Modern Bayesian Nonparametrics

Peter Orbanz Yee Whye Teh

Cambridge University and Columbia University Gatsby Computational Neuroscience Unit, UCL

NIPS 2011

OVERVIEW

- 1. Nonparametric Bayesian models
- 2. Regression
- 3. Clustering
- 4. Applications

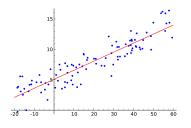
Coffee refill break

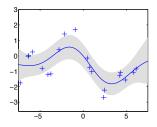
- 5. Asymptotics
- 6. Exchangeability
- 7. Latent feature models
- 8. Dirichlet process
- 9. Completely random measures
- 10. Summary

PARAMETERS AND PATTERNS

Parameters







Inference idea

data = underlying pattern + independent noise

TERMINOLOGY

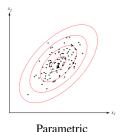
Parametric model

▶ Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

- ▶ Number of parameters grows with sample size
- ► ∞-dimensional parameter space

Example: Density estimation



Nonparametric

NONPARAMETRIC BAYESIAN MODEL

Definition

A nonparametric Bayesian model is a Bayesian model on an ∞ -dimensional parameter space.

Interpretation

Parameter space \mathcal{T} = set of possible patterns, for example:

Problem	\mathcal{T}
Density estimation	Probability distributions
Regression	Smooth functions
Clustering	Partitions

Solution to Bayesian problem = posterior distribution on patterns

REGRESSION

GAUSSIAN PROCESSES

Nonparametric regression

Patterns = continuous functions, say on interval [a, b]:

$$\theta: [a,b] \to \mathbb{R}$$
 $\mathcal{T} = C[a,b]$

$$\mathcal{T}=C[a,b]$$

Gaussian process prior

▶ Hyperparameters: Mean function and covariance function

$$m \in C[a,b]$$
 and $k: [a,b] \times [a,b] \to \mathbb{R}$

$$k: [a,b] \times [a,b] \to \mathbb{I}$$

▶ Plug in finite set $\mathbf{s} = \{s_1, \dots, s_n\} \subset [a, b]$:

$$m(\mathbf{s}) = \begin{pmatrix} m(s_1) \\ \vdots \\ m(s_n) \end{pmatrix}$$
 and $k(\mathbf{s}, \mathbf{s}) = \begin{pmatrix} k(s_1, s_1) & \dots & k(s_1, s_n) \\ \vdots & & \vdots \\ k(s_n, s_1) & \dots & k(s_n, s_n) \end{pmatrix}$

Distribution of θ is Gaussian process if

$$(\theta(s_1),\ldots,\theta(s_n)) \sim \mathcal{N}(m(\mathbf{s}),k(\mathbf{s},\mathbf{s}))$$
 for any $\mathbf{s} \subset [a,b]^n$

GAUSSIAN PROCESS REGRESSION

Observation model

- ▶ Inputs $\mathbf{s} = (s_1, \dots, s_n)$
- ightharpoonup Outputs $\mathbf{t} = (t_1, \ldots, t_n)$

$$t_i \sim \mathcal{N}ig(heta(s_i), \sigma_{ ext{noise}}ig)$$

Posterior distribution

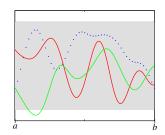
- Posterior is again a Gaussian Process
- Quantifies prediction uncertainty

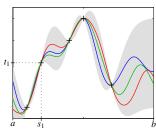
Predictions at test points \mathbf{s}_*

Test inputs $\mathbf{s}_* = (s_{*1}, \dots, s_{*m})$

$$\hat{\mathbf{m}} = k(\mathbf{s}_*, \mathbf{s}) (k(\mathbf{s}, \mathbf{s}) + \sigma_{\text{noise}}^2 \mathbf{I})^{-1} \mathbf{t}$$

$$\hat{\mathbf{k}} = k(\mathbf{s}_*, \mathbf{s}_*) - k(\mathbf{s}_*, \mathbf{s}) (k(\mathbf{s}, \mathbf{s}) + \sigma_{\text{noise}}^2 \mathbf{I})^{-1} k(\mathbf{s}, \mathbf{s}_*)$$

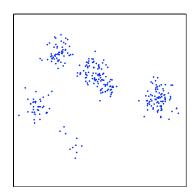




LEARNING CONTROL (C. E. RASMUSSEN & M. P. DEISENROTH)

CLUSTERING

CLUSTERING



FINITE MIXTURE MODELS

Standard probabilistic model for clustering

► For each observation i = 1, ..., n:

Data: $x_i|z_i = k \sim F(\phi_k)$

Cluster indicator: $z_i \sim \mathbf{w}$

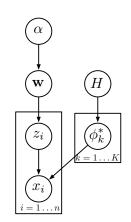
Parameters:

Mixing proportions: $\mathbf{w} \sim \text{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$

Cluster parameters: $\phi_k^* \sim H$

Learning and model selection

- ► For each K = 1, 2, 3, ...:
 - ▶ While learning not converged:
 - Update latent variables;
 - ▶ Update parameter.
 - ▶ Determine fit of model with K clusters.



PARTITIONS

Natural object of inference in clustering problems

- A cluster c is a subset of indices $[n] = \{1, \dots, n\}$.
- \blacktriangleright A partition π is a set of clusters.
 - Clusters are non-empty and disjoint;
 - ▶ Union of clusters is [*n*].

$$\pi = \{\{1, 6, 7\}, \{2\}, \{3\}, \{4, 5\}\}\$$

▶ Denote set of partitions of [n] by $\mathcal{P}_{[n]}$.

Bayesian nonparametric model for clustering

- ▶ Prior distribution over $\mathcal{P}_{[n]}$.
- Likelihood model for data.

EXCHANGEABILITY

Data set 1:

Data set 2:

► Exchangeability:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_{\sigma(1)}, \dots, X_n = x_{\sigma(n)})$$

$$\mathbb{P}(\boldsymbol{\pi} = \{\{1, 6, 7\}, \{2\}, \{3\}, \{4, 5, 8\}\})$$

$$= \mathbb{P}(\boldsymbol{\pi} = \{\{4, 6, 3\}, \{8\}, \{7\}, \{1, 5, 2\}\})$$

EXAMPLES

Uniform distribution over $\mathcal{P}_{[n]}$

- Exchangeable.
- ▶ Not self-consistent.

```
1/15
       {{1 2 3 4}}
                                          = { { 1 2 3 } }
                                                           2/15
1/15
       {{1 2 3} {4}}
1/15
       {{1 2 4} {3}}
                                                           3/15
1/15
       {{1 2} {3 4}}
       {{1 2} {3} {4}}
1/15
1/15
       {{1 3 4} {2}}
1/15
       {{1 3} {2 4}}
                                          E{{1 3} {2}}
                                                           3/15
       {{1 3} {2} {4}}
1/15
1/15
       {{1 4} {2 3}}
1/15
       {{1} {2 3} {4}}
                                                           3/15
1/15
       {{1} {2 3 4}}
1/15
       {{1 4} {2} {3}}
1/15
       {{1} {2 4} {3}}
                                            {1} {2} {3}} 4/15
1/15
       {{1} {2} {3 4}}
1/15
       {{1} {2} {3} {4}}
```

