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As the machine learning community tackles more complex and harder problems, the graph-

ical models needed to solve such problems become larger and more complicated. As a result

performing inference and learning exactly for such graphical models become ever more expen-

sive, and approximate inference and learning techniques become ever more prominent.

There are a variety of techniques for approximate inference and learning in the literature.

This thesis contributes some new ideas in the products of experts (PoEs) class of models (Hin-

ton, 2002), and the Bethe free energy approximations (Yedidia et al., 2001).

For PoEs, our contribution is in developing new PoE models for continuous-valued do-

mains. We developed RBMrate, a model for discretized continuous-valued data. We applied

it to face recognition to demonstrate its abilities. We also developed energy-based models

(EBMs) – flexible probabilistic models where the building blocks consist of energy terms com-

puted using a feed-forward network. We show that standard square noiseless independent

components analysis (ICA) (Bell and Sejnowski, 1995) can be viewed as a restricted form of

EBMs. Extending this relationship with ICA, we describe sparse and over-complete represen-

tations of data where the inference process is trivial since it is simply an EBM.

For Bethe free energy approximations, our contribution is a theory relating belief propaga-

tion and iterative scaling. We show that both belief propagation and iterative scaling updates

can be derived as fixed point equations for constrained minimization of the Bethe free energy.

This allows us to develop a new algorithm to directly minimize the Bethe free energy, and to ap-

ply the Bethe free energy to learning in addition to inference. We also describe improvements

to the efficiency of standard learning algorithms for undirected graphical models (Jiroušek and

Přeučil, 1995).
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Chapter 1

Introduction

Machine learning researchers are faced with the difficult task of creating algorithms that learn

to interpret, understand, and otherwise make good use of data collected from the world, just as

people do. There are three main types of learning tasks, resulting in three different classes of

algorithms.

In supervised learning, models are trained to extract specific information from their inputs

by making use of teaching signals which associate a desired output with each input. The model

is trained to predict the desired outputs from the inputs. Some currently popular supervised

learning methods are multi-layer perceptrons, support vector machines and Gaussian processes.

In reinforcement learning, we have agents which can act upon the world. Rewards are given

to agents depending on how desirable the current state of the world is, and agents learn to act

in such a way as to maximize their long-term rewards. Reinforcement learning can be viewed

as a semi-supervised learning paradigm, since agents are told how well are they doing, but not

actually what to do.

In both supervised and reinforcement learning, a teaching signal is provided to the system.

The teaching signal defines a goal for the system: to agree with the teacher or to maximize

expected reward. In unsupervised learning, no such signal is provided, and models simply

have to “make sense” of the world based on their observations. This generally means to extract

certain invariances or infer some hidden causes which could have given rise to the observations.

1



CHAPTER 1. INTRODUCTION 2

In recent years a principled approach to unsupervised learning has been generally adopted in

which a probabilistic model of the world is constructed such that actual observations get high

probability. This thesis follows this modelling approach to unsupervised learning and uses

graphical models.

In addition to machine learning, graphical models have been studied in a variety of other

fields, including statistics and applied probability, data compression and communication, and

graph theory. To cope with the ever more complex problems that graphical models have been

applied to, many approximate methods for learning and inference in graphical models have

been proposed. In this thesis, we describe the contributions to approximate learning and infer-

ence that we have made.

There are two parts to this thesis: products of experts (PoEs), and Bethe free energy ap-

proximations. For PoEs, our contribution is in developing new models for continuous-valued

domains. This led to applications of PoEs to face recognition, and to an interesting and novel

extension of independent components analysis to the over-complete case. For Bethe free energy

approximations, our contribution is in developing a new theory connecting belief propagation

and iterative scaling. This will allow us to develop algorithms for minimizing the Bethe free

energy and to learn graphical models using Bethe free energy approximations.

1.1 Outline of Thesis

1.1.1 Background

In chapter 2 we describe the many popular techniques for approximate inference and learning.

This will serve as a backdrop in which we can place the contributions of this thesis. We first

describe directed and undirected graphical models and some related theory, e.g. exponential

families and the EM algorithm in section 2.1. Then we described exact inference algorithms,

in particular belief propagation and the junction tree algorithm in section 2.2. In section 2.3 we

describe Markov chain Monte Carlo sampling for inference. Section 2.4 describes the three ma-

jor classes of approximate inference algorithms: variational approximations (section 2.4.1), ad-
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vanced mean field methods (section 2.4.2) and loopy belief propagation (section 2.4.3). Since

all three can be understood as approximating the free energy, there are many interesting links

between them. When dealing with partially observed directed graphical models, an approxi-

mate inference algorithm translates directly into an approximate learning algorithm using the

EM algorithm. Section 2.5 deals instead with undirected graphical models. When these are

fully observed inference is trivial but learning is still hard due to the partition function. We

describe maximum entropy models in section 2.5.1 and products of experts in section 2.5.2.

1.1.2 Rate-coded Restricted Boltzmann Machines for Face Recognition

In chapter 3 we describe a new product of experts model for continuous domains. In particular

we describe an extension of restricted Boltzmann machines so that they can handle discretized

continuous values. In section 3.2 we describe restricted Boltzmann machines in detail and

the extension to discretized continuous values. Then we apply these rated-coded restricted

Boltzmann machines to face modelling in section 3.4 and to face recognition in section 3.5. We

show that rate-coded restricted Boltzmann machines are comparable to other popular models

for face recognition. However, unlike these other models, there is plenty of room for further

development to improve recognition accuracy.

1.1.3 Energy-based Models for Sparse Overcomplete Representations

Rate-coded restricted Boltzmann machines are a good step towards modelling continuous val-

ues with products of experts, but they are limited since they can only model discretized values.

In chapter 4 we describe a new class of products of experts called energy-based models which

will naturally handle continuous values. Energy-based models have an interesting relation-

ship with independent component analysis and we will take independent component analysis

as a starting point in chapter 4. In section 4.1 we give an overview of this relationship in-

cluding the three views of independent component analysis. We show how all three views

reduce to the same model in the square noiseless case in section 4.2, and how they differ in
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the over-complete case in sections 4.3 and 4.4. We discuss learning in energy-based models

using contrastive divergence in section 4.5 and show in section 4.6 that contrastive divergence

learning gives good results as compared to exact methods. Section 4.7 gives some simulation

results showing energy-based models extracting interesting features.

1.1.4 The Bethe Free Energy for Inference

In particular, chapter 5 deals with unified propagation and scaling, an algorithm for directly

minimizing the Bethe free energy. In section 5.4 we describe generalization of inference based

on minimizing a KL divergence subject to certain observational constraints. Then in section 5.5

we describe approximations for generalized inference based on the Bethe free energy and show

an interesting relationship between belief propagation and iterative scaling. In section 5.6 we

describe various algorithms to minimize this Bethe free energy approximation for generalized

inference, culminating in unified propagation and scaling. Finally in section 5.7 we describe

some experiments comparing unified propagation and scaling to loopy belief propagation.

1.1.5 The Bethe Free Energy for Learning

In chapter 5 we described a theory relating belief propagation and iterative scaling, and used it

to derive an algorithm to minimize the Bethe free energy for inference. In chapter 6 we make

use of the fact that iterative scaling is a standard algorithm to learn undirected graphical models

and show how we can apply the same theory to learn undirected graphical models. In section

6.2 we describe the maximum entropy framework and its relationship to maximum likelihood

learning of undirected graphical models. We also derive iterative scaling as an exact learning

algorithm for undirected graphical models. Then in section 6.3 we describe improvements to

the efficiency of iterative scaling based on junction trees. Using the ideas developed in chapter

5 we propose in section 6.4 unified propagation and scaling for junction trees, an algorithm

which further improves the efficiency of iterative scaling on junction trees. When this is still

not enough to make the learning tractable, in section 6.5 we propose approximations based on



CHAPTER 1. INTRODUCTION 5

region-graph free energies and using loopy iterative scaling to optimize these approximate free

energies. In section 6.7 we show loopy iterative scaling working on a simple problem.



Chapter 2

Background

Graphical models have been one of the most significant advances in machine learning in the last

decade. Given a graphical model, there are two operations one typically performs: inference,

and learning. Because both are typically costly operations, a variety of schemes have been

proposed in the literature to either approximate or sidestep them. We survey some of these

here.

2.1 Graphical Models

In recent years graphical models have gained prominence as a viable class of probabilistic

models suitable for unsupervised learning (Jordan, 1998). Graphical models are graphs with

probabilistic semantics. Nodes of the graph represent variables, and the structure of the graph

describes conditional independencies between the variables. In particular, the lack of an edge

between two nodes means they are conditionally independent given observations at some subset

of nodes. There can be visible nodes representing observations, and hidden nodes representing

unobserved causes in the world. Further, the graphs could have directed or undirected edges,

giving rise to the two classes of graphical models we shall describe later in the section.

Given a graphical model, there are two main operations one performs on it. One can train

the graphical model to assign high probability to observations, and one can infer the posterior

6
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distribution over hidden variables given some observations. For learning, we assume that the

graphical structure is fixed, and only fine tune the parameters to assign high probability to ob-

servations. One can also learn the structure of the graphical model, or use a Bayesian approach,

where we average over structures and/or parameters (Cooper and Herskovits, 1992, Lam and

Bacchus, 1994, Heckerman, 1998, Friedman, 1998, Beal and Ghahramani, 2003). For infer-

ence, we typically do not need the posterior distribution explicitly, but rather the expectation of

certain functions under the posterior distribution (and perhaps some non-linear combinations

of these expectations). For example, if the functions are delta functions indicating the value of

a subset of variables, the expectations become marginals of the posterior.

Learning and inference in graphical models are intimately tied. The EM algorithm, to be

introduced in section 2.1.3, and its variants are the most common methods of learning graphical

models when only a subset of the variables are observed. Part of the algorithm involves infer-

ring the posterior distribution over hidden nodes given observations. For undirected graphical

models, looser notions of learning and inference can be seen as dual to each other (see Wain-

wright, 2002). We will explore the relationship between them further in the contexts of directed

and undirected graphical models.

In the following two subsections we will describe both undirected and directed graphical

models. To keep the exposition simple we will deal with the completely observed case (that

is, every random variable is observed during learning) first. The partially observed case is

described in the next subsection on the EM algorithm.

2.1.1 Undirected Graphical Models

In the following we will take � to be the set of variables and
�� � ��
 to be an empirical distri-

bution from which we wish to learn the parameters of the undirected graphical model.
�� � ��


is typically an average over a number of delta functions, each given by a particular training

sample.

Undirected graphical models represent affinities between nodes with undirected edges. Let



CHAPTER 2. BACKGROUND 8

� be a clique1 of the graph, and let the potential ��� ������
 be a non-negative function of the states

��� in the clique. The probability distribution is given as

� � ��
�� ���� � �	� � ����
 (2.1)

where the product is over all cliques � of the undirected graph and
�

is a normalization constant

called the partition function.

There is a set of conditional independency statements which the undirected graphical model

expresses. Let 
 , � and � be three disjoint sets of variables. If every path from a node in 
 to a

node in � contains a node in � , we say � separates 
 from � . The conditional independencies

expressed by the undirected graphical model are then exactly 
��������� � for all disjoint subsets 
 , � and � such that � separates 
 and ��� (2.2)

The Hammersley-Clifford theorem relates the family of distributions given by (2.1) (as

we vary the potential functions ��� ) to the set of conditional independencies expressed by the

undirected graphical model (2.2) (Clifford, 1990). In particular, every distribution expressed

by (2.1) satisfies (2.2). Conversely, if a distribution
� � ��
 satisfies (2.2) and satisfies

� ����
�� �

for every � , then
� � ��
 can be expressible as (2.1) for some settings of the potentials. The

converse is slightly weaker as there are certain degenerate distributions which satisfy (2.2) but

not (2.1) (see Lauritzen, 1996).

Suppose that each potential function ��� � ����
 has parameters ��� . Using (2.1), the expected

log likelihood is given by��� �!#"%$'& � � ��
)(*�,+ � ��� �!-".$'& �/� ������
)(�0 ".$'& � (2.3)

To learn the parameters, we maximize the expected log likelihood with respect to �1� . Differen-

tiating (2.3) with respect to ��� , we get2 ��� !#"%$'& � � ��
)(2 �3� � �4� 65 2 ".$'& �/� ������
2 �3� 7 0 �  5 2 ".$8& �	9 � ����
2 �3� 7 (2.4)

1A clique is a totally connected subset of nodes.
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where the second term is obtained by differentiating ".$8& � :

".$'& � � "%$'& +�� � � � �	� � � � � 
 (2.5)

The functions
�����
	����� � 
����� are usually easy to compute. If the cliques � are small enough, this

means that the first term is easy as well – just average over the training data (note that we are

dealing with the completely observed case here). However the second term is much trickier

as it requires an expectation over
� ����
 , which is often intractable. In such a case, the normal

routine is to take samples from
� ����
 and approximate the second term by averaging over the

samples (Hinton and Sejnowski, 1986, Zhu et al., 1997). In chapter 6 we describe another

approach based on loopy belief propagation. Note that calculating the second term can be

construed as inference, since it is an expectation over the model distribution
� ����
 , which can

be taken as the “posterior” when there is no observation. This is the first instance of learning

requiring inference we shall encounter. The next is for the EM algorithm in section 2.1.3

In many cases of interest, the log potential functions ����� ����
 are linear in the parameters ��� 2:

".$'& �/� ������
�� � ���� � � ����
 (2.6)

where � � � ����
 is a fixed vector-valued function. Then we have

� ����
�� �������� � + � � �� � � ������
�� (2.7)

so the undirected graphical model describes an exponential family with sufficient statistics

functions � � and natural parameters ��� ’s (although the � � ’s may not be linearly independent so

this representation is not minimal). The learning rule (2.4) simplifies to2 �4� �!-".$8& � ����
 (2 �3� � ��� ! � � � ����
)( 0 �  ! � � ������
 ( (2.8)

Setting the derivatives to zero, we see that learning attempts to match up the sufficient statistics

of the model
�  ! � � ������
 ( to the sufficient statistics of the data

� � ! � � ������
)( , which, in this case,

can always be attained because the log likelihood is concave in the parameters �8� ’s.

2Note however that the products of experts to be described in section 2.5.2 do not have this nice property.
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Note that we can understand learning as the process of estimating the natural parameters�3� ’s given the sufficient statistics
� � ! � � � ����
)( ’s, while inference is essentially computing the

sufficient statistics
�  ! � � ������
)( ’s from a given set of natural parameters � � ’s. Hence learning

and inference are “dual” to each other in the case of exponential families. This duality is a

simple consequence of a beautiful theory of exponential families called information geometry.

We will not elaborate here but refer the reader to Amari and Nagaoka (2000) and Gupta (1987),

and Wainwright (2002, chap. 2) for a brief but excellent introduction. Another aspect of this

duality, between maximum likelihood and maximum entropy, is explored further in section

2.5.1 and in chapter 6.

2.1.2 Directed Graphical Models

Directed graphical models, or causal models, represent cause and effect relationships between

nodes using directed edges – an edge ��� � means that the parent � is a (direct) cause of � .

The overall probability distribution over all the nodes � is

� ����
�� �
�

� ����� � ��� ��
 (2.9)

where
��� � are the parents of node � � .

The set of conditional independencies represented by directed graphical models is slightly

more complex than for undirected ones. Let 
 , � and � again be three disjoint sets of nodes.

We say � d-separates 
 and � if for every node � on every path from a node in 
 to a node in� , one of the following holds:

� if both edges containing � on the path point inwards to � , then neither � nor any of its

descendants are in � ;

� otherwise, � is in � .

The set of conditional independencies represented by the directed graphical model is: 
 � � � �� � for all disjoint subsets 
 , � and � such that � d-separates 
 and � � (2.10)
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Again we can show that the set of distributions satisfying the conditional independencies (2.10)

is exactly the distributions having the form (2.9) (without the need for being strictly positive

this time). Notice that individual distributions in this family could satisfy other conditional

independencies in addition to those given in (2.10).

Suppose that each conditional distribution
� � ��� � ��� � 
 is parameterized by � � . The derivative

of the log likelihood with respect to � � is2 ��� !#"%$'& � ����
)(2 � � � � � 5 2 ".$8& � ����� � ��� � 
2 � � 7 (2.11)

Because there is no partition function involved, learning in directed graphical models is much

simpler. In addition, each derivative in (2.11) depends on a single � � , so solving for the � � ’s are

decoupled. Note however that this is only true in the completely observed case. In the next

subsection we describe the partially observed case, where dependencies between the parame-

ters are introduced by the unobserved variables and an iterative scheme (the EM algorithm) is

needed to optimize them.

2.1.3 The EM algorithm

In the last two sections we discussed learning in graphical models when all the variables are

observed. However we often build models where certain variables are always unobserved or

hidden, both for modelling reasons — we wish to discover the hidden causes of the observed

data — and because this increases the modelling flexibility. A simple example illustrating both

reasons is mixture models. Here we will discuss learning in graphical models (both directed

and undirected) from partially observed data through the EM algorithm (Dempster et al., 1977,

Neal and Hinton, 1998).

We assume that the nodes are partitioned into two sets � and � with � being the visible

or observed variables, and � the hidden or unobserved variables. We have an empirical dis-

tribution
�� ��� 
 given by the training set, and a model distribution

� � ����� � � 
 over � ������� with

parameters � .
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The log probability of generating the observations is

� � � 
�� ��� !-".$'& � � � � � 
 (�� � "%$'& � ��� � � 
 �� ��� 
�� � (2.12)

The EM algorithm, given in algorithm 2.1, is an iterative procedure which at each iteration

starts with an initial � and produces a better estimate � (new).

Algorithm 2.1 EM – Expectation Maximization

1. Initialize � to some values.

2. Repeat until convergence criterion has been met:

3. Expectation (E) step: This is the inference step.

Fills in the unobserved variables � using the current posterior distribution
� ��� � � 
 � � ��� � � � � 
 . This is normally done independently for each training ob-

servation � .

4. Maximization (M) step: This is the learning step.

Set � (new) to maximize the complete data likelihood, assuming that the current

posterior is correct

� (new) ����� &�	 � �� � � ".$'& � ����� � � � � 
 � � � � � 

�� � � 
�� �
� � (2.13)

Instead of maximizing the complete data likelihood at each M step, one can find a � (new)

which only improves upon the likelihood. This is called the generalized EM (GEM) al-

gorithm. The EM and GEM algorithms were shown to never decrease the log likelihood,
� � � (new) 
�� � � � 
 . Assuming that

�
is bounded above and other technical conditions like dif-

ferentiability apply, it can be further shown that the algorithm will converge to a local maximum

of
�

(Dempster et al., 1977).

For simple models like linear Gaussian models and tree-structured graphical models, the

E step can be exactly and efficiently carried out. For more complex models, we need to ap-

proximate the inference in the E step. One possibility is to approximate it using samples from
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the posterior that are obtained using Markov chains (see section 2.3). Deterministic approxi-

mations for inference are given in section 2.4, while in section 2.5 we describe two complex

models which allow exact inference. For directed graphical models, the M step is usually sim-

ple, while it is much harder for undirected graphical models due to the partition function. As

a result more sophisticated algorithms like iterative proportional fitting (IPF) and generalized

iterative scaling (GIS) discussed in section 2.5.1 are required. The contrastive divergence ap-

proach in section 2.5.2 sidesteps this problem by approximately optimizing a different function

than the log likelihood.

The theory behind the EM algorithm was generalized by Neal and Hinton (1998), where

EM is viewed as coordinate minimization of the variational free energy3

������� � � � � 
�� � � 0 "%$'& � � ����� � � 
�� ".$8& � ��� � � 

	 � ��� � � 

�� ��� 
�� � � � (2.14)

The E step minimizes
������� � � � � 
 with respect to

�
and the M step minimizes

������� � � � � 
 with

respect to � . The E step is normally performed independently for each training observation �
expressed by

��
.������ � � � � 
 is always an upper bound on 0 � � � 
 , with equality exactly at

� ��� � � 
�� � ��� � � � � 

almost everywhere on the support of

�� � � 
 . This can be easily seen by rearranging:

������ � � � � 
 � � � 0 "%$'& � ��� � � 
���� ��� � � � � � 
�� � ��� � � � � 
���� �� ��� 
�� � (2.15)

with the last term being the KL divergence from
� ��� � � 
 to

� � � � � � � 
 :
� � ��� ����
�� � ����
 
�� � � � ��
 ".$'& � � ��
� � ��
 � � (2.16)

In this formulation, analogous to generalized M steps, we can now use generalized E steps

which update the approximate posterior
� � � � � 
 to lower � ��� � � � � � 
�� � ��� � � � � 
�� .

The wake-sleep algorithm used to learn the Helmholtz machine (Dayan et al., 1995) and the

recognition networks of Morris (Morris, 2002) use a similar idea. Both parameterize
� ��� � � 


3We follow the physics convention of free energies being minimized rather than the one in Neal and Hinton
(1998) where it is negated and maximized.
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using a single set of parameters for all � and improve the approximation at each step using

gradient descent on the reverse KL divergence.

When the minimization over all possible distributions
� � � � � 
 is intractable, we can restrict

� ��� � � 
 to come from a tractable family of distributions, resulting in a further lower bound. A

larger family will give a smaller KL divergence hence a better bound, as seen from (2.15). This

is the starting point for variational approximations which will be discussed in section 2.4.1.������ � � � � 
 is analogous to the free energy from statistical physics. This link has enabled

many methods developed in the statistical physics community to be used in neural computa-

tions, and, recently with generalized belief propagation, vice versa. Some of these methods

will be discussed in sections 2.4.2 and 2.4.3.

2.2 Exact Inference

In this section we describe algorithms for doing exact inference on graphical models. We start

with the simple case for when the graphical model is a tree. This is the belief propagation

algorithm in section 2.2.1. Then we generalize this to the junction tree algorithm for general

graphical models in section 2.2.2.

2.2.1 Belief Propagation

Belief propagation (BP) is an exact inference algorithm for tree-structured graphical models

(Pearl, 1988). The trees can be either directed or undirected, but for the rest of this section we

shall deal only with undirected trees. Directed trees can be easily converted into undirected

ones by simply dropping the directionality of the edges4

Suppose we have a tree � . By � ,  and � we shall denote vertices of � and by ��� 	
 we shall

mean an edge of � . For each � let � � be the random variable associated with � and �� � be a state

of ��� . Let � ��������
 and � � � � ��� � �	��
 be the marginal and pairwise potentials of the tree-structured

4For general directed graphs, including polytrees (i.e. directed trees where there is more than one root), we
need to moralize the graph before dropping the directionality, i.e. add edges between any two parents of a node.



