥ 1, are independent and identi-
cally distributed, nonnegative and positive with positive probability. By the strong
law of large numbers, their series is infinite a.s., and so �y(∞) = ∞ for all
y ∈ [−R,R], a.s. By scaling, this holds for all R > 0, and by choosing a sequence
Ri → ∞, i → ∞, this extends to all y ∈ R, as required. �

4.2. Proofs of Proposition 6 and Corollary 7.

PROOF OF PROPOSITION 6. Let Ji be the time of the ith largest jump of
(Xt ,0 ≤ t ≤ T ) and recall that Zt is the excursion marking the jump of X at time t .
We build our partition sequentially and refer to the resulting sequences (J k

j , j ≥ 1)

as “piles”, k ≥ 1 [2].
Piling procedure. Place J1 at the bottom of the first pile, J 1

1 := J1. Now suppose
that the first i jump times are arranged into ki piles of heights j1, . . . , jki

, with∑
k≤ki

jk = i.

• If for each k ≤ ki there exists j ≤ jk such that[
X(Ji+1−),X(Ji+1)

]∩ [
X
(
J k

j −)
,X

(
J k

j

)] �= ∅

then we place it Ji+1 into a new pile by setting J
ki+1
1 := Ji+1.
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• Otherwise, we place Ji+1 atop the pile of least index k for which[
X(Jj+1−),X(Jj+1)

]∩ [
X
(
J k

j −)
,X

(
J k

j

)] =∅

for every j ≤ jk , that is, J k
jk+1 := Ji+1, where

k = min
{
m ≤ ki : [X(Ji+1−),X(Ji+1)

]
∩ [

X
(
Jm

j −)
,X

(
Jm

j

)] =∅ for all j ∈ [jm]}.
We denote the θ -Hölder constants by

Dk
j := sup

0≤a<b≤�X(J k
j )

|ZJk
j
(b) − ZJk

j
(a)|

(b − a)θ
, j ≥ 1

and

Dk[0,T ] := sup
j≥1

Dk
j , for all k ≥ 1.

By definition of our piling procedure, J k
1 is the time of the largest jump in the

kth pile, for each k ≥ 1. Consider the start and end levels ak = X(J k
1 −) and bk =

X(J k
1 ) of the jump at time J k

1 . Again, by definition of the procedure, for each
m < k there is some jump time Jm

j that is the time of a larger jump than J k
1 and

such that the jump intervals intersect[
X
(
J k

1 −)
,X

(
J k

1
)]∩ [

X
(
Jm

j −)
,X

(
Jm

j

)] �= ∅.

Since �X(J k
1 ) < �X(Jm

j ), for each such Jm
j , the jump interval contains one of

the endpoints of the jump at time J 1
k :{

X
(
J k

1 −)
,X

(
J k

1
)}∩ [

X
(
Jm

j −)
,X

(
Jm

j

)] �= ∅.

By the pigeonhole principle, and the fact that almost surely there is no level at
which more than one jump starts or ends, there is some yk ∈ (X(J k

1 −),X(J k
1 ))

such that at least � k
2� jumps larger than �XJk

1
jump across level yk . That is,

#
{
i ≥ 1 : �X(Ji) > �X

(
J k

1
)

and yk ∈ [
X(Ji−),X(Ji)

]} ≥
⌊
k

2

⌋
.

Proposition 19 implies that there is almost surely some C ∈ (0,∞) such that for
every y ∈ R and every k ≥ 1, the kth largest jump across level y has size at most
Ck−1/α . Since �X(J k

1 ) is at most the � k
2�th largest jump across level yk , we see

that �X(J k
1 ) ≤ C� k

2�−1/α ≤ C′k−1/α . Thus �X(J k
j ) ≤ C ′k−1/α for all j ≥ 1.

Take ε > 0. Then, from the above, there is a.s. some finite K such that for
k > K , the jump size �X(J k

1 ) is at most kε−1/α . Let

D∗ := sup
k≥1,j≥1

Dk
j and

D′ := ∑
m≥1

sup
{
Dk

j : �X
(
J k

1
)
< mε−1/α, k ≥ 1, j ≥ 1

}
,

(10)
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so that ∑
n≥1

Dn[0,T ] ≤ KD∗ + D′.

From Proposition 5, D∗ is a.s. finite, and K is a.s. finite as well, so it suffices
to show that D′ is a.s. finite. We appeal to (5), applied with z = mε−1/α ≤ 1 if
ε < 1/α, to find that

E
(
D′) ≤ ∑

m≥1

Cεm
(ε− 1

α
)(q−θ−ε).(11)

Since θ ≤ γ and q > γ + α, this series converges for all sufficiently small ε. �

PROOF OF COROLLARY 7. For this proof, abbreviate Z
y
t := Zt(y −Xt−) and

Zx
t := Zt(x − Xt−). Then∣∣Z[0,T ](y) − Z[0,T ](x)

∣∣ = ∣∣∣∣ ∑
0≤t≤T

(
Z

y
t − Zx

t

)∣∣∣∣ ≤ ∑
0≤t≤T

∣∣Zy
t − Zx

t

∣∣
≤ ∑

0≤t≤T : Z
y
t �=0

∣∣Zy
t − Zx

t

∣∣+ ∑
0≤t≤T : Zx

t �=0

∣∣Zy
t − Zx

t

∣∣
≤
(

2
∑
n≥1

Dn

)
|y − x|γ

by Proposition 6. �

5. Uniform Hölder continuity of local times. Boylan [9] established that
the family of local times of (1 + α)-stable Lévy processes admits a version that
is Hölder continuous of order ν ∈ (0, α/2) in the spatial direction, uniformly in
space and time on any compact space-time rectangles. Barlow [1] gave the exact
modulus of continuity. While Barlow’s results are optimal in rate, we are interested
in a (random) Hölder constant with all moments and which applies uniformly on
space-time rectangles that consist of a fixed compact spatial interval and relevant
random time intervals, whose random lengths have infinite mean. To achieve this
without getting into the technicalities of Barlow’s argument, we sacrifice a slowly
varying function in the exact modulus of continuity and restrict the stable process
to a spatial interval.

