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Previous Tutorials and Reviews

• Mike Jordan’s tutorial at NIPS 2005.

• Zoubin Ghahramani’s tutorial at UAI 2005.

• Peter Orbanz’ tutorial at MLSS 2009 (videolectures)

• My own tutorials at MLSS 2007, 2009 (videolectures) and elsewhere.

• Introduction to Dirichlet process [Teh 2010], nonparametric Bayes 
[Orbanz & Teh 2010, Gershman & Blei 2011], hierarchical Bayesian 
nonparametric models [Teh & Jordan 2010].

• Bayesian nonparametrics book [Hjort et al 2010].

• This tutorial: focus on the role of random partitions.



Bayesian Modelling



Probabilistic Machine Learning

• Machine Learning is all about data.

• Stochastic process

• Noisily observed

• Partially observed

• Probability theory is a language to express all these notions.

• Probabilistic models

• Allow us to reason coherently about such data.

• Give us powerful computational tools to implement such reasoning on 
computers.



Probabilistic Models

• Data: x1,x2,....,xn.

• Latent variables: y1,y2,...,yn.

• Parameter: θ.

• A probabilistic model is a parametrized joint distribution over variables.

• Inference, of latent variables given observed data:

P (y1, . . . , yn|x1, . . . , xn, θ) =
P (x1, . . . , xn, y1, . . . , yn|θ)

P (x1, . . . , xn|θ)

P (x1, . . . , xn, y1, . . . , yn|θ)



Probabilistic Models

• Learning, typically by maximum likelihood:

• Prediction:

• Classification:

• Visualization, interpretation, summarization.

P (xn+1, yn+1|x1, . . . , xn, θ)

argmax
c

P (xn+1|θc)

θML = argmax
θ

P (x1, . . . , xn|θ)



Graphical Models

Earthquake Burglar

Alarm

Visit to Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Dyspnea

Tuberculosis 
or lung cancer

Abnormal 
X ray

• Nodes = variables

• Edges = dependencies

• Lack of edges = conditional 
independencies



Bayesian Machine Learning

• Prior distribution:

• Posterior distribution (inference and learning):

• Prediction:

• Classification:

P (θ)

P (y1, . . . , yn, θ|x1, . . . , xn) =
P (x1, . . . , xn, y1, . . . , yn|θ)P (θ)

P (x1, . . . , xn)

P (xn+1|xc
1, . . . , x

c
n) =

�
P (xn+1|θc)P (θc|xc

1, . . . , x
c
n)dθ

c

P (xn+1|x1, . . . , xn) =

�
P (xn+1|θ)P (θ|x1, . . . , xn)dθ



Bayesian Models

• Latent variables and parameters are not distinguished.

• Important operations are marginalization and posterior computation.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
K

topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θk



Blind Deconvolution

[Fergus et al 2006, Levin et al 2009]



Pros and Cons

• Maximum likelihood: have to guard against overfitting.

• Bayesian methods do not fit any parameters (no overfitting).

• Bayesian posterior distribution captures more information from data.

• Bayesian learning is coherent (no Dutch book).

• Prior distributions and model structures can be useful way to introduce 
prior knowledge.

• Bayesian inference is often more complex.

• Bayesian inference is often more computationally intensive.

• Powerful computational tools have been developed for Bayesian 
inference.

• Often easier to think about the “ideal” and “right way” to perform 
learning and inference before considering how to do it efficiently.



Bayesian Nonparametrics

[Hjort et al 2010]



Model Selection

• In non-Bayesian methods model selection is needed to prevent 
overfitting and underfitting.

• In Bayesian contexts model selection is also useful as a way of 
determining the appropriateness of various models given data.

• Marginal likelihood:

• Model selection:

• Model averaging:

P (x|Mk) =

�
P (x|θk,Mk)P (θk|Mk)dθk

argmax
Mk

P (x|Mk)

P (Mk|x) ∝ P (x|Mk)P (Mk)



Model Selection

• Model selection is often very computationally intensive.

• But reasonable and proper Bayesian methods should not overfit anyway.

• Idea: use one large model, and be Bayesian so will not overfit.

• Bayesian nonparametric idea: use a very large Bayesian model avoids 
both overfitting and underfitting.



Large Function Spaces

• Large function spaces.

• More straightforward to infer the 
infinite-dimensional objects 
themselves.
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Structural Learning

• Learning structures.

• Bayesian prior over 
combinatorial structures.

• Nonparametric priors 
sometimes end up 
simpler than parametric 
priors.

duck
chicken

seal
dolphin
mouse

rat
squirrel

cat
cow

sheep
pig

deer
horse

tiger
lion

lettuce
cucumber

carrot
potato
radish
onions

tangerine
orange

grapefruit
lemon
apple
grape

strawberry
nectarine
pineapple

drill
clamp
pliers

scissors
chisel
axe

tomahawk
crowbar

screwdriver
wrenchhammer

sledgehammer
shovel
hoe
rake
yacht
ship

submarine
helicopter

train
jet
carvan

truck
bus

motorcycle
bike

wheelbarrow
tricycle
jeep[Adams et al AISTATS 2010, Blundell et al UAI 2010]



Novel Models with Useful Properties

• Many interesting Bayesian nonparametric models with interesting and 
useful properties:

• Projectivity, exchangeability.