CHAPTER 2. BACKGROUND 15

undirected graphical model so that

� � ��
�� � � � � � � ��������� � �	� 
 � � � � � ����
 (2.17)

For each edge ��� 	
 let � ��� � ��	� 
 be the message from � to  and vice versa for ������� �����
 . BP

iteratively updates the messages with the rules:

� (new)��� � ��	��
��,+ �� � � ����� ���� � ��	� 
 � � � �����
 ������ � � �
	 � � � ��� ���� 
 (2.18)

where ������
�  indicates all neighbours of � except  . If the message updates are ordered effi-

ciently, each only needs to be updated once for convergence. If � is the number of edges, this is

only � � updates. For example, the forward-backward algorithm for HMMs is just BP applied

to a chain, with the messages updated in a forward and a backward pass, and it converges after

both passes. The beliefs can be obtained from the messages as

� ��� ����
�� � � � �����
��
� ��� � � � � ����� �����
 (2.19)

� ��������� � �	��
�� � � � � ��� � �	��
 � ��������
)� � ���	��
 ������ � � �
	 � � � � � ����
 ������ � � ��	 � � � �����	��
 (2.20)

At convergence, we can show that the beliefs are exactly the marginal distributions of
� � ��
 .

BP can also be applied to graphical models with cycles. In particular, the algorithm we

have just described can be applied directly to pairwise Markov networks. A pairwise Markov

network is an undirected graphical model where we take only the edges as cliques, so that the

form of the distribution is exactly (2.17). However loopy BP for pairwise Markov networks is

an approximate algorithm. In section 2.4.3 we elaborate on what exactly this approximation is.

2.2.2 Junction Tree Algorithm

For general graphical models the junction tree algorithm is a popular algorithm for exact infer-

ence (Jensen, 1996, Cowell, 1998). In this section we shall briefly describe the construction of

junction trees as well as the propagation algorithms which are run on the junction trees. We

will not prove any of the very nice graph theoretic results relating to junction trees. Please see

Jensen (1996) and Cowell (1998) for more information.



CHAPTER 2. BACKGROUND 16

Directed graphical models must first be converted into undirected ones by moralizing. Es-

sentially, this means adding edges among the parents of each node, and dropping the direction-

ality of the original edges. The form of the distribution of the directed graphical model (2.9)

stays the same as for the undirected one (2.1). The moralization simply makes sure that each

term in (2.9) corresponds to a clique in the undirected model.

Now given an undirected graphical model, we collect nodes into clusters such that the

topology of the clusters forms a junction tree. That is, each edge of the graph has to be in at

least one cluster, and there is a tree with nodes labelled by the clusters such that for any two

clusters their intersection is a subset of every cluster on the path (on the tree) between them.

This is typically obtained by eliminating nodes one at a time. For each node in an elimination

ordering, we add edges among the uneliminated neighbours of the node so that they form a

clique. After eliminating all the nodes, the maximal cliques of the resulting graph forms the

clusters of the junction tree.

Given a junction tree we can now collect the potentials of the original graphical model

into potentials �*� ������
 for each cluster of the junction tree such that the distribution (2.1) is

equivalent to

� ����
�� �� � � �*� ������
 (2.21)

where now the product is over the clusters of the junction tree.

There are a number of propagation algorithms for junction trees. Foremost among them are

Shafer-Shenoy (SS) (Shafer and Shenoy, 1990) and Hugin (Jensen, 1996). SS propagation is

a direct generalization of BP to junction trees. For any two neighbouring clusters � � and ��� in

the junction tree with separator � , there are messages � 9 ��� � �*9 
 and � 9 ��� � �*9 
 going from � � to

��� and back. The messages are updated with the SS propagation rules

� 9 � � ���*9 
�� � +�  �	��
 ��� � ����� � 
 �9 ��� 9 � 9 � � � ���*9 � 
 (2.22)

where the product is over all separators neighbouring � � except � itself. We can again schedule

the updates so that each message needs only be updated once. At convergence, the marginal
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distributions are exactly the beliefs

� � ������
 � �*� � ����
 � 9 � 9 � ���*9 
 � 9 � �*9 
 � � 9 � � ���*9 
 � 9 � � ���*9 
 (2.23)

Hugin propagation, on the other hand, updates the beliefs directly. We initalize
� � � ����
 � �*� � ����


and
� 9 � �*9 
 � � . Let � � and � � again be neighbouring clusters and � the separator. The updates

are:

� ��� � ��� � 
 � � � ��� ������� 
 � � � � �*9 
� 9����*9 
 � 9 � �*9 
 � � � ����� �*9 
 (2.24)

Again there are schedules which require only twice the number of clusters of updates for con-

vergence. In fact, we can show that SS propagation and Hugin propagation are equivalent, by

identifying the beliefs and messages using (2.23).

The computational complexity of the junction tree algorithm is exponential in the size of

the largest cluster. If this is much smaller than the graph itself the computational speed-up is

significant. Unfortunately, for many graphical models of interest the cluster sizes are still too

large to be practical. Loopy BP and its generalizations are natural extensions for efficient but

approximate inference (Yedidia et al., 2001, 2002).

Jiroušek and Přeučil (1995) proposed an algorithm for learning undirected graphical models

using essentially the junction tree algorithm in an inner loop. In chapter 6 we describe a

generalization of their algorithm using loopy BP ideas.

2.3 Markov Chain Monte Carlo Sampling

We can do approximate inference in graphical models using samples from the posterior distri-

butions. These distributions are often complex and multi-dimensional, and they typically have

most of their probability mass concentrated in very small regions of the space. As a result

simple Monte Carlo sampling schemes are not suitable. Instead Markov chain Monte Carlo

(MCMC) sampling is often the only viable sampling method for these distributions. MCMC

sampling is very versatile and applicable in virtually all circumstances as there is a wide range

of methods to choose from. It is also asymptotically correct if we are prepared to wait long
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enough for the Markov chains to converge and to obtain a large number of samples. However

it is often computationally very expensive leading to various issues and trade-offs. There is

a very large literature on MCMC sampling, and I will only introduce a few issues and meth-

ods that are relevant to neural computation. Refer to Neal (1993) and Gilks et al. (1996) for

thorough reviews.

In MCMC sampling, an ergodic Markov chain with transition conditional distribution
� ��� � � ��
 is constructed such that the equilibrium distribution is the desired posterior distri-

bution
� � � � � � � 
 . Starting from a simple initial distribution � �

� �
� ��� � 
 , the Markov chain is

simulated by sampling from ��� � � ����� � ��� ��� 
 during each time step � . Let

�
� � � � 
�� � � ��� � � ��
 � � ��� � ��
�� � (2.25)

be the distribution of ��� . Assume that
�
� ����
 for every � and

� ��� � � � � 
 are absolutely continuous

with respect to some measure � . Since
�

is ergodic,
�
� ����
 � � ��� � � � � 
 almost everywhere

with respect to � as � � � .

Independent samples are desirable to reduce the variance of the sampler. To get independent

samples, one can run multiple Markov chains to convergence, and get one sample from each of

them. But this is wasteful because the Markov chains often take so long to converge. Instead

more than one sample is often taken from each Markov chain. In fact it is better to use all

samples from each Markov chain after the initial burn-in period. The number of chains to run,

the length of the burn-in period, and the number of samples to obtain from each chain all have

to be optimized empirically.

For multi-dimensional distributions, because most of the state space has negligible prob-

ability, the Markov chain can only make small random changes to the state at each step. If

the distribution is multi-modal, it is often very hard for the Markov chain to move from one

mode to another, since the Markov chain will have to move through regions of low probability

separating the modes. There are a few methods of tackling this problem, including simulated

annealing (Kirkpatrick et al., 1983, Neal, 2001), simulated tempering (Marinari and Parisi,

1992, Neal, 1996), Metropolis-coupled MCMC sampling (Geyer, 1991), and entropic sam-

pling (Lee, 1993). Markov chains often use small step sizes to move around the state space.
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As a result they often exhibit random walk behaviour. During a random walk, the distance

travelled grows only as the square root of the time spent. Hence even moving within a mode

requires a significant amount of time. Hybrid Monte Carlo methods and over-relaxation (Neal,

1993) have been proposed to reduce random walk behaviour.

As a result of multiple modes and random walk behaviour, the time required for the Markov

chain to converge to the equilibrium distribution (the mixing time) is often quite long. Also we

often do not know the mixing time of the chain, and any upper bound we can derive is typically

impracticably large. Many methods of detecting convergence have been proposed, but none of

them is perfect. Surprisingly, recently developed techniques based on coupling can generate

exact samples from the equilibrium distribution of Markov chains (Propp and Wilson, 1996).

Getting exact samples eliminates the problem of convergence detection. However they are only

efficient for Markov chains satisfying a certain monotonicity property. Bounding chains have to

be used for non-monotonic chains, including most Markov chains used in machine learning. As

a result exact sampling methods have not found widespread use in machine learning. However,

methods based on coupling have recently made their way into useful techniques in MCMC

sampling (Neal, 2002).

The sequence of distributions
�
� defined in (2.25) can be interpreted as approximations

to the posterior distribution which converges to the posterior as � � � . In fact, it can be

shown that
������ � � ��� � � � 
 � ������ � � � � � 
 for each � (Sallans, 1998). Hence each MCMC step

can be thought of as generalized E steps. Of course we do not really compute the
�
� ’s, we can

only obtain samples from
�
� . If gradient ascent is used for the M step, then a useful way of

thinking about sampling is as part of a stochastic gradient ascent M step, where the gradient

of the parameters is estimated using samples from the approximate posterior
�
� , while the

generalized E step updates the approximate posterior from
�
� to

�
��� � exactly. Taken in this

light, samples after every MCMC step can be used in estimating the parameters. Further,

the parameters can be updated even when the chain has not converged. This is a much more

efficient use of computational resources. The overall algorithm is guaranteed to improve
������

stochastically, and so long as the learning rate is small and decreases slowly to 0, the parameters
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will converge to ML solutions. This is called brief Gibbs sampling (Hinton et al., 1998).

A drawback of the above algorithm is that MCMC samples have to be stored for every

training case, and it cannot easily be generalized to online learning. Hinton et al proposed

instead an even briefer Gibbs sampling, where at each E step we start the Markov chain from

a fixed state, simulate the Markov chain for a few steps, and take samples, ignoring whether

the chain has converged. Since the E steps do not have to improve
� �����

, and the M step does

not take into account changes to the approximate posterior when parameters are changed, this

algorithm is not guaranteed to stochastically improve
� �����

. However in practice it tends to do

better than the original brief Gibbs sampling, as the variance of the samples is smaller5. The

contrastive divergence learning algorithm for products of experts in section 2.5.2 can be viewed

as another improvement on this scheme.

MCMC techniques are useful when we need to evaluate expectations with respect to the

posterior distribution in an (asymptotically) unbiased manner. Because they are asymptotically

unbiased and applicable in almost all circumstances, they are often the preferred choice for

statisticians. However, due to the computational resources required to get enough samples to

reduce the variance to an acceptable level, after running the chain for enough steps to reduce

the bias to an acceptable level, they are often not seen as practical for inference and learning

in machine learning. Techniques like brief Gibbs sampling, however, are efficient enough to

make MCMC practical for learning.

2.4 Approximating the Free Energy

There is a variety of approximation methods which can be understood as first approximating

some (intractable) free energy, then minimizing the resulting approximate free energy. This

includes variational approximations, the advanced mean field methods from statistical physics,

and loopy belief propagation. We discuss each in detail in the following subsections.

5Personal communication from B. Sallans.
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2.4.1 Variational Approximations

Recall the variational free energy from section 2.1.3

������ � � � � 
�� � � 0 ".$'& � ������� � � 
 � "%$'& � � � � � 
	 � � � � � 

�� � � 
�� �
� � (2.26)

� � � 0 "%$'& � ��� � � 
 � � �
� � � � � � 
�� � ��� � � � � 
�� 	 �� � � 
�� � (2.27)

������ � � � � 
 is an upper bound on the negative log likelihood, and EM is coordinate minimiza-

tion of
������� � � � � 
 with respect to

�
and � .

When
������

is intractable to work with, we can upper bound it further by introducing addi-

tional auxiliary variables so that the resulting expression is tractable (Jordan et al., 1998). This

is called variational approximation. The algorithms derived using variational approximations

are deterministic and often orders of magnitude faster than those using MCMC sampling. Since

they improve an upper bound on
� �����

, convergence is guaranteed and can be easily detected.

They are however not guaranteed to improve the likelihood at each step – the likelihood could

improve or the bound could get tighter.

Often, the posterior distribution
� � � � � � � 
 is intractable, so it is expensive to minimize������ � � � � 
 with respect to

�
. However, we can minimize

� ����� � � � � 
 with respect to
�

assum-

ing that
�

comes from a tractable family of distributions. This is called the block variational

approximation6. From (2.27), we see that a tighter bound is equivalent to having a family of

distributions which approximates the posterior well in terms of the KL divergence between

them. In the rest of this section we shall deal with the block variational approach.

If
� ������� � � 
 is a graphical model, then the posterior distribution can be defined by the undi-

rected graphical model � obtained by moralizing the original graphical model, and condition-

ing out the observed nodes. The moralized graph is often dense; hence computing
� � � � � � � 
 is

intractable. We can approximate the posterior by taking
�

to be a graphical model obtained by

removing edges from � until it becomes tractable7. In this case the assumptions imposed on
�

6Jordan et al. (1998) calls this the block variational method, even though it is the more commonly used one,
to distinguish it from the approach as described in the previous paragraph.

7Although sometimes the best distribution may not be obtained by removing edges.
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are exactly the additional conditional independencies expressed by the removal of the edges of

the graphical model. Further, the less edges we remove, the tighter the resulting bound will be.

The simplest approximation is obtained by removing all edges from � , i.e. assuming that

all the hidden variables are independent of each other given the observations:

� � ��
�� �
�
� ������� 
 (2.28)

This is called the naive mean field (MF) approximation, and is the most popular variational

approximation as it is the simplest to work with. However, since it removes all edges from the

posterior, it is the worst approximation we can get by removing edges. Also, it cannot handle

any explaining away effects as these are essentially dependencies among the hidden variables

conditioned on the observations. The MF approximation is further elaborated from a statistical

physics point of view in section 2.4.2.

One obtains a better bound by retaining some edges of the posterior graphical model so

that the resulting distribution is still tractable. Further, by being careful about which edges to

retain, the most coupled hidden variables can still be dependent in the approximation, and the

bound on
�������

will be tighter. This is termed structured variational approximation.

Looking at (2.27), we note that minimizing
� ����

with respect to
�

is equivalent to decreas-

ing the KL divergence from
�

to
� ��� � � � � 
 . Since the KL divergence is not symmetric, this

is not equivalent to decreasing � � � � ��� � � � � 
�� � ��� � � 
 
 . For MF approximations, this means

that the optimal
� ��� � � � 
 will not be the marginal posterior

� ��� � � � � � 
 . In general, the reversed

KL divergence means that it is more costly to have
� ��� � � � � 
 small when

� � � � � 
 is large than

the reverse. If the posterior consists of many well separated modes but
�

is a single-modal

distribution, then
�

will try to model a single mode of the posterior well rather than capture

all of them. In certain applications it is more important to capture all the modes. For example,

in medical diagnosis applications, where observations are symptoms, and hidden variables are

diseases, it is better to be conservative and report all possible disease occurrences. In these

cases, there are more suitable approximations which try to decrease the other KL divergence

(Frey et al., 2001, Minka, 2001, Kappen and Rodriguez, 2001, Morris, 2002).
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From (2.27) again, we see that minimizing
� ����� � � � � 
 with respect to � can be interpreted

as maximizing
� � � 
 with a regularizing term

� � � � � � � � � 
�� � ��� � � � � 
 
 �� ��� 
�� � (2.29)

which encourages
� � � � � � � 
 to be as close to

� ��� � � 
 as possible. Since
� ��� � � 
 is often a

simpler distribution,
� ��� � � � � 
 will tend to be simpler in the same way. On the one hand,

this is good as it encourages the model to have simple posteriors and will be a control on the

complexity of the learned model. On the other hand the resulting distribution will not be as

accurate as it will try to ignore certain dependencies between hidden variables.

An exciting recent advance has been the development of variational Bayesian learning

(Ghahramani and Beal, 2000). Given a prior distribution
� � � 
 over � and observations � �

� � � � � � , correct Bayesian learning is to compute the posterior over �
� � � � � 
�� � ��� � � 
 � � � 
� � ��� � � 
 � � � 
�� � (2.30)

After learning, the probability of some observation � � is given by

� � � � � � 
�� � � � � � � � 
 � � � � � 
�� � (2.31)

Because the posterior over � � � � � � � � and over � are coupled and the parameters of a model are

often unidentifiable (e.g. the components of a mixture model can be permuted without affect-

ing the probabilities), exact Bayesian learning is often intractable even for simple models like

mixtures of Gaussians. One approach is to approximate the whole posterior
� � � � � 
 with a sin-

gle maximum a posteriori (MAP) estimate of � . This is what the EM algorithm gives. However

if the distribution
� ������� � � 
 is in an exponential family with � being the natural parameters, and

the prior over � is conjugate to
� ������� � � 
 8, one can use a variational approximation in which �

and � are independent. The variational free energy is then

������ � � ��� 
 � � � � 
 
�� � � 0 "%$'& � ��� ��� � � 
 � "%$'& � ��� 
 � � � 
 	 � ��� 
 � � � 
���� � � (2.32)

and the variational EM algorithm is given in algorithm 2.2.

8The prior �	��
� is conjugate to �	��������� 
� if it is of the same functional form as �	��������� 
�� in terms of 
 .
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Algorithm 2.2 Variational EM

1. Initialize
� � � 
 to some simple distribution.

2. Repeat until convergence criterion has been met:

3. Variational E step: Maximize
������

with respect to
� ��� 
 :

� ��� 
 � ��� � � ��� � � � !-".$'& � ��� ��� � � 
 ( � (2.33)

4. Variational M step: Maximize
������

with respect to
� � � 
 :

� � � 
 � ��� � � ��� ��� � !#"%$'& � ��� ��� � � 
 ( � (2.34)

The advantage of this method is that the computational cost of variational EM is often on

the same order as normal EM, and in practice it is only marginally more expensive than the

normal EM algorithm. The variational E step can often be done by performing a normal E step

using a single pseudo-observation of � ; while the variational M step can be done by simply

extracting certain sufficient statistics. When propagation algorithms like the Kalman filter are

needed for inference, they can be generalized to the variational case as well (Ghahramani and

Beal, 2001). With such modest additional costs, the advantages are enormous. One has a

lower bound on the evidence for a model. This can be used to compare models and perform

model selection. The resulting model is simply more flexible and powerful than if only a single

estimate of � is used. We can also avoid over-fitting if we integrate out parameters such that

the number of hyperparameters is independent of the model size.

2.4.2 Advanced Mean Field Methods

In section 2.4.1 we introduced the naive MF approximation as a variational approximation

where the posterior is assumed to be factorized. The term “mean field” originated in statistical

physics where it roughly means to replace the fluctuating “field” surrounding a unit by its mean

value. The field surrounding a unit is the influence the other units have on the unit. The naive

MF approximation is the simplest of a wide spectrum of methods in statistical physics. In this
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section we shall describe a few of the methods developed which have been applied to inference

in graphical models. For further information please refer to Saad and Opper (2001).

To illustrate the ideas while keeping notation simple, we shall focus on developing MF

methods for inference in Boltzmann machines (BM). Boltzmann machines are undirected

graphical models where the potentials only involve one or two nodes. Let � and  denote nodes

of the graph, � ��� � � � � � be the variable associated with � , � ������� be a weight connecting

nodes � and  , and
� ����� be the bias of node � . The probability of a state � � � ��� � is defined

as

� ����
�� �� ����� �	 + � ��� � ����� ��� �	� � +
�

� � ����
� (2.35)

where
�

is the partition function.

Suppose a number of nodes  were observed, with � � � �� � for each ���� . Recall that

the variational free energy is

������� � � ��� 
�� ������ 0 + � ��� � ����� � ��� �	��0 +
�

� � � ��� � ".$8& � � ��
��� (2.36)

For notational simplicity, we have defined
� � � � 
 ������� � 0 �� � 
 for ���� and omitted refer-

ences to � and the constant ".$'& � . We have instead added in the inverse temperature � for use

later. When it is not mentioned, we shall assume that � � � .
For the naive MF approximation, we assume that

�
factorizes, and suppose that the mean

of node � is
��� ! ��� (���� � . Set � � � ��� ! � � (*� �� � for each ���� and let � � � � � � . Then the

naive MF free energy is

��!#" �$� 
�� 0 + � ��� � � ���%� �&� � 0 +
�

� �&� � � +
�

�$� � ".$8& � � � � �'0'� ��
 "%$'& � �'0�� ��
 
 (2.37)

Minimizing
��!(" �$� 
 with respect to � � , we get the MF fixed point equations

� (new)� �*),+ & 	 $ +.- � +
� � �

��� �/� � � � � � (2.38)

Suppose we assume that the mean values are
� � ! ���.( �0� � for each node � , but we do

not assume anything else about
�

, then the minimum attainable
� �����

is called the Gibbs free
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energy, ��� � � � 9��$� ��� 
�� 	 +�� � ������ � � ��� 
�� ��� ! ���.(��*� � � � � (2.39)

We wish to minimize
��� � � � 9 �$� � � 
 with respect to � . Since the value of � that minimizes

��� � � � 9
is the exact posterior marginals � � � � � ��� � � 
 , minimizing

��� � � � 9 � � � � 
 is not usually tractable.

Instead, the Gibbs free energy is important because it is fertile territory for approximation

schemes.

In particular, we can expand
�	� � � � 9 �$� ��� 
 in terms of � around � � � , and evaluate the

expansion at � . This is called Plefka’s expansion (Plefka, 1982).

��� � � � 9��$� � � 
�� ��� � � � 9 � � � � 
 � 22 � ��� � � � 9�� � � � 
 � �
��
 � 22 �� � ��� � � � 9�� � � � 
 ������� (2.40)

Deriving the terms of the expansion requires quite an amount of ingenuity, but the first three

terms can readily be obtained

��� � � � 9 �$� � � 
�� +
�

�$� � ".$8& � � � � �'0'� ��
 "%$'& � �'0�� � 
 
 (2.41)22 � ��� � � � 9 �$� � � 
���0 + � ��� � �����%� �&� � 0 +
�

� �&� � (2.42)

�
�
� 22 �� � ��� � � � 9 �$� � � 
���0 �

� + � ��� � � ���� � � � �'0'� ��
 � � � �80�� ��
 (2.43)

We see that the first two terms correspond to
� !("

, and we can also understand how the naive

MF approximation is bad – it is simply a linear approximation to the true free energy. Includ-

ing the third term, one obtains the TAP free energy
�
�
���

(Thouless et al., 1977). Setting the

derivatives of
�
�
���

with respect to � � to 0, we get the TAP equations

� � �*) + & 	 $ +.- � +
� � �

� ���/� � � � � � � � ��0 �
� +

� � �
� ���� � � � � 0 � � 
 � (2.44)

The extra term at the right is called the Onsager reaction term.
�
�
���

is no longer a lower bound

on
�������

and the TAP equations (2.44) are not guaranteed to converge. However, if they do

converge they tend to converge to better estimates of the true posterior marginals than the MF

equations (2.38). It is conceivable that extra terms can be derived and used to obtain better

estimates of the posterior marginals. We shall view the Bethe approximation in section 2.4.3 in
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this light. For directed graphical models, when the Gibbs free energy is not in a particularly nice

form to work with, similar approaches have been used to expand other quantities of interest like

KL divergences, and variants of the TAP equations have been derived (Tanaka, 2001, Kappen

and Rodriguez, 2001).

