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Probabilistic Machine Learning

» Probabilistic model of data {x;}_, given parameters 0:

’3()ﬁ y X, s Xny Y, Y2, ay%|9)
where y; is a latent variable associated with Xx;.
» Often thought of as generative models of data.

» Inference, of latent variables given observations:

f:()ﬁ y X2y Xny Y, Yo, 7yh|0)
P(x1, X2, ..., Xq|0)

fj()ﬁ s Y2, ayh‘aa)ﬁ y X250 7Xh) =

» Learning, typically by maximum likelihood:

OM- = argmax P(x1, Xz, . . ., Xp|0)
6
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Probabilistic Machine Learning

» Prediction:

P(Xn 11 |9ML)
P(Yni1|Xai1,0M)
P(Yn+1 |X1 P aXn+1 ) HML)

» Classification:

argmax P(Xp1|0M")
c

» Visualization, Interpretation, summarization
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Bayesian Machine Learning

» Probabilistic model of data {x;}_; given parameters 6:

P(Xx1, X2, ..y Xn, Y1, Yo, -, ¥nl0)

v

Prior distribution:

P(0)

v

Posterior distribution:

P(OYP(X1,Xo, ..., Xn, Vi, Yo, -, ¥n|O
P(eay1a}/27--~7}/n|x1ax2»---7Xn): ( ) ( ! P2(X1 X2 d y1Xy§ yn| )
9 )N

Prediction:

v

P(Xni1]X1, -+, Xn) :/P(x,,+1|9)P(0|x1,...,x,,)de

v

(Easier said than done...)
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Computing Posterior Distributions

» Posterior distribution:

P(OYP(x1, X2, ..., Xn, Y1, Y2, -, Ynl0)
P(X1,X2, . 7Xn)

Fj(ovjﬁ 5yé7" '7)04)ﬁ y X250t 3Xh) =

» High-dimensional, no closed-form, multi-modal...

» Variational approximations [Wainwright and Jordan 2008]: simple
parametrized form, “fit” to true posterior. Includes mean field
approximation, variational Bayes, belief propagation, expectation
propagation.

» Monte Carlo methods, including Markov chain Monte Carlo
[Neal 1993, Robert and Casella 2004] and sequential Monte Carlo
[Doucet et al. 2001]: construct generators for random samples from the
posterior.
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Bayesian Model Selection

» Model selection is often necessary to prevent overfitting and underfitting.

» Bayesian approach to model selection uses the marginal likelihood':

p(x|My) = /P(XIQk, M) p(0x|Mi)dbk

Model selection: M* = argmax p(x| M)
My
, P(Mi)p(0k| Mi)P(X| 0k, M)
Model averaging: My, 0x|X) =
oG PO = 5= oM )o(bre M Yo (Xl M)

» Other approaches to model selection: cross validation, regularization,
sparse models...
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Side-Stepping Model Selection

v

Strategies for model selection often entail significant complexities.

v

But reasonable and proper Bayesian methods should not overfit anyway
[Rasmussen and Ghahramani 2001].

v

Idea: use a large model, and be Bayesian so will not overfit.

v

Bayesian nonparametric idea: use a very large Bayesian model avoids
both overfitting and underfitting.
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Direct Modelling of Very Large Spaces

v

Regression: learn about functions from an input to an output space.

v

Density estimation: learn about densities over RY.

v

Clustering: learn about partitions of a large space.

v

Objects of interest are often infinite dimensional. Model these directly:

» Using models that can learn any such object;
» Using models that can approximate any such object to arbitrary
accuracy.

v

Many theoretical and practical issues to resolve:

» Convergence and consistency.
» Practical inference algorithms.
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Regression and Gaussian Processes
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Regression and Classification

» Learn a function f* : X — Y from training data {x;, y;}7 ;.

*

f—

> Regression: if y; = f*(x;) + ;.
» Classification: e.g. P(y; = 1|f*(x;)) = ®(f*(xi)).
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Parametric Regression with Basis Functions

» Assume a set of basis functions ¢, ..., »x and parametrize a function:

K
= Wik(x)
pa

Parameters w = {wy, ..., wk}.
» Find optimal parameters

2

Yi— 25:1 Wk Pk (Xi)

yi — f(xi;w

» What family of basis function to use?
» How many?

» What if true function cannot be parametrized as such?
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Towards Nonparametric Regression
» What we are interested in is the output values of the function,
f(x1), f(x2), ..., f(Xn), f(Xnt1)
Why not model these directly?

[

> In regression, each f(x;) is continuous and real-valued, so a natural
choice is to model f(x;) using a Gaussian.

» Assume that function f is smooth. If two inputs x; and x; are close-by,
then f(x;) and f(x;) should be close by as well. This translates into
correlations among the outputs f(Xx;).
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Towards Nonparametric Regression

» We can use a multi-dimensional Gaussian to model correlated function
outputs:

f(x1) 0 Ci1 ... Cinp
: ~NL ] k& ;
f(Xns1) 0] [Chi11 -+ Chogingi
where the mean is zero, and C = [Cj] is the covariance matrix.
» Each observed output y; can be modelled as,

Yilf(x) ~ N (f(x), 0°)
» Learning: compute posterior distribution

p(f(x1), ... f(Xa)ly1, .-, ¥n)
Straightforward since whole model is Gaussian.

