# Modern Bayesian Nonparametrics 

Peter Orbanz<br>Yee Whye Teh

Cambridge University and Columbia University
Gatsby Computational Neuroscience Unit, UCL

NIPS 2011

## Overview

1. Nonparametric Bayesian models
2. Regression
3. Clustering
4. Applications

Coffee refill break
5. Asymptotics
6. Exchangeability
7. Latent feature models
8. Dirichlet process
9. Completely random measures
10. Summary

## Parameters and Patterns

## Parameters

$$
P(X \mid \theta) \quad=\quad \text { Probability[data|pattern] }
$$




Inference idea

$$
\text { data }=\text { underlying pattern }+ \text { independent noise }
$$

## TERMINOLOGY

## Parametric model

- Number of parameters fixed (or constantly bounded) w.r.t. sample size


## Nonparametric model

- Number of parameters grows with sample size
- $\infty$-dimensional parameter space

Example: Density estimation


Parametric


Nonparametric

## NONPARAMETRIC BAYESIAN MODEL

## Definition

A nonparametric Bayesian model is a Bayesian model on an $\infty$-dimensional parameter space.

## Interpretation

Parameter space $\mathcal{T}=$ set of possible patterns, for example:

| Problem | $\mathcal{T}$ |
| :---: | :---: |
| Density estimation | Probability distributions |
| Regression | Smooth functions |
| Clustering | Partitions |

Solution to Bayesian problem $=$ posterior distribution on patterns

## Regression

## Gaussian Processes

## Nonparametric regression

Patterns $=$ continuous functions, say on interval $[a, b]$ :

$$
\theta:[a, b] \rightarrow \mathbb{R} \quad \mathcal{T}=C[a, b]
$$

## Gaussian process prior

- Hyperparameters: Mean function and covariance function

$$
m \in C[a, b] \quad \text { and } \quad k:[a, b] \times[a, b] \rightarrow \mathbb{R}
$$

- Plug in finite set $\mathbf{s}=\left\{s_{1}, \ldots, s_{n}\right\} \subset[a, b]:$

$$
m(\mathbf{s})=\left(\begin{array}{c}
m\left(s_{1}\right) \\
\vdots \\
m\left(s_{n}\right)
\end{array}\right) \quad \text { and } \quad k(\mathbf{s}, \mathbf{s})=\left(\begin{array}{ccc}
k\left(s_{1}, s_{1}\right) & \ldots & k\left(s_{1}, s_{n}\right) \\
\vdots & & \vdots \\
k\left(s_{n}, s_{1}\right) & \ldots & k\left(s_{n}, s_{n}\right)
\end{array}\right)
$$

- Distribution of $\theta$ is Gaussian process if

$$
\left(\theta\left(s_{1}\right), \ldots, \theta\left(s_{n}\right)\right) \sim \mathcal{N}(m(\mathbf{s}), k(\mathbf{s}, \mathbf{s})) \quad \text { for any } \mathbf{s} \subset[a, b]^{n}
$$

## Gaussian Process Regression

Observation model

- Inputs $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$
- Outputs $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$

$$
t_{i} \sim \mathcal{N}\left(\theta\left(s_{i}\right), \sigma_{\text {noise }}\right)
$$

## Posterior distribution



- Posterior is again a Gaussian Process
- Quantifies prediction uncertainty


## Predictions at test points $\mathbf{S}_{*}$

Test inputs $\mathbf{s}_{*}=\left(s_{* 1}, \ldots, s_{* m}\right)$

$$
\begin{aligned}
\hat{\mathbf{m}} & =k\left(\mathbf{s}_{*}, \mathbf{s}\right)\left(k(\mathbf{s}, \mathbf{s})+\sigma_{\text {noise }}^{2} \mathbf{I}\right)^{-1} \mathbf{t} \\
\hat{\mathbf{k}} & =k\left(\mathbf{s}_{*}, \mathbf{s}_{*}\right)-k\left(\mathbf{s}_{*}, \mathbf{s}\right)\left(k(\mathbf{s}, \mathbf{s})+\sigma_{\text {noise }}^{2} \mathbf{I}\right)^{-1} k\left(\mathbf{s}, \mathbf{s}_{*}\right)
\end{aligned}
$$



## LEARNING CONTROL (C. E. Rasmussen \& M. P. Deisenroth)



## Clustering

## Clustering



## Finite Mixture Models

## Standard probabilistic model for clustering

- For each observation $i=1, \ldots, n$ :

| Data: | $x_{i} \mid z_{i}=k$ | $\sim F\left(\phi_{k}\right)$ |  |
| :--- | :--- | ---: | :--- |
|  | Cluster indicator: |  | $z_{i}$ |

- Parameters:

Mixing proportions: $\quad \mathbf{w} \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right)$
Cluster parameters: $\quad \phi_{k}^{*} \sim H$

## Learning and model selection

- For each $K=1,2,3, \ldots$ :
- While learning not converged:

- Update latent variables;
- Update parameter.
- Determine fit of model with $K$ clusters.


## Partitions

Natural object of inference in clustering problems

- A cluster $c$ is a subset of indices $[n]=\{1, \ldots, n\}$.
- A partition $\pi$ is a set of clusters.
- Clusters are non-empty and disjoint;
- Union of clusters is [ $n$ ].

- Denote set of partitions of $[n]$ by $\mathcal{P}_{[n]}$.

Bayesian nonparametric model for clustering

- Prior distribution over $\mathcal{P}_{[n]}$.
- Likelihood model for data.