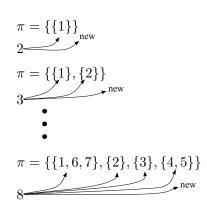
EXAMPLES

Preferential attachment

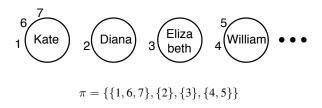
- ▶ Elements inserted into partition one at a time:
 - ▶ Inserted into an existing cluster, or
 - Into a new cluster.
- ► Example:

$$\begin{split} \mathbb{P}(8 \to \{1,6,7\}) &= (1-\delta)\frac{3}{7} \\ \mathbb{P}(8 \to \{2\}) &= (1-\delta)\frac{1}{7} \\ \mathbb{P}(8 \to \{3\}) &= (1-\delta)\frac{1}{7} \\ \mathbb{P}(8 \to \{4,5\}) &= (1-\delta)\frac{2}{7} \\ \mathbb{P}(8 \to \text{new}) &= \delta \end{split}$$

► Typically not exchangeable.



CHINESE RESTAURANT PROCESS



- One customer enters the restaurant at a time:
 - ▶ The first customer sits at the first table.
 - Subsequent customer n + 1:
 - ▶ Joins table *c* with probability $\frac{|c|}{n+\alpha}$.
 - Starts a new table with probability $\frac{\alpha}{n+\alpha}$.
- ▶ Distribution over partitions that is exchangeable and self-consistent.

THE GENERATIVE PROCESS

$$\pi \sim \text{CRP}(\alpha)$$

For $c \in \pi$: $\phi_c^* \mid \boldsymbol{\pi} \sim H$

For $i \in c$: $x_i \mid \boldsymbol{\pi}, \boldsymbol{\phi}^* \sim F(\phi_c^*)$

 $\pi = \{\{1,6,7\},\{2\},\{3\},\{4,5\}\}$

THE GENERATIVE PROCESS

$$\pi \sim \text{CRP}(\alpha)$$

For $c \in \pi$: $\phi_c^* \mid \boldsymbol{\pi} \sim H$

For
$$i \in c$$
: $x_i \mid \boldsymbol{\pi}, \boldsymbol{\phi}^* \sim F(\phi_c^*)$

 $\pi = \{\{1, 6, 7\}, \{2\}, \{3\}, \{4, 5\}\}$ $\phi_{K} \quad \phi_{D} \quad \phi_{E} \quad \phi_{W}$

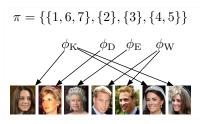
18/72

THE GENERATIVE PROCESS

$$\pi \sim \text{CRP}(\alpha)$$

For $c \in \pi$: $\phi_c^* \mid \boldsymbol{\pi} \sim H$

For $i \in c$: $x_i \mid \boldsymbol{\pi}, \boldsymbol{\phi}^* \sim F(\phi_c^*)$



INFERENCE

Gibbs sampling

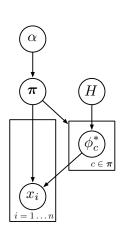
► Update cluster parameters:

For
$$c \in \pi$$
: $p(\phi_c^*) = h(\phi_c^*) \prod_{i \in c} f(x_i | \phi_c^*)$

▶ Update partition:

For
$$i \in [n]$$
:
$$p(i \in c_{-i}) \propto \frac{|c_{-i}|}{n-1+\alpha} f(x_i | \phi_c^*)$$
$$p(i \text{ in new cluster }) \propto \frac{\alpha}{n-1+\alpha} f(x_i | \phi_{\text{new}}^*)$$

 Other samplers: split-merge [JN04], conditional sampling [IJ01, Wal07, PR08], variational inference [BJ06, KWV07].



INFINITE MIXTURE MODELS

Finite mixture model

▶ For each observation i = 1, ..., n:

Data:
$$x_i|z_i = k \sim F(\theta_k)$$

Cluster indicator: $z_i \sim \mathbf{w}$

Parameters:

Mixing proportions:
$$\mathbf{w} \sim \text{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

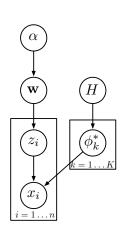
Cluster parameters: $\phi_k^* \sim H$

Infinite limit

▶ Derive the induced distribution over partitions.

$$\mathbb{P}(\boldsymbol{\pi}_K = \boldsymbol{\pi}) = \frac{\Gamma(K+1)\Gamma(\alpha)}{\Gamma(K-|\boldsymbol{\pi}|+1)} \prod_{\boldsymbol{\alpha}} \frac{\Gamma(|\boldsymbol{c}|+\alpha/K)}{\Gamma(\alpha/K)}$$

Take $K \to \infty$.

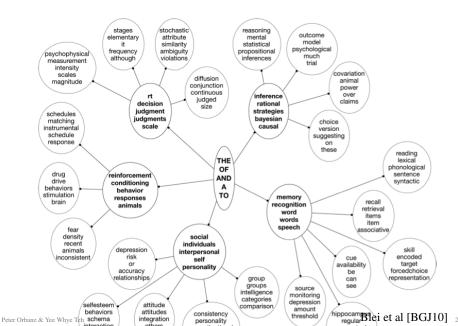


APPLICATIONS

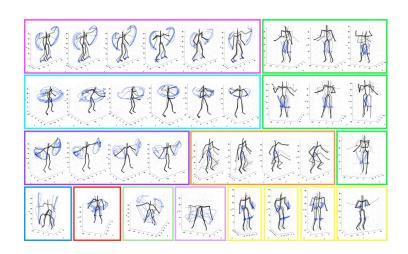
APPLICATIONS

Applications	Object of interest	Bayesian nonparametric model	
Classification & regression	Function	Gaussian process	
Clustering	Partition	Chinese restaurant process	
Density estimation	Density	Dirichlet process mixture	
Hierarchical clustering	Hierarchical partition	Dirichlet/Pitman-Yor diffusion tree,	
		Kingman's coalescent, Nested CRP	
Latent variable modelling	Features	Beta process/Indian buffet process	
Survival analysis	Hazard	Beta process, Neutral-to-the-right process	
Power-law behaviour		Pitman-Yor process, Stable-beta process	
Dictionary learning	Dictionary	Beta process/Indian buffet process	
Dimensionality reduction	Manifold	Gaussian process latent variable model	
Deep learning	Features	Cascading/nested Indian buffet process	
Topic models	Atomic distribution	Hierarchical Dirichlet process	
Time series		Infinite HMM	
Sequence prediction	Conditional probs	Sequence memoizer	
Reinforcement learning	Conditional probs	infinite POMDP	
Spatial modelling	Functions	Gaussian process,	
		dependent Dirichlet process	
Relational modelling		Infinite relational model, infinite hidden	
		relational model, Mondrian process	
:	:	:	
Peter Orbanz & Yee Whye Teh	:	· 22/72	

