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Schedule
• 0930-1100 Lecture: Introduction to Markov chains
• 1100-1200 Practical
• 1200-1300 Lecture: Further Properties of Markov chains
• 1300-1400 Lunch
• 1400-1515 Practical
• 1515-1630 Practical *change*
• 1630-1730 Lecture: Continuous-time Markov chains

• 0930-1100 Lecture: Introduction to Markov chain Monte Carlo methods
• 1100-1230 Practical
• 1230-1330 Lunch
• 1330-1500 Lecture: Further Markov chain Monte Carlo methods
• 1500-1700 Practical
• 1700-1730 Wrap-up

Practical

Practicals

• Some mathematical derivations.

• Some programming in:

• R

• MATLAB

• Probably not possible to do all practicals; pick and choose.

• Package available at

http://www.stats.ox.ac.uk/~teh/teaching/dtc2014

Andrey Andreyevich Markov
1856-1922

Markov Chains



Sequential Processes

• Sequence of random variables X0, X1, X2, X3,...

• Not iid (independently and identically distributed).  

• Examples:

• Xi = Rain or shine on day i.

• Xi = Nucleotide base at position i.

• Xi = State of system at time i.

• Joint probability can be factorized using Bayes’ Theorem:

P(X0 = x0, X1 = x1, X2 = x2 . . .)

=P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X0 = x0, X1 = x1) · · ·

Markov Assumption
• Markov Assumption: each Xi only depends on the previous Xi-1.

• Future is independent of the past, given the present.

• Process “has no memory”.

• Higher order Markov chains:

P(X0 = x0, X1 = x1, X2 = x2 . . .)

=P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X0 = x0, X1 = x1) · · ·
=P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X1 = x1) · · ·

X0 X1 X2 X3

P(Xt = xt|X0 = x0, . . . , Xt−1 = xt−1)

=P(Xt = xt|Xt−k = xt−k, . . . , Xt−1 = xt−1)

Random Pub Crawl

Jukes-Cantor DNA Evolution

• Mutation process operates independently at each position.

• Small total probability 3ε of a mutation happening at each generation.

GCTCATGCCG
|

GCTAATGCCG
|

GCTATTGGCG

→ A → G → C → T
A 1− 3� � � �
G � 1− 3� � �
C � � 1− 3� �
T � � � 1− 3�



Random Walk on Z

• Start at 0.

• Move up or down with probability 1/2.
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Parameterization

• Initial distribution:

• Transition probability matrix:

• Homogeneous Markov chains (transition probabilities do not depend 
on the time step)

• Inhomogeneous Markov chains - transitions do depend on time step.

P(Xt = j|Xt−1 = i) = Tij

X0 X1 X2 X3

P(X0 = i) = λi

State Transition Diagrams
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Practical

Simulating Random Pub Crawl (*)

• Write a programme to simulate from the random pub crawl. (From the 
“home” state allow probability 1/2 of going back to the Royal Oak).

• Starting from the Home state, run your programme 1000 times, each 
time simulating a Markov chain of length 100.  

• Each simulation should be a random sequence of values (s1,s2,s3...,s100) 
where each si is a pub.

• Collect statistics of the number of times each state is visited at each time 
step t = 1...100.

• How do the statistics defer if you started at Magdelen Arms?

• Does the distribution over states visited at step t converge for large t?

• Approximately how long does it take for the chain to “forget” whether it 
started at Home or at Magdelen Arms?



Useful Properties of 
Markov Chains

Chapman-Kolmogorov Equations

• We can calculate multi-step transition probabilities recursively:

• Similarly:

P(Xt+2 = j|Xt = i) =
�

k

P(Xt+2 = j|Xt+1 = k)P(Xt+1 = k|Xt = i)

=
�

k

TikTkj

=(T 2)ij

P (m)
ij :=P(Xt+m = j|Xt = i)

=
�

k

P(Xt+m = j|Xt+1 = k)P(Xt+1 = k|Xt = i)

=
�

k

P (m−1)
ik Tkj

=(Tm)ij

Marginal Distributions

• Similarly we can calculate the marginal probabilities of each Xi 
recursively:

• where we take λ to be a row vector.

P (t)
i :=P(Xt = i)

=
�

k

P(Xt−1 = k)P(Xt = i|Xt−1 = k)

=
�

k

P (t−1)
k Tki

=(λT t)i

Communicating Classes

Open

Closed

Absorbing
state

• Irreducible: One  
communicating class.