## EXCHANGEABILITY

Data set 1:


Data set 2:


- Exchangeability:

$$
\begin{gathered}
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{\sigma(1)}, \ldots, X_{n}=x_{\sigma(n)}\right) \\
\mathbb{P}(\boldsymbol{\pi}=\{\{1,6,7\},\{2\},\{3\},\{4,5,8\}\}) \\
=\mathbb{P}(\boldsymbol{\pi}=\{\{4,6,3\},\{8\},\{7\},\{1,5,2\}\})
\end{gathered}
$$

## EXAMPLES

Uniform distribution over $\mathcal{P}_{[n]}$

- Exchangeable.
- Not self-consistent.



## EXAMPLES

## Preferential attachment

- Elements inserted into partition one at a time:
- Inserted into an existing cluster, or
- Into a new cluster.
- Example:

$$
\begin{aligned}
\mathbb{P}(8 \rightarrow\{1,6,7\}) & =(1-\delta) \frac{3}{7} \\
\mathbb{P}(8 \rightarrow\{2\}) & =(1-\delta) \frac{1}{7} \\
\mathbb{P}(8 \rightarrow\{3\}) & =(1-\delta) \frac{1}{7} \\
\mathbb{P}(8 \rightarrow\{4,5\}) & =(1-\delta) \frac{2}{7} \\
\mathbb{P}(8 \rightarrow \text { new }) & =\delta
\end{aligned}
$$



- Typically not exchangeable.


## Chinese Restaurant Process



- One customer enters the restaurant at a time:
- The first customer sits at the first table.
- Subsequent customer $n+1$ :
- Joins table $c$ with probability $\frac{|c|}{n+\alpha}$.
- Starts a new table with probability $\frac{\alpha}{n+\alpha}$.
- Distribution over partitions that is exchangeable and self-consistent.


## The Generative Process

$$
\boldsymbol{\pi} \sim \operatorname{CRP}(\alpha)
$$

$$
\pi=\{\{1,6,7\},\{2\},\{3\},\{4,5\}\}
$$

For $c \in \pi: \quad \phi_{c}^{*} \mid \boldsymbol{\pi} \sim H$

For $i \in c: \quad x_{i} \mid \pi, \phi^{*} \sim F\left(\phi_{c}^{*}\right)$

## The Generative Process

$$
\boldsymbol{\pi} \sim \operatorname{CRP}(\alpha)
$$

$$
\pi=\{\{1,6,7\},\{2\},\{3\},\{4,5\}\}
$$

For $c \in \pi$ :

$$
\phi_{c}^{*} \mid \boldsymbol{\pi} \sim H
$$

For $i \in c: \quad x_{i} \mid \boldsymbol{\pi}, \phi^{*} \sim F\left(\phi_{c}^{*}\right)$

## The Generative Process

$$
\boldsymbol{\pi} \sim \operatorname{CRP}(\alpha)
$$

$$
\pi=\{\{1,6,7\},\{2\},\{3\},\{4,5\}\}
$$

For $c \in \pi$ :

$$
\phi_{c}^{*} \mid \boldsymbol{\pi} \sim H
$$

$$
\text { For } i \in c: \quad x_{i} \mid \boldsymbol{\pi}, \phi^{*} \sim F\left(\phi_{c}^{*}\right)
$$



## Inference

## Gibbs sampling

- Update cluster parameters:

$$
\text { For } c \in \pi: \quad p\left(\phi_{c}^{*}\right)=h\left(\phi_{c}^{*}\right) \prod_{i \in c} f\left(x_{i} \mid \phi_{c}^{*}\right)
$$

- Update partition:

For $i \in[n]: \quad p\left(i \in c_{-i}\right) \propto \frac{\left|c_{-i}\right|}{n-1+\alpha} f\left(x_{i} \mid \phi_{c}^{*}\right)$

$$
p(i \text { in new cluster }) \propto \frac{\alpha}{n-1+\alpha} f\left(x_{i} \mid \phi_{\text {new }}^{*}\right)
$$

- Other samplers: split-merge [JN04], conditional
 sampling [IJ01, Wal07, PR08], variational inference [BJ06, KWV07].


## Infinite Mixture Models

Finite mixture model

- For each observation $i=1, \ldots, n$ :

$$
\begin{array}{lrl}
\text { Data: } & x_{i} \mid z_{i}=k & \sim F\left(\theta_{k}\right) \\
& \text { Cluster indicator: } & \\
i & \sim \mathbf{w}
\end{array}
$$

- Parameters:

Mixing proportions: $\quad \mathbf{w} \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right)$
Cluster parameters: $\quad \phi_{k}^{*} \sim H$

## Infinite limit

- Derive the induced distribution over partitions.

$$
\mathbb{P}\left(\boldsymbol{\pi}_{K}=\pi\right)=\frac{\Gamma(K+1) \Gamma(\alpha)}{\Gamma(K-|\pi|+1)} \prod_{c \in \pi} \frac{\Gamma(|c|+\alpha / K)}{\Gamma(\alpha / K)}
$$

- Take $K \rightarrow \infty$.