Plefka’s expansion can be used to understand the contribution of different substructures of

the BM toward the Gibbs free energy and posterior distribution. For each term appearing in

Plefka’s expansion, a diagram can be drawn to summarize the contribution of the term as fol-

lows: a vertex is drawn for each index � appearing in the term, and an edge is drawn connecting

vertices � and  for each � � � that appears in the term. It can be easily seen that the terms

appearing in Plefka’s expansion are those whose diagrams are subgraphs of the BM (treating

multiple edges connecting two vertices as a single edge). Less obviously, these terms must also

be strongly irreducible, i.e. the corresponding diagram cannot be split into two on removing

a vertex (Georges and Yedidia, 1991, Welling and Teh, 2003). Hence Plefka’s expansion for

a tree can only contain relatively simple terms of the form � � � 
,������ for some � and function

� � � 
 ; and cycles make inference hard in BMs because they introduce complex terms into the

Gibbs free energy. We shall revisit this matter in section 2.4.3 when we try to understand how

loopy belief propagation works.

A different MF method is called the linear response correction. The initial observation is

that we can study the system represented by our model by studying its perturbations as we vary

the parameters of the system. In particular, consider varying the biases
� � about its original

value, say
� �� :

� � � � �� � � � (2.45)

where � � are small variations. Express both the distribution
� � ����
 from (2.35) and its partition

function
� � as functions of the variations � � � � � � . Then by direct differentiation, we get2 ".$8& � �2 � � � �  �� ! �	� ( (2.46)2 � "%$'& � �2 � � 2 � � � 2 �  �� ! �	� (2 � � � �  � ! ��� �	� (�0 �  � ! ��� ( �  � ! �	� ( (2.47)

Setting � � � above shows that we recover the first two cumulants of
�

� � ��
4� � ����
 from
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the derivatives of "%$'& � � . In other words, the log partition function is the cumulant generating

function of
� ����
 , our desired distribution9. Using any MF approximation, we obtain estimates� � of

�  ! ���.( , and we can use (2.47) to approximate the correlation between two hidden nodes:2 � �2 � � � 2 �  ! ��� (2 � � � �  ! ��� �	� (�0 �  ! ��� ( �  ! �	� ( (2.48)

For example, using the naive MF approximation for a BM, we differentiate (2.38) to get

5 �  ! ��� �	� ( 0 �  ! ���.( �  ! �	� ( 7 � � � � ���� ��� � 0 � ��
 0 ����� 	  ��� (2.49)

where ! � ��� ��	
 ( is a matrix with ��� 	
 ��� element given by � ��� ��	
 . The linear response correction

has been used in fully visible BM learning where the weights and biases can be estimated

directly from the empirical pairwise correlations and marginals using a single matrix inversion

(Kappen and Rodrı́guez, 1998).

Other MF methods that has been applied to machine learning are the field theoretic method,

the cavity method, and the Bethe approximation. For an introduction to these methods refer to

(Opper and Winther, 2001). Loopy belief propagation and its relation to the Bethe approxima-

tion will be discussed in section 2.4.3.

In summary, it is important to remember that many of these methods are not guaranteed

to converge, and except for the simplest MF approximation, there is also no bound on the

variational free energy that we can compute. However, if one were to be careful about using

them only when they converge, they will often give estimates of the posterior that are more

accurate than the simplest MF approximation. For example, the TAP and Bethe approximations

to be introduced in section 2.4.3 have been shown to frequently converge when the weights are

small and there is high evidence, i.e. many nodes are observed. Most of these advanced MF

methods are not well-suited as part of a learning algorithm like EM, but are more suitable when

more accurate estimates of the posterior marginals are required, and when convergence is more

likely.

9Technically the cumulant generating function is the logarithm of the moment generating function, � ��
�������
	���������������
. It is easy to see that � ��
��� ����	�� ��� ����	��! 

with
���
	"�! 

constant.
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2.4.3 Loopy Belief Propagation

In this section we shall be discussing loopy belief propagation (loopy BP). Loopy BP is just

the algorithm given by the BP iterations (2.18) applied without alteration to graphs with cycles.

Unlike the junction tree algorithm, loopy BP is an approximate inference algorithm that is not

guaranteed to converge. However when it does converge it often converges quickly and the

approximation is typically quite accurate (Murphy et al., 1999). Loopy BP has been applied

successfully to error-correcting codes (turbo-decoding) (McEliece et al., 1998), and machine

vision (Freeman and Pasztor, 1999). As a matter of fact turbo-decoding was discovered first,

and the realization that it is loopy BP on an appropriate graph spurred research into the be-

haviour of loopy BP itself.

Initial experimental results showed that loop BP, when it converges, often produce estimates

of the posterior marginal distributions that are more accurate than those obtained with naive

MF methods (Weiss, 1997, Murphy et al., 1999). These experiments also showed that loopy

BP often converges for graphs with longer, fewer, and less strongly coupled cycles. A theory

based on equal amounts of “double counting” was developed which shows that loop BP should

give the correct MAP estimates for a certain class of “balanced networks” (Weiss, 2000). This

was further elaborated by linking the unrolled networks to Gibbs measures on computation

trees (Tatikonda and Jordan, 2002).

However, a breakthrough was made in understanding loopy BP when Yedidia et al. (2001)

discovered that fixed points of loopy BP are exactly the stationary points of the Bethe free

energy. Using the notation of section 2.2.1, the Bethe free energy is

� ��� ������� 0 + � ��� � +� ��� � � � ��������� � �	� 
 ".$'& � � ��� ��� � �	��
	0 +
�
+ � � � ��������
 "%$'& � ��������
 (2.50)

� + � ��� � +� ��� � � � ��������� � �	� 
 ".$'& � ��������� � �	� 
 � +
�

� � 0 ��� 
 + � � � � ������
 "%$'& � � ������

where ��� is the number of neighbours of node � . The beliefs

� � and
� ��� need to satisfy the

marginalization constraints
� �

�
� ��������� � �	��
 � � ��� ����
 and

� �
� � � � ����
 � � . Note that these con-

straints do not imply that the beliefs are marginal distributions of a single overall distribution.
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They can be expressed by adding Lagrange multipliers to (2.50). The messages of loopy BP are

related to the Lagrange multipliers, and the message updates (2.18) is just a set of consistency

equations that has to be satisfied at the stationary points of
� ��� ����� . These consistency equations

are derived by setting the derivatives of the Lagrangian10 with respect to the beliefs to zero.

Experimentally, the stable fixed points of loopy BP are the local minima of
� ��� ����� . Heskes

(2003) has recently proven that they are in fact local minima.� ��� ����� is an approximation to the Gibbs free energy
��� � � � 9 given in (2.39). Consider

� ��� ��� �
and

��� � � � 9 for a BM. Since
� ��� ����� is exact for a tree, we can deduce that for general BMs

� ��� ��� �
consists of exactly all terms in Plefka’s expansion of the form � � � 
,� ���� . This makes exact

the relationship between loopy BP and other advanced MF methods like TAP. It also explains

the finding that loopy BP performs better on graphs with fewer and longer cycles with weakly

coupled nodes. On these graphs, there are less terms in Plefka’s expansion which are not in� ��� ����� and these terms tend to be smaller (since they involve a product
� � ��� � ����� with each term

being small), hence
� ��� ��� � is a good approximation to

�	� � � � 9 .
Since we want to minimize the Gibbs free energy, and the Bethe free energy

� ��� ����� is an

approximation to the Gibbs free energy, it makes sense to try to minimize the Bethe free energy

itself. Loopy BP is just one of a variety of methods to minimize it. Belief Optimization (BO) is

one such method which directly minimizes
� ��� ����� with respect to the beliefs at every iteration

(Welling and Teh, 2001). BO works only for Boltzmann machines. In chapter 5 we describe

UPS, another algorithm guaranteed to minimize
� ��� ����� . Unlike BO, UPS works for general

pairwise Markov networks. The stable nature of BO and UPS makes them more suitable as

part of a learning algorithm.

Welling and Teh (2001) also showed that in the Boltzmann machine case,
� ��� ����� and

�
�
���

are equivalent up to second order, but
� ��� ����� has more higher order terms. This suggests that

the Bethe approximation is more accurate than the TAP approximation. This was confirmed

10There are two standard usages of the term “Lagrangian”, one in classical mechanics to describe the move-
ments of masses and one in constrained optimization where it is a constructed objective which includes both the
original objective to be minimized as well as the constraints. Here as well as through out this thesis we shall use
the second meaning, which is the more common one in the machine learning community.
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experimentally when they showed that BO always performs better than TAP.

When there are strongly coupled clusters of nodes with loops, the Bethe approximation

will be bad. We can account for the errors introduced by the clusters by using beliefs spanning

the clusters (i.e.
� ��������
 where � is a cluster) and adding extra terms to the approximation.

This generalization of the Bethe free energy is called the Kikuchi free energy. The larger the

clusters used, the more accurate is the Kikuchi approximation. If we are willing to use very

large clusters, the Kikuchi free energy can be made exact. However, in many models, we know

that the strongly coupled clusters are just locally connected units (e.g. neighbouring pixels in

images) so in practice only small clusters are needed for a good approximation. We can derive

a generalized BP algorithm whose fixed points are the stationary points of the Kikuchi free

energy (Yedidia et al., 2001, Yedidia, 2001). Even using reasonably small clusters, generalized

BP has been shown to converge more often and gives more accurate estimates of the beliefs

(Yedidia et al., 2001).

2.5 Flexible Models with Efficient Exact Inference

Rather than starting with a model which has intractable inference and learning, another pos-

sibility is to start with a model with efficient exact inference, and sidestep the need for ap-

proximate inference techniques. These are the maximum entropy models and the products of

experts, to be discussed in the next two subsections. The disadvantage of such models is that

we have to deal with the partition function during learning. For maximum entropy models, the

approaches have been to either restrict its application to models where we can calculate the

partition function by brute force, or to use MCMC sampling. For products of experts, the idea

is to use an approximate learning method called contrastive divergence.

2.5.1 Maximum Entropy Models

Maximum entropy is a principle for probabilistic modelling which states that if one knows

nothing about a process, then one should introduce the least distortion in modelling the process
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by using the simplest distribution. This can be achieved by using a distribution with maximum

entropy, which, on a compact state space, is the uniform distribution. If one does know some-

thing about the modelled process in terms of certain constraints on the distribution, then the

distribution to use should be one which is as uniform as possible, i.e. with maximum entropy,

subject to the constraints being satisfied. We shall deal in particular with constraints expressed

as expectations of some functions under the process. Not all constraints can be represented this

way, but the maximum entropy distributions under such constraints are exactly the exponential

families. Many commonly encountered models are in fact exponential families.

Let
�� ����
 be the empirical distribution which we wish to model. Let a vector-valued func-

tion � ����
 be a vector of features of � , and let � � � � ! � ����
 ( . The constraint on the distribution
� ����
 is expressed as

�  ! � � ��
)( ��� . Using Lagrange multipliers, it is easy to show that the

maximum entropy distribution
� � ��
 has the form

� � ��
�� �� ����� � � � � ����
�� (2.51)

where the Lagrange multipliers � are chosen so that
�  ! � � ��
)( � � , and

�
is the partition

function. Note that to determine
� � ��
 we only require knowledge of � . As we vary � , the

maximum entropy distributions form exactly the exponential family with sufficient statistics

functions � � ��
 , sufficient statistics � and natural parameters � . Further, the � which satisfy the

constraints are in fact the maximum likelihood parameters for the exponential family (2.51) for

the empirical distribution
��

. This duality between maximum entropy and maximum likelihood

is an important aspect of information geometry that we referred to in section 2.1.1.

Popular exponential families like Gaussians and Dirichlets use very simple features � ����

for constraints. To model more complex processes, one can extend the distribution to have

hidden variables, for example, using graphical models like sigmoid belief networks. Note

however that if the hidden variables are integrated out the model will in general not be in the

exponential family. Hidden variables are useful for other purposes, for example to discover and

model hidden causes of observations, but inferring posterior distributions over them is often

intractable. If we only want to model the process well in terms of high likelihood, another

possibility is simply to use more complex features, and more of them. This is the approach
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taken in maximum entropy modelling (MaxEnt).

Note that � ����
 can be any arbitrarily complex deterministic function of � , and inference

will still be trivial – just evaluate � ����
 11. Each feature of � � ��
 can even be the log likelihood

of � under a probability distribution with hidden variables. So long as each distribution allows

efficient inference, inferring the overall distribution over all hidden variables is still efficient.

This is the products of experts approach in the next section.

To apply maximum entropy for probabilistic modelling, there are two problems to solve.

The first is to find a good set of features to use (Della Pietra et al., 1997, Zhu et al., 1997). The

log probability of the training data is��� �!#"%$'& � ����
)(�� ��� � � � � ����

� 0 "%$'& � � �  � � � � ����

� 0 ".$8& � � �  !-".$'& � ����
)( (2.52)

which is just the negative entropy of
� ����
 . Hence in the limit of large training set, where over-

fitting is not a concern, we would like to choose a feature set such that the maximum entropy

distribution has minimum entropy (maximum likelihood). Zhu et al. (1997) called this the

minimax entropy principle. This is usually achieved using a double loop algorithm where one

finds the maximum entropy � in the inner loop, and greedily adds a feature which maximizes

the likelihood in the outer loop. To avoid over-fitting, a preference for simpler features is

usually used in the greedy search.

The second problem in maximum entropy modelling is to determine the parameters � which

satisfy the constraints. The good news here is that the log likelihood
� � !-".$8& � � ��
)( is a convex

function of � and there is a unique global maximum where
�  ! � � ��
)(�� � . The bad news is

that due to the partition function, it can be expensive to integrate over
� � ��
 and to determine� . The simplest method to optimize � is by gradient ascent. From (2.51),2 � � !#"%$'& � � ��
)(2 � � ��� ! � ����
)( 0 �  ! � ����
 (�� � 0 �  ! � ����
)( (2.53)

� can easily be computed from data. The second term, coming from the partition function,

requires an expectation over
� ����
 . This is normally intractable hence an approximate inference

11We typically can only evaluate the log likelihood up to a constant due to the partition function
�

, but this is
usually enough for most purposes. Also, by inference here we do not mean calculating expectations under �	��� � .
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procedure will be required to estimate the expectations. As
� ����
 is normally highly multi-

modal, techniques like variational approximation are not suitable (another problem with typical

variational techniques is that they upper bound rather than lower bound the log likelihood in this

case). Gibbs sampling along with simulated annealing is often the only applicable method, as

the conditional distribution of each variable in � given the others can often be computed easily.

In chapter 6 we introduce an approximate method to learn MaxEnt models by approximating

the free energy.

However, gradient ascent is troublesome as the learning rate has to be tweaked for perfor-

mance, and different learning rates might be required for different features and regions of � .
Improved iterative scaling (IIS) is a general procedure to determine � without the need to set

parameters like the learning rate (Della Pietra et al., 1997). However, IIS still needs to sample

from
� � ��
 to estimate

�  ! � � ��
)( (or needs to calculate it exactly instead). We assume for the

following that � ����
 � � for all � .

At each iteration of IIS, each � � is updated by an amount ��� where � � is the unique solution

to the following equation: �  ! � ������
 ����� � ��� ��
 � ��
)(�� ��� (2.54)

where ������
�� �
� � � ����
 is the sum of components of � � ��
 . The equations (2.54) for the � � ’s are

decoupled and so each � � can be solved independently from the rest. If ������
�� �
is a constant

over � , (2.54) can be solved directly to obtain

� � � �
� "%$'& ����  ! � � � ��
)( (2.55)

This reduces to the generalized iterative scaling (GIS) algorithm (Darroch and Ratcliff, 1972).

This is true, for example, for multinomial distributions where exactly one of the features has

value 1 while the rest is 0. If ��� ��
 is not constant, an effective way of solving for (2.54) is by

Newton’s method, which, with care, can be made to always converge (Berger et al., 1996). For

a gentle introduction to IIS and proof of (2.54), see (Berger, 1997); for further details consult

(Berger et al., 1996).

For both IIS and GIS, instead of updating every parameter at each iteration, we can update
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a subset
�

of the parameters at a time, keeping the rest fixed. In this case, each � � for � � �

is again updated with (2.54) or (2.55), but with ��� ��
4� � � ��� � � � ��
 instead. In the extreme

case when ������
 � � � � for all � , GIS reduces to the iterative proportional fitting (IPF)

algorithm (Deming and Stephan, 1940). IPF steps can be much larger than GIS or IIS steps,

since ��� ��
 � � can be much smaller. This might make IPF sensitive to noise in sampling.

However there are cases in which sampling is not required and IPF is preferable to GIS or IIS

(Jiroušek and Přeučil, 1995, Teh and Welling, 2001).

Maximum entropy modelling has been successfully applied to the unsupervised modelling

of textures (Zhu et al., 1997) and word morphology (Della Pietra et al., 1997). However perhaps

the most effective use of maximum entropy is for modelling complex conditional distributions
� ��� ��� 
 which can be efficiently computed for each

�
without sampling. Examples of these

applications of maximum entropy are found in (Nigam et al., 1999, Berger et al., 1996, Lafferty

et al., 2001a).

2.5.2 Products of Experts

A product of experts (PoE) is a way of combining multiple models together to produce a more

complex model. Each model
� � ��� � ��� � � � 
 , called an expert, has its own set of hidden variables

��� and parameters � � . The product is defined as

� � � � � � � 
�� ����
�

� � � � � ��� � � � 
 (2.56)

where � � � � � � are the parameters of all the models and � � � � � � are all the hidden variables.

Hinton (2002) has more information on PoEs. Two examples of PoEs are restricted Boltzmann

machines (RBM) (Smolensky, 1986) and products of HMMs (Brown and Hinton, 2001). Initial

results have indicated that PoEs are viable for natural language processing (Brown and Hinton,

2001), hand-written digit recognition (Mayraz and Hinton, 2001), face recognition (Teh and

Hinton, 2001) and reinforcement learning (Sallans and Hinton, 2001).

Another way of combining models is a mixture of the models. A mixture model is a lo-

calist representation, while a product model uses distributed representation. In a mixture, one
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component is chosen at a time to model one observation. Hence each component has to model

all aspects of an observation, specializing in a small region of space where it models well. Be-

cause a mixture model cannot be more sharply tuned than each of its individual components, in

high-dimensional spaces, a mixture will either need exponentially many components, or will

not be able to model observations well. On the other hand, in a product model, each expert can

model only one feature of the observation, and many experts can cooperate to model the whole

observation. As a result, PoEs are more efficient models in high dimensions.

Marginalizing out � from (2.56), we have

� � � � � 
��,+ � �� �
�

� � ��� � ��� � � � 
 � �� �
�
+ � � � ��� � � ��� � � ��
�� �� �

�
� � ��� � � ��


� �� ����� � +
�
".$8& � � ��� � � � 
 � (2.57)

A PoE can be viewed as a special case of a maximum entropy distribution, where each feature

comes from a differentiable parameterized family – the log likelihood of a simpler distribution.

A maximum entropy distribution can also be thought of as a simple case of a PoE where each

expert has a fixed shape and one parameter to determine how sharp the expert distribution is.

In maximum entropy modelling, the features are used in a “black box” manner – they can be

evaluated but are otherwise fixed and unknown. As a result, greedy search is needed to find a

small set of features that gives a reasonably good performance in terms of likelihood. This may

not be the optimal way of finding features. If the features involved come from a differentiable,

parameterized family, then gradient ascent on likelihood is potentially a much more efficient

method of finding useful features. This is the approach taken in PoEs.

Dividing (2.56) by (2.57), we have

� ��� � � � � 
�� �
�

� � � ��� � � � � � 
 (2.58)

The hidden variables of each expert are conditionally independent from those of other experts.

On the other hand, from (2.56), we see that the hidden variables are marginally dependent since

they interact through the visible variables � . As a result inference in a PoE is straightforward

if each expert is simple, but generating a sample is much more troublesome, and will have to
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use Gibbs sampling with some convergence speeding method like simulated annealing. This

situation is completely reversed from that of a causal model with a single layer of independent

hidden units ��� and one layer of visible units (e.g. a two layer sigmoid belief network or

factor analysis). In a causal model, the hidden units are marginally independent, while they are

conditionally dependent given observations in the visible layer. Hence in causal models it is

easy to generate a sample from the distribution, but hard to perform inference. Since inference

is much more useful and common in practice than the ability to generate samples, it might be

more desirable to use PoEs.

Just as for maximum entropy models, maximizing the log likelihood is not suitable for

training a PoE with a fixed number of experts, because of the computational cost of evaluating

or sampling from the partition function. Hinton (2002) proposed optimizing another function,

coined contrastive divergence (CD), to make learning more efficient. Starting from the empiri-

cal distribution
� � � � 
�� �� � � 
 , consider using Gibbs sampling to sample from the equilibrium

distribution
��� � � 
 � � � � � � 
 . Gibbs sampling proceeds as follows: fixing the visible units � ,

first sample from � � for each � ; then given the � ’s, sample from � . Let
� � ��� 
 be the distribution

obtained after � Gibbs iterations starting from
� � � � 


� � ��� 
�� � � � ��� � � � 
 � ��� � � � � � � 
 � � � � � � � � 
�� � � � � � (2.59)

Then
� � ��� 
 � ��� ��� 
 as � � � . Contrastive divergence is defined as

� � � � � � � � ��� 
�� � � � � 
 
/0 � � � � � ��� 
�� � � � � 
 
 (2.60)

Note that � � is always nonnegative and is exactly zero when
� � � � � � � �

, that is, the

model has fit the data perfectly. Hence � � is a reasonable function to minimize. Differentiating

(2.60) with respect to � � , we have2 � �2 � � ��0 � ��� 5 2 ".$'& � ��� � � � � 
2 � � 7 � � � � 5 2 ".$'& � � ��� � � ��
2 � � 7 � � � �
2 � �2 � � ��� 


2 � � ��� 
2 � � (2.61)

The first two terms of (2.61) can easily be estimated using samples from
� � and

� � . The third

term is much more troublesome. However, Hinton (2002) showed experimentally that the third
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term can be safely ignored, leaving only the first two terms to estimate the gradient with respect

to � � .
A problem with using CD learning is that (2.60) can be made small by having Gibbs sam-

pling not mix properly, so that
� � � � � . This allows models trained with CD learning to be

good at reconstructing the data, even when they are not modelling the data well in terms of

high likelihood. To facilitate mixing, various methods can be used, for example, weight decay,

and adding regularizers that encourage the reconstruction to be different from the data. Never-

theless, it has been shown that a RBM trained with CD learning is competitive, in the sense of

high log likelihood, with a RBM trained with the standard Boltzmann machine (BM) learning

rule12. But this is achieved with much less computational resources than BM learning, hence it

is better to use CD learning for most practical purposes.

