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Probabilistic Machine Learning

I Probabilistic model of data {xi}n
i=1 given parameters θ:

P(x1, x2, . . . , xn, y1, y2, . . . , yn|θ)

where yi is a latent variable associated with xi .

I Often thought of as generative models of data.

I Inference, of latent variables given observations:

P(y1, y2, . . . , yn|θ, x1, x2, . . . , xn) =
P(x1, x2, . . . , xn, y1, y2, . . . , yn|θ)

P(x1, x2, . . . , xn|θ)

I Learning, typically by maximum likelihood :

θML = argmax
θ

P(x1, x2, . . . , xn|θ)
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Bayesian Machine Learning
I Probabilistic model of data {xi}n

i=1 given parameters θ:

P(x1, x2, . . . , xn, y1, y2, . . . , yn|θ)

I Prior distribution:

P(θ)

I Posterior distribution:

P(θ, y1, y2, . . . , yn|x1, x2, . . . , xn) =
P(θ)P(x1, x2, . . . , xn, y1, y2, . . . , yn|θ)

P(x1, x2, . . . , xn)

I Prediction:

P(xn+1|x1, . . . , xn) =

∫
P(xn+1|θ)P(θ|x1, . . . , xn)dθ

I (Easier said than done...)
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Computing Posterior Distributions

I Posterior distribution:

P(θ, y1, y2, . . . , yn|x1, x2, . . . , xn) =
P(θ)P(x1, x2, . . . , xn, y1, y2, . . . , yn|θ)

P(x1, x2, . . . , xn)

I High-dimensional, no closed-form, multi-modal...

I Variational approximations [Wainwright and Jordan 2008]: simple
parametrized form, “fit” to true posterior.

I Monte Carlo methods, including Markov chain Monte Carlo
[Neal 1993, Robert and Casella 2004] and sequential Monte Carlo
[Doucet et al. 2001]: construct generators for random samples from the
posterior.
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Bayesian Model Selection

I Model selection is often necessary to prevent overfitting and underfitting.

I Bayesian approach to model selection uses the marginal likelihood :

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk ,Mk )dθk

Model selection: M∗ = argmax
Mk

p(x|Mk )

Model averaging: p(Mk , θk |x) =
p(Mk )p(θk |Mk )p(x|θk ,Mk )∑

k ′ p(Mk ′)p(θk ′ |Mk ′)p(x|θk ′ ,Mk ′)

I Other approaches to model selection: cross validation, regularization,
sparse models...
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Side-Stepping Model Selection

I Strategies for model selection often entail significant complexities.

I But reasonable and proper Bayesian methods should not overfit anyway
[Rasmussen and Ghahramani 2001].

I Idea: use a large model, and be Bayesian so will not overfit.

I Bayesian nonparametric idea: use a very large Bayesian model avoids
both overfitting and underfitting.
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Direct Modelling of Very Large Spaces

I Regression: learn about functions from an input to an output space.

I Density estimation: learn about densities over Rd .

I Clustering: learn about partitions of a large space.

I Objects of interest are often infinite dimensional. Model these directly:

I Using models that can learn any such object;
I Using models that can approximate any such object to arbitrary

accuracy.

I Many theoretical and practical issues to resolve:

I Convergence and consistency.
I Practical inference algorithms.
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Regression and Classification
I Learn a function f ∗ : X→ Y from training data {xi , yi}n

i=1.

*
*

*

*

*

*

*

*

I Regression: if yi = f ∗(xi ) + εi .
I Classification: e.g. P(yi = 1|f ∗(xi )) = Φ(f ∗(xi )).
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Parametric Regression with Basis Functions

I Assume a set of basis functions φ1, . . . , φK and parametrize a function:

f (x ; w) =
K∑

k=1

wkφk (x)

Parameters w = {w1, . . . ,wK}.
I Find optimal parameters

argmin
w

n∑

i=1

∣∣∣∣yi − f (xi ; w)

∣∣∣∣
2

= argmin
w

n∑

i=1

∣∣∣∣yi −
∑K

k=1 wkφk (xi )

∣∣∣∣
2

I What family of basis function to use?

I How many?

I What if true function cannot be parametrized as such?
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Towards Nonparametric Regression

I What we are interested in is the output values of the function,

f (x1), f (x2), . . . , f (xn), f (xn+1)

Why not model these directly?

I In regression, each f (xi ) is continuous and real-valued, so a natural
choice is to model f (xi ) using a Gaussian.

I Assume that function f is smooth. If two inputs xi and xj are close-by,
then f (xi ) and f (xj ) should be close by as well. This translates into
correlations among the outputs f (xi ).
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Towards Nonparametric Regression
I We can use a multi-dimensional Gaussian to model correlated function

outputs:



f (x1)
...

f (xn+1)


 ∼ N







0
...
0


 ,




C1,1 . . . C1,n+1
...

. . .
...

Cn+1,1 . . . Cn+1,n+1







where the mean is zero, and C = [Cij ] is the covariance matrix.
I Each observed output yi can be modelled as,

yi |f (xi ) ∼ N (f (xi ), σ
2)

I Learning: compute posterior distribution

p(f (x1), . . . , f (xn)|y1, . . . , yn)

Straightforward since whole model is Gaussian.
I Prediction: compute

p(f (xn+1)|y1, . . . , yn)
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Gaussian Processes

I A Gaussian process (GP) is a random function f : X→ R such that for
any finite set of input points x1, . . . , xn,




f (x1)
...

f (xn)


 ∼ N







m(x1)
...

m(xn)


 ,




c(x1, x1) . . . c(x1, xn)
...

. . .
...

c(xn, x1) . . . c(xn, xn)







where the parameters are the mean function m(x) and covariance
kernel c(x , y).

I Difference from before: the GP defines a distribution over f (x), for every
input value x simultaneously. Prior is defined even before observing
inputs x1, . . . , xn.

I Such a random function f is known as a stochastic process. It is a
collection of random variables {f (x)}x∈X.

I Demo: GPgenerate.

[Rasmussen and Williams 2006]
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Posterior and Predictive Distributions

I How do we compute the posterior and predictive distributions?

I Training set (x1, y1), (x2, y2), . . . , (xn, yn) and test input xn+1.

I Out of the (uncountably infinitely) many random variables {f (x)}x∈X
making up the GP only n + 1 has to do with the data:

f (x1), f (x2), . . . , f (xn+1)

I Training data gives observations f (x1) = y1, . . . , f (xn) = yn. The
predictive distribution of f (xn+1) is simply

p(f (xn+1)|f (x1) = y1, . . . , f (xn) = yn)

which is easy to compute since f (x1), . . . , f (xn+1) is Gaussian.
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Consistency and Existence

I The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

I Fortunately these marginal distributions are consistent .

I For every finite set x ⊂ X we have a distinct distribution
px([f (x)]x∈x). These distributions are said to be consistent if

px([f (x)]x∈x) =

∫
px∪y([f (x)]x∈x∪y)d [f (x)]x∈y

for disjoint and finite x,y ⊂ X.
I The marginal distributions for the GP are consistent because

Gaussians are closed under marginalization.

I The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f (x)}x∈X.
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Density Estimation with Mixture Models

I Unsupervised learning of a density f ∗(x) from training samples {xi}.

* ** * ** * ** *** ****

I Can use a mixture model for flexible family of densities, e.g.

f (x) =
K∑

k=1

πkN (x ;µk ,Σk )

I How many mixture components to use?