## APPLICATIONS

## Applications

| Applications | Object of interest | Bayesian nonparametric model |
| :--- | :--- | :--- |
| Classification \& regression | Function | Gaussian process |
| Clustering | Partition | Chinese restaurant process |
| Density estimation | Density | Dirichlet process mixture |
| Hierarchical clustering | Hierarchical partition | Dirichlet/Pitman-Yor diffusion tree, |
|  |  | Kingman's coalescent, Nested CRP |
| Latent variable modelling | Features | Beta process/Indian buffet process |
| Survival analysis | Hazard | Beta process, Neutral-to-the-right process |
| Power-law behaviour |  | Pitman-Yor process, Stable-beta process |
| Dictionary learning | Dictionary | Beta process/Indian buffet process |
| Dimensionality reduction | Manifold | Gaussian process latent variable model |
| Deep learning | Features | Cascading/nested Indian buffet process |
| Topic models | Atomic distribution | Hierarchical Dirichlet process |
| Time series |  | Infinite HMM |
| Sequence prediction | Conditional probs | Sequence memoizer |
| Reinforcement learning | Conditional probs | infinite POMDP |
| Spatial modelling | Functions | Gaussian process, |
|  |  | dependent Dirichlet process |
| Relational modelling |  | Infinite relational model, infinite hidden |
|  |  | relational model, Mondrian process |
| $\vdots$ |  |  |
| Peter Orbanz \& Yee Whye Teh | $\vdots$ | $\vdots$ |

## Learning Topic Hierarchies



## Motion Capture Segmentation



## Word Segmentation

山花貞夫•新民連会長は十六日の記者会見で，村山富市首相ら社会党執行部とさきがけが連携強化をめざし た問題について「私たちの行動が新しい政界の動きを作ったといえる。統一会派を超えて将来の日本の．．．

今后一段时期，不但居民会更多地选择国债，而且一些金融机构在准备金利率调低后，出于安全性方面的考虑，也会将部分资金用来购买国债。
yuwanttusiD6bUk？

## Word SEGMENTATION


yuwanttusiD6bUk

|  | P | R | F | BP | BR | BF | LP | LR | LF |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NGS-u | 67.7 | 70.2 | 68.9 | 80.6 | 84.8 | 82.6 | 52.9 | 51.3 | 52.0 |
| MBDP-1 | 67.0 | 69.4 | 68.2 | 80.3 | 84.3 | 82.3 | 53.6 | 51.3 | 52.4 |
| DP | 61.9 | 47.6 | 53.8 | 92.4 | 62.2 | 74.3 | 57.0 | 57.5 | 57.2 |
| NGS-b | 68.1 | 68.6 | 68.3 | 81.7 | 82.5 | 82.1 | 54.5 | 57.0 | 55.7 |
| HDP | $\mathbf{7 9 . 4}$ | $\mathbf{7 4 . 0}$ | $\mathbf{7 6 . 6}$ | $\mathbf{9 2 . 4}$ | $\mathbf{8 3 . 5}$ | $\mathbf{8 7 . 7}$ | $\mathbf{6 7 . 9}$ | $\mathbf{5 8 . 9}$ | $\mathbf{6 3 . 1}$ |


| Model | MSR | CITYU | Kyoto |
| :--- | :--- | :--- | :---: |
| NPY(2) | $80.2(51.9)$ | $\mathbf{8 2 . 4 ( 1 2 6 . 5 )}$ | $62.1(23.1)$ |
| NPY(3) | $\mathbf{8 0 . 7}(\mathbf{4 8 . 8})$ | $81.7(128.3)$ | $\mathbf{6 6 . 6}(\mathbf{2 0 . 6})$ |
| ZK08 | $66.7(-)$ | $69.2(-)$ | - |

## Power-Law Behaviour



## Two-Parameter Chinese Restaurant Process



- One customer enters the restaurant at a time:
- The first customer sits at the first table.
- Subsequent customer $n+1$ :
- Joins table $c$ with probability $\frac{|c|-d}{n+\alpha}$.
- Starts a new table with probability $\frac{\alpha+|\pi| d}{n+\alpha}$.
- Distribution over partitions is still exchangeable, and has power-law properties.


## Language Modelling and Compression

Language Modelling

| T | $\mathrm{N}-1$ | IKN | MKN |  | HDLM |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $2 \times 10^{6}$ | 2 | 148.8 | $\mathbf{1 4 4 . 1}$ | 191.2 | 144.3 |
| $4 \times 10^{6}$ | 2 | 137.1 | $\mathbf{1 3 2 . 7}$ | 172.7 | $\mathbf{1 3 2 . 7}$ |
| $6 \times 10^{6}$ | 2 | 130.6 | 126.7 | 162.3 | $\mathbf{1 2 6 . 4}$ |
| $8 \times 10^{6}$ | 2 | 125.9 | 122.3 | 154.7 | $\mathbf{1 2 1 . 9}$ |
| $10 \times 10^{6}$ | 2 | 122.0 | 118.6 | 148.7 | $\mathbf{1 1 8 . 2}$ |
| $12 \times 10^{6}$ | 2 | 119.0 | 115.8 | 144.0 | $\mathbf{1 1 5 . 4}$ |
| $14 \times 10^{6}$ | 2 | 116.7 | 113.6 | 140.5 | $\mathbf{1 1 3 . 2}$ |
| $14 \times 10^{6}$ | 1 | 169.9 | $\mathbf{1 6 9 . 2}$ | 180.6 | 169.3 |
| $14 \times 10^{6}$ | 3 | 106.1 | 102.4 | 136.6 | $\mathbf{1 0 1 . 9}$ |

Compression

| Algorithm | bits/byte |
| :--- | :--- |
| gzip | 2.61 |
| bzip2 | 2.11 |
| CTW | 1.99 |
| PPM | 1.93 |
| SM | $\mathbf{1 . 8 9}$ |