Another possibility for optimizing the parameters is by using iterated conditional modes

(ICM) (Besag, 1983). Index the visible variables by  , so that �4� � � � � . Let � 	 � be all visible

variables except  and define the pseudo-likelihood as

� � � +
�
� ��� � ".$'& � � � � � � 	 � � � 
 � (2.62)

The pseudo-likelihood is an approximation to the log likelihood where we try to reconstruct

each � � from the other visible units. If each � � is a discrete random variable, the pseudo-

likelihood can be easily optimized because the partition function of
� � � � � � 	 � � � 
 can be exactly

computed. ICM is simply gradient ascent in
� � . The derivative with respect to � � is2 � �2 � � � +

�
� ��� ��� �  ��� ���� � � � � � � � 5 2 "%$'& � ��� � � � � 	 � � � ��
2 � � 0 2 ".$'& � � � � �� � � 	 � � � � 
2 � � 7 (2.63)

Define
� � �� ��� 
 � �� �

� � � � � 	 � 
 � � � � � � 	 � � � 
 , where � is the number of visible variables. Now

using "%$'& � � ��� � � � 	 � � � � 
�� ".$8& � � ��� � � � 
	0 "%$'& � ��� � 	 � � � � 
 we can show that (2.63) reduces to2 � �2 � � �	�
� � � � 5 2 "%$'& � ��� � � � � 
2 � � 7 0 � � �
�� 5 2 ".$'& � � � � � � � 
2 � � 7  (2.64)

so ICM reduces to CD learning with a particular Gibbs sampling procedure, i.e. one where

at each iteration  is chosen randomly and � � is sampled from the conditional distribution

12Personal communication from S. Osindero.
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� � � � � � 	 � 
 . The advantage of using ICM as opposed to using normal CD learning is that ICM

is exactly maximizing the pseudo-likelihood so is guaranteed to converge. However, ICM is

often more computationally intensive than CD learning. For example, in the case of RBM,

each iteration of ICM requires  ��� � � 
 operations, while each iteration of normal CD learning

requires  ��� � 
 operations, where � and � are the number of experts and visible variables

respectively. In practice, we find that CD learning converges, hence there is no need to use the

more expensive ICM.

2.6 Discussion

In this section we have covered the major techniques for inference and learning in graphical

models, with particular emphasis on the approximate methods. In the rest of this thesis we will

describe our contributions to these techniques.



Chapter 3

Rate-coded Restricted Boltzmann

Machines for Face Recognition

In this chapter we explore a simple extension to restricted Boltzmann machines (RBMs) that

allows them to model discretized continuous-valued random variables. This is achieved by

replicating a single unit multiple times, and using the number of active replicas to represent

the value of the random variable. These are called rate-coded restricted Boltzmann machines

(RBMrate). We will show that RBMrate can be successfully applied to the tasks of facial mod-

elling and recognition. However the fact that RBMrate can only model discretized and bounded

data is unsatisfactory and leaves room for improvement. These problems with RBMrate serve

as lessons learned and motivation for the energy-based models of the next chapter.

3.1 Products of Experts in Continuous-valued Domains

The first successful products of experts (PoEs), namely restricted Boltzmann machines and

products of hidden Markov models, are all defined over essentially discrete domains (Mayraz

and Hinton, 2001, Brown and Hinton, 2001, Sallans and Hinton, 2001). Hinton (2002) de-

scribed a PoE where each expert is a “unigauss” model – it is a mixture between an axis-aligned

40
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Figure 3.1: A restricted Boltzmann machine.

Gaussian and a uniform distribution1. It was shown that the product of unigauss models works

well on some simple examples. However we found that it does not work as well on the prob-

lems we studied in this thesis, for example modelling images of faces and natural scenes.

Extensions to mixtures between a factor analyzer and a uniform distribution (“unifact”), as

well as mixtures between two factor analyzers have been unsuccessful as well.

In this and the next chapter we describe new classes of PoE that work well for the problems

we are interested in. Rate-coded restricted Boltzmann machines (RBMrate) are described in

this chapter, while in chapter 4 energy-based models (EBMs) are introduced.

3.2 Restricted Boltzmann Machines

A Restricted Boltzmann machine (RBM) is a Boltzmann machine with a layer of visible units

� � and a single layer of hidden units �	� with no hidden-to-hidden nor visible-to-visible connec-

tions (Smolensky, 1986, Hinton and Sejnowski, 1986). See figure 3.1. Let � and  be indices

over visible and hidden units respectively. The distribution over � � � � � � and � � ��� � � is

given by
� � ����� 
�� ����

� ��� �	� � � � � � �
(3.1)

where ����� is the weight connecting ��� and � � and
�

is the normalizing constant. We have

absorbed the biases over the visible units into the weights by having the activation of one of

1Technically a unigauss is an improper distribution due to the uniform distribution. There are two ways to
correct this – we can either have an additional broad Gaussian expert so that the overall PoE becomes proper, or
define the uniform distribution to have bounded support. The support should however be broad enough so that we
can assume it is completely uniform in the region of space we are interested in.
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the hidden units, say � � , be fixed at 1. Similarly for the hidden unit biases. Pulling the sum

over  out of the exponential,

� � � � � 
�� ����
�

�
� � � � � � � � �

(3.2)

we see that an RBM is a PoE with each hidden unit corresponding to an expert. As for any

PoE, given observations on � the posterior over � is a factorized distribution with

� � � � � � � ��
 � �
� � ����� � 0 �

� � ��� � � 
 (3.3)

Hence inference in an RBM is much easier than in a general Boltzmann machine or in a causal

belief network with one hidden layer. Conversely, the hidden units of an RBM are marginally

dependent so an RBM may easily learn population codes in which units are highly correlated.

It is hard to do this in causal belief networks with one hidden layer because the generative

model of a causal belief net assumes marginal independence.

An RBM can be trained using the standard Boltzmann machine learning algorithm which

follows a noisy but unbiased estimate of the gradient of the data log likelihood (Hinton and

Sejnowski, 1986). However, just as for other PoEs, this requires samples from the prior distri-

bution
� � � � � 
 . MCMC sampling from the prior can take a long time to approach equilibrium

and the sampling noise in the resulting estimate can obscure the gradient. As a result gradient

ascent in the log likelihood of the data is not an effective learning algorithm.

We resort to using contrastive divergence to train RBMs instead. The learning rule is

� � ��� � �  � ! � � � � (�0 �  � ! � � � � ( (3.4)

where
� � � � � � 
�� �� � ��
 � � � � ��
 (3.5)

is the “completed” data distribution, and
� � is the distribution after running one step of MCMC

sampling starting from
� � . Since the visible units are conditionally independent given the

hidden activities and vice versa, we use Gibbs sampling where we alternate between updating

all the hidden units in parallel, and updating all the visible units in parallel. Figure 3.2 illustrates
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Figure 3.2: Alternating Gibbs sampling and the terms in the learning rules of a PoE.

this process. Since only one step of the MCMC sampling is performed, the noise in the estimate

is significantly lower than if we try to sample from the prior using many steps. However this

reduction in noise comes at the expense of introducing bias to the learned weights.

3.3 Rate-coded Restricted Boltzmann Machines

For continuous-valued data, the binary units of an RBM are far from ideal. Here we describe a

simple way to increase the representational power without changing the inference and learning

procedures of the RBM.

The idea is to “replicate” the units of the RBM multiple times, and use the number of active

replicas of each unit to represent a discretized continuous value. Imagine that each visible unit,

� � , has ��� replicas which all have identical weights to the hidden units. So far as the hidden

units are concerned, it makes no difference which particular replicas are turned on: it is only the

number of active replicas that matters. So the group of replicas as a whole can now represent

��� � � different discretized values (i.e. � � � � � � � � � � � � ). When sampling from the visible units

given the hidden activities, all the replicas can share the computation of the probability,
� � , of

turning on, and then we can select � replicas to be on with probability � � �� � � � � � � 0 � � 
 � � � � . This

is simply a binomial distribution with � � trials, each with probability
� � being on. The same

trick can be used for the hidden units �	� , where we replicate it ��� times. In summary, we have

shown that both inference and sampling from an RBM can easily accommodate replicas. We

can also easily show that learning with (3.4) is unaffected except that we replace � � and � � with

the corresponding number of active replicas.
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To be more precise, suppose that the continuous values we deal with are bounded between

0 and 1. We can model these values using the proportion of active replicas in each group. In

particular define the aggregate random variable �� � � � � ��� where � is the number of active

replicas corresponding to ��� , and similar for �� � . We also rescale the weights by ������ �*��� � � � � �
to keep the distribution (3.1) the same. The distribution over the aggregate variables induced

by the RBM model (3.1) is then given by

� � �� � �� 
 � �� �
� � �

�
���

�� � � �  � � �
�� � � �  � � � � � �� � � �� � �� �

(3.6)

This can be seen as a binomial extension to Boltzmann machines (the non-RBM extension is

similar). In the following we will be dealing only with this model and not the original binary

RBM. Hence when we refer to a unit we will mean instead the aggregate variable associated

with the corresponding group of replicas. Similarly we will use � � , � � and � ��� instead of �� � , �� �
and �� ��� .

If each unit in a RBM represents a single neuron in the brain, the replica trick can be seen

as a way of simulating the neuron over a time interval in which it may produce multiple spikes

that constitute a rate-code. For this reason we call the model rate-coded restricted Boltzmann

machines (RBMrate).

RBMrate is a simple way to model discretized continuous values between 0 and 1. We can

render the discretization finer by increasing the number of replicas in each group. Unfortu-

nately, this also means that the conditional distribution of an aggregate variable, say �� � , given

its neighbours �� � tends to a delta function centred at its mean
� � (since the variance of an ag-

gregate variable, say ���� given �� is
� ��� � 0 � ��
 � � ). Hence there is a trade off here between finer

discretizations and more complex modelling capacity.

Nevertheless, we will show in the next two sections that it can still be successfully applied

to the tasks of facial modelling and recognition. In the next chapter we will describe a gen-

eralization of PoEs that will naturally accommodate continuous values without discretization,

bounding the continuous values to a certain range, or trade off between discretization resolution

and model complexity.
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3.4 RBMrate for Facial Modelling

As a test of concept, we applied RBMrate to the modelling of face images. We trained the

RBMrate on 800 images of faces from the FERET database (Phillips et al., 1997). The images

include the whole head, parts of the shoulder, and background. Instead of working with whole

images, which contain much irrelevant information, we worked with normalized face images.

The normalization is graphically depicted in figure 3.3 and involves five stages:

a. Original image.

b. Locate the centres of eyes by hand.

c. Rotate and translate the image so that the eyes are located at the preset locations.

d. Crop the image and subsample at � � � � � pixels.

e. Mask out all of the background and some of the face (with a fixed mask), leaving � � � �

pixels in an oval shape.

f. Equalize the intensity histogram within the oval as follows: first compile the histogram

of pixel intensities over all cropped images, then separately for each image we ordered

the pixels according to their intensities and altered the intensities so that the intensity

histogram matches that of the overall histogram.

Figure 3.4 shows some examples of the processed face images. Masking out all of the

background inevitably looses the contour of the face which contains much useful information.

The histogram equalization step removes most lighting effects, but it also removes some rele-

vant information like the skin tone. In the ideal case this information should be modelled, so

that if needed it can be used in further discriminative tasks like identity or expression recogni-

tion. Unfortunately, we, as well as other face modelling researchers, were not able to extract

this information accurately while at the same time removing the unwanted pose and lighting

information. However recent developments in image segmentation, for example Malik et al.

(2001), have the potential to do this accurately.
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(a) (b) (c) (d) (e) (f)

Figure 3.3: Normalizing the face images in the database.

Figure 3.4: Some examples of processed faces.

The RBMrate model we applied has 100 hidden units, each of which has 100 replicas,

while each of the 1768 visible units has 10 replicas. The model was trained with contrastive

divergence with parallel Gibbs sweeps for 1000 iterations through mini-batches of size 100.

We also made two further approximations: we replaced the expectation of � � � � in (3.4) by the

product of their expectations and we used the expected value of � � when computing the proba-

bility of activation of the hidden units. However, we continued to use the stochastically chosen

(discretized) firing rates of the hidden units when computing the one-step reconstructions of

the data, so the hidden activities cannot transmit an unbounded amount of information from

the data to the reconstruction. We have found empirically that replacing � � with its expected

value does not degrade performance and makes the computation more efficient. Replacing ���
with its expected value in (3.4) decreases the noise in the estimate of the contrastive divergence

learning rule.

Some of the learned weights are shown in figure 3.5. All the units encode global features,
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Figure 3.5: The weights learned by RBMrate. Each image is shows the weights adjacent to

one hidden unit (called the receptive field).

probably because the image normalization ensures that there are strong long range correlations

in pixel intensities. Next we compared face images with the model’s reconstructions in fig-

ure 3.6. Given an original face image, the mean activities of the hidden units are inferred. We

then reconstruct the image from the hidden activities of the model. The reconstructions are

generally good enough. Notice however that glasses are not reconstructed well, since they do

not occur very often in the dataset.

Inspired by (Lee and Seung, 1999), we tried to enforce local features by restricting the

weights to be non-negative. This is achieved by resetting negative weights to zero after each

weight update. Figure 3.7 shows some of the hidden receptive fields learned. Except for the 6

features on the left, all other features are local and code for features like mouths, eye brows,

noses and cheeks. The 6 features on the left are much more global and clearly capture effects

on the face when the lighting direction is changed.
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Figure 3.6: Reconstructions of faces using the model. In each cell, the left image is the original,

while the right one is the reconstruction after one Gibbs sampling iteration.

Figure 3.7: The weights learned by RBMrate when they are restricted to be non-negative.
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The inferred hidden activities of the model can be understood as a representation of the

original face image. This representation can be computed efficiently from the image since

the hidden units of a PoE are conditionally independent. The representation also efficiently

summarizes the original image (with 1768 pixels) using only 100 hidden unit activities, without

much loss of information, as can be seen in figure 3.6. This facial representation can be used

for further processing, for example, for recognizing the expression or identity of the individual

in the image. We will apply a RBMrate model to identity recognition in the next section.

Unfortunately, the representation of faces in this section cannot be fruitfully applied to face

(identity) recognition because it does not take into account the fact that certain variations across

faces are important for face recognition, while some variations are not. We will instead use a

more suitable RBMrate model for pairs of images.

3.5 RBMrate for Face Recognition

Encouraged by the results in the previous section, we applied RBMrate to the task of face

recognition. Face recognition is a difficult task since the number of individuals is typically very

large and the test and training images of an individual differ in expression, pose, lighting and

the date on which they were taken. In addition to being an important application for security

or biometric verification, face recognition allows us to evaluate different kinds of algorithm

for learning to recognize or compare objects, since it requires accurate representation of fine

discriminative features in the presence of relatively large within-individual variations. This is

made more difficult when, as istypical, there are very few exemplars of each individual.

At the same time, because of the large number of individuals typical in face recognition

applications, the facial models used must have efficient algorithms to infer the activities of the

facial features. This need for efficiency rules out many powerful models at the disposal of

the researcher, and as a result most successful applications of face recognition employ simple

models like principal components analysis and independent components analysis, where the

facial features are simply linear combinations of the pixel intensities.
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This combination of both the need to have flexible and powerful facial features and the

need to have efficient inference makes PoEs ideal for face recognition. We will explore this

application using RBMrate models in this section.

3.5.1 The FERET Database

The version of the FERET database (Phillips et al., 1997) we used contains 1002 frontal face

images of 429 individuals taken over a period of a few years. To remove information irrelevant

to face recognition, each image was normalized as in the previous section.

Of the 1002 images in the database, 818 are used both as the gallery and the training

set2. The training set for the face-pair network consists of all pairs of faces from the gallery

belonging to the same individual. There are 500 distinct such pairs, creating a training set of

1000 face pairs for RBMrate. To evaluate the strengths and weaknesses of RBMrate versus the

other face recognition methods, we divided the remaining 184 images into 4 disjoint sets, each

testing for a distinct condition. The test sets are:

� The � expression set contains 110 images of different individuals. These individuals all

have another image in the training set that was taken under the same lighting conditions

at the same time but with a different expression. The training set also includes a further

244 pairs of images that differ only in expression.

� The � days test set contains 40 images, two from each of 20 individuals. Each of these

individuals has two images from the same session in the training set and two images

taken in a session 4 days later or earlier in the test set. This test set evaluates the face

recognition methods under changes in lighting conditions and slight variations in appear-

ance (e.g. hair styles, make-ups, beard growth or shaved). A further 28 individuals were

2The gallery is a set of images of individuals whose identities are known. Given a test image, it is compared
against the images in the gallery and the individual in the most similar one (based on some similarity measure)
is identified as the person in the test image. The similarity measure is typically computed using a model (for
example, in eigenfaces (Turk and Pentland, 1991) the model used is principal components analysis) which is
trained using a training set. Here we used the same images in the gallery and training set, although they could
differ (or even be disjoint). The test sets are disjoint from both the training set and the gallery.
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photographed in a similar fashion and all 112 of these images are in the training set.

� The � months test set is just like the
�

days test set except that the time between ses-

sions was at least three months. This test set evaluates major changes in the set-up (e.g.

different rooms, cameras etc), lighting conditions, and appearance. It is most interesting

as it reflects conditions in real life applications of face recognition. This set contains 20

images of 10 individuals. A further 36 images of 9 more individuals were included in

the training set.

� The � glasses test set contains 14 images of 7 different individuals. Each of these in-

dividuals has two images in the training set that were taken in another session on the

same day. The training and test pairs for an individual differ in that one pair has glasses

and the other does not. This test set evaluates a major change in appearance (i.e. with

or without glasses) while controlling for changes in lighting conditions or set-up. The

training set includes a further 24 images, half with glasses and half without, from 6 more

individuals.

3.5.2 Popular Face Recognition Methods

We compared RBMrate with four popular face recognition methods:

� The first and simplest is correlation, which returns the similarity score as the angle be-

tween the two images represented as vectors of pixel intensities. Correlation performed

better than using the Euclidean distance as a score.

� The second method is eigenfaces (Turk and Pentland, 1991), which projects the images

onto the principal component subspaces, and returns the similarity score as the angle

between the projected images. The principal components are determined from the train-

ing set. The first few principal components could be removed if they were manually

determined to be coding for features which are invariant for face recognition. This tends

to improve recognition performance. In our case, we omitted the first principal compo-

nent as it encodes for changes in lighting conditions, and used the next 199 components
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instead. Omitting the first principal component improved recognition performance on

all test sets except for
�

expression (which is reasonable since
�

expression images

are taken under the same lighting conditions, but we know we do not want to use that

information for face recognition).

� The third method is fisherfaces (Belmumeur et al., 1996). This method is like eigen-

faces, except instead of projecting the images onto the subspace of the principal com-

ponents (thus maximizing the variance among the projected images) fisherfaces projects

the images onto a subspace which both maximizes the between individual variances and

minimizes the within individual variances in the training set. The intuition is that we

want the clusters corresponding to different classes (individuals) to be as well separated

as possible to improve discrimination. We used a subspace of dimension 200 for this

projection.

� The final method, which we shall call � ppca, is proposed by Moghaddam et al (Moghad-

dam et al., 1998). This method models differences between images of the same individ-

ual as a probabilistic principal components analysis (PPCA) (Moghaddam and Pentland,

1997, Tipping and Bishop, 1997), and differences between images of different individu-

als as another PPCA. Then given a difference of two images, it returns as the similarity

score the likelihood ratio of the difference image under the two PPCA models. It was

the best performing algorithm in the September 1996 FERET test (Phillips et al., 1997).

We used 10 and 30 dimensional PPCAs for the within-class and between-class models

respectively. These are the same numbers used by Moghaddam et al. (1998) and gives

the best results in our simulations.

3.5.3 A Face-pair RBMrate Model

A simple way to use RBMrate for face recognition is to train a single RBMrate to model faces

as in section 3.4, and to identify a face by finding the gallery image that produces a hidden

activity vector that is “most similar” to the one produced by the face. This is how eigenfaces
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Figure 3.8: A RBMrate model for pairs of faces.

(Turk and Pentland, 1991) are used for recognition, but it does not work well because it does not

take into account the fact that some of the variations across faces are important for recognition,

but other types of variations are not. To correct this, we instead trained an RBMrate model

on pairs of different images of the same individual, and then use this model of pairs to decide

which gallery image is best paired with the test image.

This model is similar to that used in section 3.4. There are 100 hidden units, each with 100

replicas, while the visible units have 10 replicas each. The model is trained on pairs of different

face images belonging to the same individual. Let the weights connecting hidden unit  to pixel

� in the first and second images be � �� � and � ���� respectively (see figure 3.8). We did not find

it necessary to use weight sharing, although it is possible in principle. Note however that the

obvious way to share weights, i.e. � ���� � � ���� , is not desirable since it means that hidden units

cannot describe variations across the faces of a single individual (see later). Instead, weight

sharing should be imposed on pairs of hidden units  � and  � by � ���� � � � ���� � and � ���� � � � ���� � .

To preserve symmetry, each pair of images of the same individual � � � � � � 
 in the training
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set also has a reversed pair � � � � � � 
 in the set. We trained the model on 1000 image pairs

(500 distinct pairs) for 2000 iterations in batches of 100, with a learning rate of � � � � � for the

weights, a learning rate of � � ��� for the biases, and a momentum of � � ��� 3. These parameters

were chosen so that the RBMrate can learn quickly without diverging (the learning can diverge

simply because the step sizes are too large).

Given a face pair � � � ��� � � � 
 , we define the goodness of fit to the model to be the negative

free energy of � under the model, i.e.

� � � � � � � 
�� � � ��
�� + � � � � � ��

� +�  � � � + � � � � �

��� �
�
� � � 0 "%$'& � � � � ��
�� (3.7)

Note that � � � � � � � 
��� � � � � � � � 
 in general. However the two quantities will be approximately

equal as the training set is symmetric with respect to switching the faces in each pair.

To account for fact that certain face images are intrinsically easier to model than others, we

introduce a balanced similarity measure � � � � � � � 
 given by

� � � � � � � 
�� � � � � � � � 
 � � � � � � � � 
	0 � � � � � � � 
	0 � � � � � � � 
 (3.8)

To determine the identity of an individual, we take the test image � and find the gallery image

� that maximizes � � � � � 
 .
In the presence of many face images each with many pixels, the efficiency of face recogni-

tion methods is an important concern. Our face-pair network shares an advantage of methods

like eigenfaces and fisherfaces in that comparisons of test and gallery images can be made in

the low-dimensional feature space rather than the high-dimensional space of pixel intensities.