LEARNING TOPIC HIERARCHIES



MOTION CAPTURE SEGMENTATION



Fox et al [FSJW10] $_{24/72}$

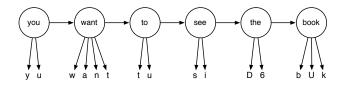
WORD SEGMENTATION

山花貞夫・新民連会長は十六日の記者会見で、村山富 市首相ら 社会党 執行部とさきがけが連携強化をめざし た問題について「私たちの行動が新しい政界の動きを 作ったといえる。統一会派を超えて将来の日本の...

今后一段时期,不但居民会更多地选择国债,而且一些金融 机构在准备金利率调低后,出于安全性方面的考虑,也会将 部分资金用来购买 国债。

vuwanttusiD6bUk?

WORD SEGMENTATION

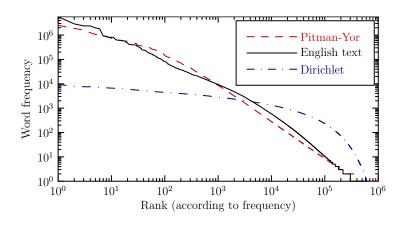


yuwanttusiD6bUk

	P	R	F	BP	BR	BF	LP	LR	LF
NGS-u	67.7	70.2	68.9	80.6	84.8	82.6	52.9	51.3	52.0
MBDP-1	67.0	69.4	68.2	80.3	84.3	82.3	53.6	51.3	52.4
DP	61.9	47.6	53.8	92.4	62.2	74.3	57.0	57.5	57.2
NGS-b	68.1	68.6	68.3	81.7	82.5	82.1	54.5	57.0	55.7
HDP	79.4	74.0	76.6	92.4	83.5	87.7	67.9	58.9	63.1

Model	MSR	CITYU	Kyoto
		82.4 (126.5)	
NPY(3)	80.7 (48.8)	81.7 (128.3)	66.6 (20.6)
ZK08	66.7 (—)	69.2 (—)	_

POWER-LAW BEHAVIOUR



TWO-PARAMETER CHINESE RESTAURANT PROCESS

- One customer enters the restaurant at a time:
 - ▶ The first customer sits at the first table.
 - Subsequent customer n + 1:
 - ▶ Joins table c with probability $\frac{|c|-d}{n+\alpha}$.
 - Starts a new table with probability $\frac{\alpha + |\pi|d}{|\pi|}$
- Distribution over partitions is still exchangeable, and has power-law properties.

LANGUAGE MODELLING AND COMPRESSION

Language Modelling

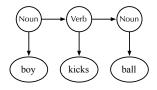
T	N-1	IKN	MKN	HDLM	HPYLM
2×10^{6}	2	148.8	144.1	191.2	144.3
4×10^{6}	2	137.1	132.7	172.7	132.7
6×10^{6}	2	130.6	126.7	162.3	126.4
8×10^{6}	2	125.9	122.3	154.7	121.9
10×10^{6}	2	122.0	118.6	148.7	118.2
12×10^{6}	2	119.0	115.8	144.0	115.4
14×10^{6}	2	116.7	113.6	140.5	113.2
14×10^{6}	1	169.9	169.2	180.6	169.3
14×10^{6}	3	106.1	102.4	136.6	101.9

Compression

Algorithm	bits/byte
gzip	2.61
bzip2	2.11
CTW	1.99
PPM	1.93
SM	1.89

[Teh06, GWT10] 29/72

UNSUPERVISED PART-OF-SPEECH TAGGING

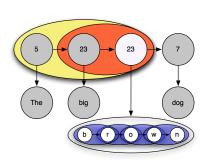


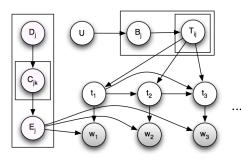
Language	mkcls	HMM	1HMM	1HMM-LM	Best pub.	Tokens	Tag types
Arabic	58.5	57.1	62.7	67.5	-	54,379	20
Bulgarian	66.8	67.8	69.7	73.2	-	190,217	54
Czech	59.6	62.0	66.3	70.1	-	1,249,408	12^c
Danish	62.7	69.9	73.9	76.2	66.7*	94,386	25
Dutch	64.3	66.6	68.7	70.4	67.3 [†]	195,069	13^c
Hungarian	54.3	65.9	69.0	73.0	-	131,799	43
Portuguese	68.5	72.1	73.5	78.5	75.3*	206,678	22
Spanish	63.8	71.6	74.7	78.8	73.2*	89,334	47
Swedish	64.3	66.6	67.0	68.6	60.6 [†]	191,467	41

CONSTRUCTING COMPLEX MODELS

Construction of complex Bayesian nonparametric models

- Graphical models.
- ► Hierarchical Bayesian models [TJ10].
- ▶ Dependent stochastic processes [GKM05, Dun10].

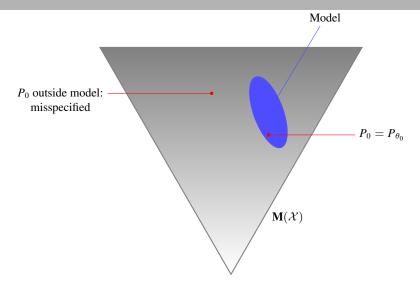




5 MINUTES BREAK

ASYMPTOTICS

COVERAGE OF PRIORS



COVERAGE OF NONPARAMETRIC PRIORS

Large coverage

- Support of nonparametric priors is larger (∞-dimensional) than of parametric priors (finite-dimensional).
- lacktriangle However: No uniform prior (or even "neutral" improper prior) exists on $\mathbf{M}(\mathcal{X})$.

Interpretation of nonparametric prior assumptions

Concentration of nonparametric prior on subset of $\mathbf{M}(\mathcal{X})$ typically represents structural prior assumption.

- ▶ GP regression with unknown bandwidth:
 - ► Any continuous function possible
 - Prior can express e.g. "very smooth functions are more probable"
- ► Clustering: Expected number of clusters is...
 - ightharpoonup ...small \longrightarrow CRP prior
 - ▶ ...power law → two-parameter CRP

POSTERIOR CONSISTENCY

Definition 1 (weak consistency of Bayesian models)

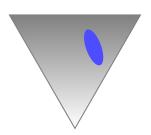
Suppose we sample $P_0 = P_{\theta_0}$ from the prior and generate data from P_0 . If the posterior converges to δ_{θ_0} for $n \to \infty$ with probability one under the prior, the model is called *consistent*.