I What family of mixture components?

I Do we believe that the true density is a mixture of K components?
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Bayesian Mixture Models

I Let’s be Bayesian about mixture models, and place
priors over our parameters (and to compute
posteriors).

I First, introduce conjugate priors for parameters:

π ∼ Dirichlet(αK , . . . ,
α
K )

µk ,Σk = θ∗k ∼ H = N -IW(0, s,d ,Φ)

I Second, introduce variable zi indicator which
component xi belongs to.

zi |π ∼ Multinomial(π)

xi |zi = k ,µ,Σ ∼ N (µk ,Σk )

[Rasmussen 2000]

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K
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Gibbs Sampling for Bayesian Mixture Models

I All conditional distributions are simple to compute:

p(zi = k |others) ∝ πkN (xi ;µk ,Σk )

π|z ∼ Dirichlet(αK +n1(z), . . . , αK +nK (z))

µk ,Σk |others ∼ N -IW(ν′, s′,d ′,Φ′)

I Not as efficient as collapsed Gibbs sampling which
integrates out π,µ,Σ:

p(zi = k |others) ∝
α
K + nk (z−i )

α + n − 1
×

p(xi |{xi′ : i ′ 6= i , zi′ = k})

I Demo: fm_demointeractive.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K
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Infinite Bayesian Mixture Models

I We will take K →∞.

I Imagine a very large value of K .

I There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:

p(zi = k |others) ∝
α
K +nk (z−i )

n − 1 + α
p(xi |x−i

k )

Empty clusters:

p(zi = kempty|z−i ) ∝ αK−K∗
K

n − 1 + α
p(xi |{})

I Demo: dpm_demointeractive.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K
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Infinite Bayesian Mixture Models
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zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,∞
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Density Estimation
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F (·|µ,Σ) is Gaussian with mean µ, covariance Σ.
H(µ,Σ) is Gaussian-inverse-Wishart conjugate prior.
Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: posterior samples. Black: data points.
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Density Estimation
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Infinite Bayesian Mixture Models

I The actual infinite limit of finite mixture models does not actually make
mathematical sense.

I Other better ways of making this infinite limit precise:

I Look at the prior clustering structure induced by the Dirichlet prior
over mixing proportions—Chinese restaurant process.

I Re-order components so that those with larger mixing proportions
tend to occur first, before taking the infinite limit—stick-breaking
construction.

I Both are different views of the Dirichlet process (DP).

I The K →∞ Gibbs sampler is for DP mixture models.
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A Tiny Bit of Measure Theoretic Probability Theory

I A σ-algebra Σ is a family of subsets of a set Θ such that

I Σ is not empty;
I If A ∈ Σ then Θ\A ∈ Σ;
I If A1,A2, . . . ∈ Σ then ∪∞i=1Ai ∈ Σ.

I (Θ,Σ) is a measure space and A ∈ Σ are the measurable sets.

I A measure µ over (Θ,Σ) is a function µ : Σ→ [0,∞] such that

I µ(∅) = 0;
I If A1,A2, . . . ∈ Σ are disjoint then µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ).

I Everything we consider here will be measurable.
I A probability measure is one where µ(Θ) = 1.

I Given two measure spaces (Θ,Σ) and (∆,Φ), a function f : Θ→ ∆ is
measurable if f−1(A) ∈ Σ for every A ∈ Φ.
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A Tiny Bit of Measure Theoretic Probability Theory

I If p is a probability measure on (Θ,Σ), a random variable X taking
values in ∆ is simply a measurable function X : Θ→ ∆.

I Think of the probability space (Θ,Σ,p) as a black-box random
number generator, and X as a function taking random samples in Θ
and producing random samples in ∆.

I The probability of an event A ∈ Φ is p(X ∈ A) = p(X−1(A)).

I A stochastic process is simply a collection of random variables {Xi}i∈I
over the same measure space (Θ,Σ), where I is an index set.

I Can think of a stochastic process as a random function X (i).

I Stochastic processes form the core of many Bayesian nonparametric
models.

I Gaussian processes, Poisson processes, Dirichlet processes, beta
processes, completely random measures...

26 / 111



Dirichlet Distributions
I A Dirichlet distribution is a distribution over the K -dimensional probability

simplex:
∆K =

{
(π1, . . . , πK ) : πk ≥ 0,

∑
k πk = 1

}

I We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(λ1, . . . , λK )

with parameters (λ1, . . . , λK ), if

p(π1, . . . , πK ) =
Γ(
∑

k λk )∏
k Γ(λk )

n∏

k=1

πλk−1
k

I Equivalent to normalizing a set of independent gamma variables:

(π1, . . . , πK ) = 1∑
k γk

(γ1, . . . , γK )

γk ∼ Gamma(λk ) for k = 1, . . . ,K
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Dirichlet Distributions
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Dirichlet Processes

I A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ)
such that for any finite set of measurable partitions A1∪̇ . . . ∪̇AK = Θ,

(G(A1), . . . ,G(AK )) ∼ Dirichlet(λ(A1), . . . , λ(AK ))

where λ is a base measure.

6

A

A1

A A

A

A

2

3

4

5

I The above family of distributions is consistent (next slide), and
Kolmogorov Consistency Theorem can be applied to show existence (but
there are technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]
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Consistency of Dirichlet Marginals

I If we have two partitions (A1, . . . ,AK ) and (B1, . . . ,BJ) of Θ, how do we
see if the two Dirichlets are consistent?

I Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (I1, . . . , Ij ) is a partition of (1, . . . ,K ),

(∑
i∈I1 πi , . . . ,

∑
i∈Ij πi

)
∼ Dirichlet

(∑
i∈I1 λi , . . . ,

∑
i∈Ij λi

)
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Consistency of Dirichlet Marginals

I Form the common refinement (C1, . . . ,CL) where each C` is the
intersection of some Ak with some Bj . Then:

By definition, (G(C1), . . . ,G(CL)) ∼ Dirichlet(λ(C1), . . . , λ(CL))

(G(A1), . . . ,G(AK )) =
(∑

C`⊂A1
G(C`), . . . ,

∑
C`⊂AK

G(C`)
)

∼ Dirichlet(λ(A1), . . . , λ(AK ))

Similarly, (G(B1), . . . ,G(BJ)) ∼ Dirichlet(λ(B1), . . . , λ(BJ))

so the distributions of (G(A1), . . . ,G(AK )) and (G(B1), . . . ,G(BJ)) are
consistent.

I Demonstration: DPgenerate.
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Parameters of Dirichlet Processes
I Usually we split the λ base measure into two parameters λ = αH:

I Base distribution H, which is like the mean of the DP.
I Strength parameter α, which is like an inverse-variance of the DP.

I We write:

G ∼ DP(α,H)

if for any partition (A1, . . . ,AK ) of Θ:

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

I The first and second moments of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of Θ.
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Representations of Dirichlet Processes

I Draws from Dirichlet processes will always place all their mass on a
countable set of points:

G =
∞∑

k=1

πkδθ∗k

where
∑

k πk = 1 and θ∗k ∈ Θ.

I What is the joint distribution over π1, π2, . . . and θ∗1 , θ
∗
2 , . . .?

I Since G is a (random) probability measure over Θ, we can treat it as a
distribution and draw samples from it. Let

θ1, θ2, . . . ∼ G

be random variables with distribution G.