• Period of i:

• If a chain is irreducible, then all states have the same period.

• If the period is 1, then we say the chain is aperiodic.

Periodicity 3
3

3

2
2

1

gcd{n : P(returning to i from i in n steps) > 0}

Recurrence and Transience

• If we start at state i, what is the chance that we will return to i?

• Two possibilities:

• Total number of times we will encounter i in all future will be finite.

• State i is transient.

• We will return to i infinitely often. 

• State i is recurrent.

• A state i is recurrent if and only if 

P(∃t > 0 : Xt = i|X0 = i) = p < 1

P(∃t > 0 : Xt = i|X0 = i) = 1

�

t

P (t)
ii = ∞

Random Walk on Z

• Start at 0.

• Move up or down with probability 1/2.

• X2t is the sum of 2t iid {+1,-1} variables.

• It equals 0 if there are exactly t +1’s, and t -1’s.

• This probability is:

• Using Stirling’s Formula:

• This sums to infinity over t, so chain is recurrent.
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P (2t)
00 =

(2t)!

t!t!

�
1

2

�2t

≈ 1
√
π
√
t

n! ≈
√
2πnn+1/2e−n

Positive Recurrence and Null Recurrence

• Recurrence:

• Chain will revisit a state infinitely often.

• From state i we will return to i after a (random) finite number of steps.

• But the expected number of steps can be infinite!

• This is called null recurrence.

• If expected number of steps is finite, this is called positive recurrent.

• Example: random walk on Z.



Practical

Communicating Classes

• Find the communicating classes and determine whether each class is 
open or closed, and the periodicity of the closed classes.





0 0 0 0 1
0 1/2 0 1/2 0
0 0 1 0 0
0 1/4 1/4 1/4 1/4
1 0 0 0 0









1/2 0 1/2 0 0
0 1/4 0 3/4 0
0 0 1/3 0 2/3
1/4 1/2 0 1/4 0
1/3 0 1/3 0 1/3





Convergence of
Markov Chains

Do Markov Chains Forget?

• A Markov chain on {0,1,2,...,100}.

• At each step: move up or down by 1 at random, except at boundaries.

• Start at 0 and at 100.
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Do Markov Chains Forget?



Stationary Distribution

• If a Markov chain “forgets” then for any two initial distributions/
probability vectors λ and γ,

• In particular, there is a distribution/probability vector ! such that

• Taking λ = !, we see that 

• Such a distribution is called a stationary or equilibrium distribution.

• When do Markov chains have stationary distributions?

• When are stationary distributions unique?

λTn ≈ γTn for large n

λTn → π as n → ∞

πT = π

Convergence Theorems

• A positive recurrent Markov chain T has a stationary distribution.

• If T is irreducible and has a stationary distribution, then it is unique and 

• where mi is the mean return time of state i. 

• If T is irreducible, aperiodic and has stationary distribution ! then

• (Ergodic Theorem): If T is irreducible with stationary distribution ! then 

P(Xn = i) → πi as n → ∞

#{t ≤ n : Xt = i}
n

→ πi as n → ∞

πi =
1

mi

Stationarity and Reversibility

• Global balance: at a stationary distribution, the flow of probability mass 
into and out of each state has to be balanced:

• Detailed balance: the flow of probability mass between each pair of 
states is balanced:

• A Markov chain satisfying detailed balance                                            
is called reversible.  Reversing the dynamics                                           
leads to the same chain.

• Detailed balance can be used to check that                                            
a distribution is the stationary distribution of                                           
a irreducible, periodic, reversible Markov chain.

K�

i=1

πiTij = πj =
K�

k=1

πjTjk

πiTij = πjTji

Eigenvalue Decomposition
• The stationary distribution is a left eigenvector of T, with eigenvalue 1.

• All eigenvalues of T have length " 1. (Some eigenvalues can be complex 
valued).

• Let the eigenvalues be a1=1, a2...,aK, with corresponding left 
eigenvectors v1=!, v2,...,vK.  Then:

• (Bit of algebra shows that b1=1.)

• If there is another eigenvector with eigenvalue 1, then stationary 
distribution is not unique.

πT = π

λ = b1π +
K�

k=2

bkvk

λTn = b1π +
K�

k=2

bka
n
kvk → b1π as n → ∞, if all |ak| < 1 for k ≥ 2



Practical

Random Walk
• Show that a random walk on a connected graph is reversible, and has 

stationary distribution ! with !i proportional to deg(i), the number of 
edges connected to i.