Doob's Theorem

Under very mild conditions, Bayesian models are consistent in the weak sense.

Problem

- ▶ Definition holds up to a set of probability zero under the prior.
- ► This set can be huge and is a prior assumption.



Definition 2 (frequentist consistency of Bayesian models)

A Bayesian model is *consistent at P*₀ if the posterior converges to δ_{P_0} with growing sample size.

CONVERGENCE RATES

Objective

How quickly does posterior concentrate at θ_0 as $n \to \infty$?

Measure: Convergence rate

▶ Find smallest balls $B_{\varepsilon_n}(\theta_0)$ for which

$$Q(B_{\varepsilon_n}(\theta_0)|X_1,\ldots,X_n) \xrightarrow{n\to\infty} 1$$

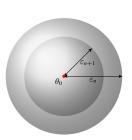
▶ Rate = sequence $\varepsilon_1, \varepsilon_2, \dots$

The best we can hope for

- ▶ Optimal rate is $\varepsilon_n \propto n^{-1/2}$
- ► Given by optimal convergence of estimators
- Achieved in smooth parametric models

Technical tools

Sieves, covering number, metric entropies... \longrightarrow familiar from learning theory!



ASYMPTOTICS: SAMPLE RESULTS

Consistency

- ▶ DP mixtures: Consistent in many cases. No blanket statements.
- ▶ Range of consistency results for GP regression

Convergence rates: Example

Bandwidth adaptation with GPs:

- ► True parameter $\theta_0 \in C^{\alpha}[0,1]^d$, smoothness α unknown
- ▶ With gamma prior on GP bandwidth:

Convergence rate is $n^{-\alpha/(2\alpha+d)}$

Bernstein-von Mises Theorems

- ▶ Class of theorems establishing that posterior is asymptotically normal.
- Available for Gaussian processes and various regression settings.

EXCHANGEABILITY

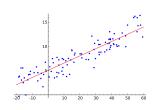
MOTIVATION

Can we justify our assumptions?

Recall:

In Bayes' theorem:

$$Q(d\theta|x_1,\ldots,x_n) = \frac{\prod_{j=1}^n p(x_j|\theta)}{p(x_1,\ldots,x_n)}Q(d\theta)$$



Exchangeability

 X_1, X_2, \ldots are *exchangeable* if $P(X_1, X_2, \ldots)$ is invariant under any permutation σ :

$$P(X_1 = x_1, X_2 = x_2, \dots) = P(X_1 = x_{\sigma(1)}, X_2 = x_{\sigma(2)}, \dots)$$

In words:

Order of observations does not matter.

EXCHANGEABILITY AND CONDITIONAL INDEPENDENCE

De Finetti's Theorem

$$P(X_1 = x_1, X_2 = x_2, \ldots) = \int_{\mathbf{M}(\mathcal{X})} \left(\prod_{j=1}^{\infty} \theta(X_j = x_j) \right) Q(d\theta)$$

$$\updownarrow$$

 X_1, X_2, \ldots exchangeable

where:

- ▶ $\mathbf{M}(\mathcal{X})$ is the set of probability measures on \mathcal{X}
- lacktriangledown heta are values of a random probability measure Θ with distribution Q

Implications

- Exchangeable data decomposes into pattern and noise
- ► More general than i.i.d.-assumption
- ▶ Caution: θ is in general an ∞ -dimensional quantity

[Sch95, Kal05] 41/72

EXCHANGEABILITY: RANDOM GRAPHS

Random graph with independent edges

Given: $\theta:[0,1]^2 \to [0,1]$ symmetric function

- $ightharpoonup U_1, U_2, \ldots \sim \text{Uniform}[0, 1]$
- ▶ Edge (i,j) present:

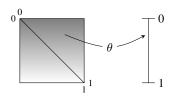
$$(i,j) \sim \text{Bernoulli}(\theta(U_i,U_j))$$

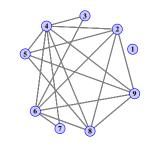
Call this distribution $P(\mathcal{G}|\theta)$.

Aldous-Hoover Theorem

Random graph $\mathcal G$ exchangeable

$$P(\mathcal{G}) = \int_{\mathcal{T}} P(\mathcal{G}|\theta) Q(d\theta)$$





EXCHANGEABILITY: RANDOM GRAPHS

Random graph with independent edges

Given: $\theta: [0,1]^2 \to [0,1]$ symmetric function

- ▶ $U_1, U_2, \ldots \sim \text{Uniform}[0, 1]$
- ▶ Edge (i,j) present:

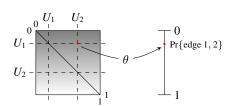
$$(i,j) \sim \text{Bernoulli}(\theta(U_i,U_j))$$

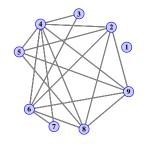
Call this distribution $P(\mathcal{G}|\theta)$.

Aldous-Hoover Theorem

Random graph $\mathcal G$ exchangeable

$$P(\mathcal{G}) = \int_{\mathcal{T}} P(\mathcal{G}|\theta) Q(d\theta)$$





GENERAL THEME: SYMMETRY

Other types of exchangeable data

Data	Theorem	Mixture of	Applications
Points	de Finetti	I.i.d. point sequences	"Standard" models
Sequences	Diaconis-Freedman	Markov chains	Time series
Partition	Kingman	"Paint-box" partitions	Clustering
Graphs	Aldous-Hoover	Graphs with independent edges	Networks
Arrays	Aldous-Hoover	Arrays with independent entries	Collaborative filtering

Ergodic decomposition theorems

$$\mu(X) = \int_{\Omega} \mu[X|\Phi = \phi]\nu(\phi)$$

- ightharpoonup Symmetry (group invariance) on lhs \longrightarrow Integral decomposition on rhs
- ▶ Permutation invariance on lhs → Independence on rhs

LATENT FEATURE MODELS

INDIAN BUFFET PROCESS

Latent feature models

- ▶ Grouping problem with overlapping clusters.
- ▶ Encode as binary matrix: Observation *n* in cluster $k \Leftrightarrow X_{nk} = 1$
- ▶ Alternatively: Item *n* possesses feature $k \Leftrightarrow X_{nk} = 1$

Indian buffet process (IBP)

- 1. Customer 1 tries Poisson(α) dishes.
- 2. Subsequent customer n + 1:
 - ► tries a previously tried dish k with probability $\frac{n_k}{n_k+1}$,
 - ▶ tries Poisson $\left(\frac{\alpha}{n+1}\right)$ new dishes.