I Can we describe G by describing its effect θ1, θ2, . . .?
I What is the marginal distribution of θ1, θ2, . . . with G integrated out?
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Stick-breaking Construction

G =
∞∑

k=1

πkδθ∗k

I There is a simple construction giving the joint distribution of π1, π2, . . .
and θ∗1 , θ

∗
2 , . . . called the stick-breaking construction.

θ∗k ∼ H

πk = vk

k−1∏

i=1

(1− vi )

vk ∼ Beta(1, α)

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)

I Also known as the GEM distribution, write π ∼ GEM(α).

[Sethuraman 1994]
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Posterior of Dirichlet Processes

I Since G is a probability measure, we can draw samples from it,

G ∼ DP(α,H)

θ1, . . . , θn|G ∼ G

What is the posterior of G given observations of θ1, . . . , θn?

I The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well:

G|θ1, . . . , θn ∼ DP(α + n, αH+
∑n

i=1 δθi
α+n )
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Pólya Urn Scheme

θ1, θ2, . . . ∼ G

I The marginal distribution of θ1, θ2, . . . has a simple generative process
called the Pólya urn scheme (aka Blackwell-MacQueen urn scheme).

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I Picking balls of different colors from an urn:

I Start with no balls in the urn.
I with probability ∝ α, draw θn ∼ H, and add a ball of color θn into urn.
I With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color and return two balls of color θn into urn.

[Blackwell and MacQueen 1973]
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Chinese Restaurant Process

I θ1, . . . , θn take on K < n distinct values, say θ∗1 , . . . , θ
∗
K .

I This defines a partition of (1, . . . ,n) into K clusters, such that if i is in
cluster k , then θi = θ∗k .

I The distribution over partitions is a Chinese restaurant process (CRP).

I Generating from the CRP:

I First customer sits at the first table.
I Customer n sits at:

I Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
I A new table K + 1 with probability α

α+n−1 .
I Customers⇔ integers, tables⇔ clusters.

9
1

2
3

4 5
6 7

8
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Chinese Restaurant Process
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I The CRP exhibits the clustering property of the DP.
I Rich-gets-richer effect implies small number of large clusters.
I Expected number of clusters is K = O(α log n).
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Clustering

I To partition a heterogeneous data set into distinct, homogeneous
clusters.

I The CRP is a canonical nonparametric prior over partitions that can be
used as part of a Bayesian model for clustering.

I Other priors over partitions can be used instead of the CRP induced by a
DP (for examples see [Lijoi and Pruenster 2010]).
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Inferring Discrete Latent Structures

I DPs have also found uses in applications where the aim is to discover
latent objects, and where the number of objects is not known or
unbounded.

I Nonparametric probabilistic context free grammars.
I Visual scene analysis.
I Infinite hidden Markov models/trees.
I Genetic ancestry inference.
I ...

I In many such applications it is important to be able to model the same
set of objects in different contexts.

I This can be tackled using hierarchical Dirichlet processes.

[Teh et al. 2006, Teh and Jordan 2010]
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Exchangeability

I Instead of deriving the Pólya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I For any n, the joint distribution of θ1, . . . , θn is:

p(θ1, . . . , θn) =
αK ∏K

k=1 h(θ∗k )(mnk − 1)!∏n
i=1 i − 1 + α

where h(θ) is density of θ under H, θ∗1 , . . . , θ
∗
K are the unique values, and

θ∗k occurred mnk times among θ1, . . . , θn.

I The joint distribution is exchangeable wrt permutations of θ1, . . . , θn.

I De Finetti’s Theorem says that there must be a random probability
measure G making θ1, θ2, . . . iid. This is the DP.
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De Finetti’s Theorem

Let θ1, θ2, . . . be an infinite sequence of random variables with joint
distribution p. If for all n ≥ 1, and all permutations σ ∈ Σn on n objects,

p(θ1, . . . , θn) = p(θσ(1), . . . , θσ(n))

That is, the sequence is infinitely exchangeable. Then there exists a (unique)
latent random parameter G such that:

p(θ1, . . . , θn) =

∫
p(G)

n∏

i=1

p(θi |G)dG

where ρ is a joint distribution over G and θi ’s.

I θi ’s are independent given G.

I Sufficient to define G through the conditionals p(θn|θ1, . . . , θn−1).

I G can be infinite dimensional (indeed it is often a random measure).
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Latent Variable Modelling

I Say we have n vector observations x1, . . . , xn.

I Model each observation as a linear combination of K latent sources:

xi =
K∑

k=1

Λk yik + εi

yik : activity of source k in datum i .
Λk : basis vector describing effect of source k .

I Examples include principle components analysis, factor analysis,
independent components analysis.

I How many sources are there?

I Do we believe that K sources is sufficient to explain all our data?

I What prior distribution should we use for sources?
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Binary Latent Variable Models

I Consider a latent variable model with binary sources/features,

zik =

{
1 with probability µk ;
0 with probability 1− µk .

I Example: Data items could be movies like “Terminator 2”, “Shrek” and
“Lord of the Rings”, and features could be “science fiction”, “fantasy”,
“action” and “Arnold Schwarzenegger”.

I Place beta prior over the probabilities of features:

µk ∼ Beta(αK ,1)

I We will again take K →∞.
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Indian Buffet Processes
I The Indian Buffet Process (IBP) describes each customer with a binary

vector instead of cluster.

I Generating from an IBP:
I Parameter α.
I First customer picks Poisson(α) dishes to eat.
I Subsequent customer i picks dish k with probability mk

i ; and picks
Poisson(αi ) new dishes.
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[Griffiths and Ghahramani 2006]
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Indian Buffet Processes and Exchangeability

I The IBP is infinitely exchangeable. For this to make sense, we need to
“forget” the ordering of the dishes.

I “Name” each dish k with a Λ∗k drawn iid from H.
I Each customer now eats a set of dishes: Ψi = {Λ∗k : zik = 1}.
I The joint probability of Ψ1, . . . ,Ψn can be calculated:

p(Ψ1, . . . ,Ψn) = exp

(
−α

n∑

i=1

1
i

)
αK

K∏

k=1

(mk − 1)!(n −mk )!

n!
h(Λ∗k )

K : total number of dishes tried by n customers.
Λ∗k : Name of k th dish tried.
mk : number of customers who tried dish Λ∗k .

I De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

I This random measure is the beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]
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Applications of Indian Buffet Processes
I The IBP can be used in concert with different likelihood models in a

variety of applications.

Z ∼ IBP(α) X ∼ F (Z ,Y )

Y ∼ H p(Z ,Y |X ) =
p(Z ,Y )p(X |Z ,Y )

p(X )

I Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

I Matrix factorization for collaborative filtering [Meeds et al. 2007].

I Latent causal discovery for medical diagnostics [Wood et al. 2006]

I Protein complex discovery [Chu et al. 2006].

I Psychological choice behaviour [Görür et al. 2006].

I Independent components analysis [Knowles and Ghahramani 2007].

I Learning the structure of deep belief networks [Adams et al. 2010].
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Infinite Independent Components Analysis

I Each image Xi is a linear combination of sparse features:

Xi =
∑

k

Λ∗k yik

where yik is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

yik = zik aik aik ∼ N (0,1) Z ∼ IBP(α)

I An ICA model with infinite number of features.

