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Modelling Data

All models are wrong, but some are useful.

—George E. P. Box, Norman R. Draper (1987).

I Models are never correct for real world data.

I How do we deal with model misfit?

I Quantify closeness to true model, and optimality of fitted model;
I Model selection or averaging;
I Increase the flexibility of your model class.

I Bayesian nonparametrics are good solutions from the second and third
perspectives.



Nonparametric Modelling

I What is a nonparametric model?

I A parametric model where the number of parameters increases
with data;

I A really large parametric model;
I A model over infinite dimensional function or measure spaces.
I A family of distributions that is dense in some large space.

I Why nonparametric models in Bayesian theory of learning?

I broad class of priors that allows data to “speak for itself”;
I side-step model selection and averaging.

I How do we deal with the very large parameter spaces?

I Marginalize out all but a finite number of parameters;
I Define infinite space implicitly (akin to the kernel trick) using either

Kolmogorov Consistency Theorem or de Finetti’s theorem.



Classification and Regression
I Learn a mapping f : X→ Y.

Data: Pairs of data points (x1, y1), (x2, y2), . . . , (xn, yn).
Model: yi |xi ,w ∼ F (xi ,w) + ε

Classification: Y = {+1,−1} or {1, . . . ,C}.
Regression: Y = R

I Prior over parameters
p(w)

I Posterior over parameters

p(w |x,y) =
p(w)p(y|x,w)

p(y|x)

I Prediction with posterior:

p(y?|x?,x,y) =

∫
p(y?|x?,w)p(w |x,y)dw



Nonparametric Classification and Regression
I Learn a mapping f : X→ Y.

Data: Pairs of data points (x1, y1), (x2, y2), . . . , (xn, yn).
Model: yi |xi , f ∼ f (xi ) + ε

Classification: Y = {+1,−1} or {1, . . . ,C}.
Regression: Y = R

I Prior over parameters
p(f )

I Posterior over parameters

p(f |x,y) =
p(f )p(y|x, f )

p(y|x)

I Prediction with posterior:

p(y?|x?,x,y) =

∫
p(y?|x?, f )p(f |x,y)df



Density Estimation
I Parametric density estimation (e.g. Gaussian, mixture models)

Data: x = {x1, x2, . . .}
Model: xi |w ∼ F (w)

I Prior over parameters

p(w)

I Posterior over parameters

p(w |x) =
p(w)p(x|w)

p(x)

I Prediction with posterior

p(x?|x) =

∫
p(x?|w)p(w |x) dw



Nonparametric Density Estimation
I Nonparametric density estimation

Data: x = {x1, x2, . . .}
Model: xi |f ∼ f

I Prior over densities

p(f )

I Posterior over densities

p(f |x) =
p(f )p(x|w)

p(x)

I Prediction with posterior

p(x?|x) =

∫
f (x?)p(f |x) df



Other Tutorials on Bayesian Nonparametrics

I Zoubin Gharamani, UAI 2005.

I Michael Jordan, NIPS 2005.

I Volker Tresp, ICML nonparametric Bayes workshop 2006.

I Peter Orbanz, Foundations of Nonparametric Bayesian Methods, 2009.

I My Machine Learning Summer School 2007 tutorial and practical course.

I I have an introduction to Dirichlet processes [Teh 2007], and another to
hierarchical Bayesian nonparametric models [Teh and Jordan 2009].
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A Tiny Bit of Measure Theoretic Probability Theory

I A σ-algebra Σ is a family of subsets of a set Θ such that

I Σ is not empty;
I If A ∈ Σ then Θ\A ∈ Σ;
I If A1,A2, . . . ∈ Σ then ∪∞i=1Ai ∈ Σ.

I (Θ,Σ) is a measure space and A ∈ Σ are the measurable sets.

I A measure µ over (Θ,Σ) is a function µ : Σ→ [0,∞] such that

I µ(∅) = 0;
I If A1,A2, . . . ∈ Σ are disjoint then µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ).

I Everything we consider here will be measurable.
I A probability measure is one where µ(Θ) = 1.