5.1. Spectrally one-sided Lévy processes restricted to an interval. Consider at
first any zero mean spectrally negative Lévy process X̂ with unbounded variation
and zero Gaussian coefficient, with notation to facilitate passage to the spectrally
positive process X = −X̂ later. For the process X̂, 0 is regular for itself and for
(−∞,0), by [4], Corollary VII.5. By [4], Theorems IV.4 and IV.10, X̂ admits a



2618 FORMAN, PAL, RIZZOLO AND WINKEL

continuous local time at 0, and hence at any level, with an associated excursion
process, whose intensity measure we denote by n̂.

By [4], Proposition 1, the same holds for the reflected process Ŷ = X̂− Î , where
Ît = inf0≤s≤t X̂s , t ≥ 0; as in Section 2, we denote the excursion measure by n̂. The
measures n̂ and n̂ are measures on the Skorohod space D([0,∞),R), supported
by the subspace of paths ω = (ω(s))s≥0 ∈ D([0,∞),R) for which ω(s) �= 0 if
and only if s ∈ (0, T0(ω)), where T0(ω) = inf{t > 0 : ω(t) = 0} ∈ (0,∞] is called
the lifetime of the excursion ω. Since X̂ is spectrally negative, n̂-a.e. excursion
ω has at most one jump across zero, whose time we denote by T≤0(ω) = inf{t >

0 : ω(t) ≤ 0}. By [34], Lemma 2, there is exactly one jump across zero n̂-a.e.,
under our assumption of a zero Gaussian coefficient. By [34], Theorem 3,

n̂ = n̂
((

ω(s)1{s<T≤0}
)
s≥0 ∈ ·).

In particular, if we define the time change

τ+(r) = inf
{
t ≥ 0 : R+(t) > r

}
where R+(t) =

∫ t

0
1{X̂s≥0} ds,

so that X̂+
r = X̂τ+(r) has all negative parts of excursions removed, then X̂+ has the

same distribution as Ŷ . The analogous operation that removes all negative parts
of excursions from the spectrally positive process X = −X̂ also yields a strong
Markov process X+, but this process does not have the same distribution as Y =
X−I , where It = inf0≤s≤t Xs , because excursions of Y start continuously (none of
the countably many jumps strike during the Lebesgue-null set of times when Y =
0, by independence properties of Poisson point processes), while excursions of X+
away from 0 start with a jump, with intensity χ = n(ω(T≥0) ∈ · ) = n̂(−ω(T≤0) ∈
· ), where n = n̂(−ω ∈ · ) is the excursion measure of X at 0 and T≥0(ω) = inf{t >

0 : ω(t) ≥ 0}. By the strong Markov property under n at T≥0, the post-T≥0 process
under n is the post-T≥0 process of the spectrally positive Lévy process absorbed
at 0; cf. [34], Theorem 3, and cf. also [29], Section 3, where the authors introduce
stable Lévy processes that have the negative parts of their excursions away from 0
removed. By Vigon’s équations amicales (see [16], Theorem 16), χ is absolutely
continuous with

(12) χ(dx) = �(x)dx = �
(
(x,∞)

)
dx,

where � is the Lévy measure of X so that

ψ(η) = log
(
E
(
exp(−ηX1)

)) =
∫
(0,∞)

(
e−ηx − 1 + ηx

)
�(dx).

Finally, we define the spectrally positive Lévy process restricted to an interval
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[0, b] as Xb
r = Xτ [0,b](r), where

τ [0,b](r) = inf
{
t ≥ 0 : R[0,b](t) > r

}
and R[0,b](t) =

∫ t

0
1{0≤Xs≤b} ds.

Note that this process is different from (actually simpler than) Pistorius’ doubly
reflected process of [38], since here the boundary behaviour at 0 is not reflection,
and is also different from Lambert’s [30] process confined in a finite interval [con-
ditioned not to exit (0, b)]. The discussion of these three cases is connected to the
discussion in [10] and [29], Remark 3.3, which distinguish three types of exit at
a boundary (A) continuously, (B) by a jump or (C) not at all (while preserving
self-similarity of the process). In our context (two boundaries, self-similarity be-
ing meaningless on an interval, but re-entry being allowed), Lambert studies (C, C)
exits from (0, b), no entry needed, Pistorius studies the (A, B) exit (A, A) entrance,
and we find (A, B) exit (B, A) entrance. Spectral positivity disallows B exit at 0
and B entrance from b, but this leaves a number of other possibilities, in principle,
which we do not pursue further.

Scale functions W(q) with Laplace transform
∫∞

0 e−ηxW(q)(x) dx = 1/(ψ(η)−
q) and Z(q)(x) = 1 + q

∫ x
0 W(q)(z) dz are well-known functions in the fluctuation

theory of spectrally one-sided Lévy processes; see, for example, [38].