Here we show how to do this comparison.

Given an image pair � � � � � � � � 
 , if we let �
�
� � �

� � �
��� �

�
� be the total input into hidden

unit � � from image �
�
, then the mean of � � is given by

� � � ��� � ��� ����� � 0�� �� � �
��

� � 
 
 . The

3The learning rates here are ���
	 larger than those reported in (Teh and Hinton, 2001) because we are using the
proportion of active replicas ��� here, rather than the number of replicas.
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goodness of fit to the model is, after some algebraic manipulation,

� � � � � � � 
�� +
� � � � �

� �
��� �

�
� � � 0 +

�
� � � � � ".$'& � � � � � 0 � � 
 "%$'& � � 0 � � 
 
 (3.9)

� +
�

� � ".$'& � � � ����� � � �� � � ��
� � � (3.10)

Hence both the goodness of fit and the similarity between two images can be computed effi-

ciently using only the total inputs into the hidden units �
�
� . Thus if we precompute and store

these total inputs for the gallery images, and for each test image compute them once, we can

compute the similarity between the test image and all the gallery images efficiently.

3.5.4 Comparative Results

Figure 3.9 shows the error rates of all five methods on the test sets. The results were averaged

over 10 random partitions of the dataset to improve statistical significance. Correlation and

eigenfaces perform poorly on
�

expression, probably because they do not attempt to ignore

the within-individual variations, whereas the other methods do. All the models did very poorly

on the
�

months test set which is unfortunate as this is the test set that is most like real applica-

tions. RBMrate performed best on
�

expression, fisherfaces is best on
�

days and
�

glasses,

while eigenfaces is best on
�

months. These results show that RBMrate is competitive with

but does not perform better than other methods. To demonstrate the difficulty of the
�

months

test set, we have produced figure 3.10. The
�

months test set is intrinsically difficult and is

made even harder by the loss of contour and skin tone information.

3.5.5 Receptive Fields Learned by RBMrate

Figure 3.11 shows the weights of a few of the hidden units after training the RBMrate. All

the units encode global features, perhaps because the image normalization ensures that there

are strong long range correlations in pixel intensities that are easily captured by the RBMrate.

The maximum size of the weights is � � � � � � � , with most weights having magnitudes smaller

than � � � ��� . Note, however, that the hidden unit activations range from 0 to 100. Figure 3.11
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Figure 3.9: Error rates of all methods on all test sets. The bars in each group correspond, from

left to right, to the rank-1, rank-2, rank-4, rank-8 and rank-16 error rates. The rank- � error rate

is the percentage of test images where the � most similar gallery images are all incorrect.

Figure 3.10: On the left is a test image from
�

months and on the right are the 8 most similar

images returned by RBMrate. Most human observers cannot find the correct match to the test

image.

shows that RBMrate has discovered some features which are fairly constant across images in

the same class, and some features which can differ substantially within a class. For example,

the top left feature may encode the presence of mustache in both faces, the feature below that

may code for prominent right eyebrows in both faces, while the feature to the right may encode



CHAPTER 3. RATE-CODED RESTRICTED BOLTZMANN MACHINES 57

Figure 3.11: Example features learned by RBMrate. Each pair of receptive fields constitutes a

feature.

the fact that the mouth shape may change across images of the same individual.

We can again let RBMrate learn local features by constraining the weights to be non-

negative. Figure 3.12 shows some of the hidden receptive fields learned. Except for the four

features on the left, all other features are local and code for features like mouth shape changes

(third column) and eyes and cheeks (fourth column). The four features on the left are much

more global and clearly capture the fact that the direction of the lighting can differ for two

images of the same person. Constraining the weights to be non-negative strongly limits the

representational power of RBMrate and makes it perform worse than all the other methods on

all the test sets.

3.6 Discussion

We have introduced an extension to RBMs, called RBMrate, that models discretized continuous

values. Each unit of the RBMrate models can be understood as representing the number of

spikes of a neuron over a time interval.

We applied RBMrate models to face modelling and recognition, and showed that they pro-
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Figure 3.12: Example features learned by RBMratewith non-negative weight constraints.

duce efficient facial models and that they are comparable to popular methods for face recogni-

tion. However, unlike other face recognition methods based on linear models, there is plenty

of room for further development, for example using prior knowledge to constrain the weights

or adding additional layers of hidden units to model the correlations of hidden activities as in

(Mayraz and Hinton, 2001). These improvements should translate into improvements in the

rate of recognition.
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Chapter 4

Energy-Based Models for Sparse

Overcomplete Representations

In this chapter we introduce a more natural extension of PoEs to continuous-valued domains.

In these energy-based models (EBMs), each expert is simply some (potentially non-linear)

function of the data which contributes an energy term. The overall probability distribution

over the data space is defined as the Boltzmann distribution corresponding to the sum of the

energies. We assume that the energies are such that the Boltzmann distribution is properly

defined (i.e. the exponentiated negative energies is normalizable). If each expert is simply

some non-linearly transformed output of a linear filter on the data, EBMs turn out to be a novel

and interesting generalization of square noiseless independent components analysis (ICA). ICA

is a popular linear but non-Gaussian model that is used for blind source separation and the

extraction of features from sounds and images. The focus of this chapter is to describe this

simpler case and its relationship to ICA. In particular, we show that this energy-based approach

of ICA is equivalent to the established approaches of ICA in the square and noiseless case, but

gives novel and interesting extensions of ICA to the over-complete case.

In section 4.1 we describe the three views of ICA – the causal generative view (Pearlmutter

and Parra, 1996, MacKay, 1996, Cardoso, 1997), the information maximization view (Bell and

Sejnowski, 1995, Shriki et al., 2002), and our new energy-based view. In sections 4.2 and

59
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4.3 we describe the square noiseless ICA and over-complete extensions from both the causal

generative and filtering perspectives in detail. In section 4.4 we describe our energy-based view

of ICA and its relationship to the other views. We describe contrastive divergence learning of

energy-based ICA in section 4.5, and experiments in sections 4.6 and 4.7, and close with some

discussion in section 4.8.

4.1 Introduction

There have been two dominant ways of understanding ICA, one based on a bottom-up, filtering

approach and the other based on a top-down, causal generative approach. In the information

maximization view (Bell and Sejnowski, 1995, Shriki et al., 2002) the aim is to maximize the

mutual information between the observations and the non-linearly transformed outputs of a set

of linear filters. In the causal generative view (Pearlmutter and Parra, 1996, MacKay, 1996,

Cardoso, 1997), on the other hand, the aim is to build a density model in which independent,

non-Gaussian sources are linearly combined to produce the observations.

The main point of this chapter is to show that there is a third, “energy-based” view of ICA

which combines a bottom-up, filtering approach with the goal of fitting a probability density to

the observations. The parameters of an energy-based model specify a deterministic mapping

from an observation vector � to a feature1 vector and the feature vector determines a global

energy,
� � x 
 . The probability density of � is defined by:

� � x 
�� � ��� � x �� (4.1)

where
�

is a normalization factor - the integral of the numerator over all possible observation

vectors. The energy-based view is interesting because it suggests novel and tractable ways of

extending ICA to over-complete and multi-layer models.

The relationship between the three perspectives is depicted in figure 4.1. In general, they

are quite different, but they all become equivalent for the “square” and noiseless case, that

1When discussing energy-based models, we use the term “feature” rather than “source” for reasons that will
become clear when we discuss extensions to the over-complete case.
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Linear Components Analysis

Density

Causal
Generative

Models

Filtering
ApproachModelling

Approach

Information
Maximization

Energy−Based
Models

Figure 4.1: Different methods for non-Gaussian linear components analysis.

is, when the number of sources or features equals the number of observations and there is no

observation noise. While complete representations have been applied successfully to a wide

range of problems, researchers have recently argued for “over-complete” representations where

there are more sources or features than observations. Apart from greater model flexibility,

reported advantages range from improved robustness in the presence of noise (Simoncelli et al.,

1992), more compact and more easily interpretable codes (Mallat and Zhang, 1993) to super-

resolution (Chen et al., 1998).

The natural way to extend the causal generative view to the over-complete case is to re-

tain the assumption that the sources are independent when the model is used to generate data

and to accept the consequence that an observation vector creates a posterior distribution over

a multiplicity of source vectors. In this posterior distribution, the sources are conditionally

dependent due to the effect known as “explaining-away” and, in general, the distribution has

the unfortunate property that it is computationally intractable.

The natural way to extend the information maximization view to over-complete represen-

tations is to retain both the simple, deterministic, feedforward filtering of observations and the
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Figure 4.2: Independence properties of three types of models.

mutual information objective function (Shriki et al., 2002). However, because the manifold of

possible filter outputs typically does not consist of the whole space (except in the square case),

the equivalence with causal generative models breaks down.

When our energy-based view of ICA is made over-complete, it continues to be a proper

density model and it retains the computationally convenient property that the features are a de-

terministic function of the observation vector. However, it abandons the marginal independence

of the features (which is why we do not call them sources). A useful way of understanding

the difference between energy-based density models and causal generative density models is to

compare their independence properties. Figure 4.2 summarizes the similarities and differences.

The table reminds us that the different views are equivalent in the square case, and hence,

in the absence of observations, the sources are marginally independent. Further, the poste-

rior distribution over source vectors conditioned on an observation vector collapses to a point

in the absence of noise, so the sources are trivially independent in the posterior distribution.

In the causal generative approach this conditional independence of the sources is seen as a

fortuitous consequence of using as many sources as observations and avoiding noise in the

observations, and is not retained in the over-complete case. In the energy-based view, the con-

ditional independence of the features is treated as a basic assumption that remains true even

in the over-complete case. We can consider the energy contributed by the activity of a feature
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of an energy-based model as the negative log probability of a one-dimensional, non-Gaussian

distribution. However not all combinations of feature activities can occur because the lower-

dimensional observation space only maps to a restricted manifold in the feature space.

The marginal dependence of the features in an over-complete, energy-based model can be

understood by considering an illuminating but infinitely inefficient way of generating unbiased

samples from the energy-based density model. First we sample the features independently from

their “prior” distributions (the negative exponentials of their individual energy contributions)

and then we reject cases in which the feature activities do not correspond to valid observation

vectors. Since the features are over-complete, if the feature values are accepted, there is only

one observation vector consistent with the feature values (assuming non-degeneracy). This

process of “rejecting-away”creates dependencies among the activities of different features.

Because of the confusion between marginal and conditional independencies in the various

models, we avoided using the term independent component analysis in figure 4.1. Rather we

used linear component analysis instead, since there is always a linear relationship between the

sources/features and the observations.

For some applications, such as unmixing sound sources, the causal generative view is

clearly more appropriate than the energy-based view because we have a strong prior belief

that the sources are marginally independent. In many other applications, however, the real aim

is to model the probability density of the data, or to discover interpretable structure in the data,

or to extract a representation that is more useful for controlling action than the raw data itself.

In these applications, there is no a priori reason for preferring the causal generative view to

the energy-based view that characterizes each observation vector by representing the degree to

which it satisfies a set of learned features.

4.2 Square ICA

In this section we will briefly review the standard models for ICA. One of the first expositions

on ICA (Comon, 1994) used the entropy of linearly transformed input vectors as a contrast
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function to find statistically independent directions in input space. Indeed many, if not all, ICA

algorithms ultimately reduce to optimizing some sort of “contrast function”; this overview will

not try to mention them all. Rather we will focus on reviewing two general approaches to ICA,

namely the causal generative approach (Pearlmutter and Parra, 1996, MacKay, 1996, Cardoso,

1997) and the information maximization approach (Bell and Sejnowski, 1995, Shriki et al.,

2002). Subsequent sections will then compare these canonical approaches with our proposed

energy-based approach, and in particular will explore the consequences of making the different

models over-complete.

Consider a real valued input, denoted by � , of dimensionality
�

, and an � -dimensional

source or feature vector, denoted by � . In this section we will consider the special case where

the number of input dimensions is equal to that of the source or features, i.e.
� � � .

4.2.1 The Causal Generative Approach

In the causal generative approach, the sources � are assumed to be independent, that is, the

distribution
� ��� 
 factors as

� ��� 
�� ��
�  �

� ��� � ��
 (4.2)

while the inputs are simply linear combinations of the sources. Moreover, we will assume for

now that there is no noise on the inputs, i.e.

� � 
�� (4.3)

where 
 is a square invertible matrix called the mixing matrix. Inverting this relationship we

have

� � � �
� � � ��
 ��� (4.4)

where the inverse mixing matrix � �
will be called the filter matrix since each row acts as a

linear filter of the inputs.

The aim is now to recover the statistically independent source signals � from the linearly

mixed observations � . This turns out to be possible only if the statistical properties of the
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sources are non-Gaussian2. Thus, we shall assume that the probability distribution of the

sources will be modelled by non-Gaussian prior distributions
� ��� � ��
 . Since the relation between

sources and inputs is deterministic and one-to-one, we may view it as a change of coordinates.

Deriving an expression for the probability distribution of the inputs � can therefore be accom-

plished by transforming expression (4.2) to � -space, using the Jacobian of that transformation,

� ��� 
�� ���� - � � 2 �2 � ����
��
�  �

� ��� � � ��� 
 
�� � - � � � �
��
�  �

� � ��� �
� � 
 (4.5)

where � � are the columns of � . Learning proceeds by averaging the log-likelihood for the

above model over a data distribution3
� � ��� 
 and using the derivatives of it with respect to �

for gradient ascent: 2 � � � !#"%$'& � ��� 
 (2�� ��� � � � � 5 2 "%$'& � � � � ��
2 � � �	� 7 0 � � � � � � � (4.6)

where
� � � is the  th entry of � � and ! � � � ( � � is the �  th entry of the matrix � � � � � � � 
 ��� .

4.2.2 The Information Maximization Approach

An alternative, more neurally plausible approach to ICA was put forward by Bell and Se-

jnowski (1995)4. In that paper it was assumed that a certain transformation was applied to the

inputs,

� � � � ����� �
� � 
 �/� � � � � � (4.7)

with � � � � 
 being a monotone squashing function such as a sigmoid and � � a set of linear fil-

ters. It was then argued that maximizing the mutual information5 between outputs � and inputs

� , which is equivalent to maximizing the entropy of � due to the deterministic relation (4.7),

2Technically at most one of the sources can be Gaussian.
3This data distribution is the underlying distribution from which our observed data is sampled. In practice, we

replace this by the empirical distribution over the training set.
4In fact this information maximization approach to ICA was proposed first, followed by the causal generative

approach. We presented the two approaches in reverse order here for more intuitive exposition.
5Note that this mutual information is measured with respect to the data distribution �

 
.
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would lead to independent components. This effect can be understood through the decomposi-

tion
� ��� 
�� �+

�  �

� ��� ��� 
	0 ��� � � � � � � ��� � 
 (4.8)

with
� ��� 
 the entropy of � ,

� ��� ��� 
 the individual entropies, and � the mutual information

among ��� ’s. Maximizing the joint entropy thus involves maximizing the individual entropies

of the ��� ’s and minimizing the mutual information between the � � ’s, i.e. making the � � ’s inde-

pendent.

This approach can best be described as a filtering approach, since each � � is just a squashed

version of the filter outputs � � � �
�
� � . This is in contrast with the causal generative approach

where we instead think of � as being generated by � in a top-down manner.

4.2.3 Equivalence of the Two Approaches

For square representations the information maximization approach turns out to be equivalent to

the causal generative one if we interpret ����� � 
 to be the cumulative distribution function of
� ��� � 


(Pearlmutter and Parra, 1996, MacKay, 1996, Cardoso, 1997). This can be seen by observing

that the entropy
� ��� 
 can be written as a negative KL divergence using a change of variables

as follows,

� ��� 
�� 0 � ��� � � ��� 
 "%$'& � � ��� 
���0 � � � � � ��� 
 ".$'& � � ��� 
� - � � � ��� 
 � (4.9)

where
� � ��� 
�� � � � � �

������� � � � � � and � ��� 
 is the Jacobian of the transformation between � and � ,

� ��� ��� 
 � 2 � � ��� 
2 �	� (4.10)

Using some basic algebra it can be shown that
� - � � � ��� 
 � is in fact exactly equal to (4.5),

since � � satisfies � �� � � 
�� � � � � 
 , being the cumulative function of
� � . Therefore maximizing the

entropy in (4.9) is indeed equivalent to maximizing the log likelihood of the model (4.5). Note

also that if the sources are actually distributed according to
� � � � 
 and mixed using 
 , then the

transformation (4.7) maps the input variables to independent, uniformly distributed variables

over the range of � ��� � 
 , i.e. the interval ! � � � ( in case of a sigmoid. This geometric interpretation

will be of help in section 4.3.2.
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4.2.4 Square ICA with Input Noise

In the previous section we have shown that the causal generative approach, in the special case of

a square mixing matrix and no noise, is equivalent to the information maximization approach.

This equivalence will break down, however, when we consider a noise model for the inputs. In

that case, there is no longer a deterministic relationship between the inputs and the sources. It

is, however, still straightforward to write a probabilistic model for the joint distribution over

sources and inputs,
� ��� � � 
�� � ��� � � 
 ��

�  �

� � � � ��
 (4.11)

Unfortunately, even for isotropic Gaussian noise it is no longer true that given a mixing matrix
 the optimal reconstruction of the sources is simply given by (4.4). Instead, one typically

computes the maximum a posteriori (MAP) value (or the mean, depending on the objective) of

the posterior distribution
� ��� � � 
 .

4.3 Overcomplete Generalizations of ICA

The equivalence between the two approaches also breaks down when there are more sources

than input dimensions, i.e. when we consider over-complete representations of the data. We

will now review over-complete generalizations of ICA based on both approaches.

4.3.1 The Causal Generative Approach

Arguably the most natural way to extend the ICA framework to over-complete representations

is through the causal generative approach. The corresponding directed graphical model is

depicted in figure 4.3a. For noiseless inputs, finding the most probable state � corresponding

to a particular input � now translates into the following optimization problem,

�
����� � � � & 	 � �� � �+

�  �
".$'& � ��� � ��
 ���� such that ��� 
 ��� (4.12)

The above problem is typically hard and it can only be solved efficiently for certain choices

of
� � � � 
 . For instance Lewicki and Sejnowski (2000) argued that by choosing the priors to be
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inputs: x

sources: s

inputs: x

features: u

inputs: x auxiliary vars: z

features: u

(a) (b) (c)

Figure 4.3: (a) Directed graphical model corresponding to the causal generative approach to

ICA. (b) Undirected graphical model for an EBM. (c) Directed graphical model representation

for an EBM with auxiliary variables clamped at � .

Laplacian the problem can be mapped to a standard linear program.

One can “soften” this optimization problem by introducing a noise model for the inputs. For

instance, using a spherical Gaussian noise model with noise variance � � we find the following

joint probability density distribution over sources and inputs,

� ��� � � 
�� � ��� � � 
 � � � 
���� � � 
�� � � � � � ��
�  �

� ��� � ��
 (4.13)

which leads to the following maximization problem to reconstruct the sources from the inputs,

�
��� � ����� & 	 � �� � 0 �

� � �
�
� 0 
 � � � � �+

�  �
"%$'& � � � � � 
 � (4.14)

Maximum likelihood learning for the above noisy model using the EM procedure involves

averaging over the posterior distribution
� � � � � 
 . Unfortunately this inference problem is in-

tractable in general and approximations are needed. In the literature one can find a whole

range of approximate inference techniques applied to this problem. In Olshausen and Field

(1996) the posterior is approximated by a delta function at its MAP value. Thus at every iter-

ation of learning and for every data vector the maximization in (4.14) needs to be performed6.

In Lewicki and Sejnowski (2000) it was argued that the approximation can be significantly

improved if a Gaussian distribution around this MAP value was constructed by matching the

6In fact the situation is slightly better using a variational point of view. One can show that one can also improve
a bound on the log-likelihood by jointly maximizing over � and � . We also note that an extra condition on the
mixing matrix is needed to prevent it from collapsing to � .
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second derivatives locally (i.e. the Laplace approximation). Attias (1999) and Girolami (2001)

use a variational approach which replaces the true posterior with a tractable approximation

which is itself adapted to better approximate the posterior. Finally, MCMC sampling meth-

ods, such as Gibbs sampling may be employed to solve the inference problem approximately

(Olshausen and Millman, 2000).

A notably different variation on the generative theme is the Bayesian approach taken by

Hyvärinen and Inki (2002). There, a prior distribution
� � 
 
 over possible mixing matrices
 is introduced which favors orthogonal basis-vectors (columns of 
 ). They argue that the

role of the Jacobian
� - � � � � � �	� � - � � 
 � in (4.5) is precisely to encourage orthogonality

among basis-vectors7 and that it is therefore a reasonable assumption to remove this Jacobian

in favor of the extra prior. The resultant expression is then easily extended to over-complete

representations.

We want to stress that causal generative models will almost always lead to very difficult

inference problems. In contrast, generating unbiased samples from the distribution
� ��� 
 is

relatively straightforward, since we first sample source values independently from their priors

and subsequently sample the input variables according to the conditional Gaussian in (4.13).

4.3.2 The Information Maximization Approach

In section 4.2 an information maximization approach to ICA was discussed for the simple case

when the number of inputs is equal to the number of sources and no noise is assumed on the

inputs. A natural question is whether that objective can be generalized to over-complete repre-

sentations. One possibility advocated by Shriki et al. (2002) is to define again the parametrized

non-linear mapping (4.7) between inputs and outputs and to maximize their mutual informa-

tion (which amounts to maximizing the entropy of the outputs). Note that this approach is best

classified as a filtering approach, and that inputs are mapped one-to-one onto a subset of all

possible outputs, i.e. the image of that mapping forms a lower dimensional manifold in output

7It is assumed that the columns of � have unit lengths.
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x−space y−space

y=f(Wx)
T

Figure 4.4: Mapping used by the information maximization approach given by (4.7).

space (see figure 4.4). Shriki et al. (2002) showed that this objective translates into maximizing

the following expression for the entropy,

� ��� 
�� 0 � ��� � � ��� 
 "%$'& � � ��� 
� - � � � � ��� 
 � � ��� 
 
 (4.15)

where � ��� 
 is the Jacobian defined in (4.10), and
� � ��� 
 is the data distribution.

4.4 Energy-Based Models

By interpreting ICA as a filtering model of the inputs, we now describe a very different way of

generalizing ICA to over-complete representations. Energy-based models (EBM) preserve the

computationally attractive property that the features � are simple deterministic functions of the

inputs, instead of stochastic latent variables as in a causal generative model. As a consequence,

even in the over-complete setting the posterior
� ��� � � 
 collapses to a point, which stands in

sharp contrast to over-complete causal models which define a posterior distribution over the

sources. In fact, for over-complete EBMs, not all feature values are allowed, since not all values

lie in the image of the mapping from � to � . This is similar to the information maximization

approach but very different from the causal generative approach where all source values are

allowed.