I Given two measure spaces (Θ,Σ) and (∆,Φ), a function f : Θ→ ∆ is
measurable if f−1(A) ∈ Σ for every A ∈ Φ.



A Tiny Bit of Measure Theoretic Probability Theory

I If p is a probability measure on (Θ,Σ), a random variable X taking
values in ∆ is simply a measurable function X : Θ→ ∆.

I Think of the probability space (Θ,Σ,p) as a black-box random
number generator, and X as a function taking random samples in Θ
and producing random samples in ∆.

I The probability of an event A ∈ Φ is p(X ∈ A) = p(X−1(A)).

I A stochastic process is simply a collection of random variables {Xi}i∈I
over the same measure space (Θ,Σ), where I is an index set.

I What distinguishes a stochastic process from, say, a graphical
model is that I can be infinite, even uncountably so.

I This raises issues of how do you even define them and how do you
ensure that they can even existence (mathematically speaking).

I Stochastic processes form the core of many Bayesian nonparametric
models.

I Gaussian processes, Poisson processes, gamma processes,
Dirichlet processes, beta processes...



Outline

Bayesian Nonparametric Modelling

Measure Theoretic Probability Theory

Gaussian Processes
Consistency
Poisson Processes
Gamma Processes

Dirichlet Processes

Extensions and Generalizations of Dirichlet Processes

Summary



Gaussian Processes

I A Gaussian process (GP) is a random function f : X→ R such that for
any finite set of input points x1, . . . , xn,f (x1)

...
f (xn)

 ∼ N

m(x1)

...
m(xn)

 ,
c(x1, x1) . . . c(x1, xn)

...
. . .

...
c(xn, x1) . . . c(xn, xn)




where the parameters are the mean function m(x) and covariance
kernel c(x , y).

I GPs can be visualized by iterative sampling f (xn)|f (x1), . . . , f (xn−1) on a
sequence of input points x1, x2, . . .

I Demonstration.

I Note: a random function f is a stochastic process. It is a collection of
random variables {f (x)}x∈X one for each possible input value x .

[Rasmussen and Williams 2006]



Posterior and Predictive Distributions

I How do we compute the posterior and predictive distributions?

I Training set (x1, y1), (x2, y2), . . . , (xn, yn) and test input xn+1.

I Out of the (uncountably infinitely) many random variables {f (x)}x∈X
making up the GP only n + 1 has to do with the data:

f (x1), f (x2), . . . , f (xn+1)

I Training data gives observations f (x1) = y1, . . . , f (xn) = yn. The
predictive distribution of f (xn+1) is simply

p(f (xn+1)|f (x1) = y1, . . . , f (xn) = yn)

which is easy to compute since f (x1), . . . , f (xn+1) is Gaussian.

I This can be generalized to noisy observations yi = f (xi ) + εi or non-linear
effects yi ∼ D(f (xi )) where D(θ) is a distribution parametrized by θ.



Consistency and Existence

I The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

I Fortunately these marginal distributions are consistent .

I For every finite set x ⊂ X we have a distinct distribution
px([f (x)]x∈x). These distributions are said to be consistent if

px([f (x)]x∈x) =

∫
px∪y([f (x)]x∈x∪y)d [f (x)]x∈y

for disjoint and finite x,y ⊂ X.
I The marginal distributions for the GP are consistent because

Gaussians are closed under marginalization.

I The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f (x)}x∈X.

I For further information see [Orbanz 2009].



Poisson Processes
I A Poisson process (PP) is a random function f : Σ→ R such that:

I Σ is the σ-algebra over X.
I For any measurable set A ⊂ X,

f (A) ∼ Poisson(λ(A)),

where the parameter is the rate measure λ (a function from the
measurable sets of X to R+).

I And if A,B ⊂ X are disjoint then f (A) and f (B) are independent.

I The above family of distributions is consistent, since the sum of two
independent Poisson variables is still Poisson with the rate parameter
being the sum of the individual rates.

I Note that f is also a measure, a random measure. It always consists of
point masses:

f =
n∑

i=1

δxi

where x1, x2, . . . ∈ X and n ∼ Poisson(λ(X)), i.e. f is a point process.