» Prediction: compute
P(f(Xns1)|¥1, -, ¥n)
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Gaussian Processes

» A Gaussian process (GP) is a random function f : X — R such that for

any finite set of input points x, ..., Xp,
f(x1) m(x1) c(x1,x1) ... c(x1,X%n)
LN S O : :
f(Xn) m(xn) c(XnyXx1) ... C(Xn, Xn)

where the parameters are the mean function m(x) and covariance
kernel c(x, y).

» Difference from before: the GP defines a distribution over f(x), for every
input value x simultaneously. Prior is defined even before observing
inputs xq, ..., Xp.

» Such a random function f is known as a stochastic process. ltis a
collection of random variables {f(x)}xex.

» Demo: GPgenerate.

[Rasmussen and Williams 2006]
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Posterior and Predictive Distributions

» How do we compute the posterior and predictive distributions?
» Training set (x1, y1), (X2, ¥2), - .., (Xn, ¥n) and test input X 1.

» Out of the (uncountably infinitely) many random variables {f(x)}xex
making up the GP only n+ 1 has to do with the data:

f(X1)7 f(Xg)7 ey f(xn—H)

» Training data gives observations f(x1) = y1,...,f(xs) = yn. The
predictive distribution of f(x,.1) is simply

P(f(xni1)lf(x1) = y1,... f(Xn) = ¥n)

which is easy to compute since f(x1),. .., f(X,1) is Gaussian.
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Consistency and Existence

» The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

» Fortunately these marginal distributions are consistent.

» For every finite set x C X we have a distinct distribution
pPx([f(x)]xex)- These distributions are said to be consistent if

Px([f(X)]xex) = /quv([f(X)]xexuv)d[f(X)]xev

for disjoint and finite x,y C X.
» The marginal distributions for the GP are consistent because
Gaussians are closed under marginalization.

» The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f(x)}xex-
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Density Estimation, Clustering and Dirichlet Processes
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Density Estimation with Mixture Models

» Unsupervised learning of a density f*(x) from training samples {x;}.

\4

Can use a mixture model for flexible family of densities, e.qg.

K
() = 3 mN (X i i)

k=1

» How many mixture components to use?

v

What family of mixture components?

\4

Do we believe that the true density is a mixture of K components?
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Bayesian Mixture Models

» Let’s be Bayesian about mixture models, and place
priors over our parameters (and to compute
posteriors).

» First, introduce conjugate priors for parameters:

m ~ Dirichlet(%, ..., %)
Lhky 2k = 9; ~H= N-IW(O, S, d,q))

» Second, introduce variable z; indicator which
component x; belongs to.

(OO
®

Zi|m ~ Multinomial(7r) 3
Xi|zi = Kk, p, X ~ N (pk, Xk)
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Gibbs Sampling for Bayesian Mixture Models

» All conditional distributions are simple to compute:

p(z; = k|others) oc TN (Xi; ik, Tk)
|z ~ Dirichlet(%+n(2), . .., % +nk(z))
[k, Zk|others ~ N-IW(V', 8, d’, &) @
v

» Not as efficient as collapsed Gibbs sampling which

integrates out 7, u, X: ?
p(xil{x = i # i,zir = k}) v C

» Demo: fm_demointeractive.
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Infinite Bayesian Mixture Models

» We will take K — oc.

» Imagine a very large value of K.

» There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:

2 n(z_;
p(z; = k|others) oc%(')

Empty clusters:

e
a5 @

n—1+(¥p(Xi‘{}) i=1..n

p(z; = kempty|zii) x

» Demo: dpm_demointeractive.

[Rasmussen 2000]
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Infinite Bayesian Mixture Models
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Density Estimation
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F(:|p, ) is Gaussian with mean p, covariance x.

H(u, X) is Gaussian-inverse-Wishart conjugate prior.

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: posterior samples. Black: data points.
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Density Estimation
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Infinite Bayesian Mixture Models

v

The actual infinite limit of finite mixture models does not actually make
mathematical sense.

v

Other better ways of making this infinite limit precise:

» Look at the prior clustering structure induced by the Dirichlet prior
over mixing proportions—Chinese restaurant process.

» Re-order components so that those with larger mixing proportions
tend to occur first, before taking the infinite limit—stick-breaking
construction.

v

Both are different views of the Dirichlet process (DP).

v

The K — oo Gibbs sampler is for DP mixture models.
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A Tiny Bit of Measure Theoretic Probability Theory

» A c-algebra ¥ is a family of subsets of a set © such that

» ¥ is not empty;
» IfAc X then©\A € L;
» If Ay, Ap, ... € X then U® A € X

» (©,X)is a measure space and A € ¥ are the measurable sets.

» A measure pover (©,X) is a function x : ¥ — [0, oo] such that

1(0) = 0;

If A, Az, ... € X are disjoint then p(UX,A)) = Y72 u(A).
Everything we consider here will be measurable.

A probability measure is one where p(©) = 1.

vV vyVvYyy

» Given two measure spaces (©,X) and (A, ), afunctionf: © — A'is
measurable if f~1(A) € T for every A € ®.
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A Tiny Bit of Measure Theoretic Probability Theory

» If pis a probability measure on (©, ¥), a random variable X taking
values in A is simply a measurable function X : © — A.

» Think of the probability space (©, X, p) as a black-box random
number generator, and X as a function taking random samples in ©
and producing random samples in A.

» The probability of an event A € ¢ is p(X € A) = p(X~'(A)).

» A stochastic process is simply a collection of random variables {X;}ic1
over the same measure space (0, ¥ ), where I is an index set.

» Can think of a stochastic process as a random function X(i).

» Stochastic processes form the core of many Bayesian nonparametric
models.