• What is the probability the drinker is at home at Monday 9am if he 
started the pub crawl on Friday?

Practical

Stationary Distributions

• Solve for the (possibly not unique) stationary distribution(s) of the 
following Markov chains.





0 0 0 0 1
0 1/2 0 1/2 0
0 0 1 0 0
0 1/4 1/4 1/4 1/4
1 0 0 0 0









1/2 0 1/2 0 0
0 1/4 0 3/4 0
0 0 1/3 0 2/3
1/4 1/2 0 1/4 0
1/3 0 1/3 0 1/3





Additional Points

• Transition probability matrix T has to have:

• non-negative entries

• rows that sum to 1

• Any such matrix is a transition probability matrix.

• Periodicity demonstration.

Estimating
Markov Chains



Maximum Likelihood Estimation

• Observe a sequence x0, x1, x2, x3,... xt.

• Likelihood of the sequence under the Markov chain model is:

• where Nij is the number of observed transitions i -> j.

• We can solve for the maximum likelihood estimator:

L(λ, T ) = λx0

t�

s=1

Txs−1xs = λx0

K�

i=1

K�

j=1

T
Nij

ij

Tij =
Nij�K
k=1 Nik

Practical

Markov Model of English Text (*)

• Download a large piece of English text, say “War and Peace” from 
Project Gutenberg.

• We will model the text as a sequence of characters.

• Write a programme to compute the ML estimate for the transition 
probability matrix.  

• You can use the file markov_text.R or markov_text.m to help convert 
from text to the sequence of states needed.  There are K = 96 states and 
the two functions are text2states and states2text.

• Generate a string of length 200 using your ML estimate.  

• Does it look sensible?

Practical

Further Estimation Procedures

• Bayesian inference for the transition matrix:

• Show that you can construct a conjugate prior for T using Dirichlet 
distributions.

• What is the corresponding posterior given observe sequence?

• What is the marginal probability of the data?

• What is the posterior mean of T and how does it relate to the ML 
estimator?

• Derive the maximum likelihood estimator for a Markov chain of order h.

Continuous-Time 
Markov Chains



• Probability of mutation is O(ε) per generation.

• mutations will appear at rate of once every O(1/ε) generations.

• Measuring time in units of 1/ε leads to a continuous-time Markov chain.

• In each time step of length ε, total probability of a mutation is 3ε.

Jukes-Cantor DNA Evolution
→ A → G → C → T

A 1− 3� � � �
G � 1− 3� � �
C � � 1− 3� �
T � � � 1− 3�

A

G

C

T

time

P =





1− 3� � � �
� 1− 3� � �
� � 1− 3� �
� � � 1− 3�



 = I + �





−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3





Continuous-time Markov Chains

• A collection of random variables (Xt)t!0 .

• An initial distribution λ and a transition rate matrix R.

• Suppose Xt = i.  Then in the next ε time,

• Rows of R sum to 0.

• Off-diagonal entries are non-negative.

• On-diagonal entries are negative of sum of off-diagonal ones.

P(Xt+� = j|Xt = i) = Iij + �Rij





−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3





Lotka-Volterra Process (Predator-Prey)

• A continuous-time Markov chain over N2, number of predators and 
preys in an ecosystem.

R({x, y} → {x+ 1, y}) = αx R({x, y} → {x− 1, y}) = βxy

R({x, y} → {x, y + 1}) = δxy R({x, y} → {x, y − 1}) = γy

Gillespie’s Algorithm

• Start by sampling X0 from initial distribution λ.

• When in state i, wait in state for an amount of time distributed as

• At end of waiting time, transition to a different state j # i with probability 

A

G

C

T

time

(Ri1, . . . , Rij−1, 0, Rij+1, . . . , RiK)

|Rii|

Exp(|Rii|)



Chapman-Kolmogorov Equations

• Denote P(t) as the transition probability matrix over time interval t.

• Transition probabilities can be computed using matrix exponentiation:

• Composition of transition probability matrices:

• Forward/backward equations:

P (t+ s) = exp((t+ s)R) = exp(tR) exp(sR) = P (t)P (s)

P (t+ �) = P (t)(I + �R)

∂P (t)

∂t
≈ P (t+ �)− P (t)

�
→ P (t)R = RP (t)

P (t)ij :=P(Xt = j|X0 = i)

=P(Xtn 1
n
= j|X0 = i)

≈((I + 1
nR)tn)ij → exp(tR)ij

Convergence to Stationary Distribution

• Suppose we have an 

• irreducible, 

• aperiodic and 

• positive recurrent 

• continuous-time Markov chain with rate matrix R.