Gamma Processes

I A Gamma process (ΓP) is a random function f : Σ→ R such that:

I For any measurable set A ⊂ X,

f (A) ∼ Gamma(λ(A),1),

where the parameter is the shape measure λ.
I And if A,B ⊂ X are disjoint then f (A) and f (B) are independent.

I The above family of distributions is also consistent, since the sum of two
independent gamma variables (with same scale parameter 1) is still
gamma with the shape parameter being the sum of the individual shape
parameters.

I f is also a random measure. It always consists of weighted point
masses:

f =
∞∑
i=1

wiδxi

with total weight
∑∞

i=1 wi ∼ Gamma(λ(X)).
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Regression with Infinite Numbers of Features

Inputs

Output

I Bayesian neural networks with infinite numbers of features give rise to
GPs.

[Neal 1994]



Infinite Mixture Models

I Mixture of K clusters:

zi |π ∼ Multinomial(π)

xi |zi , θ
∗
zi
∼ F (θzi )

I Being Bayesian we place priors on
parameters:

π ∼ Dirichlet(αK , . . . ,
α
K )

θ∗k ∼ H

I Now we somehow take K →∞.

[Rasmussen 2000]

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Infinite Mixture Models
I Assume that H is conjugate to F .

I We can integrate out parameters and Gibbs
sample zi ’s:

p(zi = k |z−i ) =
n−i

k + α
K

n − 1 + α
f (xi |{xj : j 6= i , zj = k})

I We will assume K is very large, so many
clusters will in fact be empty .

I We can lump these empty clusters together.

Occupied clusters:

p(zi = k |z−i ) =
n−i

k + α
K

n − 1 + α
f (xi |{xj : j 6= i , zj = k})

Empty clusters:

p(zi = kempty|z−i ) =
αK−K∗

K
n − 1 + α

f (xi |{})

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Infinite Mixture Models

I As K →∞ the Gibbs updates simplify:

Occupied clusters:

p(zi = k |z−i ) =
n−i

k
n − 1 + α

f (xi |{xj : j 6= i , zj = k})

Empty clusters:

p(zi = kempty|z−i ) =
α

n − 1 + α
f (xi |{})

I These are Gibbs updates for Dirichlet
process mixture models.

I Dirichlet processes can be thought of as
infinite dimensional Dirichlet distributions.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,∞



Infinite Mixture Models

I The actual infinite limit of finite mixture models does not make sense:
any particular component will get a mixing proportion of 0.

I In the Gibbs sampler we bypassed this by lumping empty clusters
together.

I Other better ways of making this infinite limit precise:

I Look at the prior clustering structure induced by the Dirichlet prior
over mixing proportions—Chinese restaurant process.

I Re-order components so that those with larger mixing proportions
tend to occur first, before taking the infinite limit—stick-breaking
construction.



Dirichlet Distributions

I A Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K =
{

(π1, . . . , πK ) : πk ≥ 0,
∑

k πk = 1
}

I We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(λ1, . . . , λK )

with parameters (λ1, . . . , λK ), if

p(π1, . . . , πK ) =
Γ(
∑

k λk )∏
k Γ(λk )

n∏
k=1

πλk−1
k



Dirichlet Distributions



Dirichlet Processes

I A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ)
such that for any finite set of measurable partitions A1∪̇ . . . ∪̇AK = Θ,

(G(A1), . . . ,G(AK )) ∼ Dirichlet(λ(A1), . . . , λ(AK ))

where λ is a base measure.

6

A

A1

A A

A

A

2

3

4
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I The above family of distributions is consistent (next slide), and
Kolmogorov Consistency Theorem can be applied to show existence (but
there are technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]



Consistency of Dirichlet Marginals

I If we have two partitions (A1, . . . ,AK ) and (B1, . . . ,BJ) of Θ, how do we
see if the two Dirichlets are consistent?

I Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (I1, . . . , Ij ) is a partition of (1, . . . ,K ),(∑

i∈I1 πi , . . . ,
∑

i∈Ij πi

)
∼ Dirichlet

(∑
i∈I1 λi , . . . ,

∑
i∈Ij λi

)



Consistency of Dirichlet Marginals

I Form the common refinement (C1, . . . ,CL) where each C` is the
intersection of some Ak with some Bj . Then:

By definition, (G(C1), . . . ,G(CL)) ∼ Dirichlet(λ(C1), . . . , λ(CL))

(G(A1), . . . ,G(AK )) =
(∑

C`⊂A1
G(C`), . . . ,

∑
C`⊂AK

G(C`)
)

∼ Dirichlet(λ(A1), . . . , λ(AK ))

Similarly, (G(B1), . . . ,G(BJ)) ∼ Dirichlet(λ(B1), . . . , λ(BJ))

so the distributions of (G(A1), . . . ,G(AK )) and (G(B1), . . . ,G(BJ)) are
consistent.

I Demonstration.



Parameters of Dirichlet Processes
I Usually we split the λ base measure into two parameters λ = αH:

I Base distribution H, which is like the mean of the DP.
I Strength parameter α, which is like an inverse-variance of the DP.

I We write:

G ∼ DP(α,H)

if for any partition (A1, . . . ,AK ) of Θ:

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

I The first and second moments of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of Θ.



Representations of Dirichlet Processes
I Draws from Dirichlet processes will always place all their mass on a

countable set of points:

G =
∞∑

k=1

πkδθ∗k

where
∑

k πk = 1 and θ∗k ∈ Θ.
I What is the joint distribution over π1, π2, . . . and θ∗1 , θ

∗
2 , . . .?

I Since G is a (random) probability measure over Θ, we can treat it as a
distribution and draw samples from it. Let

θ1, θ2, . . . ∼ G

be random variables with distribution G.
I What is the marginal distribution of θ1, θ2, . . . with G integrated out?
I There is positive probability that sets of θi ’s can take on the same

value θ∗k for some k , i.e. the θi ’s cluster together. How do these
clusters look like?

I For practical modelling purposes this is sufficient. But is this
sufficient to tell us all about G?



Stick-breaking Construction

G =
∞∑

k=1

πkδθ∗k

I There is a simple construction giving the joint distribution of π1, π2, . . .
and θ∗1 , θ

∗
2 , . . . called the stick-breaking construction.

θ∗k ∼ H

πk = vk

k−1∏
i=1

(1− vi )

vk ∼ Beta(1, α)

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)

I Also known as the GEM distribution, write π ∼ GEM(α).

[Sethuraman 1994]



Pólya Urn Scheme

θ1, θ2, . . . ∼ G

I The marginal distribution of θ1, θ2, . . . has a simple generative process
called the Pólya urn scheme.

θn|θ1:n−1 ∼ αH +
∑n−1

i=1 δθi

α + n − 1

I Picking balls of different colors from an urn:

I Start with no balls in the urn.
I with probability ∝ α, draw θn ∼ H, and add a ball of color θn into urn.
I With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color and return two balls of color θn into urn.

I Pólya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.

I Also known as the Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Chinese Restaurant Process
I According to the Pólya urn scheme, and because G consists of weighted

point masses, θ1, . . . , θn take on K < n distinct values, say θ∗1 , . . . , θ
∗
K .

I This defines a partition of (1, . . . ,n) into K clusters, such that if i is in
cluster k , then θi = θ∗k .

I The distribution over partitions is a Chinese restaurant process (CRP).
I Generating from the CRP:

I First customer sits at the first table.
I Customer n sits at:

I Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
I A new table K + 1 with probability α

α+n−1 .
I Customers⇔ integers, tables⇔ clusters.

I The CRP exhibits the clustering property of the DP.
I Rich-gets-richer effect implies small number of large clusters.
I Expected number of clusters is K = O(α log n).

9
1

2
3

4 5
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Density Estimation
I Parametric density estimation (e.g. Gaussian, mixture models)

Data: x = {x1, x2, . . .}
Model: xi |w ∼ F (·|w)

I Prior over parameters

p(w)

I Posterior over parameters

p(w |x) =
p(w)p(x|w)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|w)p(w |x) dw



Density Estimation
I Bayesian nonparametric density estimation with Dirichlet processes

Data: x = {x1, x2, . . .}
Model: xi ∼ G

I Prior over distributions

G ∼ DP(α,H)

I Posterior over distributions

p(G|x) =
p(G)p(x|G)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|G)p(G|x) dF =

∫
G(x?)p(G|x) dG

I Not quite feasible, since G is a discrete distribution, in particular it has no
density.