PROPOSITION 21. The Laplace exponent of the inverse local time σb of Xb

at 0 is given by

�b(q) = − log
(
E
(
exp

(−qσb
1
)))

=
∫ b

0

(
1 − Z(q)(b − x)

Z(q)(b)

)
χ(dx) +

(
1 − 1

Z(q)(b)

)
χ
(
(b,∞)

)
= 1

Z(q)(b)

∫ b

0
�(b − z)qW(q)(z) dz,

where �(x) = ∫∞
x �(z) dz. Furthermore, σb has moments of all orders.

PROOF. First, note that �(x) < ∞ for all x > 0 since X has finite (zero) mean.
After the discussion preceding the proposition, the result follows directly from the
exponential formula for the Poisson point process of excursions away from zero
and the first exit problem of the reflected process X̂+ from (0, b). Specifically,
T≥0(ω) = 0 for nb-a.e. ω, and the post-T≥0 process under the excursion measure
nb of Xb away from 0 is the post-T≥0 process of the restricted process absorbed at
0, which is the same as b minus the reflected process X̂+ absorbed at b. By [39],
Proposition 2,

Ex

(
e−qT0(X

b)) = Z(q)(b − x)

Z(q)(b)
, x ∈ (0, b],
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for x > b, the post-T≥0 process under nb starts from b. Let W = W(0) and recall,
for example, from [6]

W(q)(x) = ∑
k≥0

qkW ∗(k+1)(x),

where for the convolution W ∗(k+1)(x) ≤ 1

k!x
kW(0)(x)k+1,

so that q �→ W(q)(x) is analytic on C. Hence, we calculate by (12) and using
Fubini’s theorem

�b(q) = − log
(
E
(
exp

(−qσb
1
)))

=
∫ b

0

(
1 − Z(q)(b − x)

Z(q)(b)

)
χ(dx) +

(
1 − 1

Z(q)(b)

)
χ
(
(b,∞)

)
= 1

Z(q)(b)

(∫ b

0

∫ b

b−x
qW(q)(z) dz�(x)dx

+
∫ b

0
qW(q)(z) dz

∫ ∞
b

�(x)dx

)

= 1

Z(q)(b)

∫ b

0
�(b − z)qW(q)(z) dz

= 1

Z(q)(b)

∫ b

0

∫ ∞
b−z

�(x)dxq
∑
k≥0

qkW ∗(k+1)(z) dz

= 1

Z(q)(b)

∑
j≥1

qj
∫ b

0
�(b − z)W ∗(j)(z) dz.

Now �b(q) is a ratio of complex power series, hence infinitely differentiable
within the radius where the (analytic) denominator is nonzero. Since Z(q)(0) = 1,
all moments of σb are finite. �

COROLLARY 22. If X is a spectrally positive stable process with Laplace
exponent ψ(η) = aη1+α for some a > 0 and 1 + α ∈ (1,2), then

�b(q) = b−α

E1+α(qb1+α/a)

(
E1+α,1−α

(
qb1+α/a

)− 1

�(1 − α)

)
,

where E1+α,β(x) = ∑
k≥0 xk/�(β + k(1 + α)) is the two-parameter Mittag–

Leffler function, a complex-analytic function on all of C for all β > 0, and where
E1+α = E1+α,1.
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PROOF. Since varying a corresponds to a linear time change of X, we can
assume a = 1 w.l.o.g. By [5], Z(q)(b) = E1+α(qb1+α). Also

�(b) =
∫ ∞
b

(1 + α)α

�(1 − α)
x−α−2 dx = α

�(1 − α)
b−α−1.

With χ(dx) = �(x)dx, from (12),

�b(q) = 1

Z(q)(b)

(∫ b

0

(
Z(q)(b) − Z(q)(b − x)

)
χ(dx)

+ (
Z(q)(b) − 1

)
χ
(
(b,∞)

))

=
[
α

∫ b

0

(
E1+α

(
qb1+α)− E1+α

(
q(b − x)1+α))x−α−1 dx

+ b−α(E1+α(qb1+α) − 1
)]× [

Z(q)(b)�(1 − α)
]−1

.

(13)

We use power series techniques to calculate the first term of the numerator:∫ b

0

(
E1+α

(
qb1+α)− E1+α

(
q(b − x)1+α))x−α−1 dx

=
∞∑

k=1

qk

�(1 + k(1 + α))

∫ b

0

(
bk(1+α) − (b − x)k(1+α))x−α−1 dx.

We now solve this integral using Fubini theorem and Beta integrals to find finite
coefficients

1

�(1 + k(1 + α))

∫ b

0

(
bk(1+α) − (b − x)k(1+α))x−α−1 dx

= bk(1+α)−α

�(1 + k(1 + α))

1

α

(
�(1 − α)�(k(1 + α) + 1)

�(k(1 + α) + 1 − α)
− 1

)
.

The first term gives coefficients of the two-parameter Mittag–Leffler function. The
second term gives coefficients just as needed to cancel with most of the second
term in the numerator of (13); we obtain the formula we claimed for a = 1. To
pass to general a > 0, it is easy to check that Z(q)(b) = E1+α(qb1+α/a), so we
can just replace q by q/a. �

5.2. Uniform local time estimates up to random times.

PROPOSITION 23. Consider a spectrally positive stable Lévy process X with
Laplace exponent η1+α . There is K > 0 such that for all x, y ∈ R and all N, r ∈
(0,∞) we have

P
(

sup
0≤t≤N

∣∣�y(t) − �x(t)
∣∣ > r

)
≤ 2eN exp

(−Kr|y − x|−α/2).
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Hence for all p > 0, we also have E(sup0≤t≤N |�y(t) − �x(t)|p) ≤ 2�(p +
1)K−peN |y − x|pα/2.