• Zipf, Heap and other power laws 

• (Pitman-Yao, 3-parameter IBP).

• Flexible ways of building complex models 

• (Hierarchical nonparametric models, dependent Dirichlet processes).

• Techniques developed for Bayesian nonparametric models are 
applicable to many stochastic processes not traditionally considered 
as Bayesian nonparametric models.



Are Nonparametric Models Nonparametric?

• Nonparametric just means not parametric: cannot be described by a 
fixed set of parameters.

• Nonparametric models still have parameters, they just have an infinite 
number of them.

• No free lunch: cannot learn from data unless you make assumptions.

• Nonparametric models still make modelling assumptions, they are just 
less constrained than the typical parametric models.

• Models can be nonparametric in one sense and parametric in another: 
semiparametric models.



Random Partitions in
Bayesian Nonparametrics



Overview

• Random partitions, through their relationship to Dirichlet and Pitman-
Yor processes, play very important roles in Bayesian nonparametrics.

• Introduce Chinese restaurant processes via finite mixture models.

• Projectivity, exchangeability, de Finetti’s Theorem, and Kingman’s 
paintbox construction.

• Two parameter extension and the Pitman-Yor process.

• Infinite mixture models and inference in them.



Random Partitions



Partitions

• A partition ϱ of a set S is:

• A disjoint family of non-empty subsets of S whose union in S.

• S = {Alice, Bob, Charles, David, Emma, Florence}.

• ϱ = { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

• Denote the set of all partitions of S as PS.

Alice
David

Bob
Charles
Emma

Florence



Partitions in Model-based Clustering

• Given a dataset S, partition it into clusters of 
similar items.

• Cluster c ∈ ϱ described by a model

parameterized by θc.

• Bayesian approach: introduce prior over ϱ 
and θc; compute posterior over both.

• To do so we will need to work with random 
partitions.

F (x|θc)



From Finite Mixture Models 
to Chinese Restaurant Processes



Finite Mixture Models

• Explicitly allow only K clusters in partition:

• Each cluster c has parameter θc.

• Each data item i assigned to c with mixing 
probability vector πc.

• Gives a random partition with at most K 
clusters.

• Priors on the other parameters:

•

zi

π

α

H

i = 1 . . . n

xi

θc
c = 1 . . .K

π|α ∼ Dirichlet(α)

θc|H ∼ H



Finite Mixture Models

• Dirichlet distribution on the K-dimensional 
probability simplex { π | Σc πc = 1 }:

• with                                    and           .

• Standard distribution on probability vectors, due 
to conjugacy with multinomial. 

zi

π

α

H

i = 1 . . . n

xi

θc
c = 1 . . .K

P (π|α) =
Γ(

�
c αc)�

c Γ(αc)

K�

c=1

παc−1
c

Γ(α) =
�∞
0 xα−1exdx αc ≥ 0

π|α ∼ Dirichlet(α)

θc|H ∼ H

zi|π ∼ Multinomial(π)

xi|zi, θzi ∼ F (·|θzi)



Dirichlet Distribution

P (π|α) =
Γ(

�
c αc)�

c Γ(αc)

K�

c=1

παc−1
c

(1, 1, 1) (2, 2, 2)

(2, 2, 5)

(5, 5, 5)

(2, 5, 5) (0.7, 0.7, 0.7)



Dirichlet-Multinomial Conjugacy

• Joint distribution over zi and π:

• where nc = #{zi=c}.

• Posterior distribution:

• Marginal distribution:

P (π|α)×
n�

i=1

P (zi|π) =
Γ(

�
c αc)�

c Γ(αc)

K�

c=1

παc−1
c ×

K�

c=1

πnc
c

P (π|z,α) =
Γ(n+

�
c αc)�

c Γ(nc + αc)

K�

c=1

πnc+αc−1
c

P (z|α) =
Γ(

�
c αc)�

c Γ(αc)

�
c Γ(nc + αc)

Γ(n+
�

c αc)



Induced Distribution over Partitions

• P(z|α) describes a partition of the data set into clusters, and a labelling 
of each cluster with a mixture component index.

• Induces a distribution over partitions of the data set (without labelling).

• Start by supposing αc = α/K.  

• The partition ϱ has |ϱ| = k ≤ K clusters, each of which can be assigned 
one of K labels (without replacement).  So after some algebra:

P (z|α) =
Γ(

�
c αc)�

c Γ(αc)

�
c Γ(nc + αc)

Γ(n+
�

c αc)

P (z|α) = 1

K(K − 1) · · · (K − k + 1)
P (�|α)

P (�|α) = [K]k−1
Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|+ α/K)

Γ(α/K)



Chinese Restaurant Process

• Taking K → ∞, we get a proper distribution over partitions without a 
limit on the number of clusters:

• (using                                            ). 