• Then it has a unique stationary distribution ! which it converges to:

P(Xt = i) → πi as t → ∞
1

T

� T

0
1(Xt = i) → πi as t → ∞

Reversibility and Detailed Balance

• If a Markov chain with rate matrix R has reached its stationary 
distribution !, then flow of probability mass into and out of states is 
balanced.

• Global balance:

• Detailed balance for reversible chains:

πiRij = πjRji

K�

i=1

πiRij = 0 =
K�

k=1

πjRjk

�

i �=j

πiRij = πj |Rjj | =
�

k �=j

πjRjk

Kimura 80 Model

• Rate matrix:

• Distinguish between transitions A↔G (purine) and C↔T (pyrimidine) 

and transversions.

→ A → G → C → T
A −κ− 2 κ 1 1
G κ −κ− 2 1 1
C 1 1 −κ− 2 κ
T 1 1 κ −κ− 2

• Practical: show that the stationary distribution of K80 model is uniform 
over {A,G,C,T}.



• Rate matrix:

• Incoming rates to each state are all the same.

Felsenstein 81 Model

→ A → G → C → T
A −πG − πC − πT πG πC πT

G πA −πA − πC − πT πC πT

C πA πG −πA − πG − πT πT

T πA πG πC −πA − πGπC

• Practical: Find the stationary distribution of the F81 model.

Practical

Predator-Prey Model (*)

• Use Gillespie’s algorithm to simulate from the predator-prey model:

• You can represent the continuous-time trajectory using a sequence of 
pairs (t0,s0), (t1,s1),... (tA,sA), where 

• t0 = 0, s0 is the initial state at time 0,

• each subsequent pair (ta,sa) is the next state and the time the chain 
jumps to the state.

• How is the dynamics of the model affected by the parameters α, β, γ, δ?

R({x, y} → {x+ 1, y}) = αx R({x, y} → {x− 1, y}) = βxy

R({x, y} → {x, y + 1}) = δxy R({x, y} → {x, y − 1}) = γy

Monte Carlo Methods

Monte Carlo

Bayesian Inference
• A model described as a joint distribution over a collection of variables:

• X - collection of variables, with observed value x.

• Y - collection of variables which we would like to learn about.

• Assume it has density p(x,y).

• Two quantities of interest

• The posterior distribution of Y given X = x:

• The marginal probability of observation x:

p(y|x) = p(x, y)

p(x)

�
f(y)p(y|x)dy

p(x) =

�
p(x, y)dy



Decision Theory
• Given observation x, we would like to make a decision:

• Decide on an optimal action to take

• Decide on a prediction to make

• Loss function L(a,(x,y)).  The decision minimizing expected loss is:

• Example:

• Y = whether a patient has disease.

• X = status of medical test.

• a = whether doctor diagnoses disease.

argmin
a

�
L(a, (x, y))p(y|x)dy

L(a, (x, y)) =






0 if a = y,

1 if a = T , y = F ,

100 if a = F , y = T .

The Monte Carlo Method

• Interested in evaluating the expectation of a test function:

• Analytic integration: limited applicability and limited model realism.

• Numerical integration: intractable.

• Strong law of large numbers:

• Draw iid samples yn ~ p(y|x).

• Unbiased.  Variance O(1/N).

• Central limit theorem can characterize deviations away from θ.

θ = Ep(y|x)[f(y)] =

�
f(y)p(y|x)dy

θ ≈ 1

N

N�

n=1

f(yn)

Importance Sampling
• Often not trivial or impossible to sample from p(y|x).

• Use a tractable proposal distribution q(y) instead.

• Draw iid samples yn ~ q(y).

• A weighted average with weights

�
f(y)p(y|x)dy =

�
f(y)

p(y|x)
q(y)

q(y)dy ≈ 1

N

N�

n=1

f(yn)
p(yn|x)
q(yn)

−3 −2 −1 0 1 2 3
0

p(y|x)

q(y)

w(yn) =
p(yn|x)
q(yn)

Importance Sampling

• Unbiased.

• Variance can be smaller or larger.

• Important for q(y) to be large whenever p(y|x) is large.