» Gaussian processes, Poisson processes, Dirichlet processes, beta
processes, completely random measures...
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Dirichlet Distributions
» A Dirichlet distribution is a distribution over the K-dimensional probability
simplex:
Ak = {(7‘1’1,...,71’/() T Tk ZO,Zkﬂ'k = 1}
» We say (m1,...,7mk) is Dirichlet distributed,
(7T1,. .. ,7TK) ~ Dil’iCh|et(>\1,‘ .. »)\K)

with parameters (A1, ..., \k), if

p(rr, . ) Z“k)n Nt

» Equivalent to normalizing a set of mdependent gamma variables:

(m1,... 7k) = S, ryk(717'-~7,7K)
vk ~ Gamma(\k) fork=1,....K
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Dirichlet Distributions

DIf10.1.0.1.0)

0i505020)

DIr202020) Dir(5.05050)
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Dirichlet Processes

» A Dirichlet Process (DP) is a random probability measure G over (©, %)
such that for any finite set of measurable partitions A;U...UAx = ©,

(G(A1), ..., G(Ax)) ~ Dirichlet(\(A1), ..., \(Ax))

where )\ is a base measure.

A

A

» The above family of distributions is consistent (next), and Ko/mogorov
Consistency Theorem can be applied to show existence (but there are
technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]
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Consistency of Dirichlet Marginals

» If we have two partitions (Ay,...,Ax) and (Bs,..., B,) of ©, how do we
see if the two Dirichlets are consistent?

» Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (4, ..., /;) is a partition of (1,..., K),

(Sien s+ ey mi) ~ Dirichlet (i A s Xiey )
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Consistency of Dirichlet Marginals

» Form the common refinement (Cy, ..., C;) where each C; is the
intersection of some A, with some B;. Then:

By definition, (G(Cy), ..., G(C.)) ~ Dirichlet(A(Cy), ..., A(CL))
(G(A1), ..., G(Ak)) = (Xc,ca G(C ) ZCzCAK G(C
~ Dirichlet(A (A1),...7 MAk))
Similarly, (G(By), ..., G(By)) ~ Dirichlet(A(B1), ..., A(B,))
so the distributions of (G(A1), ..., G(Ak)) and (G(By), ..., G(B,)) are
consistent.
» Demonstration: DPgenerate.
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Parameters of Dirichlet Processes

» Usually we split the A\ base measure into two parameters A = aH:

» Base distribution H, which is like the mean of the DP.
» Strength parameter «, which is like an inverse-variance of the DP.

> We write:
G ~ DP(a, H)
if for any partition (A, ..., Ak) of ©:
(G(A4),...,G(Ak)) ~ Dirichlet(aH(A1), ..., aH(Ak))

» The first and second moments of the DP:
Expectation: E[G(A)] = H(A)

Variance: V[G(A)] = w

where A is any measurable subset of ©.
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Representations of Dirichlet Processes

» Draws from Dirichlet processes will always place all their mass on a
countable set of points:
o0
G=D_ mdy;
k=1

where >, mx = 1and §; € ©.
» What is the joint distribution over 71,72, ... and 67, 65,...?

» Since G is a (random) probability measure over ©, we can treat it as a
distribution and draw samples from it. Let

01,0,...~ G

be random variables with distribution G.

» Can we describe G by describing its effect 61, 6,,...?
» What is the marginal distribution of 64, 62, . .. with G integrated out?
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Stick-breaking Construction

G = Z 71';(59;
k=1

» There is a simple construction giving the joint distribution of 71, 7o, . ..
and 67,63, ... called the stick-breaking construction.

0; ~ H

Ty

k—1
Tk = Vk H(1 7\/,')‘ Tl
i=1 T©

L)

vk ~ Beta(1, o) J T

» Also known as the GEM distribution, write w ~ GEM(«).
[Sethuraman 1994]
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Posterior of Dirichlet Processes

» Since G is a probability measure, we can draw samples from it,

G ~ DP(a, H)
01,...,0,G~ G
What is the posterior of G given observations of 64,...,60,7

» The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well:

G|91,...,9nNDP(a+n’M)

a+n
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Pélya Urn Scheme

G ~ DP(a, H)
b1,....00G~ G

» The marginal distribution of 84, 0>, ... has a simple generative process
called the Pdlya urn scheme (aka Blackwell-MacQueen urn scheme).

oH + Y7 6,
e
» Picking balls of different colors from an urn:

» Start with no balls in the urn.

» with probability « «, draw 6, ~ H, and add a ball of color 6, into urn.

» With probability o« n — 1, pick a ball at random from the urn, record
0, to be its color and return two balls of color 6, into urn.

[Blackwell and MacQueen 1973]
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Chinese Restaurant Process

> 64,...,0, take on K < ndistinct values, say 07, ..., 0k.

» This defines a partition of (1,...,n) into K clusters, such that if j is in
cluster k, then 0; = 0;.

» The distribution over partitions is a Chinese restaurant process (CRP).

» Generating from the CRP:

» First customer sits at the first table.
» Customer n sits at:
» Table k with probability M”,ﬁ_‘ where ny is the number of customers
at table k.
> Anew table K + 1 with probability 7—.

» Customers < integers, tables < clusters.

O00000
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Chinese Restaurant Process

a=30, d=0

200

150¢

50r,
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0 2000 4000 6000 8000 10000
customer

» The CRP exhibits the clustering property of the DP.

» Rich-gets-richer effect implies small number of large clusters.
» Expected number of clusters is K = O(a/log n).
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Clustering

» To partition a heterogeneous data set into distinct, homogeneous
clusters.