LEMMA 24. For z > 0, let ϕ(z) ∈ (0,1) be such that we have (ϕ(z))2 = 1 −
�0(z)�z(0), where �x(y) = Ex(exp(−Ty(X))) and Ty(X) = inf{t ≥ 0 : Xt = y}.
Then there is K > 0 such that 2ϕ(z) ≤ zα/2/K for all z > 0.

PROOF. We may assume that z ≤ 1 since the bound is trivially true for z ≥ 1
provided K ≤ 1. Note that limy→0 Ty(X) = 0 almost surely under P0 and, con-
sequently, Lemma 12 and the dominated convergence theorem combine to imply
that for λ ∼ Exp(1),

1 = lim
y↓0

P
(
Ty(X) < λ

) = 1 + α

π

∫ ∞
0

sin(πα)s1+α

s2(1+α) + 2s1+α cos(πα) + 1
ds.

Also recall from Lemma 12 that �z(0) = E0(e
−Tz(X)) = e−z. Consequently,(

ϕ(z)
)2 = 1 − �0(z)�z(0)

= 1 − exp(−z)
1 + α

π

∫ ∞
0

sin(πα)s1+α

s2(1+α) + 2s1+α cos(πα) + 1
e−zs ds

= 1 + α

π

∫ ∞
0

sin(πα)s1+α

s2(1+α) + 2s1+α cos(πα) + 1

(
1 − e−(s+1)z)ds

≤ (1 + α) sin(πα)

π
z

∫ z−1

0

s1+α

s2(1+α) + 2s1+α cos(πα) + 1
(1 + s) ds

+ (1 + α) sin(πα)

π

∫ ∞
z−1

s1+α

s2(1+α) + 2s1+α cos(πα) + 1
ds.

Splitting s2(1+α) = s2(1+α) sin2(πα) + s2(1+α) cos2(πα), we can further bound
above by

z + 1 + α

π sin(πα)
z

∫ z−1

0
s−α ds + (1 + α)

π sin(πα)

∫ ∞
z−1

s−1−α ds

= z + 1 + α

(1 − α)π sin(πα)
zα + (1 + α)

απ sin(πα)
zα

≤ zα

(
1 + 1 + α

(1 − α)π sin(πα)
+ (1 + α)

απ sin(πα)

)
,

and the result follows. �

PROOF OF PROPOSITION 23. By [8], Proposition V.(3.28), we have for all
N,δ ∈ (0,∞) and x, y ∈ R

P
(

sup
0≤t≤N

∣∣�y(t) − �x(t)
∣∣ > 2δ

)
≤ 2eN exp

(−δ/ϕ
(|y − x|)),
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where ϕ is as in Lemma 24, and setting r = 2δ, z = |y − x| and with K as in the
preceding lemma, we conclude for the first inequality. The second is an elementary
integration of the first. �

In fact, the statement on moments, when expressed in terms of ϕ, also holds in
the full generality of the Blumenthal–Getoor result, for their notion of a standard
Markov process. Since the tail estimate is also independent of the starting value of
X, by the strong Markov property at Tx ∧ Ty , it turns out that it is easy to improve
the dependence on N in the moment bounds, in the general case. In particular, we
obtain the following.

COROLLARY 25. There is K > 0, such that for all p > 0, x, y ∈ R and N > 0,

E
(

sup
0≤t≤N

∣∣�y(t) − �x(t)
∣∣p) ≤ 2�(p + 1)K−p(N + 1)p+1e|y − x|pα/2.

PROOF. Writing �y(t) and �x(t) as sums of increments �·(k + 1) − �·(k) and
�·(t) − �·(�t�), we find

sup
0≤t≤N

∣∣�y(t) − �x(t)
∣∣

≤ ∑
0≤k≤�N�

sup
0≤s≤1

∣∣(�y(k + s) − �y(k)
)− (

�x(k + s) − �x(k)
)∣∣.

We estimate this sum as follows:

(14)

(�N�∑
k=0

xk

)p

≤
(
(N + 1) max

0≤k≤�N�xk

)p ≤ (N + 1)p
�N�∑
k=0

x
p
k .

By the Markov property and since local times are additive functionals, all �N�+ 1
terms satisfy the same moment bound from Proposition 23, applied for unit time
intervals, so we obtain the estimate as claimed. �

COROLLARY 26. For any random time V with moments of all orders and any
p > 0, there is Mp depending on the distribution of V such that for all x, y ∈ R,
we have

E
(

sup
0≤t≤V

∣∣�y(t) − �x(t)
∣∣p) ≤ Mp|y − x|pα/2.

PROOF. We use the Cauchy–Schwarz inequality to obtain

E
(

sup
0≤t≤V

∣∣�y(t) − �x(t)
∣∣p)

≤ ∑
k≥2

E
(
1{k−2≤V <k−1} sup

0≤t≤k−1

∣∣�y(t) − �x(t)
∣∣p)
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≤ ∑
k≥2

(
P(k − 2 ≤ V < k − 1)

)1/2
(
E
(

sup
0≤t≤k−1

∣∣�y(t) − �x(t)
∣∣2p

))1/2

≤
(∑

k≥2

kp+1/2(P(V ≥ k − 2)
)1/2

)√
2e�(2p + 1)K−p|y − x|pα/2.

Since finite p′th moment of V implies that there is k0(p
′) ≥ 1 such that P(V ≥

k − 2) ≤ k−p′
for all k ≥ k0(p

′), we can choose any p′ > 2p + 3 to see that the
series in our expression converges. �

Now consider the spectrally positive stable-(1 + α) process restricted to an in-
terval [0, b]. Recall that this process is defined as Xb

r = Xτ [0,b](r), where

τ [0,b](r) = inf
{
t ≥ 0 : R[0,b](t) > r

}
and R[0,b](t) =

∫ t

0
1{0≤Xs≤b} ds.