• Effective sample size can be estimated using

�
f(y)p(y|x)dy =

�
f(y)

p(y|x)
q(y)

q(y)dy ≈ 1

N

N�

n=1

f(yn)
p(yn|x)
q(yn)

1

N
V[f(y)w(y)] = 1

N

�
E[f(y)2w(y)2]− E[f(y)w(y)]2

�

1 ≤

��N
n=1 w(yn)

�2

�N
n=1 w(yn)

2
≤ N



Importance Sampling

• Often we can only evaluate p(y|x) up to normalization constant:

• where             can be computed but not Z(x).  

• In these situations we can estimate Z(x) and θ as follows:

p(y|x) = p̃(y, x)

Z(x)

p̃(y, x)

Z(x) =

�
p̃(y, x)dy =

�
p̃(y, x)

q
(y)q(y)dy ≈ 1

N

N�

n=1

w(yn), w(y) =
p̃(y, x)

q(y)

θ =

�
f(y)p̃(y, x)dy�
p̃(y, x)dy

≈
�N

n=1 f(yn)w(yn)�N
n=1 w(yn)

Rejection Sampling

• Find a proposal distribution q(y) and a constant c>0 which upper 
bounds p(y|x):

• Repeat { sample y* ~ q(y), sample u ~ Uniform[0, cq(y*)] } until u<p(y*).

• Return y* as an exact sample from p(y|x).

• Unbiased.

• Expected number of samples is 1/c.

p(y|x) ≤ cq(y) for all y

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

p(y|x)

cq(y)

Markov Chain Monte Carlo

Nicolas Metropolis
1915-1999

The Monte Carlo Method

• Strong law of large numbers:

• Draw iid samples yn ~ p(y|x).

• Ergodic theorem:

• Construct irreducible, aperiodic, positive recurrent Markov chain 
with stationary distribution p(y|x).

• Simulate y1, y2, y3,... from markov chain.  Then:

• Never as good as iid samples, but much wider applicability.

θ ≈ 1

N

N�

n=1

f(yn)

1

N

N�

n=1

f(yn) → θ as N → ∞



Success Stories

• Building the first nuclear bomb.

• Estimating orbits of exoplanets.

• Automated image analysis and edge detection.

• Computer game playing.

• Running web searches.

• Calculation of 3D protein folding structure.

• Determine population structure from genetic data.

• etc etc etc

• Metropolis and Ulam 1949. The Monte Carlo method. Journal of the American 
Statistical Association 44:335-341.

• Gelfand and Smith 1990. Sampling-based approaches to calculating marginal 
densities. Journal of the American Statistical Association 85:398-409.

x
y

y'

y'

• We wish to sample from some distribution with density

• Suppose the current state is yn.

• Propose next state y’ from a symmetric proposal distribution q(y’|yn).

• Accept y’ as new state, yn+1 = y’, with probability

• Otherwise stay at current state, yn+1 = yn.

• Demonstration.

Metropolis Algorithm

q(y�|y) = q(y|y�) for each pair of states y, y�.

π(y) =
π̃(y)

Z

min

�
1,

π̃(y�)

π̃(yn)

�

Metropolis Algorithm

• Use detailed balance condition to verify that stationary distribution of 
constructed Markov chain is !(y).

• Suppose y and y’ are two distinct states.

• By symmetry we can assume !(y) < !(y’).

• Starting from y, probability of going to y’ is:

• Starting from y’, probability of going to y is:

π(y)q(y�|y)min

�
1,

π̃(y�)

π̃(y)

�
= π(y)q(y�|y)

π(y�)q(y|y�)min

�
1,

π̃(y)

π̃(y�)

�
= π(y)q(y�|y)

Metropolis-Hastings Algorithm

• Hastings generalized Metropolis’ algorithm to use asymmetric proposals.

• Suppose the current state is yn.

• Propose next state y’ from a proposal distribution q(y’|yn).

• Accept y’ as new state, yn+1 = y’, with probability

• Otherwise stay at current state, yn+1 = yn.

min

�
1,

π̃(y�)q(yn|y�)
π̃(yn)q(y�|yn)

�

• Practical: Check that detailed balance still holds.



Gibbs Sampling

• State space of Markov chain can often be multi-dimensional,                  
Y = (Y(1),Y(2),...,Y(m)).

• Rather than updating all m variables at once, we can update one 
variable at a time.

• Pick a variable j uniformly from {1,...,m}.

• Compute the conditional distribution p(Y(j) | Y(-j) = y(-j)).

• Sample y(j) ~ p(Y(j) | Y(-j) = y(-j)).

• Leave the states of all other variables unchanged.

• We can update subsets of variables as well.

• Demonstration.