» The CRP is a canonical nonparametric prior over partitions that can be
used as part of a Bayesian model for clustering.

» There are other priors over partitions ([Lijoi and Pruenster 2010]).
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Inferring Discrete Latent Structures

» DPs have also found uses in applications where the aim is to discover
latent objects, and where the number of objects is not known or
unbounded.

Nonparametric probabilistic context free grammars.
Visual scene analysis.

Infinite hidden Markov models/trees.

Genetic ancestry inference.

vV vy vy VvYy

» In many such applications it is important to be able to model the same
set of objects in different contexts.

» This can be tackled using hierarchical Dirichlet processes.

[Teh et al. 2006, Teh and Jordan 2010]
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Exchangeability

» Instead of deriving the P6lya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

oH + Y7 6,
9n|91:n—1 ~ m
» For any n, the joint distribution of 64,...,6, is:
K K *
@ L h(05)(mp, — 1)!
p(917.'.70n) — Ilk_g ( k)( nk )
[Mei—1+a
where h(0) is density of # under H, 67, ..., 0 are the unique values, and
0} occurred my, times among 64, ..., 0.
» The joint distribution is exchangeable wrt permutations of 64,...,6,.

» De Finetti’s Theorem says that there must be a random probability
measure G making 61, 65, ... iid. This is the DP.
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De Finetti’'s Theorem

Let#1,0,,... be an infinite sequence of random variables with joint
distribution p. If for all n > 1, and all permutations o € ¥, on n objects,

p(917' .. >9n) = p(ea(ﬂa e '700'(n))

That is, the sequence is infinitely exchangeable. Then there exists a (unique)
latent random parameter G such that:

pOr....0n /p p(0/|G)dG

where p is a joint distribution over G and 6;’s.
» 0;’s are independent given G.
» Sufficient to define G through the conditionals p(6,(01, .. .,0n—1).

» @G can be infinite dimensional (indeed it is often a random measure).
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Latent Variable Models and Indian Buffet and Beta Processes
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Latent Variable Modelling

» Say we have n vector observations xi, ..., X,.

» Model each observation as a linear combination of K latent sources:
K
Xi=> MYk +ei
k=1

Yik: activity of source k in datum i.
Ak basis vector describing effect of source k.

» Examples include principle components analysis, factor analysis,
independent components analysis.

» How many sources are there?
» Do we believe that K sources is sufficient to explain all our data?

» What prior distribution should we use for sources?
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Binary Latent Variable Models

v

Consider a latent variable model with binary sources/features,

I 1 with probability pu;
““ Y0 with probability 1 — s

v

Example: Data items could be movies like “Terminator 2”, “Shrek” and
“Lord of the Rings”, and features could be “science fiction”, “fantasy”,
“action” and “Arnold Schwarzenegger”.

v

Place beta prior over the probabilities of features:

pk ~ Beta(%, 1)

v

We will again take K — oc.
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Indian Buffet Processes
» The Indian Buffet Process (IBP) describes each customer with a binary
vector instead of cluster.
» Generating from an IBP:

» Parameter a.

» First customer picks Poisson(«) dishes to eat.

» Subsequent customer i picks dish k with probability ; and picks
Poisson(%) new dishes.

Tables — Dishes —>

<— Customers

<— Customers

[Griffiths and Ghahramani 2006]
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Indian Buffet Processes and Exchangeability

» The IBP is infinitely exchangeable. For this to make sense, we need to
“forget” the ordering of the dishes.

» “Name” each dish k with a Ay drawn iid from H.
» Each customer now eats a set of dishes: V; = {A} : zyx = 1}.
» The joint probability of W4,..., W, can be calculated:

n K
p(Vq,...,W,) =exp <_az1l> N (me —1)Y(n— mk)!h(/\;)
i=

n!
k=1

K: total number of dishes tried by n customers.
Aj: Name of kth dish tried.
my: number of customers who tried dish Aj.

» De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

» This random measure is the beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]
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Applications of Indian Buffet Processes

>

The IBP can be used in concert with different likelihood models in a
variety of applications.

Z ~ IBP(«) X~F(ZY)
Y)p(X|Z.Y)

Y ~H p(Z, Y|X) = P& 200

Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

Matrix factorization for collaborative filtering [Meeds et al. 2007].
Latent causal discovery for medical diagnostics [Wood et al. 2006]
Protein complex discovery [Chu et al. 2006].

Psychological choice behaviour [Gorlr et al. 2006].

Independent components analysis [Knowles and Ghahramani 2007].

Learning the structure of deep belief networks [Adams et al. 2010].
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Infinite Independent Components Analysis

» Each image X; is a linear combination of sparse features:
Xi = NV
k

where yj is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

Yik = Zikaik ax ~N(0,1) Z ~ IBP(«)

» An ICA model with infinite number of features.

[Knowles and Ghahramani 2007, Teh et al. 2007]
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Beta Processes

» A one-parameter beta process B ~ BP(«, H) is a random discrete
measure with form:

B= Z /~Lk59;
k=1

where the points P = {(67, u1), (05, 12), . . .} are spikes in a 2D Poisson
process with rate measure:

ap~ ' duH(db)
» It is the de Finetti measure for the IBP.

» This is an example of a completely random measure.

> A beta process does not have Beta distributed marginals.

[Hjort 1990, Thibaux and Jordan 2007]
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Beta Processes
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Stick-breaking Construction for Beta Processes

» The following generates a draw of B:

k—1
vk ~ Beta(1, a) pe=(1=vi) [T = w) 0p ~ H

i=1
o0
B =D o
k=1

» The above is the complement of the stick-breaking construction for DPs.