[Knowles and Ghahramani 2007, Teh et al. 2007]
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Beta Processes

I A one-parameter beta process B ∼ BP(α,H) is a random discrete
measure with form:

B =
∞∑

k=1

µkδθ∗k

where the points P = {(θ∗1 , µ1), (θ∗2 , µ2), . . .} are spikes in a 2D Poisson
process with rate measure:

αµ−1dµH(dθ)

I It is the de Finetti measure for the IBP.

I This is an example of a completely random measure.

I A beta process does not have Beta distributed marginals.

[Hjort 1990, Thibaux and Jordan 2007]
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Beta Processes

51 / 111



Stick-breaking Construction for Beta Processes
I The following generates a draw of B:

vk ∼ Beta(1, α) µk = (1− vk )
k−1∏

i=1

(1− vi ) θ∗k ∼ H

B =
∞∑

k=1

µkδθ∗k

I The above is the complement of the stick-breaking construction for DPs.

π
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(6)µ
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[Teh et al. 2007]
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Topic Modelling with Latent Dirichlet Allocation

I Infer topics from a document corpus, topics
being sets of words that tend to co-occur
together.

I Using (Bayesian) latent Dirichlet allocation:

πj ∼ Dirichlet(αK , . . . ,
α
K )

θk ∼ Dirichlet( βW , . . . , βW )

zji |πj ∼ Multinomial(πj )

xji |zji ,θzji ∼ Multinomial(θzji )

I How many topics can we find from the
corpus?

I Can we take number of topics K →∞?

topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θk
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Hierarchical Dirichlet Processes

I Use a DP mixture for each group.

I Unfortunately there is no sharing of clusters
across different groups because H is smooth.

I Solution: make the base distribution H discrete.

I Put a DP prior on the common base distribution.

[Teh et al. 2006]
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Hierarchical Dirichlet Processes

I A hierarchical Dirichlet process:

G0 ∼ DP(α0,H)

G1,G2|G0 ∼ DP(α,G0) iid

I Extension to larger hierarchies is straightforward. 1i

1ix
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G1 G
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θ
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H
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2
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Hierarchical Dirichlet Processes
I Making G0 discrete forces shared cluster between G1 and G2.

57 / 111



Hierarchical Dirichlet Processes
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Chinese Restaurant Franchise
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Visual Scene Analysis with Transformed DPs
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Figure 15: TDP model for 2D visual scenes (left), and cartoon illustration of the generative process
(right). Global mixture G0 describes the expected frequency and image position of visual categories,
whose internal structure is represented by part–based appearance models {F!}∞

!=1. Each image distri-
bution Gj instantiates a randomly chosen set of objects at transformed locations ρ. Image features with
appearance wji and position vji are then sampled from transformed parameters τ

(
θ̄ji; ρ̄ji

)
corresponding

to different parts of object ōji. The cartoon example defines three color–coded object categories, which
are composed of one (blue), two (green), and four (red) Gaussian parts, respectively. Dashed ellipses
indicate transformation priors for each category.

responding to some category. The appearance of the jth image is then determined by a set of

randomly transformed objects Gj ∼ DP(α, G0), so that

Gj(o, ρ) =
∞∑

t=1

π̃jtδ(o, ojt)δ(ρ, ρjt)
π̃j ∼ GEM(α)

(ojt, ρjt) ∼ G0

(30)

In this expression, t indexes the set of object instances in image j, which are associated with

visual categories ojt. Each of the Nj features in image j is independently sampled from some

object instance tji ∼ π̃j . This can be equivalently expressed as (ōji, ρ̄ji) ∼ Gj , where ōji is the

global category corresponding to an object instance situated at transformed location ρ̄ji. Finally,

parameters corresponding to one of this object’s parts generate the observed feature:

(η̄ji, µ̄ji, Λ̄ji) = θ̄ji ∼ Fōji wji ∼ η̄ji vji ∼ N
(
µ̄ji + ρ̄ji, Λ̄ji

)
(31)

In later sections, we let kji ∼ ε̄oji indicate the part underlying the ith feature. Focusing on scale–

normalized datasets, we again associate transformations with image–based translations.

The hierarchical, TDP scene model of Fig. 15 employs three different stick–breaking processes,

allowing uncertainty in the number of visual categories (GEM(γ)), parts composing each category

(GEM(κ)), and object instances depicted in each image (GEM(α)). It thus generalizes the para-

metric model of Fig. 12, which assumed fixed, known sets of parts and objects. As κ → 0, each

category uses a single part, and we recover a variant of the simpler TDP model of Sec. 7.1. Inter-

30

[Sudderth et al. 2008]
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Visual Scene Analysis with Transformed DPs
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Figure 16: Learned contextual, fixed–order models for street scenes (left) and office scenes (right),
each containing four objects. Top: Gaussian distributions over the positions of other objects given the
location of the car (left) or computer screen (right). Bottom: Parts (solid) generating at least 5% of
each category’s features, with intensity proportional to probability. Parts are tranlated by that object’s
mean position, while the dashed ellipses indicate each object’s marginal transformation covariance.

used thirty shared parts, and Dirichlet precision parameters set as γ = 4, α = 15 via cross–

validation. The position prior Hv weakly favored parts covering 10% of the image range, while the

appearance prior Dir(W/10) was biased towards sparse distributions.

9.1.1 Visualization of Learned Parts

Fig. 16 illustrates learned, part–based models for street and office scenes. Although objects share

a common set of parts within each scene model, we can approximately count the number of parts

used by each object by thresholding the posterior part distributions π!. For street scenes, cars are

allocated roughly four parts, while buildings and roads use large numbers of parts to uniformly tile

regions corresponding to their typical size. Several parts are shared between the tree and building

categories, presumably due to the many training images in which buildings are only partially

occluded by foliage. The office scene model describes computer screens with ten parts, which

primarily align with edge and corner features. Due to their smaller size, keyboards are described

by five parts, and mice by two. The background clutter category then uses several parts, which

move little from scene to scene, to distribute features across the image. Most parts are unshared,

although the screen and keyboard categories reuse a few parts to describe edge–like features.

Fig. 16 also illustrates the contextual relationships learned by both scene models. Intuitively,

street scenes have a vertically layered structure, while in office scenes the keyboard is typically

located beneath the monitor, and the mouse to the keyboard’s right.

32

[Sudderth et al. 2008]
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Hierarchical Modelling
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[Gelman et al. 1995]
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Hierarchical Modelling
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[Gelman et al. 1995]
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Topic Hierarchies

!"#$%&%
'%&()*+)$(,+-.%&&)$/

0)1%&#)$
2
-$3)+)4

%(+#.
5$6%+%$.%

!"#$

%
&'()(

*
+,-./,0

,1
.23

2/3-4-526
734-038

1-,9
.23

:#;<:$
4=>.-45.>

,1
.23

,+-.%%/#$7&
-6
("%

2
)(#-$)89.)/%4

1-6:.#%$.%&1-,9
:<<:?#@@:(A23B,54=C74-6

D
4>-3>.-/5.38

.,
.23!;#@@

.3-9
>.24.