Gibbs Sampling as Metropolis Algorithm

• Gibbs sampling can be understood as a particularly simple case of 
Metropolis algorithm.

• The proposal distribution is given by:

• Suppose y and y’ differ only in dimension j.  Then the acceptance 
probability is:

q(y�|y) =
m�

j=1

1

m
π((y�)(j)|Y (−j) = y(−j))δ((y�)(−j) = y(−j))

min

�
1,

π(y�)q(y|y�)
π(y)q(y�|y)

�

=min

�
1,

π(y(−j))π((y�)(j)|y(−j)) 1
mπ(y(j)|y(−j))

π(y(−j))π(y(j)|y(−j)) 1
mπ((y�)(j)|y(−j))

�
= 1

Practical

Sampling from Exponential with Metropolis

• In this exercise you will implement a Metropolis sampler.

• Use as target an Exponential distribution with λ=1.

• Use as proposal a Normal distribution centred at current state y, and 
standard deviation sd

• Use ex1_mh_exp.m as your MATLAB template, or ex1_mh_exp.R as 
your R template.

π(y) =

�
λ exp(−λy) if y ≥ 0

0 if y < 0

q(y�|y) = 1

sd
√
2π

exp

�
− (y� − y)2

2sd

�

Practical

Sampling from Exponential with Metropolis

• Use your function to create three instances of your Markov chain, with 
1000 iterations each, start position 1, and standard deviation 1.

• Plot the movement of the three chains, and a histogram of the values 
they take. Do the results look similar?

• Use your MCMC samples to estimate the mean of the exponential 
distribution.  What is the estimated mean and standard error?  Does it 
agree with the true mean 1?  Does it improve if you increase the number 
of iterations?

• What is the effect of changing the standard deviation?



Practical

Bimodal Distribution

• Modify your target distribution from the previous practical, from 
exponential to a bimodal distribution which is 0.5 on [1,2] and on [3,4] 
but zero elsewhere. The rest of your implementation should work 
without change.

• Create a Markov chain with 1000 steps, with starting position 3, and 
standard deviation 1. Plot the chain and a histogram of values taken.

• Do you get the same result if you repeat the procedure?

• What happens if you change the start value to 1? 

• What happens if you start at 1, and have sd=0.1?

• What happens if you start at 3 and have sd=0.1?

Practical

Mixture of Gaussians

• Using the same code as before, modifying your target distribution to be 
a mixture of two Gaussians (and maybe the plotting functions):

• What proposal sd would you use for good MCMC mixing?  Demonstrate 
using MCMC runs with different sd’s, that no single sd gives good 
mixing.

• Try “fixing” your MCMC run,                                                                                                    
so that it alternates between                                                                    
two types of updates: 

• ones with sd=10, and 

• ones with sd=.1.

π(x) =
.5√
2π100

e−
1

200 (x−10)2 +
.5√
2π.01

e−
1

.02 (x)
2
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• Proposal with sd=.001 (red), acceptance rate >99%

• Proposal with sd=1 (black), acceptance rate 52%

Watching Your Chain

Bimodal Distribution

• Uniform prior on [0,1].

• Proposal distribution is 
normally distributed 
around current position, 
with sd=1.
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Bimodal Distribution

• Uniform prior on [0,1].

• Proposal distribution is 
normally distributed 
around current position, 
with sd=.1.

Convergence

• If well constructed, the Markov chain is guaranteed to have the posterior 
as its stationary distribution.

• But this does not tell you how long you have to run it to convergence.

• The initial position may have a big influence.

• The proposal distribution may lead to low acceptance rates.

• The chain may get caught in a local maximum in the likelihood 
surface.

• We say the Markov chain mixes well if it can 

• reach the posterior quickly, and 

• moves quickly around the posterior modes.

Diagnosing Convergence

• Graphical checks, “eye-balling” the behaviour of the Markov chain.

• Compare estimators obtained from multiple runs from different initial 
conditions.

• The efficiency of the chain can be measured in terms of the variance of 
estimates obtained by running the chain for a short time

• There are no guarantees.

Burn-in

• Often start the chain far away from the target distribution.

• Target distribution unknown.

• Visual check for convergence.

• The first “few” samples from the chain are a poor representation of the 
stationary distribution.

• These are usually thrown away as “burn-in”.

• There is no theory telling you how much to throw away, but better to err 
on the side of more than less.
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Tricks of the Trade

Using Multiple MCMC Updates

• Provided each MCMC update satisfies detailed balance, we can 
combine different MCMC updates.