Let ��� ����� � ��
 be the mapping from � to feature � � with parameters � � . The features are
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used for assigning an energy
� ��� 
 , to each possible observation vector � , as follows

� ��� 
�� �+
�  �

� ��� � ����� � � � 
 
 (4.16)

The probability of � is defined in terms of its energy through the Boltzmann distribution8

� ��� 
�� � ��� ��� �� � � � � � � � � � � ����� � � � �� (4.17)

where
�

denotes the normalization constant (or partition function),� � �
� � � ��� ��� � � ��� � (4.18)

Standard ICA with non-Gaussian priors
� � � � ��
 is implemented by having the same number of

sources as input dimensions and using

��� ��� � � � 
 � �
�
� � � ��� ����
�� 0 ".$'& � ��� ��� 
 (4.19)

Furthermore, in this special case of standard ICA the normalization term in (4.17) is tractable

and simplifies to � � ���� �- � � � � 

���� (4.20)

where the columns of � are the filters � � .
The above energy-based model suggests thinking about ICA as a filtering model, where

observations are linearly filtered, instead of as a causal generative model, where independent

sources are linearly mixed. Hinton and Teh (2001) interpreted these filters as linear constraints,

with the energies serving as costs for violating the constraints. Using energies corresponding

to heavy-tailed distributions with a sharp peak at zero means that the constraints should be

“frequently approximately satisfied”, but will not be strongly penalized if they are grossly

violated.

In this new approach it is very natural to include more constraints than input dimensions.

Note however, that the marginal independence among the sources which was a modelling

8We note that the additive form of the energy leads to a product form for the probability distribution, which
was called a “product of experts” (PoE) model in (Hinton, 2002).
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assumption for over-complete causal models, is no longer true for the features in the EBMs in

general. Instead, since the posterior
� ��� � � 
 reduces to a point, the features given the inputs are

trivially independent,
� ��� � � 
�� �

�
��� ��� 0 ���� ��� � � ��
 
 (4.21)

The semantics of such probabilistic models is consistent with that of undirected graphical mod-

els as depicted in figure 4.3b. The above means that inference in EBMs is trivial. On the other

hand, sampling from the distribution
� ��� 
 is difficult and involves MCMC in general. This is

precisely opposite to causal generative models where inference is hard but sampling easy.

4.4.1 Relating EBMs to Causal Generative ICA

We will now discuss how the proposed over-complete EBMs relate to the causal generative

approach to ICA. In the previous section we have already argued that when the number of

input dimensions matches the number of features, an EBM is strictly equivalent to standard

ICA as described in section 4.2. In the following we will now assume that there are more

features than input dimensions (i.e. � � �
).

Consider an ICA model where we have added � 0 �
auxiliary input dimensions � . We

will denote the total input space by � � ! � ���'( . We will also add additional filters from the

new � variables to all features and denote them by � �
, i.e. the total filter matrix is now

�
� � ! � � � � � ( . We will assume that the new filters are chosen such that � is invertible,

i.e. that the new enlarged space is fully spanned. For this enlarged ICA model we can again

write the probability distribution as in (4.5), here being

� ��� ���	
�� � - � � �
�
��
�  �

� � ��� �
� � � � �� �	
 (4.22)

where
� � are the columns of � . Next, we write the probability density for the conditional

distribution,
� ��� � �	
�� � ��� ���	
� ���	
 � � ��� ���	
� � ��� � ���	
���� � (4.23)

where the
� - � � �

�
terms have cancelled. If we choose “observed” values for the auxiliary
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variables � � � then this can be written as

� ��� � � � � 
�� �
�
� � ��� �

� � 
� �
�
� � ��� �

� � � 
���� � (4.24)

The above is of course just an EBM where the partition function is given by,� � � �
�
� � ��� �

� �
� 
���� � (4.25)

Note that the above derivation is independent of the precise choice of the filters � �
as long as

they span the extra dimensions.

In the previous section we have seen that an EBM may be interpreted as an undirected

graphical model with conditional independence of the features given the inputs. From the above

discussion we may conclude that we can also interpret the EBM as a conditional distribution
� ��� � � � � 
 on a directed graphical model, where � 0 �

auxiliary variables � have been

clamped at � . (see figure 4.3c). By clamping the extra nodes we introduce dependencies among

the features through the phenomenon of “explaining away”. In other words, the features are

constrained by the requirement that � � � , which creates dependencies.

4.4.2 Relating EBMs to Information Maximization

In section 4.3.2 we saw that in the information maximization approach to over-complete rep-

resentations one maximizes the entropy (4.15). The fact that the quantity
� - � � � � ��� 
 � � ��� 
 


in that equation is not, in general, normalized as it is in the complete case, prevents expression

(4.15) from being a negative KL divergence. If we therefore define the probability density,

� ��� 
�� �� � - � � � � ��� 
 � � ��� 
 
 (4.26)

where
�

is the normalization constant, then minimizing the KL divergence � � � � � � � � 
 is equiv-

alent to maximizing the log-likelihood of the model
� ��� 
 . Importantly,

� ��� 
 is consistent with

the definition of an EBM if we choose as the energy,� ��� 
�� 0 "%$'& � � - � � � � ��� 
 � � ��� 
 
 � � 0 �
�

� �
� "%$'& � � ��� 
 � � ��� 
 � � (4.27)
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The energy-based density model
� ��� 
 in (4.26) has a simple interpretation in terms of the

mapping (4.7). This mapping is depicted in figure 4.4 where it is shown that the � -coordinates

define a parametrization of the manifold. It is not hard to show that the distribution
� ��� 


is transformed precisely to a uniform distribution
� ��� 
 � �	� � on the manifold in � -space,

where the normalization constant
�

may thus be interpreted as the volume of this manifold.

Minimizing the KL divergence � � � � � � � � 
 can therefore be interpreted as mapping the data to

a manifold in a more high-dimensional embedding space, in which the data are distributed as

uniformly as possible. The relation between information maximization and the above energy-

based approach is summarized by the following expression,

� ��� 
�� 0�� � � � � ��� 
 � � � ��� 
 
 � ".$'& � Manifold-Volume 
 (4.28)

The first term describes the “fit” of the model
� ��� 
 to data, while the second term is simply

the entropy of the uniform distribution
� ��� 
 on the manifold. Relative to the energy-based

approach, maximizing the mutual information will have a stronger preference to increase the

volume of the manifold, since this is directly related to the entropy of
� ��� 
 . Note that in the

square case the manifold is exactly the whole image space ! � � � ( � , hence its volume is always

fixed at 1, and (4.28) reduces exactly to the KL divergence � � � � � ��� 
�� � ��� 
 
 .
In the over-complete case, experiments will have to decide which approach is preferable

and under what circumstances.

4.5 Parameter Estimation for Energy-Based Models

In section 4.4 we proposed energy-based models as probabilistic models for over-complete

representations. We did not, however, discuss how to fit the free parameters of such models

(e.g. filters �
�
� ) efficiently to data. In this section we will address that issue.

First, we describe the usual maximum likelihood method of training such models. For

over-complete models, we show that maximum likelihood is not a practical solution, because

of the non-trivial partition function. In light of this, we propose another estimation method for

energy-based models called contrastive divergence (Hinton, 2002). This is a biased method,
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but we will show that the bias is acceptably small compared with the gain in efficiency in

training over-complete models, and the ease with which we can generalize the method to new

and more intricate models.

Let
� � ��� 
 be the distribution of the observed data, and

� � ��� 
�� � ��� 
 be the model distribu-

tion given in (4.17) (the reason for this notation will become apparent later in the section). We

would like
� �

to approximate
� � as well as possible. The standard measure of the difference

between
� � and

� �
is the Kullback-Leibler (KL) divergence:

� � � � � � � � 
�� � � � ��� 
 "%$'& � � ��� 
� � ��� 
 � � (4.29)

Because
� � is fixed, minimizing the KL divergence is equivalent to maximizing the log likeli-

hood of the data under the model
� �

. For energy-based models given by (4.17), the derivative

of the KL divergence with respect to a weight
� ��� is2 � � � � � � � � 
2 � � � � � � � 5 2 � ��� 
2�� ��� 7 0 � ��� 5 2 � ��� 
2�� ��� 7 (4.30)

Learning can now proceed by using the derivative in (4.30) for gradient descent in the KL

divergence between the data distribution and the model distribution,

� � � � � 0 2 � � � � � � � � 
2 � � � (4.31)

The above update rule can be understood as lowering the energy surface at locations where

there are data (first term in (4.30)) and at the same time raising the energy surface at locations

where there are no data but the model predicts high probability (second term in (4.30)). This

will eventually result in an energy surface with low energy (high probability) in regions where

there are data present and high energy (low probability) everywhere else.

The second term on the RHS of (4.30) is obtained by taking the derivative of the log par-

tition function (4.18) with respect to
� ��� . In the square ICA case, the log partition function is

exactly given by "%$'& � - � � � ��� � , hence the second term evaluates to the �  th entry of the ma-

trix � � � . However if the model is over-complete, there is no analytic form for the partition

function so exact computation is generally intractable. Instead, since the second term is an ex-

pectation under the model distribution
� �

, one possibility is to use Markov chain Monte Carlo
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(MCMC) techniques to approximate the average using samples from
� �

(see Neal, 1993).

This method inherits both the advantages and drawbacks associated with MCMC sampling.

The estimate obtained is consistent (i.e. the bias decreases to zero as the length of the chains is

increased), and it is very easily adaptable to other more complex models. The main drawback

is that the method is very expensive – the Markov chain has to be run for many steps before

it approaches the equilibrium distribution
� �

and it is hard to estimate how many steps are

required. Also, the variance of the MCMC estimator is usually high. To reduce the variance

many independent samples are needed, incurring additional computational costs. Therefore,

estimating the derivative (4.30) accurately by MCMC sampling is slow and can be unreliable

due to high variance.

However, in the following we will argue that it is unnecessary to estimate the derivatives

averaged over the equilibrium distribution in order to train an energy-based model from data.

Instead, we will average the derivatives over a different distribution, resulting from truncat-

ing the Markov chain after a fixed number of steps. This idea, called contrastive divergence

learning, was first proposed by Hinton (2002) to improve both computational efficiency and

reduce the variance at the expense of introducing a bias for the estimates of the parameters

with respect to the maximum likelihood solution.

There are two ideas involved in contrastive divergence learning. The first one is to start

the Markov chain at the data distribution
� � rather than to initialize the Markov chain at some

vague distribution (e.g. a Gaussian with large variances). The reason usually given for using

vague initial distributions is that every mode of the equilibrium distribution has a chance of

being visited by some chain. This can help to overcome a problematic feature of many Markov

chains – a low mixing rate; once a chain enters a mode of the distribution it is hard to escape

to a different mode. However, we argue that starting at the data distribution is preferable since

the training data already contains examples from the various modes that the model distribu-

tion ought to have. Towards the end of learning, when the modes of the model distribution

roughly correspond to the modes in the data distribution, the number of samples in each mode

approximately matches the number of data vectors in each mode. This further reduces the vari-
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ance of the derivative estimates. The main danger with this technique is that certain spurious

modes devoid of actual data could be accidentally created during learning, and these may go

unnoticed.

The second idea of contrastive divergence is to run the Markov chain for only a few itera-

tions rather than until equilibrium. Because the chains are started at the data distribution, even

after only a few iterations, any consistent tendency to move away from the data distribution

provides valuable information that can be used to adapt the parameters of the model. Intu-

itively, the parameters of the model should be updated so that the Markov chain does not tend

to move away from the data distribution (since we want the Markov chain to equilibrate to the

data distribution).

Combining the two ideas described above and defining
� � ��� 
 to be the distribution of the

random variable at the � th iteration of the Markov chain9, the contrastive divergence learning

algorithm is implemented by using the following quantity to update the filters
� ��� ,

� � � � � 0 � � � 5 2 � ��� 
2�� ��� 7 � � �
� 5 2 � ��� 
2 � � � 7 (4.32)

Relative to maximum likelihood learning ((4.30) and (4.31)) we have replaced the equilibrium

distribution
� �

with
� � , and the Markov chain is initialized at the data distribution

� � . Algo-

rithm 4.1 gives pseudo-code for contrastive divergence learning in EBMs.

Notice that in order to compute the average in the second term of (4.32) we used samples

produced by Markov chains initialized at the corresponding data vectors used in the first term.

This, rather than uniformly sampling the initial states of the Markov chains from the data

vectors, further reduces the variance.

If in addition to the filter weights
� ��� additional parameters are present, for instance to

model the shape of the energies
� � , update rules similar to (4.33) can be used to fit them to

data. For standard ICA, this would correspond to learning the shape of the prior densities.

If the model distribution
� �

is flexible enough to perfectly model the data distribution10

9Hence the notation �
 

for the initial distribution of the Markov chain and � � for the limit distribution of � �

as ����� .
10In the case of finite data, we replace the data distribution by the empirical distribution, which is a mixture
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Algorithm 4.1 Contrastive Divergence Learning for Energy-Based Models

1. Run until convergence criterion is met or run time limit exceeded:

2. Compute the gradient of the total energy with respect to the parameters and

average over the data cases � � .
3. Run MCMC samplers for � steps, starting at every data vector � � , keeping only

the last sample � � of each chain.

4. Compute the gradient of the total energy with respect to the parameters and

average over the samples � � .
5. Update the parameters using,

� � ��� � 0 �

�

�	 +
data ���

2 � � � � 
2�� ��� 0 +
samples 9 �

2 � � � � 
2�� ��� 
� (4.33)

where � is the learning rate and � the number of samples in each mini-batch.

� � , and if we use a Markov chain that mixes properly, then contrastive divergence learning has

a fixed point at the maximum likelihood solution, i.e. when
� � � � � . This is not hard to

see, since at the maximum likelihood solution, the Markov chain will not change the model

distribution, which implies that the derivatives in (4.32) precisely cancel. In general however,

we expect contrastive divergence learning to trade-off bias with variance (see also Williams and

Agakov, 2002). Apart from this, it may also happen that for certain Markov chains spurious

fixed points exist in contrastive divergence learning (for some examples see MacKay, 2001).

4.5.1 Hybrid Monte Carlo Sampling

In this section we have described in detail CD learning without reference as to which Markov

chains to use. Although we have argued that it is unnecessary for the Markov chain to approach

equilibrium, it is still important that we choose a Markov chain that mixes fast to reduce the

of delta-functions. In this case, any smooth model distribution will not be able to perfectly fit the empirical
data distribution and the above argument fails. In fact, we may expect to incur a certain bias with respect to the
maximum likelihood solution.
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bias in CD learning. In this subsection we will describe hybrid Monte Carlo (HMC), a very

flexible class of Markov chains. HMC mixes sufficiently fast that we have used it in all our

experiments on EBMs reported in this chapter. See section 5 of Neal (1993) for an in-depth

description of HMC and related techniques and theory.

HMC can be thought of as a type of Metropolis-Hastings sampling. In Metropolis-Hastings

sampling, a proposal distribution is used to sample a candidate � � given a previous state � , and

a rejection rule is used to accept or reject � � as the next state (if it is rejected, � is used as

the next state instead). To keep the acceptance rate reasonably high, the candidate typically

involves a small change to the previous state; as a result, Metropolis-Hastings sampling often

exhibits random walk behaviour. The idea of HMC is to move the candidate � � away from

� while keeping the acceptance rate reasonably high using a deterministic dynamical system.

This reduces the random walk behaviour and improves the mixing rate of the Markov chain.

Given an EBM with energy function
� ����
 , HMC requires both the ability to evaluate

� � ��
 ,
and the ability to calculate the gradient

�
�� � ����
 for each � . Both can be easily calculated for

an EBM. We introduce a momentum variable � of equal dimensionality as � , and define the

Hamiltonian as

� ��� ��� 
�� � ��� 
 � �
� ��� � � (4.34)

The Hamiltonian can be understood as the total energy of the system, with �� ��� � � the kinetic

energy and
� ��� 
 the potential energy. The distribution over both � and � is then

� ��� ��� 
�� �� � ���
� � � � � � �� � ���

��� �
� �

�
��� � � � � � � ��� 
 ���	� � � � ��
 (4.35)

where ���
��� � � ��
 means � is Gaussian distributed with zero mean and unit covariance. Hamil-

tonian dynamics is given by the following dynamical equations

� �
��� � � 2 �2 � � � (4.36)

� �
��� ��0 2 �2 � ��0 2 �2 � (4.37)

where � is a time parameter. Intuitively, the dynamics describe the movements of a ball of unit

mass on a frictionless surface. The ball has position � and momentum � , and at position � the
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ball is located at a height giving it potential
� � ��
 . It can be shown that the distribution

� ��� ��� 

is invariant to evolving � and � according to the dynamics (4.36, 4.37).

Algorithm 4.2 Hybrid Monte Carlo Sampling

1. At iteration � , we start with the previous sample ��� ��� . Let � � � 
�� ��� ��� .
2. Sample initial momentum vector � � � 
 from a zero mean unit covariance Gaussian.

3. Simulate Hamiltonian dynamics for time ��� , using � leapfrog steps of size � each.

For �4� � ��� � ��� � � � � � � � 0 � 
�� :
� �
� � �

� 
�� � �
��
	0 �
�
2 �2 � ��� � � 
 


� �
� ��� 
 � � �
��
 ��� � � ��� �
� 
 (4.38)

� �
� ��� 
 � � �
� � �
� 
�0 �

�
2 �2 � ��� � ����� 
 


The number of leapfrog steps � and the step size � are user-defined parameters.

4. Accept either � � ��� 
 or � � � 
 as the new sample ��� :

��� �
	

� 

� � � ��� 
 with probability 	 +�� � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � 
 otherwise

(4.39)

The HMC Markov chain is used to obtain a sample � ��� � 
 from
� ��� ��� 
 . Marginalizing

� ��� ��� 
 to � , we see that � will be a sample from
� � ��� 
 if ����� � 
 is a sample from

� � ��� ��� 
 .
Algorithm 4.2 describes an iteration of HMC. The intuition is that in iteration � of HMC, given

a previous state ��� ��� and � � ��� , we first discard � � ��� and sample a new momentum vector �
�
� .

This is simply Gibbs sampling (since
� ��� ��� 
 factors in (4.35)) and leaves

� ��� ��� 
 invariant.

Then Hamiltonian dynamics is applied for some fixed amount of time ��� , where at time � we

start with � � � 
 � ��� ��� and � � � 
 � �
�
� . The resulting � � ��� 
 and � � ��� 
 is taken as the next state

of the Markov chain, i.e. ����� � � ��� 
 , � �	� � � ��� 
 . Since this leaves
� ��� ��� 
 invariant as well,

the whole operation leaves
� ��� ��� 
 invariant. Of course we actually simulate the Hamiltonian

dynamics by using the leapfrog discretization (4.38). The leapfrog discretization is designed
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to preserve phase space volume, i.e. each measurable set ����� � 
 of values for position � and

momentum � is mapped to another set with the same measure. This is crucial to preserve the

invariance of
� ��� ��� 
 under the discretized dynamics. However the leapfrog discretization still

introduces errors which is then corrected by the final rejection step. Notice that the third step

of the leapfrog step can be combined with the first step of the next leapfrog step:

� �
� � �
� 
 � � �
��
�0 �

�
2 �2 � ��� �
��
 
�� � � � 0 �

� 
	0 � 2 �2 � ��� �
��
 
 (4.40)

The error in the discretization is affected by the step size (it scales as  � � � 
 ) which in turn

affects the acceptance rate. We find that the optimal step sizes used are quite sensitive to

the particular problem and to the phase of learning (e.g. at the start of learning the model

distribution
� �

is quite vague and we can use a large step size, while at the end of learning

a small step size is needed). Hence instead of using the step size as a parameter, we use the

acceptance rate as a parameter, and adjust the step size so that the actual acceptance rate is

in the vicinity of the desired rate. The adjustment is done after each CD step (which might

involve multiple HMC steps) to avoid affecting the equilibrium property of the Markov chain.

We use a simple adjustment rule:

� � ��0 � � � desired rate 
	0 � empirical rate 
 
 (4.41)

where � is another user-defined parameter.

4.6 Experiment: Blind Source Separation

In collaboration with Max Welling, we assessed the performance of contrastive divergence as

a learning algorithm. We compared a HMC implementation of contrastive divergence with

an exact sampling algorithm as well as the Bell and Sejnowski (1995) algorithm on a stan-

dard “blind source separation” problem. The model has the same number of input and source
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dimensions11, and the energy of the model is defined as� � � � � 
�� 0 ".$8& ��� � � ��
 � � 0 � � � � 
 
 
 (4.42)

This model is strictly equivalent to the noiseless ICA model with sigmoidal outputs used by

Bell and Sejnowski (1995).

The data consisted of sixteen five-second stereo CD recordings of music, sampled at
��� � �

kHz12. Each recording was monoized, down-sampled by a factor of � , randomly permuted

over the time-index and rescaled to unit variance. The resulting � � � � � samples in ��� channels

were linearly mixed using the standard instamix routine with
� � � � � ( � on the diagonal and

�	� � off the diagonal)13, and whitened before presentation to the various learning algorithms.

The whitening process is a simple linear transformation (called the ZCA) which makes the

covariance matrix identity and has been observed to improve ICAs speed of convergence.

The HMC implementation of contrastive divergence uses � outer loop step of HMC sim-

ulation to sample from
� � ��� 
 , which in turn consists of 30 leapfrog steps, with the step sizes

adapted at the end of each simulation so that the acceptance rate is about � ��� . This is algo-

rithm HMC in the following. For noiseless ICA, it is possible to sample efficiently from the

true equilibrium distribution using the causal generative view. This is used in EQUIL. To be

fair, we used a number of samples equal to the number of data vectors in each mini-batch. We

can also compute the partition function using (4.20), and evaluate the second term of (4.30)

exactly. This is precisely Bell and Sejnowski’s algorithm and was implemented in EXACT.

Parameter updates were performed on mini-batches of � � � data vectors. The learning rate

was annealed from � � ��� down to � � � � ��� in � � � � � iterations of learning14, while a momentum

factor of � � � was used to speed up convergence. The initial weights were sampled from a

Gaussian with a standard deviation of � � � .
During learning we monitored the Amari-Distance15 to the true unmixing matrix. In figures

11Note however that recovering more sound sources than input dimensions (sensors) is not possible with our
energy-based model, since the feautures are not marginally independent.

12Prepared by Barak Pearlmutter and available at http://sweat.cs.unm.edu/ � bap/demos.html.
13Available at http://sound.media.mit.edu/ica-bench.
142000 iterations each at ��� ��� , ��� ��	
� , ��� ����� , ��� ����	�� and ��� ��� ��� .
15The Amari-Distance (Amari et al., 1996) measures a distance between two matrices � and � up to permuta-
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Figure 4.5: Evolution of the Amari Distance for the various algorithms on the blind source

separation problem, averaged over 100 runs. Note that HMC converged just as fast as the exact

sampling algorithm EQUIL, while the exact algorithm EXACT is only slightly faster. The

sudden changes in Amari distance are due to the annealing schedule.