,55C--38
/0
9
,-3

.240
!B3

8,5C9
30.>;6/378/0E

4
5,-+C>

,1#($F
D
,-8>(A23

734-038
2/3-4-526;,1

D
2/52

,076
4
+,-./,0

/>/77C>.-4.38;5,0.4/0>GH
.,+/5>(I

,.3
.24..23

γ
+4-49

3.3-/>!J38
4.4

>9
4773-

B47C3;.,
+-,B/83

4
-34>,04=76

>/K38
.,+/5

2/3-4-526
D
/.2
.23

>/E0/!540.76
74-E3-5,-+C>(

LM*
24>=330

>2,D
0
.,
6/378

E,,8
+-38/5./B3

+3-1,-9
4053

-374./B3
.,
5,9

+3./0E
C0/E-49

740EC4E3
9
,837>;408

/.24>47>,
=330

4-EC38
.24..23

.,+/5N=4>38
40476N

>/>+-,B/838
=6
LM*

-3+-3>30.>4OC47/.4./B3/9
+-,B39

30.,0
5,9

+3./0E
740EC4E3

9
,837>

PQ73/3.47(#@@$=R'
-/1!.2>408S.36B->#@@HT(A2C>LM*

+-,B/83>404.C-47
+,/0.,15,9

+4-/>,0(
A23-34-3>3B3-47/>>C3>.24.9

C>.=3=,-03/0
9
/08

/0
5,9

+4-/0E
2LM*

.,
LM*

(
%/->.;/0

LM*
.23

0C9
=3-

,1
.,+/5>

/>
4
!J38

+4-49
3.3-;408

4
9
,837>3735./,0

U,C-047,1.23
*VF

;W,7(G!;I
,(#;*

-./573
!;XC=7/54./,0

84.3"U40C4-6
#@:@(

[Blei et al. 2010]
64 / 111



Nested Chinese Restaurant Process

1 2 3 4 5 6 7 8 9

[Blei et al. 2010]
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Nested Chinese Restaurant Process
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Nested Chinese Restaurant Process
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Visual Taxonomies
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Figure 5. Unsupervised taxonomy learned on the 13 scenes data set. Top: the entire taxonomy shown as a tree. Each category is color-coded
according to the legend on the right. The proportion of a given color in a node corresponds to the proportion of images of the corresponding
category. Note that this category information was not used when inferring the taxonomy. There are three large groups, marked A, B, and
C. Roughly, group C contains natural scenes, such as forest and mountains. Group A contains cluttered man-made scenes, such as tall
buildings and city scenes. Group B contains man-made scenes that are less cluttered, such as highways. These groups split into finer
sub-groups at the third level. Each of the third-level groups splits into several tens of fourth-level subgroups, typically with 10 or less
images in each. These are omitted from the figure for clarity. Below the tree, the top row shows the information represented in leaf 1 (the
leftmost leaf). Two categories most frequent in that node were selected, and two most probable images from each category are shown. The
most probable topic in the node is also displayed. For that topic, six most probable visual words are shown. The display for each visual
word has two parts. First, in the top left corner the pixel-wise average of all image patches assigned to that visual word is shown. It gives
a rough idea of the overall structure of the visual word. For example, in the topic for leaf 1, the visual words seem to represent vertical
edges. Second, six patches assigned to that visual word were selected at random. These are shown at the bottom of each visual word, on
a 2 × 3 grid. Next, information for node 2 is shown in a similar format. Finally, the bottom row shows the top two topics from node A,
which is shared between leaves 1 and 2. Both leaves have clutter (topic 1) and horizontal bars (topic 2), and these are represented at the
shared node.

In [1], a taxonomy of object parts was learned. In con-
trast, we learn a taxonomy of object categories.

Finally, the original NCRP model was independently ap-
plied to image data in a concurrent publication [16]. The
differences between TAX and NCRP are summarized in
section 2. In addition, [16] uses different sets of visual
words at different levels of the taxonomy. This encourages
the taxonomy to learn different representations at different
levels. The disadvantage is that the sets had to be manually
defined, and without this NCRP performed poorly. In con-

trast, in TAX the same set of visual words is used through-
out the taxonomy, and different representations at different
levels emerge completely automatically.

6. Discussion

We presented TAX, a nonparametric probabilistic model
for learning visual taxonomies. In the context of computer
vision, it is the first fully unsupervised model that can orga-
nize images into a hierarchy of categories.

Our experiments in section 4.1 show that an intuitive hi-

[Bart et al. 2008] 66 / 111



Hierarchical Clustering
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Hierarchical Clustering

I Bayesian approach to hierarchical clustering: place prior over tree
structures, and infer posterior.

I The nested DP can be used as a prior over layered tree structures.

I Another prior is a Dirichlet diffusion tree, which produces binary
ultrametric trees, and which can be obtained as an infinitesimal limit of a
nested DP. It is an example of a fragmentation process.

I Yet another prior is Kingman’s coalescent , which also produces binary
ultrametric trees, but is an example of a coalescent process.

[Neal 2003, Teh et al. 2008, Bertoin 2006]
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Nested Dirichlet Process

I Underlying stochastic process for the nested CRP is a nested DP.

Hierarchical DP:

G0 ∼ DP(α0,H)

Gj |G0 ∼ DP(α,G0)

xji |Gj ∼ Gj

Nested DP:

G0 ∼ DP(α,DP(α0,H))

Gi ∼ G0

xi |Gi ∼ Gi

I The hierarchical DP starts with groups of data items, and analyses them
together by introducing dependencies through G0.

I The nested DP starts with one set of data items, partitions them into
different groups, and analyses each group separately.

I Orthogonal effects, can be used together.

[Rodríguez et al. 2008]
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Nested Beta/Indian Buffet Processes

1 2 3 4 5

I Exchangeable distribution over layered trees.
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Nested Beta/Indian Buffet Processes
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Hierarchical Beta/Indian Buffet Processes

1 2 3 4 5 6 7 8 9

I Different from the hierarchical beta process of
[Thibaux and Jordan 2007].

71 / 111



Hierarchical Beta/Indian Buffet Processes
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Hierarchical Beta/Indian Buffet Processes

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6

1 2 3 4 5 6 7 8

I Different from the hierarchical beta process of
[Thibaux and Jordan 2007].
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Deep Structure Learning
Learning the Structure of Deep Sparse Graphical Models

(a) (b)

(c) (d)
Figure 4: Olivetti faces a) Test images on the left, with
reconstructed bottom halves on the right. b) Sixty features
learned in the bottom layer, where black shows absence of
an edge. Note the learning of sparse features correspond-
ing to specific facial structures such as mouth shapes, noses
and eyebrows. c) Raw predictive fantasies. d) Feature ac-
tivations from individual units in the second hidden layer.

by k′. We calculate η
(m)
−k,k′ , the number of nonzero en-

tries in the k′th column of Z(m+1), excluding any entry

in the kth row. If η
(m)
−k,k′ is zero, we call the unit k′ a

singleton parent, to be dealt with in the second phase.

If η
(m)
−k,k′ is nonzero, we introduce (or keep) the edge

from unit u
(m+1)
k′ to u

(m)
k with Bernoulli probability

p(Z
(m+1)
k,k′ =1 |Ω\Z

(m+1)
k,k′ )=

1

Z

(
η
(m)
−k,k′

K(m)+β(m)−1

)

N∏

n=1

p(u
(m)
n,k | Z(m+1)

k,k′ = 1,Ω\Z
(m)
k,k′)

p(Z
(m+1)
k,k′ =0 |Ω\Z

(m+1)
k,k′ )=

1

Z

(
1−

η
(m)
−k,k′

K(m)+β(m)−1

)

N∏

n=1

p(u
(m)
n,k | Z(m+1)

k,k′ = 0,Ω\Z
(m+1)
k,k′ ),

where Z is the appropriate normalization constant.