Properties

- ► An exchangeable distribution over finite sets (of dishes).
- ► Interretation: Observation (= customer) n in cluster (= dish) k if customer "tries dish k"

DE FINETTI REPRESENTATION

Alternative description

- 1. Sample $w_1, \ldots, w_K \sim_{iid} Beta(1, \alpha/K)$
- 2. Sample $X_{1k}, \ldots, X_{nk} \sim_{iid} Bernoulli(w_k)$

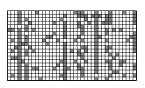
$$\begin{pmatrix} w_1 & \dots & w_K \\ X_{11} & \dots & X_{1K} \\ \vdots & & \vdots \\ X_{N1} & \dots & X_{NK} \end{pmatrix}$$

We need some form of limit object for Beta $(1, \alpha/K)$ for $K \to \infty$.

Beta Process (BP)

Distribution on objects of the form

$$\theta = \sum_{k=1}^{\infty} w_k \delta_{\phi_k}$$
 with $w_k \in [0, 1]$.



- ▶ IBP matrix entries are sampled as $X_{nk} \sim_{iid} Bernoulli(w_k)$.
- Beta process is the de Finetti measure of the IBP, that is, Q = BP.
- θ is a random measure (but not normalized)

EXCHANGEABLE RANDOM PARTITIONS

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- Partition: $\pi = \{\{1, 2, 5\}, \{3, 4\}, \{6\}, \{7, 8, 9\}\}.$

Kingman's representation

Exchangeable partitions ⇔ Random probability measures

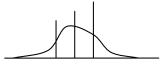
$$\theta$$
 = Probability measure

For
$$i \in [n]$$
: $\phi_i \mid \theta \sim \theta$

i, j in the same cluster $\Leftrightarrow \phi_i = \phi_j$

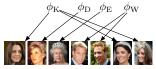
$$\mathbb{P}(oldsymbol{\pi}=\pi)=\int_{\mathbf{M}(\Phi)}\mathbb{P}(oldsymbol{\pi}=\pi| heta)Q(d heta)$$

- \blacktriangleright Atoms in θ : clusters with more than one element.
- ▶ Smooth part of θ : clusters with exactly one element.



Chinese Restaurant Process for Clustering

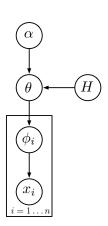
$$\pi = \{\{1, 6, 7\}, \{2\}, \{3\}, \{4, 5\}\}\$$



► Full generative model:

$$heta \sim Q$$
 $\phi_i \mid \theta \sim \theta$
 $x_i \mid \phi_i \sim F(\phi_i)$

- Prior Q is a Dirichlet process (DP) with mass parameter α and base distribution H.
- ► Two-parameter CRP: Pitman-Yor process (PYP) with additional discount parameter *d*.



All clusters can contain more than one element $\Rightarrow \theta$ only contains atoms:

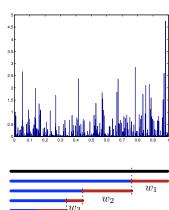
$$\theta = \sum_{j=1}^{\infty} w_j \delta_{\phi_j^*}$$

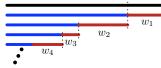
- ▶ What is the prior on $\{w_i, \phi_i^*\}$?
- Stick-breaking representation:

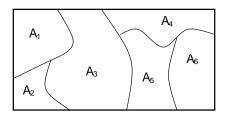
$$\phi_j^* \sim H$$
 $v_j \sim \text{Beta}(1, \alpha)$
 $w_j = v_j \prod_{i=1}^{j-1} (1 - v_j)$

Masses decreasing on average: GEM distribution.

Strictly decreasing masses: Poisson-Dirichlet distribution.







▶ Random probability measure with Dirichlet marginals:

$$(\theta(A_1), \dots, \theta(A_k)) \sim Dirichlet(\alpha H(A_1), \dots, \alpha H(A_k))$$

for A_1, \ldots, A_k partition of the space.

$$\theta = \sum_{j=1}^{\infty} w_j \delta_{\phi_j^*}$$

Measure

- \triangleright $\theta(S)$ mass in set S.
- ▶ A function $\theta: \Omega \to \mathbb{R}_+$ with certain properties, e.g. if S, S' disjoint sets,

$$\theta(S \cup S') = \theta(S) + \theta(S')$$

Random Measure

▶ A random function $\theta: \Omega \to \mathbb{R}_+$.

Completely Random Measure (CRM)

ightharpoonup If S, S' are disjoint sets, then

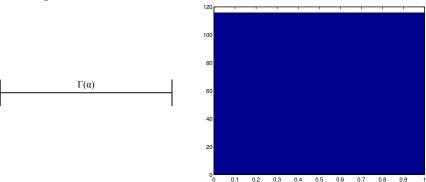
$$\theta(S) \perp \!\!\! \perp \!\!\! \mid \!\!\! \mid \theta(S')$$

[Kin67] 53/72 Peter Orbanz & Yee Whye Teh

Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

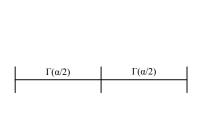
Example: Gamma CRM

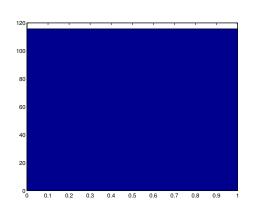


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

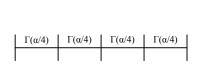


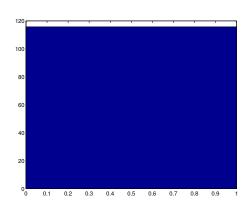


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

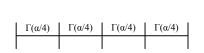


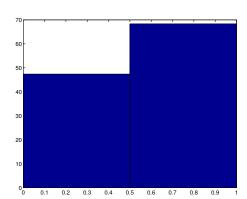


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

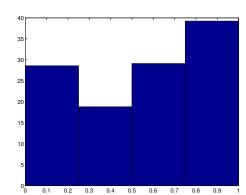




Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

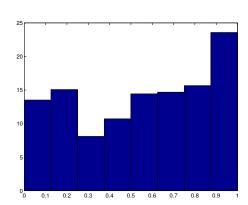
Example: Gamma CRM



Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

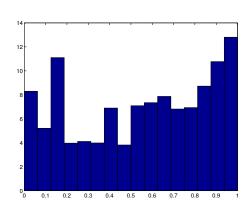


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

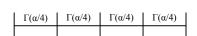


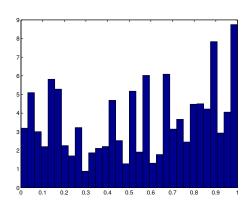


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM



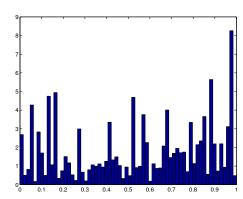


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

Γ(α/4)	Γ(α/4)	Γ(α/4)	Γ(α/4)	
1 (ω 1)	1 (00 1)	1 (00 1)	1 (00 1)	