• This is the Chinese restaurant process (CRP).

• We write ϱ ~ CRP([n],α) if ϱ ∈ P[n] is CRP distributed.

Γ(α/K)α/K = Γ(1 + α/K)

P (�|α) = [K]k−1
Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|+ α/K)

Γ(α/K)

→ α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)



Chinese Restaurant Processes

[Aldous 1985, Pitman 2006]



Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Customers correspond to elements of set S, and tables to clusters in the 
partition ϱ.

• Multiplying all terms together, we get the overall probability of ϱ:

1
3
6

2
7

4
5
8

9

P (sit at table c) =
nc

α+
�

c∈� nc

P (sit at new table) =
α

α+
�

c∈� nc

P (�|α) = α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)



Exchangeability



Exchangeability

• A distribution over partitions PS is exchangeable if it is invariant to 
permutations of S:  For example, 
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Exchangeability

• A distribution over partitions PS is exchangeable if it is invariant to 
permutations of S:  For example, 

• P(ϱ = {{1,3,6},{2,7},{4,5,8},{9}}) = 

• P(ϱ = {{σ(1), σ(3), σ(6)},{σ(2), σ(7)},{σ(4), σ(5), σ(8)},{σ(9)}})

• where S = [9] = {1,...,9}, and σ is a permutation of [9].

• The Chinese restaurant process satisfies exchangeability:

• The finite mixture model is exchangeable (iid given parameters).

• The probability of ϱ under the CRP does not depend on the identities 
of elements of S.

• An exchangeable is one that does not depend on the (arbitrary) way data 
items are indexed.



Consistency and Projectivity



Consistency and Projectivity

• Let ϱ be a partition of S, and S’ ⊂ S be a subset.  The projection of ϱ onto 
S’ is the partition of S’ defined by ϱ:
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Consistency and Projectivity

• Let ϱ be a partition of S, and S’ ⊂ S be a subset.  The projection of ϱ onto 
S’ is the partition of S’ defined by ϱ:

• PROJ(ϱ, S’) = { c ∩ S’ | c ∩ S’ ≠ ∅, c ∈ S }

• A sequence of distributions P1,P2,... over P[1], P[2],... is projective or 
consistent if the distribution on P[n] induced by Pm for m>n is Pn.

• Pm({ϱm : PROJ(ϱm,[n]) = ϱn}) = Pn(ϱn) 

• The Chinese restaurant process is projective since:

• The finite mixture model is, and also it is defined sequentially.

• A projective model is one that does not change when more data items 
are introduced (and can be learned sequentially in a self-consistent 
manner).



Projective and Exchangeable Partitions

• Projective and exchangeable random partitions over [n] can be 
extended to distributions over partitions of N in a unique manner.

• Can we characterize all random exchangeable projective partitions of N?



Projective and Exchangeable Partitions

• Let G be a distribution, with possibly both atomic and smooth 
components:

• Let ϕi ~ G for each i independently, and define an exchangeable random  
partition ϱ based on the unique values of {ϕi}. 

• If G is random, the distribution over ϱ is given by

• All exchangeable random partitions admit such a representation.

• Note that the integral is written as if both ϱ and G have densities; this is not (typically) true.

G = G0 +
∞�

c=1

πcδθc

P (�) =

�
P (�|G)P (G)dG



Kingman’s Paint-box Construction

• A paint-box consists of a number of colours, with colour c picked with 
probability πc.  There is also a special colour 0 with probability π0 
which looks different each time it is picked.

• For each i ∈ N pick a colour from the paint-box.

• This defines a partition ϱ of N according the                                  
different colours picked.

• Given a distribution over the probabilities {πc} we                               
get an exchangeable random ϱ.

[Kingman JRSSB 1975]



De Finetti’s Theorem

• Let                       be an infinitely exchangeable (i.e. projective and 
exchangeable) sequence of random variables:

• for all n and permutations σ of [n].

• Then there is a latent variable G such that:

x1, x2, x3, . . .

P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

P (x1, . . . , xn) =

�
P (G)

n�

i=1

P (xi|G)dG

[De Finetti 1931, Kallenberg 2005]



Dirichlet Process

• Since the Chinese restaurant process is exchangeable, we can define an 
an infinitely exchangeable sequence as follows:

• Sample ϱ ~ CRP(N,α).

• For c ∈ ϱ :

• sample yc ~ H.

• For i=1,2,...:

• set xi = yc where i ∈ c.