Density Estimation

I Solution: Convolve the DP with a smooth distribution:

G ∼ DP(α,H)

Fx (·) =

∫
F (·|θ)dG(θ)

xi ∼ Fx

⇒

G =
∞∑

k=1

πkδθ∗k

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx

I Demonstration.



Density Estimation
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F (·|µ,Σ) is Gaussian with mean µ, covariance Σ.
H(µ,Σ) is Gaussian-inverse-Wishart conjugate prior.
Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Density Estimation

!15 !10 !5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F (·|µ,Σ) is Gaussian with mean µ, covariance Σ.
H(µ,Σ) is Gaussian-inverse-Wishart conjugate prior.
Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Clustering
I Recall our approach to density estimation:

G =
∞∑

k=1

πkδθ∗k ∼ DP(α,H)

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx

I Above model equivalent to:

zi ∼ Discrete(π)

θi = θ∗zi

xi |zi ∼ F (·|θi ) = F (·|θ∗zi
)

I This is simply a mixture model with an infinite number of components.
This is called a DP mixture model .



Clustering

I DP mixture models are used in a variety of clustering applications,
where the number of clusters is not known a priori.

I They are also used in applications in which we believe the number of
clusters grows without bound as the amount of data grows.

I DPs have also found uses in applications beyond clustering, where the
number of latent objects is not known or unbounded.

I Nonparametric probabilistic context free grammars.
I Visual scene analysis.
I Infinite hidden Markov models/trees.
I Haplotype inference.
I ...

I In many such applications it is important to be able to model the same
set of objects in different contexts.

I This corresponds to the problem of grouped clustering and can be
tackled using hierarchical Dirichlet processes.

[Teh et al. 2006, Teh and Jordan 2009]



Semiparametric Modelling
I Example: linear regression model for inferring effectiveness of new

medical treatments.

yij = β>xij + b>i zij + εij

yij is outcome of j th trial on i th subject.
xij , zij are predictors (treatment, dosage, age, health...).
β are fixed-effects coefficients.
bi are random-effects subject-specific coefficients.
εij are noise terms.

I Care about inferring β. If xij is treatment, we want to determine
p(β > 0|x,y, z).

I Usually we assume Gaussian noise εij ∼ N (0, σ2). Is this a sensible
prior? Over-dispersion, skewness,...

I May be better to model noise nonparametrically: εij ∼ F .

I Also possible to model subject-specific random effects
nonparametrically: bi ∼ G.



Exchangeability

I Instead of deriving the Pólya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

θn|θ1:n−1 ∼ αH +
∑n−1

i=1 δθi

α + n − 1

I For any n, the joint distribution of θ1, . . . , θn is:

p(θ1, . . . , θn) =
αK ∏K

k=1 h(θ∗k )(mnk − 1)!∏n
i=1 i − 1 + α

where h(θ) is density of θ under H, θ∗1 , . . . , θ
∗
K are the unique values, and

θ∗k occurred mnk times among θ1, . . . , θn.

I The joint distribution is exchangeable wrt permutations of θ1, . . . , θn.

I De Finetti’s Theorem says that there must be a random probability
measure G making θ1, θ2, . . . iid. This is the DP.



De Finetti’s Theorem

Let θ1, θ2, . . . be an infinite sequence of random variables with joint
distribution p. If for all n ≥ 1, and all permutations σ ∈ Σn on n objects,

p(θ1, . . . , θn) = p(θσ(1), . . . , θσ(n))

That is, the sequence is infinitely exchangeable. Then there exists a latent
random parameter G such that:

p(θ1, . . . , θn) =

∫
p(G)

n∏
i=1

p(θi |G)dG

where ρ is a joint distribution over G and θi ’s.

I θi ’s are independent given G.

I Sufficient to define G through the conditionals p(θn|θ1, . . . , θn−1).