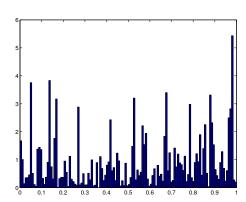


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

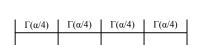
$\Gamma(\alpha/4)$	$\Gamma(\alpha/4)$	$\Gamma(\alpha/4)$	$\Gamma(\alpha/4)$

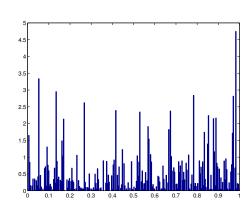


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

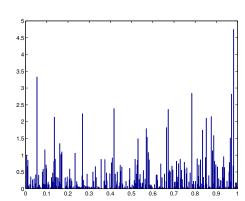




Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

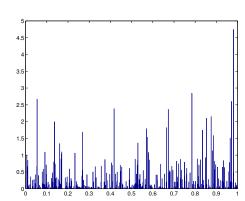


Infinitely Divisible Distributions

- ▶ Random variable *X* is infinitely divisible if for every *n*, there exists *n* iid random variables X_1, \ldots, X_n such that $\sum_{i=1}^n X_i = X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

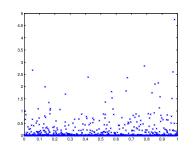


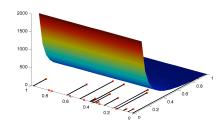


A CRM can always be decomposed into 3 components:

$$\mu = \mu_0 + \sum_{i=1}^{\infty} v_i \delta_{\psi_i^*} + \sum_{j=1}^{\infty} w_j \delta_{\phi_j^*}$$

- \blacktriangleright μ_0 is measure that is not random.
- Locations {ψ_i*} are fixed, masses {v_i} are mutually independent and independent of {w_i, φ_i*},
- $\{(w_j, \phi_j^*)\}$ is drawn from a Poisson process over $\mathbb{R}_+ \times \Phi$ with rate $\rho(w, \phi)$ (the Lévy measure).





Peter Orbanz & Yee Whye Teh [Kin67]

► Gamma Process

$$\rho(w,\phi) = \alpha w^{-1} e^{-w} h(\phi)$$

- ► Normalizing a Gamma process ⇒ Dirichlet process.
- ► Beta Process [Hjo90b]

$$\rho(w,\phi) = \alpha w^{-1} \mathbf{1}(0 \le w \le 1) h(\phi)$$

► Stable process [Kin75]

$$\rho(w,\phi) = \frac{\alpha}{\Gamma(1-d)} w^{-d-1} h(\phi)$$

Stable-beta process [KL01, TG09, BJPar]

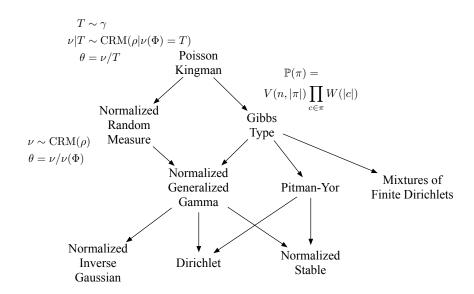
$$\rho(w,\phi) = \frac{\alpha\Gamma(1+\beta)}{\Gamma(1-d)\Gamma(\beta+d)} w^{-d-1} (1-w)^{\beta+d-1} \mathbf{1}(0 \le w \le 1) h(\phi)$$

► Generalized gamma process [Bri99]

$$\rho(w,\phi) = \frac{\alpha}{\Gamma(1-d)} w^{-d-1} e^{-\tau w} h(\phi)$$

56 / 72

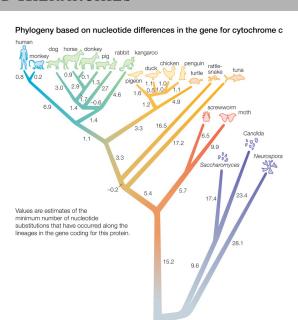
FAMILIES OF EXCHANGEABLE RANDOM PARTITIONS



HIERARCHICAL PARTITIONS

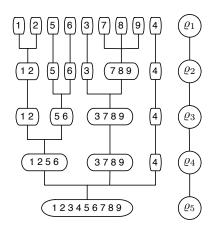
Peter Orbanz & Yee Whye Teh 58/72

TREES AND HIERARCHIES



BAYESIAN HIERARCHICAL CLUSTERING

- Bayesian approach to hierarchical clustering:
 - ▶ Prior over hierarchies *T*.
 - Likelihood model for data.
- Necessarily nonparametric.
- Prior can be described by Markov chain of partitions.



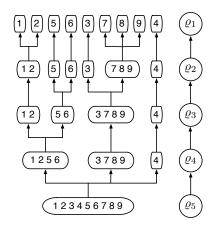
Peter Orbanz & Yee Whye Teh 60/72

FRAGMENTATION PROCESSES

- Start with $\varrho_L = \{[n]\}.$
- ► At each stage, fragment each cluster into smaller clusters.
- A fragmentation can be described by independent partitionings of clusters at previous stage.

For each
$$c \in \varrho_i$$
: $F_c \sim \operatorname{CRP}(\alpha, d, c)$
$$\varrho_{i-1} = \bigcup_{c \in \varrho_i} F_c$$

 Nested Chinese restaurant process [BGJ10], tree-structured stick-breaking [AGJ10].



Peter Orbanz & Yee Whye Teh 61/72

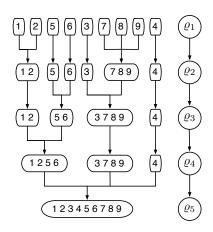
COAGULATION PROCESSES

- Start with $\varrho_1 = [n]$.
- ► At each stage, coagulate clusters to form larger clusters.
- A coagulation can be described by a partitioning of clusters at previous stage.

$$C \sim \text{CRP}(\alpha, d, \varrho_i)$$

$$\varrho_{i+1} = \left\{ \bigcup_{c' \in c} c' : c \in C \right\}$$

► Chinese restaurant franchise [TJBB06].