• The resulting de Finetti measure is the Dirichlet Process with parameters 
α and H (DP(α,H)).

y1 y2 y3 y4

x1

x3
x6

x2
x7

x4

x5

x8

x9

[Ferguson AoS 1973, Blackwell & MacQueen AoS 1973]



• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

Two-parameter Chinese Restaurant Processes
1
3
6

2
7

4
5
8

9

P (sit at table c) =
nc − d

α+
�

c∈� nc
P (sit at new table) =

α+ d|�|
α+

�
c∈� nc

P (�) =
[α+ d]|�|−1

d

[α+ 1]n−1
1

�

c∈�

[1− d]|c|−1
1 [z]mb = z(z + b) · · · (z + (m− 1)b)

[Perman et al 1992, Pitman & Yor AoP 1997, 
Goldwater et al NIPS 2006, Teh ACL 2006]



• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

• These are also projective and exchangeable distributions.

Two-parameter Chinese Restaurant Processes
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• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

• These are also projective and exchangeable distributions.

• De Finetti measure is the Pitman-Yor process, which is a generalization 
of the Dirichlet process.

Two-parameter Chinese Restaurant Processes
1
3
6

2
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5
8

9
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α+
�
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�
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�
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[Perman et al 1992, Pitman & Yor AoP 1997, 
Goldwater et al NIPS 2006, Teh ACL 2006]



Indian Buffet Processes

• Mixture models fundamentally use very simple representations of data:

• Each data item belongs to just one cluster.

• Better representation if we allow multiple clusters per data item.

• Indian buffet processes (IBPs). 

Dishes
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[Griffiths & Ghahramani 2006]



Infinite Mixture Models

[Neal JCGS 2000, Rasmussen NIPS 2000, Ishwaran & Zarepour 2002]



Infinite Mixture Models
• Derived CRPs from finite mixture models.

• Taking K → ∞ gives infinite mixture models.

• Expressed using CRPs:

zi

π

α

H

i = 1 . . . n

xi

θc
c = 1 . . .K

ρ

α

H

i = 1 . . . n

xi θc
c = 1 . . .∞

ρ|α ∼ CRP([n],α)

θc|H ∼ H for c ∈ ρ

xi|θc ∼ F (·|θc) for c � i



Number of Clusters

• Only a small number of mixture components used to model data.

• Prior over the number of clusters important in understanding the effect 
of the CRP prior (and through the infinite limit, the Dirichlet prior).

• Prior expectation and variance are:

E[k|n] =
n�

i=1

α

α+ i− 1
= α(ψ(α+ n)− ψ(α)) ∈ O

�
α log

�
1 +

n

α

��

V [k|n] = α(ψ(α+ n)− ψ(α)) + α2(ψ�(α+ n)− ψ�(α)) ∈ O

�
α log

�
1 +

n

α

��

ψ(α) =
∂

∂α
logΓ(α)



Number of Clusters
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• Prior number of clusters strongly dependent on α, and has small 
variance (not very uninformative).

• If uncertain about the number of clusters, need to place prior on α and 
marginalize over it.



Gibbs Sampling

• Iteratively resample clustering of each data item.

• Probability of cluster of data item i is:

• Complex and expensive to compute.

ρ

α

H

i = 1 . . . n

xi θc
c = 1 . . .∞

ρi =cluster of i

P (ρ) =
n�

i=1

P (ρi|ρ1:i−1)

P (ρi|ρ|\i,x, θ) =P (ρi|ρ|1:i−1)
n�

j=i+1

P (ρj |ρ|1:j−1)

× P (xi|ρi,x\i, θρi)
ρ|α ∼ CRP([n],α)

θc|H ∼ H for c ∈ ρ

xi|θc ∼ F (·|θc) for c � i



Gibbs Sampling

• Iteratively resample clustering of each data item.

• Make use of exchangeability of ϱ to treat data 
item i as the last customer entering restaurant.

• Simpler conditionals.

ρ

α

H

i = 1 . . . n

xi θc
c = 1 . . .∞

P (ρi|ρ|\i,x, θ) =P (ρi|ρ|\i)P (xi|ρi,x\i, θρi)

P (ρi|ρ|\i) =
�

|c|
n−1+α if ρi = c �= ∅

α
n−1+α if ρi = ∅

ρ|α ∼ CRP([n],α)

θc|H ∼ H for c ∈ ρ

xi|θc ∼ F (·|θc) for c � i



Parameter Updates

• Conditional distribution for α is:

• Various updates: auxiliary variables Gibbs, 
Metropolis-Hastings, slice sampling.

• Typical prior for α is gamma distribution.

ρ

α

H

i = 1 . . . n

xi θc
c = 1 . . .∞

P (α) ∝ αa−1e−bα

Γ(α)

Γ(n+ α)
=

1

Γ(n)

� 1

0
tα−1(1− t)n−1dt

P (α|ρ) ∝ P (α)P (ρ|α)

=P (α)
α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)

ρ|α ∼ CRP([n],α)

θc|H ∼ H for c ∈ ρ

xi|θc ∼ F (·|θc) for c � i



Parameter Updates

• Conditional distribution for θc are:

• If H is conjugate to P(x|θ), θc’s can be 
marginalized out. 