• For example we could have one update that proposes huge jumps across 
our landscape, and another that does detailed local exploration.

• Useful if we expect our landscape to have many narrow maxima.

• Choice of updates can be stochastic, but cannot depend on state of 
variables that are potentially updated (important!).



• Geweke (2004) Getting It Right. JASA 99:799-804.

• You have written code that ostensibly gets you samples of posterior 
distribution p(y|x).  

• How do you verify correctness of code?

• Idea: use your code to try generating from prior, and test to see if it does 
generate from prior.

• Write two additional pieces of easy code:

1. Sample from prior p(y).

2. Sample from data p(x|y).

Getting it Right

• Construct a Gibbs sampler for (X,Y) together:

• yn+1 ~ T(y|yn,x)

• xn+1 ~ p(x|yn+1)

• Compare against:

• yn+1 ~ p(y)

• xn+1 ~ p(x|yn+1)

• You can eyeball histograms, or use Kolmogorov-Smirnov test.

• If estimates obtained from samples differ, something is wrong.

Getting it Right

• Almost always better to compute log probabilities.

• “log-sum-exp” trick:  

• Have log probabilities L(i)=log p(i).

• Want to compute s = log Σi p(i) = log Σi  exp(L(i)).

• Numerically unstable:

• s = log(sum(exp(L)))

• Better:

• m = max(L)

• s = m + log(sum(exp(L-m)))

Numerically stable computations

• Sequence of states sampled by MCMC is dependent.

• Estimate number of samples before independence.

• Assuming E[f(y)] = 0,

• where Cn=E[f(yt)f(yt+n)] is the lag n autocorrelation.

• As N → $, the term in parentheses is:

1 + 2
∞�

n=1

Cn

C0

Integrated Autocorrelation Time
and Effective Sample Size

V
�
1

N

N�

n=1

f(yn)

�
= E




�

1

N

N�

n=1

f(yn)

�2




=
V[f(y)]

N

�
1 + 2

N−1�

n=1

�
1− n

N

� Cn

C0

�



Posterior Predictive Distribution

• Given our posterior distribution on parameters, we can predict the 
distribution of future data by sampling parameters from the posterior, 
and simulating data given those parameters.

• We can also verify whether the predictive distribution is consistent with 
a subset of the data which was held out from inference (a “test” set).

• The Posterior predictive distribution is a useful source of goodness-of-fit 
testing: if the data we simulate does not look like the data we originally 
collected, the model is poor.

Practical

Beta-Binomial Model and Allele Frequency (*)

• A standard model used to study the evolution of populations is the 
Hardy-Wright model, where we assume there is random mating within 
the population, no selection, and a fixed population size. Each 
generation, a new set of individuals is born. Suppose we are interested 
in a gene which has two versions (alleles), A and a where p is the 
population frequency of allele A . A consequence of this model is that 
the genotypes AA, Aa and aa will have frequencies r2, 2r(1 % r), and (1 % 
r)2. 

• Suppose we sample n  individuals, and find NAA , NAa and Naa  
individuals with genotypes AA, Aa and aa respectively.

Practical

Beta-Binomial Model and Allele Frequency (*)

• Use a uniform prior U[0,1] for r, and a likelihood which is 

• Write a Metropolis-Hastings MCMC routine to sample from the posterior 
distribution of r. 

• Your MCMC function should take a number of iterations, start value and 
standard deviation as input arguments.

• Try out your new function with nAA=50, nAa=21, and naa=29. Use 1000 
iterations, a starting value for p of 0.5, and a standard deviation of 0.1.

r2nAA(2r(1− r))nAa(1− r)2naa

Practical

Allele Frequency and Inbreeding (*)

• Suppose we have sampled from two populations, one of which is 
slightly inbred (e.g. due to geographical isolation). This will result in an 
excess of homozygotes compared with what we expect under Hardy-
Weinberg equilibrium.

• One way to capture this is with an inbreeding coefficient f, and assume 
the genotypes AA, Aa and aa have frequencies fr+(1"f)r2, (1"f)2r(1"r), 
and f(1"r)+(1"f)(1"r)2  respectively.



Practical

Allele Frequency and Inbreeding (*)

• Modify your likelihood function from previous practical to use the 
above genotype frequencies.

• Assume independent uniform priors on f and r on [0,1].

• Write an MCMC routine to sample from the joint distribution of f and r. 
Your target is again the product of the prior and likelihood, and your 
proposal distribution is as before (normal with mean at the current 
position and standard deviation an input to the routine).