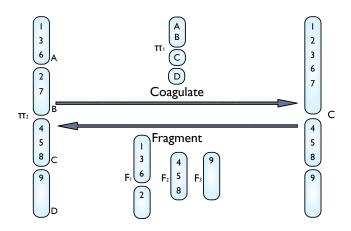


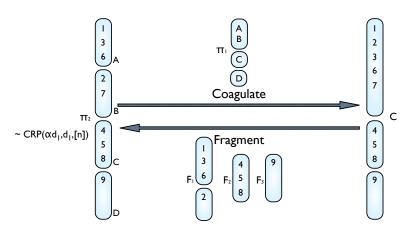
Peter Orbanz & Yee Whye Teh 62/72

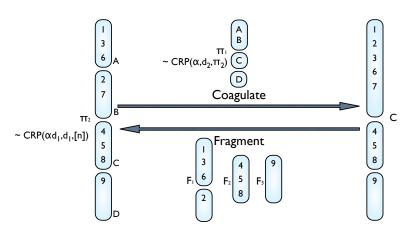
RANDOM HIERARCHICAL PARTITIONS

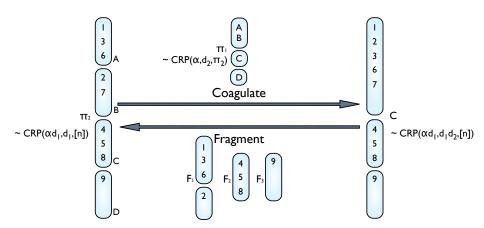
	Discrete iterations	Continuum limit
Fragmentation	Nested CRP, tree-structured stick-breaking Gibbs fragmentation tree [BGJ10, AGJ10, MPW08]	Dirichlet diffusion tree, Pitman-Yor diffusion tree [Nea03, KG11]
Coagulation	Chinese restaurant franchise [TJBB06]	Kingman's coalescent, Λ-coalescent [Kin82, Pit99, TDR08]

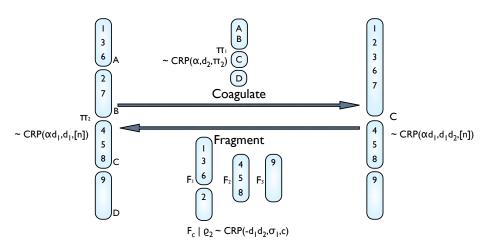
Peter Orbanz & Yee Whye Teh 63/72











HIERARCHICAL PITMAN-YOR PROCESS

► Fragmentation-coagulation duality implies:

$$\begin{array}{ll} G_1|G_0 \sim \operatorname{PYP}(\alpha, d_2, G_0) \\ G_2|G_1 \sim \operatorname{PYP}(\alpha d_1, d_1, G_1) \end{array} \Rightarrow G_2|G_0 \sim \operatorname{PYP}(\alpha d_1, d_1 d_2, G_0)$$

- ► Computational implication: sequence memoizer [WAG⁺09].
- ▶ Dirichlet Process case:

$$\begin{array}{ll} G_1|G_0 \sim \mathrm{DP}(\alpha/d, G_0) \\ G_2|G_1 \sim \mathrm{PYP}(\alpha, d_1, G_1) \end{array} \Rightarrow G_2|G_0 \sim \mathrm{DP}(\alpha, G_0) \end{array}$$

 Modelling implication: hierarchical Dirichlet process (HDP) [TJBB06].

Peter Orbanz & Yee Whye Teh [HJL06]

CONCLUDING REMARKS

Peter Orbanz & Yee Whye Teh 66/72

SUMMARY

Why Bayesian Nonparametrics?

- World is complicated.
- Objects of interest often infinite dimensional.
- Alternative to model selection.
- ► Flexible modelling language with interesting properties.
- ▶ Works well with finite data while enjoying asymptotic guarantees.

Technical Tools

- Stochastic processes.
- Exchangeability.
- ► Graphical, hierarchical and dependent models.

Open Challenges

- Novel models and useful applications.
- ▶ Better inference and flexible software packages.
- ▶ Learning theory for Bayesian nonparametric models.

Peter Orbanz & Yee Whye Teh 67/

REFERENCES I

[GGJ06a]

[AGJ10]	Ryan Prescott Adams, Zoubin Ghahramani, and Michael I. Jordan. Tree-structured stick breaking for hierarchical data. In J. Shawe-Taylor, R. Zemel, J. Lafferty, and C. Williams, editors, Advances in Neural Information Processing (NIPS) 23, 2010.
[Ald81]	David J. Aldous. Representations for Partially Exchangeable Arrays of Random Variables. Journal of Multivariate Analysis, 11:581–598, 1981.
[BC11]	P. Blunsom and T. Cohn. A hierarchical Pitman-Yor process HMM for unsupervised part of speech induction. In $Proceedings\ of\ ACL\ HLT$, 2011.
[BGJ10]	D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the Association for Computing Machines, 57(2):1–30, 2010.
[BJ06]	D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121–144, 2006.
[BJPar]	$T.\ Broderick, M.\ I.\ Jordan, and\ J.\ Pitman.\ Beta\ processes,\ stick-breaking,\ and\ power\ laws.\ \textit{Bayesian Analysis},\ to\ appear.$
[BM73]	D. Blackwell and J. B. MacQueen. Ferguson distributions via Pólya um schemes. Annals of Statistics, 1:353–355, 1973.
[Bri99]	A. Brix. Generalized gamma measures and shot-noise Cox processes. Advances in Applied Probability, 31:929–953, 1999.
[Dun10]	D. B. Dunson. Nonparametric Bayes applications to biostatistics. In N. Hjort, C. Holmes, P. Müller, and S. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.
[Fer73]	T. S. Ferguson. A Bayesian analysis of some nonparametric problems. <i>Annals of Statistics</i> , 1(2):209–230, 1973.
[FSJW10]	E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, Sharing features among dynamical systems with beta processes. In Neural Information Processing Systems 22. MIT Press, 2010.
[FW11]	S. Favaro and S. G. Walker. Slice sampling σ -stable Poisson-Kingman mixture models, 2011.
[GG06]	T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, volume 18, 2006.
[GG11]	$T.\ L.\ Griffiths\ and\ Z.\ Ghahramani.\ The\ Indian\ buffet\ process:\ An\ introduction\ and\ review.\ \textit{J. Mach. Learn. Res.},\ 12:1185-1224,\ 2011.$

Peter Orbanz & Yee Whye Teh 68/72

S. Goldwater, T. L. Griffiths, and M. Johnson. Contextual dependencies in unsupervised word segmentation. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics. 2006.

REFERENCES II

[IZ02]

[Jam10]

[JLP09]

30:269-283, 2002.

Journal of Statistics, 36:76-97, 2009.