• This is called a collapsed Gibbs sampler.

ρ

α

H

i = 1 . . . n

xi θc
c = 1 . . .∞

P (xi|ρi = c,x\i)

=

�
P (xi|θc)P (θc|xc)dθc

=

�
F (xi|θc)

�
j∈c F (xj |θc)H(θc)dθc� �

j∈c F (xj |θc)H(θc)dθc

P (θc) ∝ H(θc)
�

i∈c

F (xi|θc)

ρ|α ∼ CRP([n],α)

θc|H ∼ H for c ∈ ρ

xi|θc ∼ F (·|θc) for c � i



Random Trees in
Bayesian Nonparametrics



Overview

• Bayesian nonparametric learning of trees and hierarchical partitions.

• View of rooted trees as sequences of partitions.

• Fragmentations and coagulations.

• Unifying view of various Bayesian nonparametric models for random 
trees.



From Random Partitions
to Random Trees



Trees
duck

chicken
seal

dolphin
mouse

rat
squirrel

cat
cow

sheep
pig

deer
horse

tiger
lion

lettuce
cucumber

carrot
potato
radish
onions

tangerine
orange

grapefruit
lemon
apple
grape

strawberry
nectarine
pineapple

drill
clamp
pliers

scissors
chisel
axe

tomahawk
crowbar

screwdriver
wrenchhammer

sledgehammer
shovel
hoe
rake
yacht
ship

submarine
helicopter

train
jet
carvan

truck
bus

motorcycle
bike

wheelbarrow
tricycle
jeep



Bayesian Inference for Trees

• Computational and statistical methods for constructing trees:

• Algorithmic, not model-based.

• Maximum likelihood

• Maximum parsimony

• Bayesian inference: introduce prior over trees and compute posterior.

• Projectivity and exchangeability leads to Bayesian nonparametric 
models for P(T).

P (T |x) ∝ P (T )P (x|T )



Trees as Sequences of Partitions
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Trees as Sequences of Partitions



Fragmenting Partitions

• Sequence of finer and finer partitions.

• Each cluster fragments until all 
clusters contain only 1 data item.

• Can define a distribution over trees 
using a Markov chain of fragmenting 
partitions, with absorbing state 0S 
(partition where all data items are in 
their own clusters).

�1

�2

�4

�5

�3

1 2 3 4 5 6 7 8 9

1 2

1 2 5 6 3 7 8 9 4

5 6 7 8 93 4

43 7 8 91 2 5 6

1 2 5 6 3 7 8 9 4



Coagulating Partitions

• Sequence of coarser and coarser 
partitions.

• Each cluster formed by coagulating 
smaller clusters until only 1 left.

• Can define a distribution over trees by 
using a Markov chain of coagulating 
partitions, with absorbing state 1S 
(partition where all data items are in 
one cluster). 

�1

�2

�4

�5

�3

1 2 3 4 5 6 7 8 9

1 2

1 2 5 6 3 7 8 9 4

5 6 7 8 93 4

43 7 8 91 2 5 6

1 2 5 6 3 7 8 9 4



Random Fragmentations and 
Random Coagulations

[Bertoin 2006]



Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
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Random Coagulations
• Let ϱ1 ∈ P[n] and ϱ2 ∈ Pϱ1.

• Denote coagulation of ϱ1 by ϱ2 as coag(ϱ1, ϱ2).

• Write C | ϱ1 ~ COAG(ϱ1,d,α) if C = coag(ϱ1, ϱ2) with 

• ϱ2 | ϱ1 ~ CRP(ϱ1,d,α).

•
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Random Fragmentations
• Let C ∈ P[n] and for each c ∈ C let Fc ∈ Pc.

• Denote fragmentation of C by {Fc} as frag(C,{Fc}).

• Write ϱ1 | C ~ FRAG(C,d,α) if ϱ1 = frag(C,{Fc}) with 

• Fc ~ CRP(c,d,α) iid.
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Random Trees and
Random Hierarchical Partitions



Nested Chinese Restaurant Processes

[Blei et al NIPS 2004, JACM 2010]



Nested Chinese Restaurant Processes

• Start with the null partition ϱ0 = {[n]}.

• For each level l = 1,2,...,L:

• ϱl
 = FRAG(ϱl-1,0,αl)

• Fragmentations in different clusters (branches of the 
hierarchical partition) operate independently.

• Nested Chinese restaurant processes (nCRP) define a 
Markov chain of partitions, each of which is 
exchangeable.

• Can be used to define an infinitely exchangeable 
sequence, with de Finetti measure being the nested 
Dirichlet process (nDP).

�1

�0

�2

�L

[Rodriguez et al JASA 2008]



Chinese Restaurant Franchise

[Teh et al JASA 2006]



Chinese Restaurant Franchise

• For a simple linear hierarchy (restaurants linearly 
chained together), the Chinese restaurant franchise 
(CRF) is a sequence of coagulations:

• At the lowest level L+1, we start with the trivial 
partition ϱL+1 = {{1},{2},...,{n}}.