• To avoid numerical problems, modify your likelihood function to be a 
log likelihood function. Therefore your acceptance condition must 
change to match this. To be explicit: first check if log(α) > 0. If yes, 
accept the move. If no, take a U[0,1] sample and if this is less than α 
then accept, otherwise reject.

Practical

Allele Frequency and Inbreeding (*)

• Now try your function out, for nAA=50, nAa=21, and naa=29. 

• Use 1000 iterations, standard deviation of 1 (for both f and p), and 
starting values of f=0.4, and p=0.2. Is the Markov chain mixing well?

• Now drop the standard deviations to 0.1. Is it mixing well now?
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Practical

Decrypting Messages using MCMC (**) 

• You have an English text that has been encrypted by mapping each 
character to a (usually) different one.  For example:

• A text like ‘a boy...’ might be encrypted as ‘s3!do...’.

• Assume that each symbol is mapped to a unique symbol.  There are 96 
symbols given by the text2states and states2text functions.

• Decoding the message by brute force is impossible, so we use MCMC!

• The state of the system consists of a permutation σ of the characters.  For 
example, σ(a) = s, σ(b) = !, σ(c) = <space> etc.

a → s

b → !

c → �space�

Practical

Decrypting Messages using MCMC (**) 

• We model English text using the Markov model from yesterday, where 
the transition probability matrix has been estimated from another text.

• Derive the likelihood of the encrypted text e1e2...em given the 
permutation σ.  We use a uniform prior over permutations.

• Derive a Metropolis-Hastings algorithm where a proposal consists of 
picking two characters and swapping the characters that map to them.

• Implement your algorithm, and run it on the encrypted text in 
message.txt.  

• Report the current decryption of the first 60 symbols every 1000 steps.

• Hint: it helps to pick initial state intelligently and to try multiple times.



Slice Sampling

yn

s

yn+1

x

Hamiltonian Monte Carlo
• Typical MCMC updates can only make small changes to the state 

(otherwise most updates will be rejected). -> random walk behaviour.

• Hamiltonian Monte Carlo: use derivative information in log !(y) to avoid 
random walk and help explore target distribution efficiently.

• Augment state space with an additional momentum variable v:

• Hamiltonian dynamics: ball rolling on a frictionless surface.

• Total energy is conserved, so

dyi
dt

=
∂K(v)

∂v
= v

dv

dt
= −∂E(y)

∂y

π(y, v) ∝ exp(−E(y)−K(v)) E(y) = − log π̃(y)

K(v) = 1
2�v�

2

π(y(t), v(t)) = π(y(0), v(0)) y(0) = y, v(0) = v

Hamiltonian Monte Carlo
• Videos.

• We can simulate differential equations by discretizing time.

• This introduces errors, which is corrected by treating the whole 
procedure as a Metropolis-Hastings proposal, and accepted/rejected.

• Leapfrog discretization:

• Volumn preserving, reversible, and almost preserving energy.

v(t+ �
2 ) =v(t)− �

2

∂E(y(t))

∂y

y(t+ �) =y(t) + �v(t+ �
2 )

v̂(t+ �) =v(t+ �
2 )−

�

2

∂E(y(t+ �))

∂y

Other MCMC Ideas
• Data augmentation.

• Rao-Blackwellisation. 

• Neal (2003) Slice Sampling. Annals of Statistics 31:705-767.

• Annealing and multicanonical methods (see Iain Murray’s PhD thesis).

• Hamiltonian MCMC (see Neal (2010) Handbook of Markov Chain 
Monte Carlo article).

• Doucet, de Freitas and Gordon (2001) Sequential Monte Carlo in 
Practice.  

• Andrieu, Doucet and Holenstein (2010) Particle Markov Chain Monte 
Carlo Methods. JRSSB 72:269-342.

• Green (1995) Reversible-jump MCMC. Biometrika 82:711-732.



Further Readings

• Markov Chain Monte Carlo in Practice, 1996, eds Gilks, Richardson, 
Spiegelhalter.

• Bayesian Data Analysis, 2004. Gelman, Carlin, Stern and Rubin.

• Monte Carlo Strategies in Scientific Computing, 2001, Liu.

• Monte Carlo Statistical Methods, 2004/1999, Robert and Casella.

• Chris Holmes’ short course on Bayesian Statistics:

• http://www.stats.ox.ac.uk/~cholmes/Courses/BDA/bda_mcmc.pdf