I G can be infinite dimensional (indeed it is often a random measure).
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Hierarchical Dirichlet Processes



Hierarchical Dirichlet Processes

I We model documents as coming from an underlying set of topics.

I Do not know the number of topics a priori—use DP mixtures
somehow.

I But: topics have to be shared across documents...



Hierarchical Dirichlet Processes

I Share topics across documents in a collection, and across different
collections.

I More sharing within collections than across.

I Use DP mixture models as we do not know the number of topics a priori.



Hierarchical Dirichlet Processes

I Use a DP mixture for each group.

I Unfortunately there is no sharing of clusters
across different groups because H is smooth.

I Solution: make the base distribution H discrete.

I Put a DP prior on the common base distribution.

[Teh et al. 2006]
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Hierarchical Dirichlet Processes

I A hierarchical Dirichlet process:

G0 ∼ DP(α0,H)

G1,G2|G0 ∼ DP(α,G0) iid

I Extension to larger hierarchies is straightforward. 1i
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Hierarchical Dirichlet Processes

I Making G0 discrete forces shared cluster between G1 and G2.



Hierarchical Dirichlet Processes

I Document topic modelling:

I Allows documents to be modelled with DP mixtures of topics, with
topics shared across corpora.

I Infinite hidden Markov modelling:

I Allows HMMs with an infinite number of states, with transitions from
each allowable state to every other allowable state.

I Learning discrete structures from data:

I Determining number of objects, nonterminals, states etc.

I Multi-tasking learning:

I Allows sharing of information across tasks.



Pitman-Yor Processes

I Two-parameter generalization of the Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk−β

n−1+α if occupied table
α+βK
n−1+α if new table

I Associating each cluster k with a unique draw θ∗k ∼ H, the
corresponding Pólya urn scheme is also exchangeable.

I De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

I This is the Pitman-Yor process.

I The Pitman-Yor process also has a stick-breaking construction:

πk = vk

k−1∏
i=1

(1− vi ) βk ∼ Beta(1− β, α + βk) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

I Two salient features of the Pitman-Yor process:

I With more occupied tables, the chance of even more tables
becomes higher.

I Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

I The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(αnβ).

100 101 102 103 104 105 106100

101

102

103

104

105

106

# customers

# 
ta

bl
es

!=10, d=[.9 .5 0]

100 101 102 103 104 105 106100

101

102

103

104

105

106

# customers

# 
ta

bl
es

 w
ith

 1
 c

us
to

m
er

!=10, d=[.9 .5 0]

100 101 102 103 104 105 1060

0.2

0.4

0.6

0.8

1

# customers
pr

op
or

tio
n 

of
 ta

bl
es

 w
ith

 1
 c

us
to

m
er

!=10, d=[.9 .5 0]



Pitman-Yor Processes

Draw from a Pitman-Yor process
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Draw from a Dirichlet process
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Hierarchical Pitman-Yor Language Models

I Pitman-Yor processes can be suitable models for many natural
phenomena with power-law statistics.

I Language modelling with Markov assumption:

p(Mary has a little lamb)

≈p(Mary)p(has|Mary)p(a|Mary has)p(little|has a)p(lamb|a little)

I Parameterize with p(w3|w1,w2) = Gw1,w2 [w3] and use a hierarchical
Pitman-Yor process prior:

Gw1,w2 |Gw2 ∼ PY(α2, β2,Gw2 )

Gw2 |G∅ ∼ PY(α1, β1,G∅)
G∅|U ∼ PY(α0, β0,U)

[Goldwater et al. 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models

T N IKN MKN HPYLM HPYCV HDLM
2e6 3 148.8 144.1 145.7 144.3 191.2
4e6 3 137.1 132.7 134.3 132.7 172.7
6e6 3 130.6 126.7 127.9 126.4 162.3
8e6 3 125.9 122.3 123.2 121.9 154.7

10e6 3 122.0 118.6 119.4 118.2 148.7
12e6 3 119.0 115.8 116.5 115.4 144.0
14e6 3 116.7 113.6 114.3 113.2 140.5
14e6 2 169.9 169.2 169.6 169.3 180.6
14e6 4 106.1 102.4 103.8 101.9 136.6

I Hierarchical Pitman-Yor language model produces state-of-the-art
results.