4.5 and 4.6 we show the results of the various algorithms on the sound separation task. The

figures show that the deterministic method EXACT performs slightly better than the sampling

methods HMC and EQUIL, probably due to the variance induced by the sampling. More im-

portantly, it shows that learning with brief sampling (HMC) performs about as well as learning

with samples from the equilibrium distribution (EQUIL). The main conclusion of this exper-

iment is that we do not need to sample from the equilibrium distribution in order to learn the

filters � . This validates the ideas behind contrastive divergence learning.

tions and scalings:
�������	� �
�� �	� � �������������������! #" � ���� ��� � � " �%$ � �������������������& #" � ���� ��� � " � �(' � 	*),+ .
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Figure 4.6: Final Amari-Distances for the various algorithms on the blind source separation

problem, averaged over � � � runs. The boxes have lines at the lower quartile, median, and upper

quartile values. The whiskers show the extent of the rest of the data. Outliers are denoted by

“+”.

4.7 Experiments: Feature Extraction

We present examples of the features delivered by our algorithm on several standard datasets.

Firstly we demonstrate performance on typical ICA tasks of determining an over-complete set

of features of speech and natural images. Then, we show the algorithm applied to the CEDAR

cdrom dataset of hand-written digits and lastly, we present the feature vectors learned when the

algorithm is applied to the FERET database of human faces.

For all the experiments described in this section we use an energy function of the form:� ��� ��� ��� � � � 
 
���� � ".$8& � � � � � �
� � 
 � � (4.43)

which corresponds to modelling the data with a product of one-dimensional student-t distri-

butions with � ��� 0 � 
 degrees of freedom (Hinton and Teh, 2001). This energy function was
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chosen for its simplicity yet versatility in describing super-Gaussian distributions. However,

the algorithmic formulation allows the use of arbitrary energy functions and results may be

improved by a more systematic tailoring of the energy function to particular datasets.

4.7.1 Speech

Max Welling performed an experiment to test whether the model could extract meaningful

filters from speech data. He used recordings of 10 male speakers from the TIMIT database,

uttering the sentence:

“Don’t ask me to carry an oily rag like that.”

The sentences were down-sampled to � kHz and � � � � � , � ��� � ms segments (each segment cor-

responding to � � � samples) were extracted from random locations. Before presentation to the

learning algorithm the data was centred (i.e. the mean was removed) and whitened. The fea-

tures were trained using contrastive divergence with one step of HMC sampling consisting of

� � leapfrog steps. Mini-batches of size � � � were used, while the learning rate was annealed

from � � ��� to � � � � ��� over � � � � � iterations. The filters were initialized at small random values

and momentum was used to speed up parameter learning.

In figure 4.7 we show � � of the � � � features in the whitened domain together with their

power spectra. Recall that since there are � times more filters extracted as dimensions in the

input space, the energy-based model is no longer equivalent to a causal ICA model. Figure

4.8 shows the distribution of power over time and frequency. There seems to be interesting

structure around � � � kHz, where the filters are less localized and more finely tuned in frequency

than average. This phenomenon is also reported by Abdallah and Plumbley (2001).

4.7.2 Natural Image Patches

We tested our algorithm on the standard ICA task of determining the “independent” compo-

nents of natural images. The data set used is the imlog16 data set of van Hateren and van der

16Available at ftp://hlab.phys.rug.nl/pub/samples/imlog.
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(a)

(b)

Figure 4.7: (a) Filters found by the 2 � over-complete EBM. The � filters in the first row are

the ones with largest power, indicating that they represent important features. The � filters in

the second row are randomly drawn from the remaining � ��� filters. (b) Corresponding power-

spectra.

Schaaf (1998). The logarithm of the pixel intensities was first taken and then the image patches

were centred and whitened. There were 122880 patches and each patch was ��� � � � in size.

We trained a network with � � � � � � � � � features, using contrastive divergence with 1 step of

HMC sampling consisting of 30 leapfrog steps. The step size was adaptive so that the accep-

tance rate is approximately 90 � . Both � � and � � are unconstrained, but a small weight decay

of � �	��� was used for � � to encourage the features to localize. The � � ’s were initialized to

random vectors of length 1, while the � � ’s were initialized at 1. Both � � and � � were trained

with a learning rate of 0.01 and momentum factor of 0.9. We found however that the result

is not sensitive to the settings of these parameters. A random sample of � � � learned features

in the whitened domain is shown in figure 4.9. They were roughly ordered by increasing spa-

tial frequency. By hand, we counted a total of ��� features which have not localized either in

the spatial or frequency domain. Most of the other features can be described well with Gabor

functions. To further analyze the set of learned filters, we fitted a Gabor function of the form

used by Lewicki and Olshausen (1999) to each feature and extracted parameters like frequency,
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Figure 4.8: Distribution of power over time and frequency for the learned speech features.

First the envelope of each filter (the absolute value of its Hilbert transform) was computed and

squared. Next, the squared envelope and the power spectrum were thresholded by mapping

all values greater than half the peak value to one and the rest to zero. Gaps smaller than �
samples in time and � samples in frequency were filled in. Finally, the outer product of the

two “templates” were computed, weighted by the total power of the filter, and added to the

diagram.

location and extent in the spatial and frequency domains. These are summarized in figures 4.10

and 4.11, and show that the filters form a nice tiling of both the spatial and frequency domains.

We see from figures 4.9 and 4.11 that filters are learned at multiple scales, with larger features

typically being of lower frequency. However we also see an over emphasis of horizontal and

vertical filters. This effect has been observed in previous papers (van Hateren and van der

Schaaf, 1998, Lewicki and Olshausen, 1999), and is probably due to pixellation.
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Figure 4.9: Learned filters for natural images.

4.7.3 CEDAR Digits

In collaboration with Simon Osindero, we applied EBMs to images of hand-written digits. We

used 16x16 real valued digits from the “br” set on the CEDAR cdrom #1. There are 11000

digits available, divided equally into 10 classes. The mean image from the entire dataset was

subtracted from each datum, and the digits were whitened. A network with 361 features was

trained in the same manner as for natural image patches.
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Figure 4.10: The spatial layout and size of the filters learned on natural image patches, which

are described by the position and size of the bars.

A random subset of learned filters is shown in figure 4.12. To make it easier to discern the

structure of the learned filters, we present them in the whitened domain rather than in pixel

space. We note the superficial similarity between these filters and those found from the natural

scene experiments. However, in addition to straight edge filters we also see several curved

filters. We interpret the results as a set of ‘stroke’ detectors, modelling a space of strokes that
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Figure 4.11: A polar plot of frequency tuning and orientation selectivity of the filters learned

on natural image patches, with the centre of each cross at the peak frequency and orientation

response, and crosshairs describing the �	� � � -bandwidth.

gives rise to the full digit set.

4.7.4 FERET Faces

In collaboration with Simon Osindero, we applied EBMs to the database of frontal face images

used in the 1996 FERET face recognition evaluation (Phillips et al., 1997). The data was first

pre-processed in the standard manner by aligning the faces, normalizing the pixel intensities

and cropping a central oval shaped region17. Then as an additional pre-processing step we

centred the data and retained the projections onto the leading 256 principal components as

the input dimensions to the algorithm. The projections are also normalized so that they have

variance one. We trained an EBM with 361 features using contrastive divergence with HMC

17The code for pre-processing is part of a project on evaluating face recognition algorithms by Ross Beveridge
and Bruce Draper. It is available at
http://www.cs.coloradostate.edu/evalfacerec/index.htm.
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Figure 4.12: Learned filters for CEDAR digits. Filters are plotted in whitened space for clarity.

sampling (3 sets of 20 leapfrog steps). Both the w � and �	� were unconstrained. The w � were

initialized with values from a Gaussian distribution and the vector norm of each weight vector

was rescaled to 1. The �	� were initialized at 1. A learning rate of 0.005 was used for the w � ,
whilst a learning rate of 0.001 was used for the � � .

Figure 4.13a shows the 32 leading eigenvectors plotted as face images, and figure 4.13b

shows a subset of 32 filters as learned by our model. Many of the learned filters are somewhat
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(a)

(b)

(c)

Figure 4.13: (a) 32 eigenfaces with largest eigenvalue plotted rowwise in descending eigen-

value order. (b) Subset of 32 feature vectors learned using the EBM on ordinary face data. The

top row are hand picked, the bottom row randomly selected. (c) Subset of 32 feature vectors

learned using architecture I, all randomly selected.

global in that most pixels have a non-zero weight. However, in addition to these global features

there are also more localized features focussing on glasses, eyes, smiling mouths, moustaches

etc. Furthermore, as well as global features that can perhaps be described as ‘archetypical

faces’ (which are similar to those learned by RBMrate in figure 3.5) we also see global features

which appear to mainly capture structure in the illumination of a face.

The features learned here are not as sparse as those for natural images or hand-written

digits. The reasons are twofold. First since the face images are normalized the pixel values

are highly correlated to each other. Second, the model imposes (through the energy terms) a

sparsity constraint on the outputs of the filters, while there is no actual pressure for the filter

weights themselves to be sparse. To impose sparsity on the weights we can again force them to
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be non-negative. However Bartlett et al. (2002) proposed a more interesting solution (referred

to as architecture I) which we use here. The idea is that we invert the roles of the filter outputs

and weights, so that the same EBM will now impose the sparsity constraint on the weights

instead.

We describe the technique in the context of causal generative square ICA (which as we

have shown is equivalent to an EBM with equal numbers of filters and inputs). Let the matrix
�

have columns which correspond to training images. Square ICA can be understood as a

decomposition

� � 
 �
(4.44)

where the columns of 
 are the basis vectors, and the columns of
�

are the sources which

generated the images (columns in
�

). A sparse prior is then imposed on the entries of
�

. The

equivalent of this for EBMs gives the features in figure 4.13b.

Taking the transpose of (4.44), we have a decomposition

� � � � � 
 � (4.45)

Now if we place a sparse prior on the entries of 
 , the decomposition can still be interpreted

as ICA, but with columns of
� �

as the basis vectors and 
 � the sources instead.

When performing ICA on the columns of a matrix � (in the above context � could be
�

or
� �

), it is important that the number of columns be greater than the number of rows (note

that at least one of
�

or
� �

will not satisfy this condition). If the number of rows is greater,

then the columns only span a subspace of the whole space. In this case we should perform ICA

only within the spanned subspace by projecting the columns down onto the subspace. A related

issue is that learning in ICA is more efficient if we first whiten the columns of � so that they

have unit covariance. The typical way to handle both issues is by using PCA (Bartlett et al.,

2002). Let � be the desired number of principal components. We take � to be less than the

number of columns and rows. Let the columns of
�

be the first � principal components of the

columns of � , and the diagonal matrix � have the associated eigenvalues along its diagonal.

We construct the projected matrix � � ��� � �
� � � � . The columns of � �

are whitened and
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represents the original columns of � in the projected space. ICA can now be applied to the

matrix � �
.

The above framework is in terms of causal generative square ICA. Making use of the re-

lationship between square ICA and EBMs, we can extend this framework easily to the over-

complete case using EBMs. In particular, we apply over-complete EBMs to the columns of

� � � � � �
� � � � , where � � � �

. Figure 4.13c illustrates the results when we take ��� � � � .

The features shown are actually the outputs of the filters learned by EBM (rows of 
 �
in

(4.45)). This approach leads to features that are all highly localized in space, since the model

imposes a sparse prior on the outputs of the filters. Our results are again qualitatively similar

to those described in Bartlett et al. (2002).

4.8 Discussion

In this chapter we have re-interpreted the standard ICA algorithm as an energy-based model

and studied its extension to over-complete representations. We have shown that parameters

of an EBM, such as the filter weights and those parametrizing the energy function, can be

efficiently estimated using contrastive divergence learning. Through a number of experiments

on standard data sets we have shown that EBMs can efficiently extract useful features in high

dimensions. In conclusion we believe that EBMs provides a flexible modelling tool which can

be trained efficiently to uncover useful structure in continuous-valued data.

Contrary to causal generative models for over-complete ICA, the features of an EBM ex-

hibit marginal dependencies. The advantage of allowing these dependencies in the model is

fast inference. In causal generative models, the assumption of marginal independence often

leads to intractible inference which needs to be approximated using some iterative, data de-

pendent scheme. The role of these iterations can be understood as suppressing the “activity”

of less relevant features, thus producing a sparse code. Therefore, for causal generative mod-

els, over-complete representations are expected to produce very compact (or sparse) codes, a

fact which is often emphasized as desirable (Olshausen and Field, 1997). Perhaps surprisingly,
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Figure 4.14: Architecture of a hierarchical non-linear energy-based model. Non-linearities are

indicated by sigmoidal units in output layer 1. Energies can be contributed by output variables

in both layers, and the number of output variables need not correspond to the number of input

variables.

we have shown that such a slow iterative process is in fact not needed to produce sparse and

over-complete representations.

However the above does suggest enriching EBMs with inhibitory lateral connections to

achieve the goal of further suppressing less relevant features in order to produce an even sparser

representation. Preliminary experiments using a mean field approach to implement these lateral

inhibitions have been successful in learning good density models, but are slow due to the

iterative optimization for every data case.

Another powerful generalization of EBMs is a hierarchical non-linear architecture in which

the output activities are computed with a feed-forward neural network (figure 4.14) and each

layer may contribute to the total energy. In a recent paper by Welling et al. (2003), a two layer

model was studied where the second layer performed a local averaging of the non-linearly

transformed activities of the first layer. This resulted in a topographic ordering of the filters,

where orientation, location and frequency are changing smoothly from one filter to the next.

This work builds upon the topographic ICA work of Hyvärinen and Hoyer (2001) and there is

an interesting relationship between the two layer EBM and the approximation used to train the

topographic ICA model in Hyvärinen and Hoyer (2001).
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To fit multi-layer EBMs to data, backpropagation is used to compute gradients of the energy

with respect to both the data vector (to be used in HMC sampling), and the weights (to be used

for weight updates). Since this algorithm applies backpropagation in an unsupervised setting

and combines it with contrastive divergence learning we have named it “contrastive backprop-

agation” (Hinton et al., 2002). Indeed, the contrastive backpropagation learning procedure is

quite flexible. It puts no constraints other than smoothness on the activation functions or the

energy functions18. The procedure can be easily modified to use recurrent neural networks that

contain directed cycles by running each forward pass for some predetermined number of steps

and defining the energy to be any smooth function of the time history of the activations. Back-

propagation through time (Rumelhart et al., 1986, Werbos, 1990) can then be used to obtain

the required derivatives. The data-vector can also change during the forward pass through a

recurrent network. This makes it possible to model sequential data, such as video sequences,

by running the network forward in time for a whole sequence and then running it backward in

time to compute the derivatives required for HMC sampling and for updating the weights.

The energy-based approach to ICA we have presented stems from previous work on PoEs.

In fact an EBM is a type of PoE that defines a density over continuous-valued domains. Be-

cause no discretization is involved EBMs are more natural models to use than the RBMrate

model of chapter 3. In future work we would like to explore the various extensions to EBMs

mentioned above, and apply EBMs to face recognition to compare it against RBMrate and

other standard face recognition algorithms.
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Chapter 5

The Bethe Free Energy for Inference

Along with variational techniques and MCMC sampling, loopy belief propagation has emerged

in recent years as a powerful alternative for approximate inference. It was found that the fixed

points of loopy belief propagation correspond exactly to stationary points of an approximate

free energy called the Bethe free energy (Yedidia et al., 2001). Unfortunately loopy belief

propagation does not always converge. This chapter takes the obvious next step and proposes

an alternative to loopy belief propagation that will always converge to a stationary point of the

Bethe free energy. We call this algorithm unified propagation and scaling because it makes use

of an interesting relationship between loopy belief propagation, and the classical iterative scal-

ing algorithm. We show in a number of toy experiments the applicability of unified propagation

and scaling.

5.1 Introduction

Belief propagation (BP) is a standard algorithm to perform exact inference on tree structured

graphical models (Pearl, 1988, Lauritzen and Spiegelhalter, 1988). It is an iterative algorithm

whereby messages encoding evidence are passed among neighbouring nodes. When applied

to graphs with cycles, this “loopy BP” algorithm is not guaranteed to converge, nor are the

computed marginal distributions necessarily exact even if it converges (Pearl, 1988). This can

98



CHAPTER 5. THE BETHE FREE ENERGY FOR INFERENCE 99

be understood as “double counting” evidence when messages are passed from a node back

to itself via a cycle (Weiss, 1997). However, it was found empirically that loopy BP does

often converge, and the produced estimates of the marginal distributions are often surprisingly

accurate (Murphy et al., 1999).

Loopy BP was first discovered in the coding community1 when the decoding algorithms

of turbo codes and Gallager’s low density parity check codes were found to be loopy BP on

particular graphical models (Frey and MacKay, 1997, MacKay and Neal, 1996). This advance

made possible other codes that approach Shannon’s information theoretic limit (McEliece et al.,

1998), and has motivated interest in analyzing and understanding the behaviour and accuracy

of the loopy BP algorithm, both in the context of error correction decoding and elsewhere.

Initial analysis of loopy BP in terms of “unwrapping” networks revealed some interesting

results (Weiss, 1997, 2000). For example, that in networks with a single loop, loopy BP will

always converge and the maximum posterior assignment will always be correct even though

the estimated marginals will be overly confident. Recent work by Tatikonda and Jordan (2002)

along this line, where loopy BP is related to Gibbs measures on infinite trees, has also yielded

strong result on the conditions under which loopy BP will converge.

Another recent analysis technique interprets loopy BP as tree-based reparameterization of

the distribution represented by the graphical model (Wainwright et al., 2002b). This line of

analysis has led to useful bounds on the errors obtained by loopy BP if it converges.

Yet another theoretical foundation of loopy BP was the discovery that fixed points of the

algorithm correspond exactly to stationary points of the Bethe free energy (Yedidia et al., 2001).

This Bethe free energy can be understood as an approximation to the exact Gibbs free energy

(Georges and Yedidia, 1991, Welling and Teh, 2001). In this respect there are strong relations

between loopy BP and variational and mean field methods (Jordan et al., 1998, Saad and Opper,

2001). This line of research has led to generalized BP algorithms whose fixed points are

stationary points of the more sophisticated Kikuchi free energy (Yedidia et al., 2001).

Empirically, it has been found that the fixed points of loopy BP are local minima of the

1In the coding literature loopy BP is often called the sum-product algorithm or the generalized distributive law.
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Bethe free energy, leading to conjectures that loopy BP should always converge to local minima

of the Bethe free energy (Yedidia et al., 2001). Recently, this conjecture has been proven by

Heskes (2003). He also showed that not every local minima need be a stable fixed point of

loopy BP.

Since loopy BP converges to local minima of the Bethe free energy, and the Bethe free

energy is a reasonable approximation to the true Gibbs free energy, the obvious next step is

to derive an algorithm which actually minimizes the Bethe free energy and always converges.

This is the aim of this chapter. To do so, we have to solve a generalization of inference based

on minimizing an approximate KL divergence. The algorithm we derive is closely related to

both loopy BP and iterative scaling (IS). This unified propagation and scaling (UPS) algorithm

will then reduce to a convergent alternative to loopy BP when generalized inference reduces to

ordinary inference.

In section 5.2 we describe the Markov networks we will be using throughout the chapter

and in section 5.3 we describe inference and review some of the background on loopy BP

and the Bethe free energy. In section 5.4 we introduce our generalization of inference and

the iterative scaling (IS) algorithm. In section 5.5, we propose the Bethe free energy as an

approximation to the KL divergence and derive fixed point equations to perform approximate

generalized inference. We also show in what sense our fixed point equations are related to

loopy BP and IS. In section 5.6 we describe various algorithms to minimize the Bethe free

energy, including our unified propagation and scaling (UPS) algorithm. Section 5.7 shows

experimental simulations on the various algorithms, and section 5.8 concludes.

5.2 Markov Networks

Consider a discrete pairwise Markov network � with node set � and edge set
�

. For each

� � � let � � denote the neighbours of � . Let ��� 	
 � �
denote edges of the graph. Let

� � be

the variable associated with node � � � . Denote the domain of values of
� � by

� � and let

����� � � be a value of
� � . For a node set ��� � let

�
� � � � � � � � � and

� � � � ; similarly for
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� � � ���
�
� �
�

etc.

Let the single and pairwise potentials be � ��� ����
 , � ��������� � �	��
 . Then the distribution repre-

sented by � is
� � � � ��
�� ��  �� ��� � � � � ��������� � �	� 
 �� ��� � ������� 
 (5.1)

where
�  is the normalization constant (partition function). We will use a slightly different

parameterization of
� � � 
 . Let � ��� ����� � �	� 
�� � ��������� � �	� 
)� � � ����
 � � � �	� 
 , � � � ����
��,� � ������
 , and ���

be the number of neighbours of node � . Then

� � � � ��
�� ��  �� ��� � � � � ��� � ��� � �	� 
 �� ��� � � � ����
 ��� � � (5.2)

In the following we will drop the cumbersome notation
� � � � ��
 and instead use

� � ��
 .
In the rest of this chapter we will be dealing with inference on pairwise Markov networks.

This can be generalized to other graphical models by using the reductions of Weiss and Free-

man (2001).

5.3 Ordinary Inference

Let � � � be the set of “visible” nodes and
� � � ��� be the set of “hidden” nodes.

���

will be the random variables that we observe and we would like to infer or approximate the

posterior distribution over
�

� given observations on
���

. For ordinary inference, where we

observe that the visible nodes
���

take on one particular value � � , the effect of the observation

can be absorbed into the potentials as

� ��� ����
 � � � � � � ������
 ������ ��� �
� � � ����� � � � 
 (5.3)

Then the posterior distribution over
�

� is again given by (5.1) where the visible nodes � and

neighbouring edges have been removed from the graph and the potentials have been altered

using (5.3). For this reason, when we discuss ordinary inference, we will not explicitly refer to

visible and hidden nodes in the graph. Rather, we will take ordinary inference as determining

the marginal distributions of interest in the distribution
�

given in (5.2). In section 5.4 we
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Figure 5.1: Belief propagation on tree structured Markov networks. (a) ����� � �	� 
 is the message

sent from node � to node  , while ������������
 is the message from  to � . (b) The messages

represented by the solid and dotted arrows do not affect one another.

will generalize the notion of inference using minimum divergence ideas. In that case we will

explicitly refer to visible and hidden nodes.

5.3.1 Belief Propagation

Belief propagation (BP) is an inference procedure for tree structured Markov networks. It is an

iterative algorithm whereby messages are passed between neighbouring nodes. See figure 5.1a.