Th2)

Tls)
@
He Tla)

[Teh et al. 2007]
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Outline

Topic Modelling and Hierarchical Processes
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Topic Modelling with Latent Dirichlet Allocation

» Infer topics from a document corpus, topics
being sets of words that tend to co-occur

together.
» Using (Bayesian) latent Dirichlet allocation:

m; ~ Dirichlet(%, ..., %)

' v
0 ~ Dirichlet(&, ..., &) @

Zjj|mj ~ Multinomial(r;)

Xii| Zji, 0z, ~ Multinomial(6,)
» How many topics can we find from the words i=1...nd topics k=1..K
corpus? document j=1..D
» Can we take number of topics K — co?

©
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Hierarchical Dirichlet Processes

» Use a DP mixture for each group.

Gl GZ

» Unfortunately there is no sharing of clusters
across different groups because H is smooth.

» Solution: make the base distribution H discrete.

» Put a DP prior on the common base distribution.

[Teh et al. 2006]

©

Q)

&

&
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Hierarchical Dirichlet Processes

» A hierarchical Dirichlet process: @

Gp ~ DP(«o, H)
G1, GQ|G() ~ DP(a, Go) iid

©
Q)

» Extension to larger hierarchies is straightforward.

&
&
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Hierarchical Dirichlet Processes

» Making Gy discrete forces shared cluster between G; and G..

Go

L)

Go
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Hierarchical Dirichlet Processes

Perplexity on test abstacts of LDA and HDP mixture Posterior over number of topics in HDP mixtures

1050

LDA
10001 HDP Mixture

©
D
=]

Perplexity
©
=1
S

850F

Number of samples

10 20 30 40 50 60 70 80 90 100 110 120
Number of LDA topics

61 62 63 64 65 66 67 68 69 70 71 72 73
Number of topics

59/127



Chinese Restaurant Franchise

global
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Visual Scene Analysis with Transformed DPs
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[Sudderth et al. 2008]
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Visual Scene Analysis with Transformed DPs

B o "
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eS= ' <)
Ep | FB | @ ey
~ Tree L &> ‘\°
Building Screen >
Clutter
Road @D
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<’ % () Car Keyboard I\hb%ée

[Sudderth et al. 2008]
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Hierarchical Modelling

[Gelman et al. 1995]




Hierarchical Modelling

N

§ 06

€2)

i=1..n2

2
2

[Gelman et al. 1995]



Outline

Hierarchical Structure Discovery and Nested Processes
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Topic Hierarchies
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Nested Chinese Restaurant Process

123456789

[Blei et al. 2010]
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Nested Chinese Restaurant Process

123456789

¥,
OO

[Blei et al. 2010]
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Nested Chinese Restaurant Process

123456789
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elele
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[Blei et al. 2010]
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Visual Taxonomies
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[Bart et al. 2008]
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Hierarchical Clustering
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Hierarchical Clustering

» Bayesian approach to hierarchical clustering: place prior over tree
structures, and infer posterior.

» The nested DP can be used as a prior over layered tree structures.

» Another prior is a Dirichlet diffusion tree, which produces binary
ultrametric trees, and which can be obtained as an infinitesimal limit of a
nested DP. It is an example of a fragmentation process.

» Yet another prior is Kingman’s coalescent, which also produces binary
ultrametric trees, but is an example of a coalescent process.

[Neal 2003, Teh et al. 2008, Bertoin 2006]
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Nested Dirichlet Process

» Underlying stochastic process for the nested CRP is a nested DP.

Hierarchical DP: Nested DP:
G() ~ DP(Ofo, H) GO ~ DP(O/, DP(()A(), H))
Gj|G() ~ DP(a, Go) G,‘ ~ G()
Xj,'|Gj ~ Gj Xi|Gi ~ Gi

» The hierarchical DP starts with groups of data items, and analyses them
together by introducing dependencies through Gp.

» The nested DP starts with one set of data items, partitions them into
different groups, and analyses each group separately.

» Orthogonal effects, can be used together.

[Rodriguez et al. 2008]
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Nested Beta/Indian Buffet Processes

12345

» Exchangeable distribution over layered trees.
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Nested Beta/Indian Buffet Processes
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» Exchangeable distribution over layered trees.
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Nested Beta/Indian Buffet Processes
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Nested Beta/Indian Buffet Processes
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Nested Beta/Indian Buffet Processes
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» Exchangeable distribution over layered trees.
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Nested Beta/Indian Buffet Processes

12345

» Exchangeable distribution over layered trees.
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Nested Beta/Indian Buffet Processes

12345

(i

» Exchangeable distribution over layered trees.
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Hierarchical Beta/Indian Buffet Processes

123456789

» Different from the hierarchical beta process of
[Thibaux and Jordan 2007].
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Hierarchical Beta/Indian Buffet Processes

123456789

1234586

» Different from the hierarchical beta process of
[Thibaux and Jordan 2007].

72/127



Hierarchical Beta/Indian Buffet Processes

123456789

1234586

12345678

» Different from the hierarchical beta process of
[Thibaux and Jordan 2007].

72/127



Deep Structure Learning

-

[Adams et al. 2010]
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Deep Structure Learning

[Adams et al. 2010]
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Transfer Learning

» Many recent machine learning paradigms can be understood as trying to
model data from heterogeneous sources and types.

» Semi-supervised learning: we have labelled data, and unlabelled
data.