[GGJ06b]	S. Goldwater, T.L. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-law generators. In Advances in Neural Information Processing Systems, volume 18, 2006.
[Gho10]	S. Ghosal. Dirichlet process, related priors and posterior asymptotics. In N. L. Hjort et al., editors, Bayesian Nonparametrics, pages 36–83. Cambridge University Press, 2010.
[GKM05]	A. E. Gelfand, A. Kottas, and S. N. MacEachern. Bayesian nonparametric spatial modeling with Dirichlet process mixing. <i>Journal of the American Statistical Association</i> , 100(471):1021–1035, 2005.
[GP06]	A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. <i>Journal of Mathematical Sciences</i> , 138(3):5674–5684, 2006.
[GvdV07]	Subhashis Ghosal and Aad van der Vaart. Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist., 35(2):697–723, 2007.
[GWT10]	J. Gasthaus, F. Wood, and Y. W. Teh. Lossless compression based on the sequence memoizer. In Data Compression Conference, 2010.
[HJL06]	M. W. Ho, L. F. James, and J. W. Lau. Coagulation fragmentation laws induced by general coagulations of two-parameter Poisson-Dirichlet processes. http://arxiv.org/abs/math.PR/0601608, 2006.
[Hjo90a]	N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist., 18:1259–1294, 1990.
[Hjo90b]	N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. <i>Annals of Statistics</i> , 18(3):1259–1294, 1990.
[IJ01]	H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. <i>Journal of the American Statistical Association</i> , 96(453):161–173, 2001.

H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for the Dirichlet process. Canadian Journal of Statistics,

L. F. James, A. Lijoi, and I. Prüenster. Posterior analysis for normalized random measures with independent increments. Scandinavian

Peter Orbanz & Yee Whye Teh 69/72

L. F. James. Coag-frag duality for a class of stable Poisson-Kingman mixtures. http://arxiv.org/abs/1008.2420, 2010.

REFERENCES III

Intelligence, 2011.

Department of Statistics, University of Toronto, 2004.

Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.

[JN04]

[Kal05]

[KG11]

[Kin67]	J. F. C. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59–78, 1967.
[Kin75]	J. F. C. Kingman. Random discrete distributions. Journal of the Royal Statistical Society, 37:1–22, 1975.
[Kin82]	J. F. C. Kingman. On the genealogy of large populations. Journal of Applied Probability, 19:27–43, 1982. Essays in Statistical Science.
[KL01]	Y. Kim and J. Lee. On posterior consistency of survival models. <i>Annals of Statistics</i> , 29(3):666–686, 2001.
[KvdV06]	B. J. K. Kleijn and A. W. van der Vaart. Misspecification in infinite-dimensional Bayesian statistics. <i>Annals of Statistics</i> , 34(2):837–877, 2006.
[KWV07]	K. Kurihara, M. Welling, and N. Vlassis. Accelerated variational DP mixture models. In Advances in Neural Information Processing Systems, volume 19, 2007.
[LMP05]	A. Lijoi, R. H. Mena, and I. Prüenster. Hierarchical mixture modelling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100:1278–1291, 2005.
[MPW08]	$P.\ McCullagh, J.\ Pitman,\ and\ M.\ Winkel.\ Gibbs\ fragmentation\ trees.\ Bernoulli,\ 14(4):988-1002,\ 2008.$
[MYU09]	D. Mochihashi, T. Yamada, and N. Ueda. Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling. In <i>Proceedings of ACL-IJCNLP</i> , 2009.
[Nea92]	R. M. Neal. Bayesian mixture modeling. In Proceedings of the Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, volume 11, pages 197–211, 1992.
[Nea00]	R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. <i>Journal of Computational and Graphical Statistics</i> , 9:249–265, 2000.
[Nea03]	R. M. Neal. Density modeling and clustering using Dirichlet diffusion trees. In Bayesian Statistics, volume 7, pages 619–629, 2003.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Technical report,

D. Knowles and Z. Ghahramani. Pitman-Yor diffusion trees. In Proceedings of the International Conference on Uncertainty in Artificial

Peter Orbanz & Yee Whye Teh 70/72

REFERENCES IV

[TG09]

volume 22, pages 1838-1846, 2009.

[Orb11]	$Peter\ Orbanz.\ Projective\ limit\ random\ probabilities\ on\ Polish\ spaces.\ \textit{Electronic\ Journal\ of\ Statistics}, 5:1354-1373, 2011.$
[Pit99]	J. Pitman. Coalescents with multiple collisions. Annals of Probability, 27:1870–1902, 1999.
[Pit03]	J. Pitman. Poisson-Kingman partitions. In D. R. Goldstein, editor, Statistics and Science: a Festschrift for Terry Speed, pages 1–34. Institute of Mathematical Statistics, 2003.
[Pit06]	J. Pitman. Combinatorial Stochastic Processes. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006.
[PPY92]	$M.\ Perman, J.\ Pitman, and\ M.\ Yor.\ Size-biased\ sampling\ of\ Poisson\ point\ processes\ and\ excursions.\ Probability\ Theory\ and\ Related\ Fields, 92(1):21-39, 1992.$
[PR08]	Omiros Papaspiliopoulos and Gareth O. Roberts. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1):169–186, 2008.
[PY97]	J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. <i>Annals of Probability</i> , 25:855–900, 1997.
[Ras00]	$C.\ E.\ Rasmussen.\ The\ infinite\ Gaussian\ mixture\ model.\ In\ \textit{Advances in Neural Information Processing Systems}, volume\ 12,2000.$
[RW06]	C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[Sch65]	L. Schwartz. On Bayes procedures. Z. Wahr. Verw. Gebiete, 4:10–26, 1965.
[Sch95]	M. J. Schervish. <i>Theory of Statistics</i> . Springer, 1995.
[Set94]	J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650, 1994.
[TDR08]	Y. W. Teh, H. Daume III, and D. M. Roy. Bayesian agglomerative clustering with coalescents. In Advances in Neural Information Processing Systems, volume 20, pages 1473–1480, 2008.
[Teh06]	Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985–992, 2006.

Peter Orbanz & Yee Whye Teh

Y. W. Teh and D. Görür. Indian buffet processes with power-law behavior. In Advances in Neural Information Processing Systems,

REFERENCES V

[TJ07]	R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In J. Mach. Learn. Res. Proceedings (AISTATS),
	volume 2, pages 564–571, 2007.

- [TJ10] Y. W. Teh and M. I. Jordan. Hierarchical Bayesian nonparametric models with applications. In N. Hjort, C. Holmes, P. Müller, and S. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.
- [TJBB06] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581, 2006.
- [vdV98] A. van der Vaart. Asymptotic Statistics. Cambrdige University Press, 1998.
- [vdVvZ08a] A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 36(3):1435–1463, 2008.
- [vdVvZ08b] A. W. van der Vaart and J. H. van Zanten. Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, volume 3 of Inst. Math. Stat. Collect., pages 200–222. Inst. Math. Statist., Beachwood, OH, 2008.
- [WAG+09] F. Wood, C. Archambeau, J. Gasthaus, L. F. James, and Y. W. Teh. A stochastic memoizer for sequence data. In Proceedings of the International Conference on Machine Learning, volume 26, pages 1129–1136, 2009.
- [Wal07] Stephen G. Walker. Sampling the Dirichlet mixture model with slices. Communications in Statistics Simulation and Computation, 36:45, 2007.

Peter Orbanz & Yee Whye Teh 72/72