Suppose we are only interested in E(sup0≤t≤V |�y(t) − �x(t)|p) for a restricted
range of x, y ∈ [a, b]. We can use the fact that Xb is a Markov process with the
same local time differences as X in the interval [0, b] to improve on this corollary
and effectively allow times V = τ [0,b](Q), where only Q is required to have mo-
ments of all orders. This is a genuine improvement because E(τ [0,b](r)) = ∞ for
all r ≥ 0, since there is positive probability that X leaves (−∞, b] during [0, r]
after which to return inside [0, b] it takes X a level passage time given by a stable-
(1/(1 + α)) ladder time subordinator.

PROPOSITION 27. For any b > 0, any random time Q with moments of all
orders and any p > 0, there is Mp,b depending on the distribution of Q such that
for all x, y ∈ [0, b], we have

E
(

sup
0≤t≤τ [0,b](Q)

∣∣�y(t) − �x(t)
∣∣p) ≤ Mp,b|y − x|pα/2.

PROOF. We repeat some of the previous arguments. First, [8], Proposition
V.(3.28), applies to Xb with local times �x

b(r) = �x(τ [0,b](r)), 0 ≤ x ≤ b, r ≥ 0:
for all N > 0, δ > 0, x, y, z ∈ [0, b],

Pz

(
sup

0≤t≤N

∣∣�y
b(r) − �x

b(r)
∣∣ ≥ 2δ

)
≤ 2eN exp

(−δ/2ϕb(x, y)
)
,

where(
ϕb(x, y)

)2 = 1 −Ex

(
exp

(−Ty

(
Xb)))Ey

(
exp

(−Tx

(
Xb)))

≤ 1 −Ex

(
exp

(−Ty(X)
))
Ey

(
exp

(−Tx(X)
)) = (

ϕ
(|y − x|))2

.

By Lemma 24 and integration, we find K > 0 such that for all p > 0,

Ez

(
sup

0≤r≤N

∣∣�y
b(r) − �x

b(r)
∣∣p) ≤ 2�(p + 1)K−peN |y − x|pα/2.
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Now the arguments of Corollaries 25 and 26 apply to give Mp,b so that

E
(

sup
0≤t≤τ [0,b](Q)

∣∣�y(t) − �x(t)
∣∣p) = E

(
sup

0≤r≤Q

∣∣�y
b(t) − �x

b(t)
∣∣p)

≤ Mp,b|y − x|pα/2. �

THEOREM 28. For any b > 0, any random time Q with moments of all orders
and any ν ∈ (0, α/2), the random variable

Db
ν

(
τ [0,b](Q)

) = sup
0≤t≤τ [0,b](Q),0≤x<y≤b

|�y(t) − �x(t)|
|y − x|ν < ∞ a.s.

has moments of all orders.

PROOF. Now consider the Banach space of bounded continuous functions
from [0,∞) to R equipped with the supremum norm ‖ · ‖∞ (rather than any lo-
calised version). Then the stopped local time processes Lv = (�bv(t ∧ τ [0,b](Q)),

t ≥ 0), with levels [0, b] parametrised as bv, v ∈ [0,1], are members of this Banach
space and satisfy

E
(‖Lv − Lu‖p∞

) ≤ Mp,bb
pα/2|v − u|pα/2 for all u, v ∈ [0,1],

by Proposition 27. We can apply the Revuz–Yor version of the Kolmogorov–
Chentsov theorem [43], Theorem I.(2.1), with ε = pα/2 − 1, to find that

E
((

Db
ν

(
τ [0,b](Q)

))p) = 1

bpν
E

((
sup

0≤u<v≤1

‖Lv − Lu‖∞
|v − u|ν

)p)
< ∞,

as long as ν ∈ (0, ε/p), that is, if ν < (α/2) − (1/p), which gives the result for
ν ∈ (0, α/2) by letting p → ∞. �

Now consider the Poisson point process of excursions of X away from 0, en-
riched by marking all jumps by paths according to a nontrivial marking kernel.
Further mark each excursion with probability 1 − e−m, where m is the value of the
path in the jump of X across 0 when crossing 0. Denote by S the time at which
the excursion point process has the first mark, and by T the left endpoint of the
corresponding excursion of X.

COROLLARY 29. For any b > 0 and ν ∈ (0, α/2), the random variable

D[0,b]
ν := D[0,b]

ν (T ) = sup
0≤t≤T ,0≤x<y≤b

|�y(t) − �x(t)|
|y − x|ν < ∞ a.s.

and has moments of all orders.
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PROOF. First, note that T = τ [0,b](σ b
S−) ≤ τ [0,b](σ b

S ). By elementary proper-
ties of Poisson point processes, S is exponentially distributed, with parameter μ,
say. Note, however, that S is not independent of σb. We use the same argument as
in Corollary 26 and (14) to find

E
((

σb
S

)p) ≤ ∑
k≥1

(
P(S ≥ k − 1)

)1/2(
E
((

σb
k

)2p))1/2

≤
(∑

k≥1

e−μk/2kp+1/2
)
eμ/2(E((σb

1
)2p))1/2

.

By Proposition 21, the inverse local time σb
1 of Xb has moments of all orders.

Also the series clearly converges. Hence, σb
S has moments of all orders, as does

σb
S− < σb

S . Hence, Theorem 28 applies to Q = σb
S−, and this completes the proof.