## Unsupervised Part-of-Speech Tagging



| Language | mkcls | HMM | 1HMM | 1HMM-LM | Best pub. | Tokens | Tag types |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arabic | 58.5 | 57.1 | 62.7 | $\mathbf{6 7 . 5}$ | - | 54,379 | 20 |
| Bulgarian | 66.8 | 67.8 | 69.7 | $\mathbf{7 3 . 2}$ | - | 190,217 | 54 |
| Czech | 59.6 | 62.0 | 66.3 | $\mathbf{7 0 . 1}$ | - | $1,249,408$ | $12^{c}$ |
| Danish | 62.7 | 69.9 | 73.9 | $\mathbf{7 6 . 2}$ | $66.7^{\star}$ | 94,386 | 25 |
| Dutch | 64.3 | 66.6 | 68.7 | $\mathbf{7 0 . 4}$ | $67.3^{\dagger}$ | 195,069 | $13^{c}$ |
| Hungarian | 54.3 | 65.9 | 69.0 | $\mathbf{7 3 . 0}$ | - | 131,799 | 43 |
| Portuguese | 68.5 | 72.1 | 73.5 | $\mathbf{7 8 . 5}$ | $75.3^{\star}$ | 206,678 | 22 |
| Spanish | 63.8 | 71.6 | 74.7 | $\mathbf{7 8 . 8}$ | $73.2^{\star}$ | 89,334 | 47 |
| Swedish | $\mathbf{6 4 . 3}$ | 66.6 | 67.0 | $\mathbf{6 8 . 6}$ | $60.6^{\dagger}$ | 191,467 | 41 |

## Constructing Complex Models

Construction of complex Bayesian nonparametric models

- Graphical models.
- Hierarchical Bayesian models [TJ10].
- Dependent stochastic processes [GKM05, Dun10].



## 5 Minutes Break

## AsYmptotics

## Coverage of Priors


[Gho10, KvdV06]

## Coverage of Nonparametric Priors

## Large coverage

- Support of nonparametric priors is larger ( $\infty$-dimensional) than of parametric priors (finite-dimensional).
- However: No uniform prior (or even "neutral" improper prior) exists on $\mathbf{M}(\mathcal{X})$.


## Interpretation of nonparametric prior assumptions

Concentration of nonparametric prior on subset of $\mathbf{M}(\mathcal{X})$ typically represents structural prior assumption.

- GP regression with unknown bandwidth:
- Any continuous function possible
- Prior can express e.g. "very smooth functions are more probable"
- Clustering: Expected number of clusters is...
- ...small $\longrightarrow$ CRP prior
- ...power law $\longrightarrow$ two-parameter CRP


## Posterior Consistency

## Definition 1 (weak consistency of Bayesian models)

Suppose we sample $P_{0}=P_{\theta_{0}}$ from the prior and generate data from $P_{0}$. If the posterior converges to $\delta_{\theta_{0}}$ for $n \rightarrow \infty$ with probability one under the prior, the model is called consistent.

## Doob's Theorem

Under very mild conditions, Bayesian models are consistent in the weak sense.

## Problem

- Definition holds up to a set of probability zero under the prior.
- This set can be huge and is a prior assumption.



## Definition 2 (frequentist consistency of Bayesian models)

A Bayesian model is consistent at $P_{0}$ if the posterior converges to $\delta_{P_{0}}$ with growing sample size.

## Convergence Rates

## Objective

How quickly does posterior concentrate at $\theta_{0}$ as $n \rightarrow \infty$ ?
Measure: Convergence rate

- Find smallest balls $B_{\varepsilon_{n}}\left(\theta_{0}\right)$ for which

$$
Q\left(B_{\varepsilon_{n}}\left(\theta_{0}\right) \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{n \rightarrow \infty} 1
$$

- Rate $=$ sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots$

The best we can hope for


- Optimal rate is $\varepsilon_{n} \propto n^{-1 / 2}$
- Given by optimal convergence of estimators
- Achieved in smooth parametric models


## Technical tools

Sieves, covering number, metric entropies... $\longrightarrow$ familiar from learning theory!

## Asymptotics: Sample Results

## Consistency

- DP mixtures: Consistent in many cases. No blanket statements.
- Range of consistency results for GP regression


## Convergence rates: Example

Bandwidth adaptation with GPs:

- True parameter $\theta_{0} \in C^{\alpha}[0,1]^{d}$, smoothness $\alpha$ unknown
- With gamma prior on GP bandwidth:

$$
\text { Convergence rate is } n^{-\alpha /(2 \alpha+d)}
$$

## Bernstein-von Mises Theorems

- Class of theorems establishing that posterior is asymptotically normal.
- Available for Gaussian processes and various regression settings.


## EXCHANGEABILITY

## Motivation

## Can we justify our assumptions?

Recall:

$$
\text { data }=\text { pattern }+ \text { noise }
$$

In Bayes' theorem:

$$
Q\left(d \theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\prod_{j=1}^{n} p\left(x_{j} \mid \theta\right)}{p\left(x_{1}, \ldots, x_{n}\right)} Q(d \theta)
$$



## Exchangeability

$X_{1}, X_{2}, \ldots$ are exchangeable if $P\left(X_{1}, X_{2}, \ldots\right)$ is invariant under any permutation $\sigma$ :

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=P\left(X_{1}=x_{\sigma(1)}, X_{2}=x_{\sigma(2)}, \ldots\right)
$$

In words:
Order of observations does not matter.