» Multi-task learning: we have multiple tasks with different
distributions but structurally similar.

» Domain adaptation: we have a small amount of pertinent data, and
a large amount of data from a related problem or domain.

» The transfer learning problem is how to transfer information between
different sources and types.

» Flexible nonparametric models can allow for more information extraction
and transfer.

» Hierarchies and nestings are different ways of putting together multiple
stochastic processes to form complex models.

[Jordan 2010]
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Outline

Time Series Models
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Hidden Markov Models

@

@ Q

my ~ Dirichlet(%, ..., %) Zj|zj_1,m5_, ~ Multinomial(r,_,)

0; ~ H

X,'|Z,',(9;I ~ F(QZ)

» Can we take K — oo?

» Can we do so while imposing structure in transition probability matrix?

76/127



Infinite Hidden Markov Models

et o= ==
@ @ cocs @

B~ GEM(y) 7B ~DP(a,B) zi|zi_1, 75, ~ Multinomial(m_,)
Oy ~H Xi|zi, 03, ~ F(03)

» Hidden Markov models with an infinite number of states: infinite HMM.

» Hierarchical DPs used to share information among transition probability
vectors prevents “run-away” states: HDP-HMM.

[Beal et al. 2002, Teh et al. 2006]
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Word Segmentation

» Given sequences of utterances or characters can a probabilistic model
segment sequences into coherent chunks (“words”)?

canyoureadthissentencewithoutspaces?

can you read this sentence without spaces?
SELEAAEMNREENE A —RIHE: REEXHEE LSHRETZE.

» Use an infinite HMM: each chunk/word is a state, with Markov model of
state transitions.

» Nonparametric model is natural, since number of words unknown before
segmentation.

[Goldwater et al. 2006b]
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Word Segmentation

Words | Lexicon | Boundaries
NGS-u 68.9 82.6 52.0
MBDP-1 68.2 82.3 52.4
DP 53.8 74.3 57.2
NGS-b 68.3 82.1 55.7
HDP 76.6 87.7 63.1

v

v

v

v

[Goldwater et al. 2006a]

NGS-u: n-gram Segmentation (unigram) [Venkataraman 2001].
NGS-b: n-gram Segmentation (bigram) [Venkataraman 2001].
MBDP-1: Model-based Dynamic Programming [Brent 1999].

DP, HDP: Nonparametric model, without and with Markov dependencies.

79/127



Sticky HDP-HMM

v

In typical HMMs or in infinite HMMs the model does not give special
treatment to self-transitions (from a state to itself).

» In many HMM applications self-transitions are much more likely.

» Example application of HMMSs: speaker diarization.

v

Straightforward extension of HDP-HMM prior encourages higher
self-transition probabilities:

k|3 ~ DP(a + k, 2841

a+t+k

[Beal et al. 2002, Fox et al. 2008]
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Sticky HDP-HMM

60

501

[Fox et al. 2008]
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Infinite Factorial HMM

/'/7‘\\ N\
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» Take M — oo for the following model specification:

P(s™ = 1[s!™) = 0) = ay, am ~ Beta(:, 1)
P(si™ =1[s{") = 1) = by, b ~ Beta(v, )

» Stochastic process is a Markov Indian buffet process. It is an example of
a dependent random measure.

[Van Gael et al. 2009]
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Nonparametric Grammars, Hierarchical HMMs etc

» In linguistics, grammars are much more plausible as generative models
of sentences.

» Learning the structure of probabilistic grammars is even more difficult,
and Bayesian nonparametrics provides a compelling alternative.

[Liang et al. 2007, Finkel et al. 2007, Johnson et al. 2007, Heller et al. 2009]
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Motion Capture Analysis

» Goal: find coherent “behaviour” in the time series that transfers to other
time series.

Slides courtesy of [Fox et al. 2010]
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Motion Capture Analysis

» Transfer knowledge among related time series in the form of a library of
“behaviours”.

» Allow each time series model to make use of an arbitrary subset of the
behaviours.

» Method: represent behaviors as states in an autoregressive HMM, and
use the beta/Bernoulli process to pick out subsets of states.

Slides courtesy of [Fox et al. 2010]
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BP-AR-HMM

* Bernoulli process
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=1

Slides courtesy of [Fox et al. 2010]

86/127



Motion Capture Results

Slides courtesy of [Fox et al. 2010]



High Order Markov Models

» Decompose the joint distribution of a sequence of variables into
conditional distributions:

-
P(x1,X2,...,X7) = HP(X1|X17--~7XI71)
» An Nth order Markov model approximates the joint distribution as:
P(x1, X, ..., xt) = [ [ POt Xt-n, -, Xe1)

t=1

» Such models are particularly prevalent in natural language processing,
compression and biological sequence modelling.

toad, in, a, hole
t,o,a,d,_,i,n,_,a,_,hole
A,C,G TGC,C,A

» Would like to take N — oo.
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High Order Markov Models

» Difficult to fit such models due to data sparsity.

C(Xt,N, ey Xt—1, Xt)
C(Xt—Ny- -, Xt—1)

P(X1|Xt,N, A ,Xt,1) =

» Sharing information via hierarchical models.

POXt-n.e-1 = U) = Gu(x) / ~
Ga
» A context tree. / * \
Gin a Gis a Gabout a
Gtoad in a Gstuck in a

[MacKay and Peto 1994, Teh 2006a]
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Outline

Modelling Power-laws with Pitman-Yor Processes

90/127



Pitman-Yor Processes
» Two-parameter generalization of the Chinese restaurant process:

%5 if occupied table
customer n sat at table k|past) = { "'+
~ Ipast) ot fK - if new table

» Associating each cluster k with a unique draw 0; ~ H, the
corresponding Pélya urn scheme is also exchangeable.