�

5.3. Proof of Theorem 3.

PROOF OF THEOREM 3. We repeat the argument of the previous proof.
Specifically, we apply Theorem 28 to Q = R[0,b](τ 0(S)) = σb

S . �

6. Moments of Hölder constants of BESQ processes, bridges and excur-
sions. In this section, we study examples of paths Z as needed for Theorem 1,
specifically, Brownian paths and squared Bessel processes (BESQ) of dimen-
sion δ ∈ R. We check that they satisfy the moment assumption of Theorem 1.
Section 6.1 studies BESQ processes as sums of i.i.d. squared Brownian motions.
Section 6.2 uses stochastic calculus and captures a larger class of BESQ-type
stochastic differential equations. We specialise to BESQ processes in Section 6.3.
Section 6.4 demonstrates how Theorem 1 can be applied when jumps are marked
by BESQ excursions. This model plays an important role in [19].

6.1. Brownian motion, Brownian bridge and Brownian excursion.

LEMMA 30. Let (Bt ,0 ≤ t ≤ 1) be standard Brownian motion and γ ∈
(0,1/2). Then

Dγ = sup
0≤s<t≤1

|Bt − Bs |
|t − s|γ < ∞ a.s.

and the uniform bound Dγ has moments of all orders.

PROOF. This is well known and follows straight from the Kolmogorov–
Chentsov theorem; see, for example, Revuz and Yor [43], Theorem I.(2.1). Specif-
ically, by scaling, we have E(|Bt − Bs |2p) = Cp|t − s|p for all p > 0, so the
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theorem yields E(D
p
γ ) < ∞ as long as p > 1 and 0 < γ < 1/2 − 1/(2p), that is,

0 < γ < 1/2 and p > 1/(1 − 2γ ). This gives moments of all orders, as required.
�

COROLLARY 31. Let (Bbr
t ,0 ≤ t ≤ 1) and (Bex

t ,0 ≤ t ≤ 1) be standard Brow-
nian bridge and standard Brownian excursion and γ ∈ (0,1/2). Then

Dbr
γ = sup

0≤s<t≤1

|Bbr
t − Bbr

s |
|t − s|γ < ∞ and Dex

γ = sup
0≤s<t≤1

|Bex
t − Bex

s |
|t − s|γ < ∞ a.s.

and the uniform bounds Dbr
γ and Dex

γ have moments of all orders.

PROOF. We use the pathwise representations, due to Lévy and Vervaat:

Bbr
t = Bt − tB1, 0 ≤ t ≤ 1 and Bex

t =
{
Bbr

M+t , 0 ≤ t ≤ 1 − M,

Bt−(1−M), 1 − M ≤ t ≤ 1,

where M = inf{t ≥ 0 : Bbr
t = min{Bbr

r ,0 ≤ r ≤ 1}}. Then we have for all 0 ≤ s <

t ≤ 1 ∣∣Bbr
t − Bbr

s

∣∣ ≤ |Bt − Bs | + |t − s||B1 − B0| ≤ 2Dγ |t − s|γ
and similarly for |Bex

t − Bex
s | if 0 ≤ s < t ≤ 1 − M or 1 − M ≤ s < t ≤ 1. For

0 ≤ s < 1 − M < t ≤ 1,∣∣Bex
t − Bex

s

∣∣ = ∣∣Bbr
M+s − Bbr

t−(1−M)

∣∣
≤ ∣∣Bbr

M+s − Bbr
1

∣∣+ ∣∣Bbr
t−(1−M) − Bbr

0

∣∣
≤ 4Dγ |t − s|γ .

Hence, Dbr
γ ≤ 2Dγ and Dex

γ ≤ 4Dγ . �

Via |(Bbr
t )2 − (Bbr

s )2| = |Bbr
t −Bbr

s ||Bbr
t +Bbr

s | ≤ 4Dbr
γ sup0≤r≤1 |Bbr

r |, Cauchy–
Schwarz (or binomial formulas), the fact that sup0≤r≤1 |Bbr

r | ≤ sup0≤r≤1 |Bex
r | in

the Vervaat coupling and the fact that the maximum of Bex has moments of all
orders, these results extends to BESQ(1)-bridges. By [41], Remark (5.8)(i), on the
one hand sums of BESQ(1) bridges are BESQ(δ) bridges for δ ∈N, while suitable
couplings of noninteger dimensions allow to extend this to any real dimension
δ ≥ 1, and on the other hand, these bridges are also the normalised BESQ(4 −
δ) excursions, so all these processes have Hölder constants with moments of all
orders.

We will use a different approach to also include results for BESQ processes
starting from x �= 0. Such processes appear in the present paper, as well as further
work in [19], as the processes (Zt (y − Xt−), y ≥ 0), when Xt− < 0. In the study
of the process Z[0,T ](y) = ∑

0≤t≤T Zt(y − Xt−), y ≥ 0 of (1), these populations
already have a positive mass at level 0, and we may be interested in conditioning
on the initial population; see [19] for more details.
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6.2. Results for general diffusions of BESQ-type. Our arguments are adapted
from those by Hutzenthaler et al. [23], where similar results are obtained for a
different class of processes.

LEMMA 32. Let (Xt , t ≥ 0) be a BESQ(δ) process starting from x ≥ 0, for
some dimension parameter δ ≥ 0. Then

‖Xt‖p ≤ x + t
(
δ + 2(p − 1)+

)
for all t ≥ 0 and p ∈ (0,∞).

PROOF. Recall, for example, from [22], Definition 1, that we may assume that
for a Brownian motion B:

(15) Xt = x + δt + 2
∫ t

0

√
Xs dBs a.s., t ≥ 0.