• For each level l = L,L-1,...,1:

• ϱl
 = COAG(ϱl+1,0,αl)

• This is also Markov chain of partitions.

�1

�2

�L

�L+1

G1

G0

G2

GL



Hierarchical Dirichlet/Pitman-Yor Processes
• Each partition in the Chinese restaurant franchise is 

again exchangeable.

• The corresponding de Finetti measure is a Hierarchical 
Dirichlet process (HDP).

• Generalizable to tree-structured hierarchies and 
hierarchical Pitman-Yor processes.

• The CRF has been rarely used as a model of 
hierarchical partitions.  Typically it is only used as a 
convenient representation for inference in the HDP   
and HPYP.

�1

�2

�L

�L+1

G1

G0

G2

GL

Gl|Gl−1 ∼ DP(αl, Gl−1)

[Teh et al JASA 2006, Goldwater et al NIPS 2006, Teh ACL 2006]



Continuum Limit of 
Partition-valued Markov Chains



Trees with Infinitely Many Levels

• Random trees described so far all consist of a finite number 
of levels L.

• We can be “nonparametric” about the number of levels of 
random trees.

• Allow a finite amount of change even with an infinite 
number of levels, by decreasing the change per level.

�1

�0

�2

�L

Δ/L

Δ/L

Δ/L



Dirichlet Diffusion Trees

[Neal BA 2003]



Dirichlet Diffusion Trees

• The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can 
be derived from the continuum limit of a nCRP:

• Start with the null partition ϱ0 = {[n]}.

• For each time t, define

• ϱt+dt
 = FRAG(ϱt,0,a(t)dt)

• The continuum limit of the Markov chain of partitions becomes a 
continuous time partition-valued Markov process: a fragmentation 
process.



Kingman’s Coalescent

• Taking the continuum limit of the one-parameter (Markov chain) CRF 
leads to another partition-valued Markov process: Kingman’s coalescent.

• Start with the trivial partition ϱ0 = {{1},{2},...,{n}}.

• For each time t < 0:

• ϱt-dt
 = COAG(ϱt,0,a(t)/dt)

• This is the simplest example of a coalescence or coagulation 
process.

[Kingman SP&A 1982, JoAP 1982]  



Kingman’s Coalescent

• Derived from the Wright-
Fisher model of population 
genetics.

• Model of the genealogies of 
n haploid individuals 
among a size N population.

• Gives a tree-structured 
genealogy because each 
individual assumed to have 
one parent.
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Kingman’s Coalescent

• Derived from the Wright-
Fisher model of population 
genetics.

• Model of the genealogies of 
n haploid individuals 
among a size N population.

• Gives a tree-structured 
genealogy because each 
individual assumed to have 
one parent.

-2/N-3/N-4/N-5/N

N ! !

-1/N -0/N

N



Kingman’s Coalescent



Fragmentation-Coagulation 
Processes

[Berestycki 2004]



Overview

• Duality between Pitman-Yor coagulations and fragmentations.

• Using duality to construct a stationary reversible Markov chain over 
partitions.



Duality of Coagulation and Fragmentation
• The following statements are equivalent:
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(I) �2 ∼ CRP([n], d2,αd2) and �1|�2 ∼ CRP(�2, d1,α)

(II) C ∼ CRP([n], d1d2,αd2) and Fc|C ∼ CRP(c, d2,−d1d2) ∀c ∈ C

[Pitman 1999]



Markov Chain over Partitions

ϱ0

ωε

ϱε

ω2ε

ϱ2ε

• Defines a Markov chain over partitions.

• Each transition is a fragmentation followed by coagulation.
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Stationary Distribution

• Stationary distribution is a CRP with parameters μ and 0.
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Exchangeability and Projectivity

• Each πt is exchangeable, so that the whole Markov chain is an 
exchangeable process.

• Projectivity of the Chinese restaurant process extends to the Markov 
chain as well.
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Reversibility of Markov Chain

• The Markov chain is reversible.

• Coagulation and fragmentation are duals of each other.
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Continuum Limit

• Taking ε→0 obtains a continuous time Markov process over partitions, 
an exchangeable fragmentation-coalescence process (Berestycki 2004).

• At each time, at most one coagulation (involving two blocks) or one 
fragmentation (splitting into two blocks) will occur.
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Conditional Distribution of a Trajectory 
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• This process is reversible.



Dirichlet Diffusion Trees and Coalescents

• Rate of fragmentation is same as for Dirichlet diffusion trees with 
constant fragmentation rate.

• Rate of coagulation is same as for the Kingman’s coalescent.

• Reversibility means that the Dirichlet diffusion tree is precisely the 
converse of Kingman’s coalescent.



Sequence Memoizer

[Teh ACL 2006, Wood & Teh ICML 2009, Wood et al CACM 2011]



Overview

• Application of hierarchical Pitman-Yor processes to n-gram language 
models:

• Hierarchical Bayesian modelling allows for sharing of statistical 
strength and improved parameter estimation.