I Extension to domain adaptation [Wood and Teh 2009].

T–training set size, N–context length+1, IKN–Interpolated Kneser Ney, MKN–modified Kneser-Ney, HPYLM–Hierarchical

Pitman-Yor, HPYCV–HPYLM with parameters tuned by cross validation, HDLM–Hierarchical Dirichlet language model.



Image Segmentation with Pitman-Yor Processes

I Human segmentations of images also seem to follow power-law.

I An unsupervised image segmentation model based on dependent
hierarchical Pitman-Yor processes achieves state-of-the-art results.

[Sudderth and Jordan 2009]



Beyond Clustering

I Dirichlet and Pitman-Yor processes are nonparametric models of
clustering.

I Can nonparametric models go beyond clustering to describe data in
more expressive ways?

I Hierarchical (e.g. taxonomies)?
I Distributed (e.g. multiple causes)?



Indian Buffet Processes
I The Indian Buffet Process (IBP) is akin to the Chinese restaurant

process but describes each customer with a binary vector instead of
cluster.

I Generating from an IBP:

I Parameter α.
I First customer picks Poisson(α) dishes to eat.
I Subsequent customer i picks dish k with probability nk

i ; and picks
Poisson(αi ) new dishes.
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Infinite Independent Components Analysis

I Each image Xi is a linear combination of sparse features:

Xi =
∑

k

Λk yik

where yik is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

yik = zik aik aik ∼ N (0,1) Z ∼ IBP(α)

I An ICA model with infinite number of features.

[Knowles and Ghahramani 2007]



Indian Buffet Processes and Exchangeability

I The IBP is infinitely exchangeable, though this is much harder to see.

I De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

I This random measure is the Beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

I A beta process B ∼ BP(c, αH) is a random discrete measure with form:

B =
∞∑

k=1

µkδθ∗k

where the points P = {(θ∗1 , µ1), (θ∗2 , µ2), . . .} are spikes in a 2D Poisson
process with rate measure:

cµ−1(1− µ)c−1dµαH(dθ)

I The beta process with c = 1 is the de Finetti measure for the IBP. When
c 6= 1 we have a two parameter generalization of the IBP.

I This is an example of a completely random measure.

I A beta process does not have Beta distributed marginals.

[Hjort 1990]



Stick-breaking Construction for Beta Processes

I When c = 1 it was shown that the following generates a draw of B:

vk ∼ Beta(1, α) µk = (1− vk )
k−1∏
i=1

(1− vi ) θ∗k ∼ H

B =
∞∑

k=1

µkδθ∗k

I The above is the complement of the stick-breaking construction for DPs!

π

(4)π
(3)µ

(6)µ

(1)µ
(2)µ

(4)µ
(5)µ

(5)π

(2)π
(3)π

(6)π

(1)

[Teh et al. 2007]



Survival Analysis

I The Beta process was first proposed as a Bayesian nonparametric
model for survival analysis with right-censored data.

I The hazard rate B is given a BP(c, αH) prior. B(θ)dθ is the chance of
death in an infinitesimal interval [θ, θ + dθ) given that the individual has
survived up to time θ.

I Data consists of a set of death times τ1, τ2, . . . and censored times
γ1, γ2, . . ., and can be summarized as:

Death measure: D =
∑

i

δτi

Number-at-risk function: R(θ) = D([θ,∞)) +
∑

i

I(γi ≥ θ)

I The posterior of B is:

B|D,R ∼ BP(c + R, αH + D)

Note: the above is a generalization to c being a function of θ.
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Summary
I Motivation for Bayesian nonparametrics:

I Allows practitioners to define and work with models with large
support, sidesteps model selection.

I New models with useful properties.
I Large variety of applications.

I Introduced the Dirichlet process:
I Infinite limit of finite mixture models.
I Measure-theoretic definition.
I Chinese restaurant process, Pólya urn scheme, stick-breaking

construction.