By continuity of p-norms, it suffices to show that for all ε ∈ (0,1) and k ≥ 0,

(16) ‖Xt + ε‖p ≤ x + ε + t
(
δ + 2(p − 1)+

)
for all t ≥ 0 and p ∈ (k, k + 1].

We will prove this by induction on k. For k = 0 note that by (15)

E(Xt) = x + δt

⇒ (
E
(
(Xt + ε)p

))1/p ≤ E(Xt + ε) = x + ε + tδ for all p ∈ (0,1].
Assuming (16) for some k ≥ 0, we obtain for all t ≥ 0 and p ∈ (k + 1, k + 2] by
Itô’s lemma that

E
(
(Xt + ε)p

)
= (x + ε)p +

∫ t

0

(
δpE

(
(Xs + ε)p−1)

+ 2p(p − 1)E
(
Xs(Xs + ε)p−2))ds

≤ (x + ε)p +
∫ t

0
p
(
δ + 2(p − 1)

)
E
(
(Xs + ε)p−1)ds

≤ (x + ε)p +
∫ t

0
p
(
δ + 2(p − 1)

)(
x + ε + s

(
δ + 2(p − 2)+

))p−1
ds

≤ (x + ε)p + (
x + ε + t

(
δ + 2(p − 1)

))p − (x + ε)p

= (
x + ε + t

(
δ + 2(p − 1)

))p
. �

LEMMA 33. Let μ : R → R be Lipschitz and bounded by c > 0. Let (Bt , t ≥
0) be Brownian motion. For x ∈ R, let (Xt , t ≥ 0) be a stochastic process with
continuous sample paths adapted to the same filtration as B and satisfying∫ t

0 |μ(Xs)|ds < ∞ a.s. and

(17) Xt = x +
∫ t

0
μ(Xr) dr + 2

∫ t

0

√|Xr |dBr a.s., t ≥ 0.
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Then for all t ≥ s ≥ 0 and p ∈ [2,∞) we have that

‖Xt − Xs‖p ≤ √
t − s

(√
tc + √

t2
√

(p − 1)(c + p − 2)

+ 2
√

p − 1
√

|x| + 2t (c + p − 2)
)
.

We remark that for any μ satisfying the hypotheses of the lemma, the weak
existence and pathwise uniqueness hold for the SDE (13) by [18], Theorem 5.3.8
and Theorem 5.3.10. Strong existence of solutions and the Markov property of
solutions then follows from [26], Theorem 21.11 and Theorem 21.14.

PROOF. By passing to −X if needed, we may assume that x ≥ 0. Using the
strong existence of solutions to the squared Bessel process SDE and the compari-
son of one-dimensional diffusions, there exists a BESQ(c) process (Zt )t≥0 starting
from x and a BESQ(−c) process (Yt )t≥0 starting from 0 such that Yt ≤ Xt ≤ Zt

for all t ≥ 0. Since Yt ≤ 0 and Zt ≥ 0, we have that |Xt |p ≤ Z
p
t + |Yt |p . Note

that |Yt | is a BESQ(c) process starting from 0. Using the inequality (x + y)1/p ≤
x1/p + y1/p for x, y > 0 and p ≥ 1, Lemma 32 implies that

(18) ‖Xt‖p ≤ ‖Zt‖p + ‖Yt‖p ≤ |x| + 2t
(
c + 2(p − 1)

)
.

Now consider the case s = 0. Then

‖Xt − x‖p ≤
∥∥∥∥∫ t

0

∣∣μ(Xr)
∣∣dr

∥∥∥∥
p

+
∥∥∥∥∫ t

0
2
√|Xr |dBr

∥∥∥∥
p

≤ ct +
∥∥∥∥∫ t

0
2
√|Xr |dBr

∥∥∥∥
p

.

Let Mt = ∫ t
0 2

√|Xr |dBr . Since p ≥ 2, Itô’s lemma implies

M
p
t =

∫ t

0
pMp−1

r dMr + p(p − 1)

2

∫ t

0
Mp−2

r d[M]r

=
∫ t

0
pMp−1

r dMr + 2p(p − 1)

∫ t

0
Mp−2

r |Xr |dr.

Taking expectations and using Hölder’s inequality,

E
(
M

p
t

) = 2p(p − 1)

∫ t

0
E
(
Mp−2

r |Xr |)dr

≤ 2p(p − 1)

∫ t

0

(
E
(
Mp

r

))(p−2)/p(
E
(|Xr |p/2))2/p

dr.

Since f (r) = E(M
p
r ) is continuous, the generalized Gronwall inequality (see, e.g.,

Bihari [7]) with �(u) = ∫ u
0 r(2−p)/2 dr = (p/2)u2/p in the notation there yields

E
(
M

p
t

) ≤
(

4(p − 1)

∫ t

0

(
E
(|Xr |p/2))2/p

dr

)p/2
.
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Substituting the bound from equation (18) gives

E
(
M

p
t

) ≤ (
4(p − 1)

(|x|t + t2(c + p − 2)
))p/2

.

Consequently,

(19) ‖Xt − x‖p ≤ ct + 2
√

(p − 1)
(|x|t + t2

(
c + (p − 2)

))
.