## Exchangeability and Conditional Independence

## De Finetti's Theorem

$$
\begin{gathered}
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=\int_{\mathbf{M}(\mathcal{X})}\left(\prod_{j=1}^{\infty} \theta\left(X_{j}=x_{j}\right)\right) Q(d \theta) \\
\Uparrow \\
X_{1}, X_{2}, \ldots \text { exchangeable }
\end{gathered}
$$

where:

- $\mathbf{M}(\mathcal{X})$ is the set of probability measures on $\mathcal{X}$
- $\theta$ are values of a random probability measure $\Theta$ with distribution $Q$


## Implications

- Exchangeable data decomposes into pattern and noise
- More general than i.i.d.-assumption
- Caution: $\theta$ is in general an $\infty$-dimensional quantity


## Exchangeability: Random Graphs

Random graph with independent edges
Given: $\quad \theta:[0,1]^{2} \rightarrow[0,1] \quad$ symmetric function

- $U_{1}, U_{2}, \ldots \sim$ Uniform $[0,1]$
- Edge $(i, j)$ present:


$$
(i, j) \sim \operatorname{Bernoulli}\left(\theta\left(U_{i}, U_{j}\right)\right)
$$

Call this distribution $P(\mathcal{G} \mid \theta)$.

## Aldous-Hoover Theorem

Random graph $\mathcal{G}$ exchangeable

$$
P(\mathcal{G})=\int_{\mathcal{T}}^{\hat{\mathbb{}}} P(\mathcal{G} \mid \theta) Q(d \theta)
$$



## Exchangeability: Random Graphs

Random graph with independent edges
Given: $\quad \theta:[0,1]^{2} \rightarrow[0,1] \quad$ symmetric function

- $U_{1}, U_{2}, \ldots \sim$ Uniform $[0,1]$
- Edge $(i, j)$ present:


$$
(i, j) \sim \operatorname{Bernoulli}\left(\theta\left(U_{i}, U_{j}\right)\right)
$$

Call this distribution $P(\mathcal{G} \mid \theta)$.

## Aldous-Hoover Theorem

Random graph $\mathcal{G}$ exchangeable

$$
P(\mathcal{G})=\int_{\mathcal{T}}^{\hat{\mathbb{}}} P(\mathcal{G} \mid \theta) Q(d \theta)
$$

## General Theme: Symmetry

## Other types of exchangeable data

| Data | Theorem | Mixture of... | Applications |
| :--- | :--- | :--- | :--- |
| Points | de Finetti | I.i.d. point sequences | "Standard" models |
| Sequences | Diaconis-Freedman | Markov chains | Time series |
| Partition | Kingman | "Paint-box" partitions | Clustering |
| Graphs | Aldous-Hoover | Graphs with independent edges | Networks |
| Arrays | Aldous-Hoover | Arrays with independent entries | Collaborative filtering |

Ergodic decomposition theorems

$$
\mu(X)=\int_{\Omega} \mu[X \mid \Phi=\phi] \nu(\phi)
$$

- Symmetry (group invariance) on lhs $\longrightarrow$ Integral decomposition on rhs
- Permutation invariance on lhs $\longrightarrow$ Independence on rhs


## Latent Feature Models

## Indian Buffet process

## Latent feature models

- Grouping problem with overlapping clusters.
- Encode as binary matrix: Observation $n$ in cluster $k \quad \Leftrightarrow \quad X_{n k}=1$
- Alternatively: Item $n$ possesses feature $k \quad \Leftrightarrow \quad X_{n k}=1$


## Indian buffet process (IBP)

1. Customer 1 tries Poisson $(\alpha)$ dishes.
2. Subsequent customer $n+1$ :

- tries a previously tried dish $k$ with probability $\frac{n_{k}}{n+1}$,
- tries Poisson $\left(\frac{\alpha}{n+1}\right)$ new dishes.


## Properties

- An exchangeable distribution over finite sets (of dishes).
- Intepretation:

Observation (= customer) $n$ in cluster (= dish) $k$ if customer "tries dish $k$ "

## De Finetti Representation

## Alternative description

1. Sample $w_{1}, \ldots, w_{K} \sim_{\text {iid }} \operatorname{Beta}(1, \alpha / K)$
2. Sample $X_{1 k}, \ldots, X_{n k} \sim_{\text {iid }} \operatorname{Bernoulli}\left(w_{k}\right)$

$$
\left(\begin{array}{ccc}
w_{1} & \ldots & w_{K} \\
X_{11} & \ldots & X_{1 K} \\
\vdots & & \vdots \\
X_{N 1} & \ldots & X_{N K}
\end{array}\right)
$$

We need some form of limit object for $\operatorname{Beta}(1, \alpha / K)$ for $K \rightarrow \infty$.

## Beta Process (BP)

Distribution on objects of the form

$$
\theta=\sum_{k=1}^{\infty} w_{k} \delta_{\phi_{k}} \quad \text { with } w_{k} \in[0,1] .
$$



- IBP matrix entries are sampled as $X_{n k} \sim_{\text {iid }} \operatorname{Bernoulli}\left(w_{k}\right)$.
- Beta process is the de Finetti measure of the IBP, that is, $Q=\mathrm{BP}$.
- $\theta$ is a random measure (but not normalized)


## Dirichlet Process

## Exchangeable Random Partitions

- $\operatorname{Set}[n]=\{1,2, \ldots, n\}$.
- Partition: $\pi=\{\{1,2,5\},\{3,4\},\{6\},\{7,8,9\}\}$.

Kingman's representation

Exchangeable partitions $\Leftrightarrow$ Random probability measures

$$
\begin{aligned}
& \theta=\text { Probability measure } \\
& \text { For } i \in[n]: \quad \phi_{i} \mid \theta \sim \theta \\
& i, j \text { in the same cluster } \quad \Leftrightarrow \quad \phi_{i}=\phi_{j} \\
& \mathbb{P}(\boldsymbol{\pi}=\pi)=\int_{\mathbf{M}(\Phi)} \mathbb{P}(\boldsymbol{\pi}=\pi \mid \theta) Q(d \theta)
\end{aligned}
$$

- Atoms in $\theta$ : clusters with more than one element.
- Smooth part of $\theta$ : clusters with exactly one element.