In the second phase, we consider deleting connections
to singleton parents of unit k, or adding new sin-
gleton parents. We use Metropolis–Hastings with a
birth/death process. If there are currently K◦ sin-
gleton parents, then with probability 1/2 we propose
adding a new one by drawing it recursively from deeper
layers, as above. We accept the proposal to insert a

connection to this new parent unit with M–H ratio1

α(m)β(m)

(K◦+1)2(β(m)+K(m)−1)

∏N
n=1

p(u
(m)
n,k | Z

(m+1)
k,j =1,Ω\Z

(m+1)
k,j )

p(u
(m)
n,k | Z

(m+1)
k,j =0,Ω\Z

(m+1)
k,j )

.

If we do not propose to insert a unit and K◦ ≥ 0, then
with probability 1/2 we select uniformly from among
the singleton parents of unit k and propose removing
the connection to it. We accept the proposal to remove
the jth one with M–H acceptance ratio given by

K2
◦(β(m)+K(m)−1)

α(m)β(m)

∏N
n=1

p(u
(m)
n,k | Z

(m+1)
k,j =0,Ω\Z

(m+1)
k,j )

p(u
(m)
n,k | Z

(m+1)
k,j =1,Ω\Z

(m+1)
k,j )

.

After these phases, chains of units that are not ances-
tors of the visible units can be discarded. Notably,
this birth/death operator samples from the IBP poste-
rior with a nontruncated equilibrium distribution, even
without conjugacy. Unlike the stick-breaking approach
of Teh et al. (2007), it allows use of the two-parameter
IBP, which is important to this model.

5 Reconstructing Images

We applied our approach to three image data sets—the
Olivetti faces, the MNIST digits and the Frey faces—
and analyzed the structures that arose in the model
posteriors. To assess the model, we constructed a
missing-data problem using held-out images from each
set. We removed the bottom halves of the test images
and used the model to reconstruct the missing data,
conditioned on the top half. Prediction itself was done
by integrating out the parameters and structure via
MCMC and averaging over predictive samples.

Olivetti Faces The Olivetti faces data (Samaria
and Harter, 1994) are 400 64×64 grayscale images
of the faces of 40 distinct subjects, which we divided
randomly into 350 training and 50 test data. Fig 4a
shows six bottom-half test set reconstructions on the
right, compared to the ground truth on the left. Fig 4b
shows a subset of sixty weight patterns from a poste-
rior sample of the structure, with black indicating that
no edge is present from that hidden unit to the visible
unit (pixel). The algorithm is clearly assigning hid-
den units to specific and interpretable features, such
as mouth shapes, facial hair, and skin tone. Fig 4c
shows ten pure fantasies from the model, easily gener-
ated in a directed acyclic belief network. Fig 4d shows
the result of activating individual units in the second
hidden layer, while keeping the rest unactivated, and
propagating the activations down to the visible pix-
els. This provides an idea of the image space spanned
by the principal components of these deeper units. A
typical posterior network structure had three hidden
layers, with approximately seventy units in each layer.

1These equations had an error in the original version.

[Adams et al. 2010]
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Deep Structure Learning

Learning the Structure of Deep Sparse Graphical Models

(a) (b)

(c) (d)
Figure 4: Olivetti faces a) Test images on the left, with
reconstructed bottom halves on the right. b) Sixty features
learned in the bottom layer, where black shows absence of
an edge. Note the learning of sparse features correspond-
ing to specific facial structures such as mouth shapes, noses
and eyebrows. c) Raw predictive fantasies. d) Feature ac-
tivations from individual units in the second hidden layer.

by k′. We calculate η
(m)
−k,k′ , the number of nonzero en-

tries in the k′th column of Z(m+1), excluding any entry

in the kth row. If η
(m)
−k,k′ is zero, we call the unit k′ a

singleton parent, to be dealt with in the second phase.

If η
(m)
−k,k′ is nonzero, we introduce (or keep) the edge

from unit u
(m+1)
k′ to u

(m)
k with Bernoulli probability

p(Z
(m+1)
k,k′ =1 |Ω\Z

(m+1)
k,k′ )=

1

Z

(
η
(m)
−k,k′

K(m)+β(m)−1

)

N∏

n=1

p(u
(m)
n,k | Z(m+1)

k,k′ = 1,Ω\Z
(m)
k,k′)

p(Z
(m+1)
k,k′ =0 |Ω\Z

(m+1)
k,k′ )=

1

Z

(
1−

η
(m)
−k,k′

K(m)+β(m)−1

)

N∏

n=1

p(u
(m)
n,k | Z(m+1)

k,k′ = 0,Ω\Z
(m+1)
k,k′ ),

where Z is the appropriate normalization constant.

In the second phase, we consider deleting connections
to singleton parents of unit k, or adding new sin-
gleton parents. We use Metropolis–Hastings with a
birth/death process. If there are currently K◦ sin-
gleton parents, then with probability 1/2 we propose
adding a new one by drawing it recursively from deeper
layers, as above. We accept the proposal to insert a

connection to this new parent unit with M–H ratio1

α(m)β(m)

(K◦+1)2(β(m)+K(m)−1)

∏N
n=1

p(u
(m)
n,k | Z

(m+1)
k,j =1,Ω\Z

(m+1)
k,j )

p(u
(m)
n,k | Z

(m+1)
k,j =0,Ω\Z

(m+1)
k,j )

.

If we do not propose to insert a unit and K◦ ≥ 0, then
with probability 1/2 we select uniformly from among
the singleton parents of unit k and propose removing
the connection to it. We accept the proposal to remove
the jth one with M–H acceptance ratio given by

K2
◦(β(m)+K(m)−1)

α(m)β(m)

∏N
n=1

p(u
(m)
n,k | Z

(m+1)
k,j =0,Ω\Z

(m+1)
k,j )

p(u
(m)
n,k | Z

(m+1)
k,j =1,Ω\Z

(m+1)
k,j )

.

After these phases, chains of units that are not ances-
tors of the visible units can be discarded. Notably,
this birth/death operator samples from the IBP poste-
rior with a nontruncated equilibrium distribution, even
without conjugacy. Unlike the stick-breaking approach
of Teh et al. (2007), it allows use of the two-parameter
IBP, which is important to this model.

5 Reconstructing Images

We applied our approach to three image data sets—the
Olivetti faces, the MNIST digits and the Frey faces—
and analyzed the structures that arose in the model
posteriors. To assess the model, we constructed a
missing-data problem using held-out images from each
set. We removed the bottom halves of the test images
and used the model to reconstruct the missing data,
conditioned on the top half. Prediction itself was done
by integrating out the parameters and structure via
MCMC and averaging over predictive samples.

Olivetti Faces The Olivetti faces data (Samaria
and Harter, 1994) are 400 64×64 grayscale images
of the faces of 40 distinct subjects, which we divided
randomly into 350 training and 50 test data. Fig 4a
shows six bottom-half test set reconstructions on the
right, compared to the ground truth on the left. Fig 4b
shows a subset of sixty weight patterns from a poste-
rior sample of the structure, with black indicating that
no edge is present from that hidden unit to the visible
unit (pixel). The algorithm is clearly assigning hid-
den units to specific and interpretable features, such
as mouth shapes, facial hair, and skin tone. Fig 4c
shows ten pure fantasies from the model, easily gener-
ated in a directed acyclic belief network. Fig 4d shows
the result of activating individual units in the second
hidden layer, while keeping the rest unactivated, and
propagating the activations down to the visible pix-
els. This provides an idea of the image space spanned
by the principal components of these deeper units. A
typical posterior network structure had three hidden
layers, with approximately seventy units in each layer.