I Touched upon two important theoretical tools:
I Consistency and Kolmogorov’s Consistency Theorem
I Exchangeability and de Finetti’s Theorem

I Described a number of applications of Bayesian nonparametrics.

I Missing: Inference methods based on MCMC, variational, and on
different representations.
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Posterior Dirichlet Processes

I Suppose G is DP distributed, and θ is G distributed:

G ∼ DP(α,H)

θ|G ∼ G

I This gives p(G) and p(θ|G).

I We are interested in:

p(θ) =

∫
p(θ|G)p(G) dG

p(G|θ) =
p(θ|G)p(G)

p(θ)



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

I Consider:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

z|(π1, . . . , πK ) ∼ Discrete(π1, . . . , πK )

z is a multinomial variate, taking on value i ∈ {1, . . . ,n} with probability
πi .

I Then:

z ∼ Discrete
(

α1P
i αi
, . . . , αKP

i αi

)
(π1, . . . , πK )|z ∼ Dirichlet(α1 + δ1(z), . . . , αK + δK (z))

where δi (z) = 1 if z takes on value i , 0 otherwise.

I Converse also true.



Posterior Dirichlet Processes
I Fix a partition (A1, . . . ,AK ) of Θ. Then

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

P(θ ∈ Ai |G) = G(Ai )

I Using Dirichlet-multinomial conjugacy,

P(θ ∈ Ai ) = H(Ai )

(G(A1), . . . ,G(AK ))|θ ∼ Dirichlet(αH(A1)+δθ(A1), . . . , αH(AK )+δθ(AK ))

I The above is true for every finite partition of Θ. In particular, taking a
really fine partition,

p(dθ) = H(dθ)

I Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
(
α + 1,

αH + δθ
α + 1

)



Posterior Dirichlet Processes

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)



Pólya Urn Scheme

I First sample:
θ1|G ∼ G G ∼ DP(α,H)

⇐⇒ θ1 ∼ H G|θ1 ∼ DP(α + 1, αH+δθ1
α+1 )

I Second sample:
θ2|θ1,G ∼ G G|θ1 ∼ DP(α + 1, αH+δθ1

α+1 )

⇐⇒ θ2|θ1 ∼ αH+δθ1
α+1 G|θ1, θ2 ∼ DP(α + 2, αH+δθ1 +δθ2

α+2 )

I nth sample

θn|θ1:n−1,G ∼ G G|θ1:n−1 ∼ DP(α + n − 1, αH+
Pn−1

i=1 δθi
α+n−1 )

⇐⇒ θn|θ1:n−1 ∼ αH+
Pn−1

i=1 δθi
α+n−1 G|θ1:n ∼ DP(α + n, αH+

Pn
i=1 δθi

α+n )



Stick-breaking Construction
I Returning to the posterior process:

G ∼ DP(α,H)

θ|G ∼ G
⇔

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ
α+1 )

I Consider a partition (θ,Θ\θ) of Θ. We have:

(G(θ),G(Θ\θ))|θ ∼ Dirichlet((α + 1)αH+δθ
α+1 (θ), (α + 1)αH+δθ

α+1 (Θ\θ))

= Dirichlet(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G′ with β ∼ Beta(1, α)

and G′ is the (renormalized) probability measure with the point mass
removed.

I What is G′?



Stick-breaking Construction
I Currently, we have:

G ∼ DP(α,H)

θ ∼ G
⇒

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ
α+1 )

G = βδθ + (1− β)G′

β ∼ Beta(1, α)

I Consider a further partition (θ,A1, . . . ,AK ) of Θ:

(G(θ),G(A1), . . . ,G(AK ))

=(β, (1− β)G′(A1), . . . , (1− β)G′(AK ))

∼Dirichlet(1, αH(A1), . . . , αH(AK ))

I The agglomerative/decimative property of Dirichlet implies:

(G′(A1), . . . ,G′(AK ))|θ ∼ Dirichlet(αH(A1), . . . , αH(AK ))

G′ ∼ DP(α,H)



Stick-breaking Construction
I We have:

G ∼ DP(α,H)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑

k=1

πkδθ∗k

where

πk = βk
∏k−1

i=1 (1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)
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