=30, d=0 o=1,d=5

200

table

customer

Pitman-Yor

4000
customer

Dirichlet
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Pitman-Yor Processes

» De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

» This is the Pitman-Yor process.

» The Pitman-Yor process also has a stick-breaking construction:
k—1 oS
m =V [[(1=v) Bk~Beta(1-B,a+p8k) Oi~H G=) mdy
i=1 k=1

» The Pitman-Yor process cannot be obtained as the infinite limit of a
simple parametric model.

[Perman et al. 1992, Pitman and Yor 1997, Ishwaran and James 2001]
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Pitman-Yor Processes

» Two salient features of the Pitman-Yor process:

» With more occupied tables, the chance of even more tables
becomes higher.

» Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

» The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(an®).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Pitman-Yor Processes

Word frequency

100

10°

10*

10°

10?

10!

10°
1

T T Ty
3 Pitman-Yor
r English text
3 Dirichle

3

r

r

r

0° 10! 10? 10° 10* 10°

Rank (according to frequency)

95/127



Hierarchical Pitman-Yor Markov Models

» Use a hierarchical Pitman-Yor prior for high order Markov models.

» Can now take N — oo, making use of coagulation and fragmentation
properties of Pitman-Yor processes for computational tractability.

» Non-Markov model called the sequence memoizer.

[Goldwater et al. 2006a, Teh 2006b, Wood et al. 2009, Gasthaus et al. 2010]
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Language Modelling

» Compare hierarchical Pitman-Yor model against hierarchical Dirichlet

model, and two state-of-the-art language models (interpolated

Kneser-Ney, modified Kneser-Ney).

» Results reported as perplexity scores.

[Teh 2006b]

T N IKN  MKN HPYLM HDLM
2e6 3 | 1488 1441 1443 191.2
4e6 3 | 1371 1327 132.7 1727
6e6 3 | 130.6 126.7 126.4 162.3
8e6 3| 1259 1223 121.9 1547

10e6 3 | 122.0 118.6 118.2 148.7
12e6 3 | 119.0 1158 115.4 144.0
14e6 3 | 116.7 113.6 113.2 140.5
14e6 2 | 169.9 169.2 169.3 180.6
14e6 4 | 106.1 102.4 101.9 136.6
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Compression

» Predictive models can be used to compress sequence data using

entropic coding techniques.

» Compression results on Calgary corpus:

Model Average bits / byte
gzip 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

» See http://deplump.comand http://sequencememoizer.com.

[Gasthaus et al. 2010]
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Comparing Finite and Infinite Order Markov Models

400 1.5%107
1.2x107
£
300 . <
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200 2
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100
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[Wood et al. 2009]
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Image Segmentation with Pitman-Yor Processes
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» Human segmentations of images also seem to follow power-law.

» An unsupervised image segmentation model based on a dependent
hierarchical Pitman-Yor processes achieves state-of-the-art results.

[Sudderth and Jordan 2009]
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Stable Beta Process

» Extensions allow for different aspects of the generative process to be
modelled:

» «: controls the expected number of dishes picked by each
customer.

» c: controls the overall number of dishes picked by all customers.

» o controls power-law scaling (ratio of popular dishes to unpopular
ones).

» A completely random measure, with Lévy measure:

r1+c)

A (e Ta) (T duH(de)

[Ghahramani et al. 2007, Teh and Gorir 2009]
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Stable Beta Process

o=1, c=1, 0=0.5 a=10, c=1, 0=0.5 a=100, c=1, 0=0.5
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Stable Beta Process

o=10, ¢c=0.1, 0=0.5 =10, c=1, 0=0.5 o=10, ¢c=10, 0=0.5
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Stable Beta Process

o=10, c=1, 0=0.2 a=10, c=1, 0=0.5 a=10, c=1, 0=0.8
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Modelling Word Occurrences in Documents
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Summary
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Summary

» Motivation for Bayesian nonparametrics:

» Allows practitioners to define and work with models with large
support, sidesteps model selection.

» New models with useful properties.

» Large variety of applications.

» Various standard Bayesian nonparametric models:

Dirichlet processes

Hierarchical Dirichlet processes
Infinite hidden Markov models
Indian buffet and beta processes
Pitman-Yor processes

vV vy vy VvYy

» Touched upon two important theoretical tools:

» Consistency and Kolmogorov’s Consistency Theorem
» Exchangeability and de Finetti’s Theorem

» Described a number of applications of Bayesian nonparametrics.
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Advertisement

v

PhD studentships and postdoctoral fellowships are available

v

Both machine learning and computational neuroscience.