1These equations had an error in the original version.

[Adams et al. 2010]
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Transfer Learning

I Many recent machine learning paradigms can be understood as trying to
model data from heterogeneous sources and types.

I Semi-supervised learning: we have labelled data, and unlabelled
data.

I Multi-task learning: we have multiple tasks with different
distributions but structurally similar.

I Domain adaptation: we have a small amount of pertinent data, and
a large amount of data from a related problem or domain.

I The transfer learning problem is how to transfer information between
different sources and types.

I Flexible nonparametric models can allow for more information extraction
and transfer.

I Hierarchies and nestings are different ways of putting together multiple
stochastic processes to form complex models.

[Jordan 2010]
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Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
∞

πk ∼ Dirichlet(αK , . . . ,
α
K ) zi |zi−1,πzi−1 ∼ Multinomial(πzi−1 )

θ∗k ∼ H xi |zi , θ
∗
zi
∼ F (θ∗zi

)

I Can we take K →∞?

I Can we do so while imposing structure in transition probability matrix?
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Infinite Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
∞

β ∼ GEM(γ) πk |β ∼ DP(α,β) zi |zi−1,πzi−1 ∼ Multinomial(πzi−1 )

θ∗k ∼ H xi |zi , θ
∗
zi
∼ F (θ∗zi

)

I Hidden Markov models with an infinite number of states: infinite HMM.

I Hierarchical DPs used to share information among transition probability
vectors prevents “run-away” states: HDP-HMM.

[Beal et al. 2002, Teh et al. 2006]
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Word Segmentation

I Given sequences of utterances or characters can a probabilistic model
segment sequences into coherent chunks (“words”)?

canyoureadthissentencewithoutspaces?
can you read this sentence without spaces?

I Use an infinite HMM: each chunk/word is a state, with Markov model of
state transitions.

I Nonparametric model is natural, since number of words unknown before
segmentation.

[Goldwater et al. 2006b]

77 / 111



Word Segmentation

Words Lexicon Boundaries
NGS-u 68.9 82.6 52.0
MBDP-1 68.2 82.3 52.4
DP 53.8 74.3 57.2
NGS-b 68.3 82.1 55.7
HDP 76.6 87.7 63.1

I NGS-u: n-gram Segmentation (unigram) [Venkataraman 2001].

I NGS-b: n-gram Segmentation (bigram) [Venkataraman 2001].

I MBDP-1: Model-based Dynamic Programming [Brent 1999].

I DP, HDP: Nonparametric model, without and with Markov dependencies.

[Goldwater et al. 2006a]
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Sticky HDP-HMM

I In typical HMMs or in infinite HMMs the model does not give special
treatment to self-transitions (from a state to itself).

I In many HMM applications self-transitions are much more likely.

I Example application of HMMs: speaker diarization.

I Straightforward extension of HDP-HMM prior encourages higher
self-transition probabilities:

πk |β ∼ DP(α + κ, αβ+κδk
α+κ )

[Beal et al. 2002, Fox et al. 2008]
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FIG 14. (a) Chart comparing the DERs of the sticky and original HDP-HMM with DP emissions to
those of ICSI for each of the 21 meetings. Here, we chose the state sequence at the 10, 000th Gibbs
iteration that minimizes the expected Hamming distance. For meeting 16 using the sticky HDP-HMM
with DP emissions, we chose between state sequences at Gibbs iteration 50,000. (b) DERs associated
with using ground truth speaker labels for the post-processed data. Here, we assign undetected non-
speech a label different than the pre-processed non-speech.

9. Discussion. We have developed a Bayesian nonparametric approach to the
problem of speaker diarization, building on the HDP-HMM presented in Teh et al.
(2006). Although the original HDP-HMM does not yield competitive speaker di-
arization performance due to its inadequate modeling of the temporal persistence
of states, the sticky HDP-HMM that we have presented here resolves this problem
and yields a state-of-the-art solution to the speaker diarization problem.
We have also shown that this sticky HDP-HMM allows a fully Bayesian non-

parametric treatment of multimodal emissions, disambiguated by its bias towards
self-transitions. Accommodating multimodal emissions is essential for the speaker
diarization problem and is likely to be an important ingredient in other applications
of the HDP-HMM to problems in speech technology.
We also presented efficient sampling techniques with mixing rates that improve

on the state-of-the-art by harnessing the Markovian structure of the HDP-HMM.
Specifically, we proposed employing a truncated approximation to the HDP and
block-sampling the state sequence using a variant of the forward-backward algo-
rithm. Although the blocked samplers yield substantially improved mixing rates
over the sequential, direct assignment samplers, there are still some pitfalls to these
sampling methods. One issue is that for each new considered state, the parameter
sampled from the prior distribution must better explain the data than the parameters
associated with other states that have already been informed by the data. In high-
dimensional applications, and in cases where state-specific emission distributions
are not clearly distinguishable, this method for adding new states poses a signif-

[Fox et al. 2008]
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Infinite Factorial HMM

Figure 1: The Hidden Markov Model Figure 2: The Factorial Hidden Markov Model

in a factored form. This way, information from the past is propagated in a distributed manner through
a set of parallel Markov chains. The parallel chains can be viewed as latent features which evolve
over time according to Markov dynamics. Formally, the FHMM defines a probability distribution
over observations y1, y2, · · · yT as follows: M latent chains s(1), s(2), · · · , s(M) evolve according
to Markov dynamics and at each timestep t, the Markov chains generate an output yt using some
likelihood model F parameterized by a joint state-dependent parameter θ

s
(1:m)
t

. The graphical model
in figure 2 shows how the FHMM is a special case of a dynamic Bayesian network. The FHMM has
been successfully applied in vision [3], audio processing [4] and natural language processing [5].
Unfortunately, the dimensionality M of our factorial representation or equivalently, the number of
parallel Markov chains, is a new free parameter for the FHMM which we would prefer learning
from data rather than specifying it beforehand.

Recently, [6] introduced the basic building block for nonparametric Bayesian factor models called
the Indian Buffet Process (IBP). The IBP defines a distribution over infinite binary matrices Z where
element znk denotes whether datapoint n has feature k or not. The IBP can be combined with
distributions over real numbers or integers to make the features useful for practical problems.

In this work, we derive the basic building block for nonparametric Bayesian factor models for time
series which we call the Markov Indian Buffet Process (mIBP). Using this distribution we build a
nonparametric extension of the FHMM which we call the Infinite Factorial Hidden Markov Model
(iFHMM). This construction allows us to learn a factorial representation for time series.

In the next section, we develop the novel and generic nonparametric mIBP distribution. Section 3
describes how to use the mIBP do build the iFHMM. Which in turn can be used to perform inde-
pendent component analysis on time series data. Section 4 shows results of our application of the
iFHMM to a blind source separation problem. Finally, we conclude with a discussion in section 5.