## Dirichlet Process

Chinese Restaurant Process for Clustering

$$
\pi=\{\{1,6,7\},\{2\},\{3\},\{4,5\}\}
$$



- Full generative model:

$$
\begin{aligned}
\theta & \sim Q \\
\phi_{i} \mid \theta & \sim \theta \\
x_{i} \mid \phi_{i} & \sim F\left(\phi_{i}\right)
\end{aligned}
$$

- Prior $Q$ is a Dirichlet process (DP) with mass parameter $\alpha$ and base distribution $H$.

- Two-parameter CRP: Pitman-Yor process (PYP) with additional discount parameter $d$.


## Dirichlet Process

- All clusters can contain more than one element $\Rightarrow \theta$ only contains atoms:

$$
\theta=\sum_{j=1}^{\infty} w_{j} \delta_{\phi_{j}^{*}}
$$

- What is the prior on $\left\{w_{j}, \phi_{j}^{*}\right\}$ ?
- Stick-breaking representation:

$$
\begin{aligned}
\phi_{j}^{*} & \sim H \\
v_{j} & \sim \operatorname{Beta}(1, \alpha) \quad w_{j}=v_{j} \prod_{i=1}^{j-1}\left(1-v_{j}\right)
\end{aligned}
$$

Masses decreasing on average: GEM distribution.

- Strictly decreasing masses: Poisson-Dirichlet

 distribution.


## Dirichlet Process



- Random probability measure with Dirichlet marginals:

$$
\left(\theta\left(A_{1}\right), \ldots, \theta\left(A_{k}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{k}\right)\right)
$$

for $A_{1}, \ldots, A_{k}$ partition of the space.

## Completely Random Measures

## Completely Random Measures

$$
\theta=\sum_{j=1}^{\infty} w_{j} \delta_{\phi_{j}^{*}}
$$

## Measure

- $\theta(S)$ - mass in set $S$.
- A function $\theta: \Omega \rightarrow \mathbb{R}_{+}$with certain properties, e.g. if $S, S^{\prime}$ disjoint sets,

$$
\theta\left(S \cup S^{\prime}\right)=\theta(S)+\theta\left(S^{\prime}\right)
$$

## Random Measure

- A random function $\theta: \Omega \rightarrow \mathbb{R}_{+}$.


## Completely Random Measure (CRM)

- If $S, S^{\prime}$ are disjoint sets, then

$$
\theta(S) \Perp \theta\left(S^{\prime}\right)
$$

## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM




## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

## Infinitely Divisible Distributions

- Random variable $X$ is infinitely divisible if for every $n$, there exists $n$ iid random variables $X_{1}, \ldots, X_{n}$ such that $\sum_{i=1}^{n} X_{i}=X$.
- Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.


## Example: Gamma CRM

| $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ | $\Gamma(\alpha / 4)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



## Completely Random Measures

A CRM can always be decomposed into 3 components:

$$
\mu=\mu_{0}+\sum_{i=1}^{\infty} v_{i} \delta_{\psi_{i}^{*}}+\sum_{j=1}^{\infty} w_{j} \delta_{\phi_{j}^{*}}
$$

- $\mu_{0}$ is measure that is not random.

- Locations $\left\{\psi_{i}^{*}\right\}$ are fixed, masses $\left\{v_{i}\right\}$ are mutually independent and independent of $\left\{w_{j}, \phi_{j}^{*}\right\}$,
- $\left\{\left(w_{j}, \phi_{j}^{*}\right)\right\}$ is drawn from a Poisson process over $\mathbb{R}_{+} \times \Phi$ with rate $\rho(w, \phi)$ (the Lévy measure).



## Completely Random Measures

- Gamma Process

$$
\rho(w, \phi)=\alpha w^{-1} e^{-w} h(\phi)
$$

- Normalizing a Gamma process $\Rightarrow$ Dirichlet process.
- Beta Process [Hjo90b]

$$
\rho(w, \phi)=\alpha w^{-1} \mathbf{1}(0 \leq w \leq 1) h(\phi)
$$

- Stable process [Kin75]

$$
\rho(w, \phi)=\frac{\alpha}{\Gamma(1-d)} w^{-d-1} h(\phi)
$$

- Stable-beta process [KL01, TG09, BJPar]

$$
\rho(w, \phi)=\frac{\alpha \Gamma(1+\beta)}{\Gamma(1-d) \Gamma(\beta+d)} w^{-d-1}(1-w)^{\beta+d-1} \mathbf{1}(0 \leq w \leq 1) h(\phi)
$$

- Generalized gamma process [Bri99]

$$
\rho(w, \phi)=\frac{\alpha}{\Gamma(1-d)} w^{-d-1} e^{-\tau w} h(\phi)
$$

## Families of Exchangeable Random Partitions



## Hierarchical Partitions

## Trees and Hierarchies

Phylogeny based on nucleotide differences in the gene for cytochrome c


## Bayesian Hierarchical Clustering

- Bayesian approach to hierarchical clustering:
- Prior over hierarchies $T$.
- Likelihood model for data.
- Necessarily nonparametric.
- Prior can be described by Markov chain of partitions.



## Fragmentation Processes

- Start with $\varrho_{L}=\{[n]\}$.
- At each stage, fragment each cluster into smaller clusters.
- A fragmentation can be described by independent partitionings of clusters at previous stage.