Now let t ≥ s ≥ 0. By the Markov property of X at time s and equations (19) and
(18), we get(
E
(|Xt − Xs |p))1/p

≤ (
E
((

c(t − s) + 2
√

(p − 1)
(|Xs |(t − s) + (t − s)2(c + p − 2)

))p))1/p

≤ (
E
((

(t − s)
(
c + 2

√
(p − 1)(c + p − 2)

)+ 2
√

p − 1
√

t − s
√|Xs |)p))1/p

≤ (t − s)
(
c + 2

√
(p − 1)(c + p − 2)

)
+ 2

√
p − 1

√
t − s

√
|x| + 2s

(
c + 2(p/2 − 1)

)
. �

COROLLARY 34. Let (Xt ,0 ≤ t ≤ 1) satisfy the hypotheses of Lemma 33.
Then for every p ∈ (2,∞) and γ ∈ (0, (p − 2)/2p),

E

((
sup

0≤s<t≤1

|Xt − Xs |
|t − s|γ

)p)

≤ 2γp+p+1(c + 2
√

(p − 1)(c + p − 2) + 2
√

p − 1
√|x| + 2(c + p − 2))p

(1 − 2γ+(2−p)/2p)p
.

PROOF. The fact that

E

((
sup

0≤s<t≤1

|Xt − Xs |
|t − s|γ

)p)
< ∞

is an immediate consequence of [43], Theorem I.(2.1), and the explicit bound as a
function of x, c, p and γ is obtained by keeping track of the constants in the proof
of that theorem. �

6.3. Results for BESQ processes. The following corollary is an important spe-
cial case of Corollary 34.

COROLLARY 35. For δ ≥ 1, let (Xt ,0 ≤ t ≤ 1) be a BESQ(δ) process start-
ing from 0, and γ ∈ (0,1/2). Then

Dδ,γ = sup
0≤s<t≤1

|Xt − Xs |
|t − s|γ < ∞ a.s.

with moments of all orders.
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COROLLARY 36. For δ ≥ 1, let Z be a standard BESQ(δ) bridge from 0 to 0
or equivalently a BESQ(4 − δ) excursion, and let γ ∈ (0,1/2). Then

D∗
γ = sup

0≤s<t≤1

|Zt − Zs |
|t − s|γ < ∞ a.s.

with moments of all orders.

PROOF. The equivalence of BESQ(δ) bridges and BESQ(4 − δ) excursions
was noted in [41], Remark (5.8)(i). By [43], Exercises XI.(3.6)–(3.7), the process
(Z1−t ,0 ≤ t ≤ 1) has the same distribution as Z and we can write Zu = u2X1/u−1
for a BESQ(δ) process X starting from 0. For 1/2 ≤ s < t ≤ 1, we then obtain by
the previous corollary

|Zt − Zs | = ∣∣t2X1/t−1 − s2X1/s−1
∣∣

≤ |X1/t−1 − X1/s−1| + (
t2 − s2)X1/s−1

≤ 4γ Dδ,γ |t − s|γ + 2|t − s|γ X,

where X = sup0≤r≤1 Xr . Similarly, we can write Zu = (1 − u)2X1/(1−u)−1 for
another (dependent) BESQ(δ) process X starting from 0, and for 0 ≤ s < t ≤ 1/2,
we obtain |Zt − Zs | ≤ (4γ D̃δ,γ + 2X)|t − s|γ . Finally, for 0 ≤ s < 1/2 < t ≤ t ,
the triangular inequality yields the required bound so that

D∗
γ ≤ 4γ Dδ,γ + 2X + 4γ D̃δ,γ + 2X

has moments of all orders. �

6.4. BESQ-marked stable processes and their local times. If X has Laplace
exponent ψ(η) = η1+α , then Xa(t) = Xat , t ≥ 0, has Laplace exponent ψa(η) =
aη1+α . From the occupation density formula, we see easily that

�y
a(t) = 1

a
�y(at) and τy

a (s) = 1

a
τy(as).

Leaving marks unscaled, mh,a(y, t) = mh(y, at), and Theorem 1 holds with ca =
ac, Corollary 2 with c◦

a = c◦/a.
Specifically, choosing q = 1 and κ1-scaled BESQ(−2α) excursions, we can

calculate

E
(
Zα

U

) = 2α�(1 + α)

1 + α
⇒ ca = a

�(1 + α)

�(1 − α)
2α.

Apart from a = 1, there are various other natural choices that keep constants in
certain formulas simple. For the following, we choose ca = 1/�(1 − α), so that
Proposition 8 yields Laplace exponent �a(ξ) = ξα . This corresponds to setting
a = 1/�(1 + α)2α . For α = 1/2, these are a = √

2/π and ca = 1/
√

π . For illus-
tration and ease of reference in [19] and future work, let us restate Theorem 1 in
this special case.
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THEOREM 37. Let α ∈ (0,1) and a = 1/�(1 + α)2α . For a BESQ(−2α)-
marked stable process Xa with Laplace exponent ψa(η) = aη1+α , we have almost
surely

lim
h↓0

sup
0≤t≤T

sup
y∈R

∣∣�(1 − α)hαmh,a(y, t) − �y
a(t)

∣∣ = 0, for all T > 0,

where local times �
y
a(t) and mass counts mh,a(y, t) are associated with Xa for

y ∈ R, t ≥ 0, h > 0.

PROOF. To apply Theorem 1, let us first note that the Hölder constant of a
BESQ(−2α) excursion has moments of all orders by Corollary 36. Then, for our
choice a = 1/�(1 + α)2α and ca = ac, we find that∣∣�(1 − α)hαmh,a(y, t) − �y

a(t)
∣∣ = 1

a

∣∣∣∣hα

c
mh(y, at) − �y(at)

∣∣∣∣,
and the application of Theorem 1 yields that the relevant suprema tend to 0 as
h ↓ 0. �
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