• Pitman-Yor processes has power law properties more suitable in 
modelling linguistic data.

• Generalization to ∞-gram (non-Markov) language models.

• Use of fragmentation coagulation duality to improve computational 
costs.



Hierarchical Dirichlet/Pitman-Yor Processes
• Each partition in the Chinese restaurant franchise is 

again exchangeable.

• The corresponding de Finetti measure is a Hierarchical 
Dirichlet process (HDP).

• Generalizable to tree-structured hierarchies and 
hierarchical Pitman-Yor processes.

• The CRF has been rarely used as a model of 
hierarchical partitions.  Typically it is only used as a 
convenient representation for inference in the HDP   
and HPYP.

�1
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�L
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G0
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Gl|Gl−1 ∼ DP(αl, Gl−1)

[Teh et al JASA 2006, Goldwater et al NIPS 2006, Teh ACL 2006]



n-gram Language Models



Sequence Models for Language and Text

• Probabilistic models for sequences of words and characters, e.g.

south, parks, road

s, o, u, t, h, _, p, a, r, k, s, _, r, o, a, d

• n-gram language models are high order Markov models of such 
discrete sequence:

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



• High order Markov models:

• Large vocabulary size means naïvely estimating parameters of this 
model from data counts is problematic for N>2.

• Naïve priors/regularization fail as well: most parameters have no 
associated data.

• Smoothing.

• Hierarchical Bayesian models.

n-gram Language Models

PML(wordi|wordi−N+1 . . .wordi−1) =
C(wordi−N+1 . . .wordi)

C(wordi−N+1 . . .wordi−1)

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



Smoothing in Language Models

• Smoothing is a way of dealing with data sparsity by combining 
large and small models together.

• Combines expressive power of large models with better estimation 
of small models (cf bias-variance trade-off).

P smooth(wordi|wordi−1
i−N+1) =

N�

n=1

λ(n)Qn(wordi|wordi−1
i−n+1)

P smooth(road|south parks)

= λ(3)Q3(road|south parks) +

λ(2)Q2(road|parks) +
λ(1)Q1(road|∅)



Smoothing in Language Models

• Interpolated and modified Kneser-Ney are best.

[Chen & Goodman 1999]



Hierarchical Pitman-Yor 
Language Models



Hierarchical Bayesian Models
• Hierarchical Bayesian modelling an important overarching theme in 

modern statistics [Gelman et al, 1995, James & Stein 1961].

• In machine learning, have been used for multitask learning, transfer 
learning, learning-to-learn and domain adaptation.

i=1...n2

φ0
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x2i

i=1...n3

φ3

x3i

i=1...n1

φ1

x1i



• Context of conditional probabilities naturally organized 
using a tree.

• Smoothing makes conditional probabilities                                
of neighbouring contexts more similar.

• Later words in context more important                                        
in predicting next word.

∅

Context Tree

along south parks

south parks

parks

to parks university parks

at south parks

P smooth(road|south parks)

= λ(3)Q3(road|south parks) +

λ(2)Q2(road|parks) +
λ(1)Q1(road|∅)



• Parametrize the conditional probabilities of Markov model:

•Gu is a probability vector associated with context u.

• [MacKay and Peto 1994].

G∅

Hierarchical Bayes on Context Tree

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks



Hierarchical Dirichlet Language Models
• What is                      ? [MacKay and Peto 1994] proposed using the 

standard Dirichlet distribution over probability vectors.

• We will use Pitman-Yor processes instead [Perman, Pitman and Yor 
1992], [Pitman and Yor 1997], [Ishwaran and James 2001].

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2× 106 2 148.8 144.1 191.2
4× 106 2 137.1 132.7 172.7
6× 106 2 130.6 126.7 162.3
8× 106 2 125.9 122.3 154.7

10× 106 2 122.0 118.6 148.7
12× 106 2 119.0 115.8 144.0
14× 106 2 116.7 113.6 140.5
14× 106 1 169.9 169.2 180.6
14× 106 3 106.1 102.4 136.6



• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

Two-parameter Chinese Restaurant Processes
1
3
6

2
7

4
5
8

9

P (sit at table c) =
nc − d

α+
�

c∈� nc
P (sit at new table) =

α+ d|�|
α+

�
c∈� nc

P (�) =
[α+ d]|�|−1

d

[α+ 1]n−1
1

�

c∈�

[1− d]|c|−1
1 [z]mb = z(z + b) · · · (z + (m− 1)b)

[Perman et al 1992, Pitman & Yor AoP 1997]



• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

• These are also projective and exchangeable distributions.
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• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d)

• These are also projective and exchangeable distributions.

• De Finetti measure is the Pitman-Yor process, which is a generalization 
of the Dirichlet process.