For each $c \in \varrho_{i}: \quad F_{c} \sim \operatorname{CRP}(\alpha, d, c)$

$$
\varrho_{i-1}=\bigcup_{c \in \varrho_{i}} F_{c}
$$

- Nested Chinese restaurant process [BGJ10], tree-structured stick-breaking
 [AGJ10].


## Coagulation Processes

- Start with $\varrho_{1}=[n]$.
- At each stage, coagulate clusters to form larger clusters.
- A coagulation can be described by a partitioning of clusters at previous stage.

$$
\begin{aligned}
C & \sim \operatorname{CRP}\left(\alpha, d, \varrho_{i}\right) \\
\varrho_{i+1} & =\left\{\bigcup_{c^{\prime} \in c} c^{\prime}: c \in C\right\}
\end{aligned}
$$

- Chinese restaurant franchise [TJBB06].



## Random Hierarchical Partitions

|  | Discrete iterations | Continuum limit |
| :---: | :---: | :---: |
| Fragmentation | Nested CRP, <br> tree-structured stick-breaking <br> Gibbs fragmentation tree <br> [BGJ10, AGJ10, MPW08] | Dirichlet diffusion tree, <br> Pitman-Yor diffusion tree <br> [Nea03, KG11] |
| Coagulation | Chinese restaurant franchise <br> [TJBB06] | Kingman's coalescent, <br> $\Lambda$-coalescent <br> [Kin82, Pit99, TDR08] |

## Fragmentation-Coagulation Duality



## Hierarchical Pitman-Yor Process

- Fragmentation-coagulation duality implies:

$$
\begin{aligned}
& G_{1} \mid G_{0} \sim \operatorname{PYP}\left(\alpha, d_{2}, G_{0}\right) \\
& \Rightarrow \quad G_{2} \mid G_{0} \sim \operatorname{PYP}\left(\alpha d_{1}, d_{1} d_{2}, G_{0}\right)
\end{aligned}
$$

- Computational implication: sequence memoizer $\left[\mathrm{WAG}^{+} 09\right]$.
- Dirichlet Process case:

$$
\left.\begin{aligned}
G_{1} \mid G_{0} & \sim \operatorname{DP}\left(\alpha / d, G_{0}\right) \\
G_{2} \mid G_{1} & \sim \operatorname{PYP}\left(\alpha, d_{1}, G_{1}\right)
\end{aligned} \quad \Rightarrow \quad G_{2} \right\rvert\, G_{0} \sim \operatorname{DP}\left(\alpha, G_{0}\right)
$$



- Modelling implication: hierarchical Dirichlet process (HDP) [TJBB06].


## Concluding Remarks

## SUMMARY

## Why Bayesian Nonparametrics?

- World is complicated.
- Objects of interest often infinite dimensional.
- Alternative to model selection.
- Flexible modelling language with interesting properties.
- Works well with finite data while enjoying asymptotic guarantees.

Technical Tools

- Stochastic processes.
- Exchangeability.
- Graphical, hierarchical and dependent models.


## Open Challenges

- Novel models and useful applications.
- Better inference and flexible software packages.
- Learning theory for Bayesian nonparametric models.


## References I

[AGJ10] Ryan Prescott Adams, Zoubin Ghahramani, and Michael I. Jordan. Tree-structured stick breaking for hierarchical data. In J. Shawe-Taylor, R. Zemel, J. Lafferty, and C. Williams, editors, Advances in Neural Information Processing (NIPS) 23, 2010.
[Ald81] David J. Aldous. Representations for Partially Exchangeable Arrays of Random Variables. Journal of Multivariate Analysis, 11:581-598, 1981.
[BC11] P. Blunsom and T. Cohn. A hierarchical Pitman-Yor process HMM for unsupervised part of speech induction. In Proceedings of ACL HLT, 2011.
[BGJ10] D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the Association for Computing Machines, 57(2):1-30, 2010.
[BJ06] D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-144, 2006.
[BJPar] T. Broderick, M. I. Jordan, and J. Pitman. Beta processes, stick-breaking, and power laws. Bayesian Analysis, to appear.
[BM73] D. Blackwell and J. B. MacQueen. Ferguson distributions via Pólya urn schemes. Annals of Statistics, 1:353-355, 1973.
[Bri99] A. Brix. Generalized gamma measures and shot-noise Cox processes. Advances in Applied Probability, 31:929-953, 1999.
[Dun10] D. B. Dunson. Nonparametric Bayes applications to biostatistics. In N. Hjort, C. Holmes, P. Müller, and S. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.
[Fer73] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209-230, 1973.
[FSJW10] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Sharing features among dynamical systems with beta processes. In Neural Information Processing Systems 22. MIT Press, 2010.
[FW11] S. Favaro and S. G. Walker. Slice sampling $\sigma$-stable Poisson-Kingman mixture models, 2011.
[GG06] T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, volume 18, 2006.
[GG11] T. L. Griffiths and Z. Ghahramani. The Indian buffet process: An introduction and review. J. Mach. Learn. Res., 12:1185-1224, 2011.
[GGJ06a] S. Goldwater, T. L. Griffiths, and M. Johnson. Contextual dependencies in unsupervised word segmentation. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, 2006.