Both Arthur Gretton and I.

v

v

Happy to speak with anyone interested.
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Outline

Relating Different Representations of Dirichlet Processes
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Representations of Dirichlet Processes
» Posterior Dirichlet process:

G~DP(H) 0~H
|G~ G G|9~DP<a+1,“H+‘59>

a-+1

» Polya urn scheme:

0,10 oH + Y75 6y,
n|Y1:n—1 Oé—|—n—1

» Chinese restaurant process:

——  if occupied table
customer n sat at table k|past) = ¢ "'+«
p( Ipast) { a if new table

n71‘+a
» Stick-breaking construction:
k—1 0o
me=6c [[(0=8)  Bc~Beta(l,a) Gi~H G=) mdy
i=1 k=1
108/127



Posterior Dirichlet Processes

» Suppose G is DP distributed, and ¢ is G distributed:

G ~ DP(a, H)
|G ~ G

» We are interested in:

» The marginal distribution of § with G integrated out.
» The posterior distribution of G conditioning on 6.
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Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

» Consider:
(71'1 S 77TK) ~ Dil’iCh'Gt(a1 yeeey aK)
z|(m1,...,mk) ~ Discrete(m,...,7k)
z is a multinomial variate, taking on value i € {1, ..., n} with probability
-
» Then:
z ~ Discrete (ﬁ, e ﬁ)

(m1,...,7K)|z ~ Dirichlet(as + 61 (2). ..., ak + 0k(2))

where 0;(z) = 1 if z takes on value /, 0 otherwise.

» Converse also true.
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Posterior Dirichlet Processes
» Fix a partition (As, ..., Ax) of ©. Then

(G(A), ..., G(Ax)) ~ Dirichlet(aH(A),. .., aH(Ax))
P(0 € AilG) = G(A))

» Using Dirichlet-multinomial conjugacy,
P(6 € A)) = H(A)

(G(A1),...,G(Ak))|0 ~ Dirichlet(a«H(A1)+0dg(A1), . .., aH(Ak)+00(Ak))
» The above is true for every finite partition of ©. In particular, taking a

really fine partition,

p(db) = H(d0)

i.e. § ~ H with G integrated out.

» Also, the posterior G|f is also a Dirichlet process:

OLH+59>

G|9~DP<0¢+1,
o+ 1
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Posterior Dirichlet Processes

G~DP(aH) 0~H
0|G~ G Gl6 ~ DP (a4 1, 280 )
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Pélya Urn Scheme

» First sample:

0:|G~ G G ~ DP(a, H)
— 0y ~ H Gl01 ~ DP(a + 1, 2000 )
» Second sample:
02001,G ~ G Glfy ~ DP(a + 1, 2500
— 001 ~ 2022 GJy,0, ~ DP(a + 2, S0 0z )
» n" sample
Onl01.n-1,G ~ G Glf1n_1 ~ DP(a+n— 1, 2=t
n—t a n )
= Opllrpg ~ T Glg )~ DP(a+ n, S
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Stick-breaking Construction
» Returning to the posterior process:
G ~ DP(a, H) 0~H

<~
9|G ~ G Gl0 ~ DP(a + 1, 20

» Consider a partition (¢, ©\¢) of ©. We have:

(G(6), G(©\0))|6 ~ Dirichlet((a + 1)2252(0), (a + 1) 22 (©\0))
= Dirichlet(1, o)

» G has a point mass located at 6:

G=p306+(1-8)G with B ~ Beta(1, a)
and G’ is the (renormalized) probability measure with the point mass
removed.

» Whatis G'?
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Stick-breaking Construction

» Currently, we have:

6~H
G ~ DP(a, H) N Gl0 ~ DP(a + 1, 2t
'~G G =30+ (1- )G

B8 ~ Beta(1,a)

» Consider a further partition (6, A, ..., Ak) of ©:
(G(9), G(A1),...,G(Ak))

=(8,(1 - B)G'(A1),....(1 = B)G'(AK))
~ Dirichlet(1, aH(As), . . ., aH(Ax))

» The agglomerative/decimative property of Dirichlet implies:
(G'(A1),...,G(Ak))|0 ~ Dirichlet(aH(A1),...,aH(Ak))
G' ~ DP(a, H)
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Stick-breaking Construction

» We have:

where

G ~ DP(a, H)

G = B1do; + (1 — B1)Gi

G = Bi1dg: + (1 — B1)(Bede; + (1 — B2)G2)

G = Z 7Tk59lf
k=1

m= B I15 (1 = 8)

Bk ~ Beta(1,a)

T

T

. Tls)

e

T

0; ~ H

116/127



Outline

Representations of Hierarchical Dirichlet Processes
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Stick-breaking Construction

» We shall assume the following HDP hierarchy:

GO ~ DP(’Yv H)
Gj|Go ~ DP(o, Gg) forj=1,...,J

» The stick-breaking construction for the HDP is:
Go = 2;021 7'(0;(59: 9; ~H

mok = Bok [1/5' (1 — Bor)  Bo ~ Beta (1,7)
Gj = >k TikOe;
i = B [T/ (1 = By) Bik ~ Beta (afok, o(1 — X5 Bor))
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Hierarchical Polya Urn Scheme

> Let G ~ DP(a, H).
» We can visualize the Polya urn scheme as follows:

B By B b b G-

RS

60 6 6 6, 6 6 6----

where the arrows denote to which §; each 6; was assigned and

01,0s,... ~ Giid.
01,05, ... ~ Hiid.

(but 81,65, ... are not independent of 67,65, .. .).
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Hierarchical Polya Urn Scheme

> Let Gy ~ DP(’y, H) and G1, Gz‘Go ~ DP(a, Go)

» The hierarchical Polya urn scheme to generate draws from G, Gz:

Bb1 6> O35 Bos Bds 806 - - - -

//\\\

g%l 12 9%3 e]16' e 22 e]23

. N

11 e12 e13 e14 e15 e16 e_l.7 """ e21 e22 e23 624 625 G26 927 """
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Chinese Restaurant Franchise

> Let Gy ~ DP(’y, H) and G1, Gz‘Go ~ DF’(a, Go)

» The Chinese restaurant franchise describes the clustering of data items

in the hierarchy:

(@ECD)FG@ oN

foioge O
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