Two-parameter Chinese Restaurant Processes
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P (sit at table c) =
nc − d

α+
�

c∈� nc
P (sit at new table) =

α+ d|�|
α+

�
c∈� nc

P (�) =
[α+ d]|�|−1

d

[α+ 1]n−1
1

�

c∈�

[1− d]|c|−1
1 [z]mb = z(z + b) · · · (z + (m− 1)b)

[Perman et al 1992, Pitman & Yor AoP 1997]



Power Law Properties

• Chinese restaurant process:

• Small number of large clusters;

• Large number of small clusters.

• Customers = word instances, tables = word types.

• This is more suitable for languages than Dirichlet distributions.

[Pitman 2006, Goldwater et al NIPS 2006, Teh ACL 2006]

p(sit at table c) ∝ nc − d

p(sit at new table) ∝ α+ d|ρ|



Power Law Properties



Power Law Properties



Hierarchical Pitman-Yor Language Models
• Parametrize the conditional probabilities of Markov model:

•Gu is a probability vector associated with context u.

• Place Pitman-Yor process                                                                       
prior on each Gu.

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks



Hierarchical Pitman-Yor Language Models
• Significantly improved on the hierarchical Dirichlet language model.

• Results better Kneser-Ney smoothing, state-of-the-art language 
models.

• Similarity of perplexities not a surprise---Kneser-Ney can be derived 
as a particular approximate inference method.

T N-1 IKN MKN HDLM HPYLM

2× 106 2 148.8 144.1 191.2 144.3
4× 106 2 137.1 132.7 172.7 132.7
6× 106 2 130.6 126.7 162.3 126.4
8× 106 2 125.9 122.3 154.7 121.9

10× 106 2 122.0 118.6 148.7 118.2
12× 106 2 119.0 115.8 144.0 115.4
14× 106 2 116.7 113.6 140.5 113.2
14× 106 1 169.9 169.2 180.6 169.3
14× 106 3 106.1 102.4 136.6 101.9



Non-Markov Language Models



Markov Models for Language and Text

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).

• How do we determine the order of our Markov models?

• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | south parks)



Non-Markov Models for Language and Text
• Model the conditional probabilities of each possible word occurring 

after each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share              
information across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.
...
.

...
.

...
.

...
.

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

Gmeet at south parks



• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be 
ignored (integrated out), leaving a finite number of                                                
nodes in context tree.

• But there are still O(T2) number of                                                            
nodes in the context tree.     

Model Size: Infinite -> O(T2) 
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G[acac]
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• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be 
ignored (integrated out), leaving a finite number of                                             
nodes in context tree.

• But there are still O(T2) number of                                                      
nodes in the context tree.

• Integrate out non-branching, non-leaf                                                        
nodes leaves O(T) nodes.

• Conditional distributions                                                                       
still Pitman-Yor due to                                                                     
closure property.

Model Size: Infinite -> O(T2) -> 2T
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Duality of Coagulation and Fragmentation
• The following statements are equivalent:

3
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Coagulate
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Fragment
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C

ϱ1

F1 F2 F3

(I) �2 ∼ CRP([n], d2,αd2) and �1|�2 ∼ CRP(�2, d1,α)

(II) C ∼ CRP([n], d1d2,αd2) and Fc|C ∼ CRP(c, d2,−d1d2) ∀c ∈ C



Closure under Marginalization

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

G[a]

G[aca]

PY(θ2d3, d3, G[ca])

PY(θ2d3, d2d3, G[a])

• Marginalizing out internal Pitman-Yor processes is equivalent to 
coagulating the corresponding Chinese restaurant processes.

• Fragmentation and coagulation duality means that the coagulated 
partition is also Chinese restaurant process distributed.

• Corresponding Pitman-Yor process is the resulting marginal distribution 
of G[aca].

[Gasthaus & Teh NIPS 2010]



Comparison to Finite Order HPYLM



Compression Results

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



A Few Final Words



Summary

• Introduction to Bayesian learning and Bayesian nonparametrics.

• Chinese restaurant processes.

• Fragmentations and coagulations.

• Unifying view of random tree models as Markov chains of fragmenting 
and coagulating partitions.

• Fragmentation-coagulation processes.

• Hierarchical Dirichlet and Pitman-Yor processes, sequence memoizer.



What Were Not Covered Here

• Bayesian nonparametrics in computational linguistics (Mark Johnson).

• Gaussian processes, Indian buffet processes (Zoubin Ghahramani).

• Nonparametric Hidden Markov Models [see Ghahramani CoNLL 2010].

• Dependent and hierarchical processes [see Dunson BNP 2010, Teh & 
Jordan BNP 2010].

• Foundational issues, convergence and asymptotics.

• Combinatorial stochastic processes and their relationship to data 
structures and programming languages.

• Relational models, topic models etc.



Future of Bayesian Nonparametrics

• Augmenting the standard modelling toolbox of machine learning.

• Development of better inference algorithms and software toolkits.

• Exploration of novel stochastic processes

• More applications in machine learning and beyond.