## REFERENCES II

[GGJ06b] S. Goldwater, T.L. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-law generators. In Advances in Neural Information Processing Systems, volume 18, 2006.
[Ghol0] S. Ghosal. Dirichlet process, related priors and posterior asymptotics. In N. L. Hjort et al., editors, Bayesian Nonparametrics, pages $36-83$. Cambridge University Press, 2010.
[GKM05] A. E. Gelfand, A. Kottas, and S. N. MacEachern. Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100(471):1021-1035, 2005.
[GP06] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences, 138(3):5674-5684, 2006.
[GvdV07] Subhashis Ghosal and Aad van der Vaart. Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist., 35(2):697-723, 2007.
[GWT10] J. Gasthaus, F. Wood, and Y. W. Teh. Lossless compression based on the sequence memoizer. In Data Compression Conference, 2010.
[HJL06] M. W. Ho, L. F. James, and J. W. Lau. Coagulation fragmentation laws induced by general coagulations of two-parameter Poisson-Dirichlet processes. http://arxiv.org/abs/math.PR/0601608, 2006.
[Hjo90a] N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist., 18:1259-1294, 1990.
[Hjo90b] N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3):1259-1294, 1990.
[JJ01] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161-173, 2001.
[IZ02] H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for the Dirichlet process. Canadian Journal of Statistics, 30:269-283, 2002.
[Jam10] L. F. James. Coag-frag duality for a class of stable Poisson-Kingman mixtures. http://arxiv.org/abs/1008.2420, 2010.
[JLP09] L. F. James, A. Lijoi, and I. Prüenster. Posterior analysis for normalized random measures with independent increments. Scandinavian Journal of Statistics, 36:76-97, 2009.

## REFERENCES III

[JN04] S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Technical report, Department of Statistics, University of Toronto, 2004.
[Kal05] Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.
[KG11] D. Knowles and Z. Ghahramani. Pitman-Yor diffusion trees. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence, 2011.
[Kin67] J. F. C. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59-78, 1967.
[Kin75] J. F. C. Kingman. Random discrete distributions. Journal of the Royal Statistical Society, 37:1-22, 1975.
[Kin82] J. F. C. Kingman. On the genealogy of large populations. Journal of Applied Probability, 19:27-43, 1982. Essays in Statistical Science.
[KL01] Y. Kim and J. Lee. On posterior consistency of survival models. Annals of Statistics, 29(3):666-686, 2001.
[KvdV06] B. J. K. Kleijn and A. W. van der Vaart. Misspecification in infinite-dimensional Bayesian statistics. Annals of Statistics, 34(2):837-877, 2006.
[KWV07] K. Kurihara, M. Welling, and N. Vlassis. Accelerated variational DP mixture models. In Advances in Neural Information Processing Systems, volume 19, 2007.
[LMP05] A. Lijoi, R. H. Mena, and I. Prüenster. Hierarchical mixture modelling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100:1278-1291, 2005.
[MPW08] P. McCullagh, J. Pitman, and M. Winkel. Gibbs fragmentation trees. Bernoulli, 14(4):988-1002, 2008.
[MYU09] D. Mochihashi, T. Yamada, and N. Ueda. Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling. In Proceedings of ACL-IJCNLP, 2009.
[Nea92] R. M. Neal. Bayesian mixture modeling. In Proceedings of the Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, volume 11, pages 197-211, 1992.
[Nea00] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000.
[Nea03] R. M. Neal. Density modeling and clustering using Dirichlet diffusion trees. In Bayesian Statistics, volume 7, pages 619-629, 2003.

## References IV

[Orb11]
[Pit99]
[Pit03] J. Pitman. Poisson-Kingman partitions. In D. R. Goldstein, editor, Statistics and Science: a Festschrift for Terry Speed, pages 1-34. Institute of Mathematical Statistics, 2003.
[Pit06] J. Pitman. Combinatorial Stochastic Processes. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006.
[PPY92] M. Perman, J. Pitman, and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields, 92(1):21-39, 1992.
[PR08] Omiros Papaspiliopoulos and Gareth O. Roberts. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1):169-186, 2008.
[PY97] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Annals of Probability, 25:855-900, 1997.
[Ras00] C. E. Rasmussen. The infinite Gaussian mixture model. In Advances in Neural Information Processing Systems, volume $12,2000$.
[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[Sch65] L. Schwartz. On Bayes procedures. Z. Wahr. Verw. Gebiete, 4:10-26, 1965.
[Sch95] M. J. Schervish. Theory of Statistics. Springer, 1995.
[Set94] J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
[TDR08] Y. W. Teh, H. Daume III, and D. M. Roy. Bayesian agglomerative clustering with coalescents. In Advances in Neural Information Processing Systems, volume 20, pages 1473-1480, 2008.
[Teh06] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985-992, 2006.
[TG09] Y. W. Teh and D. Görür. Indian buffet processes with power-law behavior. In Advances in Neural Information Processing Systems, volume 22, pages 1838-1846, 2009.

## References V

[TJ07] R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In J. Mach. Learn. Res. Proceedings (AISTATS), volume 2, pages 564-571, 2007.
[TJ10] Y. W. Teh and M. I. Jordan. Hierarchical Bayesian nonparametric models with applications. In N. Hjort, C. Holmes, P. Müller, and S. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.
[TJBB06] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581, 2006.
[vdV98] A. van der Vaart. Asymptotic Statistics. Cambrdige University Press, 1998.
[vdVvZ08a] A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 36(3):1435-1463, 2008.
[vdVvZ08b] A. W. van der Vaart and J. H. van Zanten. Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, volume 3 of Inst. Math. Stat. Collect., pages 200-222. Inst. Math. Statist., Beachwood, OH, 2008.
$\left[\right.$ WAG ${ }^{+} 09$ F. Wood, C. Archambeau, J. Gasthaus, L. F. James, and Y. W. Teh. A stochastic memoizer for sequence data. In Proceedings of the International Conference on Machine Learning, volume 26, pages 1129-1136, 2009.
[Wal07] Stephen G. Walker. Sampling the Dirichlet mixture model with slices. Communications in Statistics - Simulation and Computation, 36:45, 2007.