2 The Markov Indian Buffet Process

Similar to the IBP, we define a distribution over binary matrices to model whether a feature at time
t is on or off. In this representation rows correspond to timesteps and the columns to features or
Markov chains. We want the distribution over matrices to satisfy the following two properties: (1)
the potential number of columns (representing latent features) should be able to be arbitrary large;
(2) the rows (representing timesteps) should evolve according to a Markov process.

Below, we will formally derive the mIBP distribution in two steps: first, we describe a distribution
over binary matrices with a finite number of columns. We choose the hyperparameters carefully so
we can easily integrate out the parameters of the model. In a second phase, we take the limit as the
number of features goes to infinity in a manner analogous to [7]’s derivation of infinite mixtures.

2.1 A finite model

Let S represent a binary matrix with T rows (datapoints) and M columns (features). stm represents
the hidden state at time t for Markov chain m. Each Markov chain evolves according to the transition
matrix

W (m) =

�
1 − am am

1 − bm bm

�
, (3)

2

I Take M →∞ for the following model specification:

P(s(m)
t = 1|s(m)

t−1 = 0) = am am ∼ Beta( αM ,1)

P(s(m)
t = 1|s(m)

t−1 = 1) = bm bm ∼ Beta(γ, δ)

I Stochastic process is a Markov Indian buffet process. It is an example of
a dependent random measure.

[Van Gael et al. 2009]
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Nonparametric Grammars, Hierarchical HMMs etc

I In linguistics, grammars are much more plausible as generative models
of sentences.

I Learning the structure of probabilistic grammars is even more difficult,
and Bayesian nonparametrics provides a compelling alternative.

[Liang et al. 2007, Finkel et al. 2007, Johnson et al. 2007, Heller et al. 2009]
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Motion Capture Analysis

I Goal: find coherent “behaviour” in the time series that transfers to other
time series.

Slides courtesy of [Fox et al. 2010]
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Motion Capture Analysis

I Transfer knowledge among related time series in the form of a library of
“behaviours”.

I Allow each time series model to make use of an arbitrary subset of the
behaviours.

I Method: represent behaviors as states in an autoregressive HMM, and
use the beta/Bernoulli process to pick out subsets of states.

Slides courtesy of [Fox et al. 2010]
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BP-AR-HMM

Slides courtesy of [Fox et al. 2010]
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Motion Capture Results

Slides courtesy of [Fox et al. 2010]
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High Order Markov Models
I Decompose the joint distribution of a sequence of variables into

conditional distributions:

P(x1, x2, . . . , xT ) =
T∏

t=1

P(xt |x1, . . . , xt−1)

I An Nth order Markov model approximates the joint distribution as:

P(x1, x2, . . . , xT ) =
T∏

t=1

P(xt |xt−N , . . . , xt−1)

I Such models are particularly prevalent in natural language processing,
compression and biological sequence modelling.

toad, in, a, hole
t, o, a, d, _, i, n, _, a, _, h, o, l, e

A, C, G, T, C, C, A

I Would like to take N →∞.
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High Order Markov Models

I Difficult to fit such models due to data sparsity.

P(xt |xt−N , . . . , xt−1) =
C(xt−N , . . . , xt−1, xt )

C(xt−N , . . . , xt−1)

I Sharing information via hierarchical models.

P(xt |xt−N:t−1 = u) = Gu(xt )

I A context tree.

G∅

Ga

Gin a

Gtoad in a Gstuck in a

Gis a Gabout a

[MacKay and Peto 1994, Teh 2006a]
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Pitman-Yor Processes
I Two-parameter generalization of the Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk−β

n−1+α if occupied table
α+βK
n−1+α if new table

I Associating each cluster k with a unique draw θ∗k ∼ H, the
corresponding Pólya urn scheme is also exchangeable.
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Pitman-Yor Processes

I De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

I This is the Pitman-Yor process.

I The Pitman-Yor process also has a stick-breaking construction:

πk = vk

k−1∏

i=1

(1− vi ) βk ∼ Beta(1− β, α + βk) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k

I The Pitman-Yor process cannot be obtained as the infinite limit of a
simple parametric model.

[Perman et al. 1992, Pitman and Yor 1997, Ishwaran and James 2001]
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Pitman-Yor Processes

I Two salient features of the Pitman-Yor process:

I With more occupied tables, the chance of even more tables
becomes higher.

I Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

I The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(αnβ).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Pitman-Yor Processes
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Hierarchical Pitman-Yor Markov Models

I Use a hierarchical Pitman-Yor prior for high order Markov models.

I Can now take N →∞, making use of coagulation and fragmentation
properties of Pitman-Yor processes for computational tractability.

I Non-Markov model called the sequence memoizer .

[Goldwater et al. 2006a, Teh 2006b, Wood et al. 2009, Gasthaus et al. 2010]
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Language Modelling

I Compare hierarchical Pitman-Yor model against hierarchical Dirichlet
model, and two state-of-the-art language models (interpolated
Kneser-Ney, modified Kneser-Ney).

I Results reported as perplexity scores.

T N IKN MKN HPYLM HDLM
2e6 3 148.8 144.1 144.3 191.2
4e6 3 137.1 132.7 132.7 172.7
6e6 3 130.6 126.7 126.4 162.3
8e6 3 125.9 122.3 121.9 154.7

10e6 3 122.0 118.6 118.2 148.7
12e6 3 119.0 115.8 115.4 144.0
14e6 3 116.7 113.6 113.2 140.5
14e6 2 169.9 169.2 169.3 180.6
14e6 4 106.1 102.4 101.9 136.6

[Teh 2006b]
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Compression

I Predictive models can be used to compress sequence data using
entropic coding techniques.

I Compression results on Calgary corpus:

Model Average bits / byte
gzip 2.61
bzip2 2.11
CTW 1.99
PPM 1.93

Sequence Memoizer 1.89

I See http://deplump.com.

[Gasthaus et al. 2010]
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Comparing Finite and Infinite Order Markov Models

[Wood et al. 2009]
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Image Segmentation with Pitman-Yor Processes

I Human segmentations of images also seem to follow power-law.

I An unsupervised image segmentation model based on a dependent
hierarchical Pitman-Yor processes achieves state-of-the-art results.

[Sudderth and Jordan 2009]
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Stable Beta Process

I Extensions allow for different aspects of the generative process to be
modelled:

I α: controls the expected number of dishes picked by each
customer.

I c: controls the overall number of dishes picked by all customers.
I σ: controls power-law scaling (ratio of popular dishes to unpopular

ones).

I A completely random measure, with Lévy measure:

α
Γ(1 + c)

Γ(1− σ)Γ(c + σ)
µ−σ−1(1− µ)c+σ−1dµH(dθ)

[Ghahramani et al. 2007, Teh and Görür 2009]
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Stable Beta Process

!=1, c=1, "=0.5 !=10, c=1, "=0.5 !=100, c=1, "=0.5
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Stable Beta Process

!=10, c=0.1, "=0.5 !=10, c=1, "=0.5 !=10, c=10, "=0.5
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Stable Beta Process

!=10, c=1, "=0.2 !=10, c=1, "=0.5 !=10, c=1, "=0.8
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Modelling Word Occurrences in Documents
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Summary

I Motivated Bayesian nonparametric modelling framework from a variety
of applications.

I Sketched some of the more important theoretical concepts in building
and working with such models.

I Missing from this tutorial: inference and computational issues, and
asymptotic consistency and convergence.

[Hjort et al. 2010]
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