The message � ��� ���	��
 from node � to node  encodes the contribution of the subtree rooted at �
(nodes to the left of  in the figure) as it affects the distribution of

� � . Messages are updated

with the update rule

� ��� � �	� 
 � + � � ����� ����� � �	��
�	� � �	� 
 �� ��� � 	 � � � ��������
 (5.4)

where the messages � � � � ����
 encode the contribution of the rest of the subtree to the distribution

of � � . After the messages have converged, the marginal distributions are computed as

� ����� 
��,� ������� 
������� � � � ��������
 (5.5)

� � ��� � �	��
��,� � ��� ��� � �	� 
 ������ � 	 � � � � � ����
 ������ � 	 � � � �����	��
 (5.6)

A simple but important property of the message updates (5.4) is that the messages going in ei-

ther direction on the tree are independent of each other. This is illustrated in figure 5.1b, where
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the solid and dashed arrows represent the messages going in either direction. A consequence

of this property is that any scheduling of the message updates (5.4) will always converge on

a tree. By waiting until all incoming messages � � � � ����
 have been updated before updating

� �������	��
 , we obtain a particularly efficient scheduling, in which each message needs to be up-

dated only once before the algorithm converges. One particular instantiation of this schedule

are the well-known CollectEvidence and DistributeEvidence routines.

5.3.2 Bethe Free Energy

When belief propagation is applied on graphs with cycles (loopy BP), Yedidia et al. (2001)

showed that its fixed points correspond exactly to stationary points of the Bethe free energy.

The Bethe free energy is an approximation to the Gibbs free energy which arose in statistical

physics (Georges and Yedidia, 1991, Welling and Teh, 2001).

Let the beliefs
� ��������� � �	��
 and

� ������� 
 be estimates of the pair-wise and single site marginal

distributions of the desired distribution
�

. The beliefs need to satisfy the following marginal-

ization and normalization (MN) constraints:

+ �
�

� ��� � ��� � �	� 
�� � � � ����
 � � � � �� � � � + � � � ��� ����
�� � � � � � (5.7)

Let
� � � � ��� � ��� � �	� 
 � � ��� � � � � � � ��������
 � � ��� . The Bethe free energy is defined as

� ��� ��� � � � 
�� +� ��� � � � +� ��� � � � ��������� � �	� 
 "%$'&
� ��������� � �	� 
� ��� � ��� � �	��
 � +

� ���
� � 0 ����
 + � � � ��� ����
 "%$'& � ��� ����
� ��������
 (5.8)

To impose the MN constraints we use Lagrange multipliers � ��� ������
 and � � . The Lagrangian is

given by

� � � ��� ������� � 
	06+
� ���

+
� ��� � � � + � � �	� ��� ����


� � �
�
� � � � ��� � �	� 
�0 � ������� 
 � 06+

� ���
�	� � � �

� � ������� 
	0 ���
(5.9)

where ������
 are the neighbours of � . Setting the derivatives of the Lagrangian
�

with respect to

the beliefs and Lagrange multipliers to zero, and identifying � ��� ������
 � � ����� � 	 � ".$'& � � ������� 
 ,
we derive equations (5.5, 5.6) for the beliefs (replacing

� � � � 
 with
� ��������
 and

� ����� � �	��
 with
� ��������� � �	� 
 ), and the fixed point updates (5.4) for the messages.
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5.4 Generalized Inference

In this section we will generalize the notions of posterior distributions and inference using min-

imum KL divergence ideas, and show how methods for approximate inference can be adapted

to this scenario.

For ��� � let � � ��� ����
 be a fixed distribution over
� � . Given these “observed marginal

distributions” on � , define the generalized posterior as the distribution
� ����
 which minimizes

the KL divergence

� � � � � � 
�� + � � ����
 � ".$'& � ����
�0 "%$'& � � ��
 
 (5.10)

subject to the constraints that
� � � ��
 � � � ��������
 for each ��� � . We call these constraints

observational (Obs) constraints. Generalized inference is the process by which we determine

the generalized posterior. To avoid confusion, we will explicitly use “ordinary inference” for

normal inference, but when there is no confusion “inference” by itself will mean generalized

inference in this chapter; similarly for posteriors.

Let ��� � 0 � 
�� � if
� � �

and � otherwise. Also let ��� � � ��� � � � � for a subset of nodes � .

Similarly if � is a subgraph of � .

Observation 5.4.1 If � � � � ����
 � �������/0������
 for each � � � then the generalized posterior is
� ����
�� � � � �

�
�� � 
 �

� � � �������*0������
 .
Proof: As

� ����
 has to satisfy the constraints, we have
� � � � 
 � �

� � � �������*0������
 hence
� ����


has to have the form
� ����
�� � ��� �

�
�� � 
 �

� � � ��������0������
 . Now

� � � � � � 
�� + �
�
+ �
	

� � � � � � � 
 � "%$'& � ��� � � � � 
	0 "%$'& � ��� � � � � 
 


� + �
�
+ �
	

� � � � �
�� � 

� "%$'& � � � �

�
�� � 
 � +

� � �
".$'& �������*0�� ����
	0 "%$'& � ��� � � � � 
 �

� + �
�

� � � �
�
�� � 
 � ".$'& � ��� �

�
�� � 
	0 ".$8& � ��� �

�
�� � 
 
	0 ".$'& � ���� � 
 (5.11)

and now minimizing (5.11) gives
� ��� �

�
�� � 
�� � ��� �

�
�� � 
 .
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The above observation shows that if the constrained marginals are delta functions, i.e. the

observations are hard, then the generalized posterior reduces to a trivial extension of the ordi-

nary posterior, hence explaining our use of the term generalized inference.

Note that these observed distributions on the nodes in � are not the same as soft evidence.

In soft evidence, an observational process
� � � � � ����
 is associated with each � � � and we

observe � � instead of ��� . The observation only act as a bias affecting ��� and the marginal

distribution of � � is not fixed.

5.4.1 Iterative Scaling

Since generalized inference is a constrained minimum divergence problem, a standard way of

solving it is using Lagrange multipliers. For each � � � and ��� , let � � ������
 be the Lagrange

multiplier enforcing
� � � ��
 � � � � ����� 
 . Let � be another Lagrange multiplier enforcing the fact

that
� ����
 should sum to one. The Lagrangian is then given by

� � � � � � � � 
 06+
� � �

+ � � � � � ����
 � � � ����
	0 � � ������� 
 
	0 � � �
� � � ��
�0 � 
 (5.12)

Solving for
� � ��
 by setting the derivatives of

� ����
 and � to zero, we see that the generalized

posterior is given by

� ����
�� � ����
 �
� � � 	�� � � � � � ��� ��� (5.13)

� � � 0 "%$'& + � � � ��
 �
� � � 	�� � � � � � (5.14)

The optimal � simply introduces a partition function to normalize
� � ��
 . Plugging this back

into the Lagrangian
�

, we get the dual cost function

� � �,+
� � �

+ � � ����������
 � � ������� 
	0 ".$'& + � � ����
 �
� � � � � � � � (5.15)

Since � � � � � � 
 is convex in
� � ��
 , the dual cost

� �
is concave, its maximum coincides with

the minimum of � � � � � � 
 subject to the Obs constraints, and the generalized posterior is

given in terms of the optimal � ������� 
 . Maximizing the dual cost by coordinate-wise ascent gives
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the classical iterative scaling (IS) algorithm (Deming and Stephan, 1940). At each iteration of

IS, a Lagrange multiplier � ��������
 is updated using the scaling update

� � � � � � � � � � � � � � � � � ��������
� � ����
 for each ��� (5.16)

Intuitively, (5.16) updates the current posterior so that the marginal
� � � ��
 for node � matches

the given constraint � � � � ����
 . However this will undo the marginal constraints at the other nodes

hence the scaling update (5.16) will have to be applied iteratively to all the nodes in � until

convergence.

IS is a specific case of the generalized iterative scaling (GIS) algorithm (Darroch and Rat-

cliff, 1972), which updates the Lagrange multipliers for a subset
�
� � of nodes using

� � � � � � � � � � � � � � � � � � � � ����
� ������
  � � � � �
for each � � and � � �

(5.17)

We can show that GIS maximizes a lower bound on the dual cost
� �

at each step, and it con-

verges to the maximum of
� �

(see Berger, 1997). However perhaps a more intuitive understand

of GIS is that the parallel GIS steps are performing IS updates in parallel, but damping the

steps such that the algorithm is still guaranteed to converge.

5.5 Approximate Generalized Inference

Notice from (5.13, 5.14) that the generalized posterior has the same form as
� � ��
 except that

the potentials on � have been altered by the Lagrange multipliers. Ordinary inference is needed

to compute the current marginals
� ��� ��
 required by the scaling update (5.16). If � is singly

connected, then belief propagation (BP) can be used to compute the required marginals. Oth-

erwise, exact inference or sampling algorithms like Monte Carlo Markov chain (MCMC) can

be used, but usually are computationally taxing. Alternative approximate inference algorithms

like variational methods and loopy BP can be used instead to estimate the required marginals.

Although being much more efficient, they produce biased estimates, potentially leading to the

overall IS not converging. For example, consider a two node Boltzmann machine, with weight

� and biases 0 ��� � , and the desired means on both nodes are ��� � . Then if either naive mean field
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or naive TAP equations are used to estimate the marginals required, IS will not converge. Fur-

ther, even if IS did converge, we do not have much theoretical understanding of the accuracy

of the overall algorithm.

A more principled approach is to first approximate the KL divergence, then derive algo-

rithms to minimize the approximation subject to the Obs constraints. For example, using vari-

ational approximations (Jordan et al., 1998), we upper bound the KL divergence by variational

means and by assuming that
� � ��
 comes from a tractable parametric family, and then minimiz-

ing the upper bound with respect to the variational parameters with Obs constraints. The upper

bound is chosen so that this minimization is tractable. Note that this approach is generally not

the same as using variational approximations within an IS outer loop.

In the next section, we describe a Bethe free energy approximation to the KL divergence.

Fixed point equations for minimizing the Bethe approximation can then be derived. The fixed

point equations reduce to BP updates at hidden nodes, and to IS updates at observed nodes. As

a consequence, using loopy BP to approximate the marginals required by the IS outer loop turns

out to be a particular scheduling of the fixed point equations. Because the Bethe free energy

is fairly well understood, and is quite accurate in many regimes (Murphy et al., 1999, Yedidia

et al., 2001, Welling and Teh, 2001), we conclude that IS with loopy BP is a viable approximate

generalized inference technique. However, in section 5.6 we describe better algorithms for

approximate generalized inference based upon the Bethe free energy.

5.5.1 Bethe Approximation

In the Bethe approximation, we first assume that
� ����
 can be factored as follows:

� � ��
 � � � ��� � � ��������� � �	��
 � � � ������� 
 ��� � � (5.18)

where the beliefs have to satisfy the MN constraints. Note that
� � ��
 need not be normalized

and need not have the beliefs as its marginals. However it is exact if
� � ��
 and hence

� ����
 are

tree structured. Plugging this approximation into the KL divergence and regrouping terms, we
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get

� � � � � � 
 � � ��� ��� ��� � 
 � ".$'& �  (5.19)

where
�  is the partition function of

�
. The Bethe approximation is an approximation to the

KL divergence which only accounts for pair-wise correlations between neighbouring variables.

However unlike variational approximations, the Bethe approximation is not an upper bound in

general.

Since "%$'& �  is fixed, we wish to minimize
� ��� ����� � � 
 subject to the MN and Obs con-

straints. Again we use Lagrange multipliers � � � � ����
 to impose the marginalization constraints.

We can also use Lagrange multipliers to impose the normalization and observational con-

straints, but this reduces to simply keeping
� ��������� � �	� 
 and

� ��������
 normalized, and keeping
� ������� 
�� � � � ������
 fixed for � � � . We shall ignore these for clarity. The resulting Lagrangian is

� � � ��� ����� � � 
	0 +
�

+
� ��� � � � + � � �	� � ����� 


�	 + �
�

� ��������� � �	� 
	0 � ��������
 
� (5.20)

Setting derivatives of
�

with respect to
� ��������� � �	� 
 � � � � ����
 and �	� ��� ����
 to zero, we get

Theorem 5.5.1 Subject to the MN and Obs constraints, every stationary point of
� ��� ����� is given

by

� ��������� � �	� 
 � � � ��� ��� � �	� 
 � � � � � � � � � � � � � � � � (5.21)

� ��������
 � � ������� 
 � �
� ��� � � � ����� ��� � � � � � � �

(5.22)

where the Lagrange multipliers are fixed points of the following updates:

� � � � � � � � � ������ � � ��	 � + � � ��� � � ��� � � � 
��� ������
 � � � � � � � � for � �� � ,  � ������
 (5.23)

� � � � � � � � �
� � ��������


� �
� � � ��� ��� � �	� 
 � � � � � � � � for � � � ,  � ������
 (5.24)
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5.5.2 Relationship to IS and BP

The fixed point updates (5.23, 5.24) are closely related to both BP and IS. Identifying messages

as � ��� � �	� 
�� � �
�

� � � � � � � � � �
� � � � � � � � � � � � � � , we get the BP updates

� �������	��
�� + � � ����� ����� � �	��
�	��� �	� 
 �� ��� � � �
	 � � � ������� 
 (5.25)

This was first shown by Yedidia et al. (2001) with a different identification of � � � � � � � � �
� ����� � � �
	 � � � ��������
 . From (5.23) we see that this identification is equivalent to ours.

Rewriting (5.24) in terms of messages as well we find,

� �������	��
 � + � � � ��� ����� � �	��
 � � ��� ����
� ��� ������
 for � � � �� � ������
 (5.26)

We can extend the physical analogy and understand (5.26) as a message “bouncing” step, in

which messages going into an observed node get bounced back and are altered in the process.

If � � � ������
 � ������� 0 �����
 is a hard observation, then (5.26) reduces to � ��� ���	��
 � � ��� ������ � �	��
 so

that instead of bouncing back, messages going into node � get absorbed.

Alternatively, we can understand the message bouncing steps as IS updates.

Theorem 5.5.2 Let � � � . Updating each ����� ������
 for  � ������
 using (5.24) is equivalent to

updating ��� � ����
 using (5.16), where we identify

� � ����
 � � ��������
��
� ��� � � � � ����������
 � � � � � � � � � � ������� 


� � � ������
� � � ��� �
� ��� � � � � � � � � � � � (5.27)

Theorem 5.5.2 states the unexpected result that scaling updates (5.16) are just fixed point equa-

tions to minimize
� ��� ����� . Further, the required marginals

� ��� ��
 are computed using (5.23),

which is exactly loopy BP. Hence using loopy BP to approximate the marginals required by IS

is just a particular scheduling of the fixed point equations (5.23, 5.24).

5.6 Algorithms to Minimize the Bethe Free Energy

The fixed point equations (5.23, 5.24) determine the conditions under which the beliefs are at

a stationary point of the Bethe free energy
� ��� ��� � . By themselves they do not determine an
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algorithm to find a stationary point of the Bethe free energy, let alone to find a local minimum.

In this section we describe various algorithms which try to find either a stationary point or local

minimum of
� ��� ����� .

In section 5.6.1 we describe two algorithms which directly use the fixed point updates (5.23,

5.24). These algorithms are not guaranteed to converge, nor are they guaranteed to converge to

local minima even if they converge. In sections 5.6.2 and 5.6.3 we describe UPS, an algorithm

which is guaranteed to converge to a local minimum or saddle point of the Bethe free energy.

5.6.1 Direct fixed point algorithms

The simplest algorithm, one inspired by Yedidia et al. (2001), is to run the fixed point updates

(5.23, 5.24) and hope that they converge to a minimum of
� ��� ����� . The fixed point updates can

be run in series or parallel. This is algorithm 5.1 (loopy IS). Theorem 5.5.1 only states that

if loopy IS converges it will converge to a stationary point of
� ��� ����� . In simulations we find

that it always gets to a good local minimum, if not the global minimum. However loopy IS

does not necessarily converge, especially when the variables are strongly coupled. There are

two reasons why it can fail to converge. Firstly, the loopy BP component (5.23) may fail to

converge. However this is not serious as past result indicate that loopy BP often fails only when

the Bethe approximation is not accurate (Welling and Teh, 2001). Secondly, the IS component

(5.24) may fail to converge, since it is not run sequentially and the estimated marginals are

inaccurate. We will show in section 5.7 that this is a serious problem for loopy IS.

One way to promote convergence is to damp the loopy IS updates. This works well in

practice and damping is often critical to the success of loopy IS as well as of loopy BP (Murphy

et al., 1999). There are two common ways to damp propagation updates – linear and geometric.

Algorithm 5.1 Loopy IS – Loopy Iterative Scaling

1. Run until convergence criterion is met or run time limit exceeded:

2. Perform the fixed point updates (5.23, 5.24).

3. If run time limit exceeded return failed to converge.
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Algorithm 5.2 IS+BP – Iterative Scaling with Loopy Belief Propagation.

1. Run until convergence criterion is met or run time limit exceeded:

2. Run until convergence criterion is met or run time limit exceeded:

3. Perform the BP fixed point updates (5.23).

4. If run time limit exceeded return failed to converge.

5. Perform one scaling update (5.16).

6. If run time limit exceeded return failed to converge.

In linear damping the messages are updated as

� � � � �	� 
 � � � 0�� 
 � �������	��
 ��� + � � ����� ����� � �	� 
�	��� �	� 
 ������ � � �
	 � � � ��������
 (5.28)

where � is the damping factor, while in geometric damping we have

� ��� � �	� 
 � � �������	��
 ��� �
�	 + � � ����� ����� � �	��
�	� � �	� 
 �� ��� � � �
	 � � � ������� 
 
� � (5.29)

Damping preserves the fixed points of the algorithm while making it more likely to converge.

Damping can be used for scaling updates as well – in fact, GIS updates can be understood as

geometric damping.

Another way to promote convergence is to mitigate the second problem by running the

scaling updates (5.16) in series, and approximate the required marginals using an inner phase

of loopy BP. This IS+BP algorithm is illustrated in algorithm 5.2. Theorem 5.5.2 shows that

IS+BP is just a particular scheduling of loopy IS. IS+BP gets rid of convergence problems

related to running scaling updates in parallel and before the marginals have converged, hence

it inherits the accuracy of loopy IS while converging more often. However because we have to

run loopy BP until convergence for each scaling update, IS+BP is not particularly efficient.

In the next two subsections, we describe yet another possibility – an efficient algorithm

based on the same fixed point equations (5.23, 5.24) which is guaranteed to converge without

damping.
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5.6.2 Constraining the leaves of trees

In this section we derive UPS-T, an efficient algorithm for minimizing the Bethe free energy

on a tree when the observed nodes are leaves of the tree. In the next section we will use UPS-T

as a subroutine of an algorithm which minimizes the Bethe free energy for general graphs.

Suppose that � is a tree, and all observed nodes � � � are leaves of � . Since � is a

tree, the Bethe free energy is exact, i.e. if the MN constraints are satisfied then
� ��� ����� �

� � � � � � 
 where
� � ��
 � � � � � � � ��������� � �	� 
 �

� � � ������
 ��� � � . In particular,
� ��� ����� is convex in the

subspace defined by the MN constraints. Therefore the fixed point equations (5.23, 5.24), if

run sequentially, will converge to the unique global minimum.

The question now is how do we schedule the fixed point updates for efficiency? Since (5.23)

is exactly a BP update, and (5.24) is exactly an IS update, the following is a common scheduling

of (5.23, 5.24): alternately run a phase of BP (5.23) on the tree until convergence and perform a

single scaling update (5.24). The schedule essentially implements the IS+BP procedure, except

that BP is exact for a tree. Notice that during each BP phase we only need to either propagate

messages towards the node where the next scaling update is going to occur (to compute the

marginals required by the scaling update), or propagate messages away from the node where

the previous scaling update occurred (to maintain marginalization consistency of the beliefs).

Therefore each loop of the algorithm requires 1 scaling update, and
� � �

propagation updates.

However it is quite clear that this is not an efficient scheduling at all.

Let us illustrate this with an example. Consider the tree in figure 5.2.

Firstly suppose we have just run BP on the tree and performed a scaling update at node � ,
and would now like to perform a scaling update at node � . Before we do so we need to calculate

the marginal
� ��� � 
 at node � . We can run another phase of BP on the tree to get

� ��� � 
 , but

since the Lagrange multipliers at node � were the only ones altered since the last BP phase, the

only messages relevant for calculating
� � � � 
 which have been altered are those lying on the

path from node � to � . In general, rather than running a full BP phase on the whole tree, we

only need to perform BP updates from the node of the previous scaling update to the node of

the next scaling update.
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1

2

5 6

3

4

Figure 5.2: Scheduling propagation updates for UPS-T. The observed nodes are grey while the

hidden nodes are white. The only propagation updates required between scaling updates at

nodes 1 and 2 are those on the path from node 1 to node 2 (the arrows).

Secondly, we can improve IS+BP by scheduling the scaling updates appropriately. Con-

sider again figure 5.2. Suppose we scheduled to perform scaling updates repeatedly on the

nodes in the following order: 1, 3, 2, 4, 1, 3, 2, 4, � � � . This is an inefficient schedule because

we had to run each BP update between nodes 5 and 6 twice for each loop through the scaling

updates once. A better schedule would be to update nodes 1, 2, 3, 4 in order. In this case we

only had to run each relevant BP update exactly once per loop.

In general, let the subtree � � � consist of those edges in � which lay on the path be-

tween two nodes in � . � consists of exactly those edges in � on which propagation updates

have to be performed in between scaling updates. Note that � � � � � 
 . Let � � � � be an

observed node. We will perform updates in a depth first search manner on � starting at � � . An

example of this is illustrated in figure 5.3. Whenever a node in � is visited we will perform a

scaling update at that node, and whenever an edge is traversed (either going down the tree or

backtracking) the corresponding propagation update is performed. After the depth first search

all nodes in � will have been visited. Further, in between any two scaling updates propagation

updates are performed from the first node to the second. Hence the depth first search imple-

ments the efficient propagation schedule we were describing. Further, note that every relevant

propagation update is performed exactly once only, hence it implements an efficient scheduling

of the scaling updates as well.

The resulting algorithm, UPS-T, is summarized in algorithm 5.3. Each loop of UPS-T

through steps 4 to 7 requires
� � � scaling updates and � � � � � 
 � propagation updates. Steps 1 and
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4,14,
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Figure 5.3: Scheduling scaling updates for UPS-T. Updates are performed in a depth first

manner on the tree. The numbers describe the order in which nodes are visited. Black arrows

are forward traversals and white arrows are backtracking traversals.

8 are required to make the beliefs consistent (i.e. to satisfy the MN constraints) since not all

nodes in � are visited through steps 4 to 7. Each requires � � � � � 
 � propagation updates.

5.6.3 Graphs with cycles

For graphs with cycles,
� ��� ����� is neither exact nor convex. However we can make use of the fact

that it is exact on trees to find a local minimum (or saddle point). The idea is that we clamp

a number of hidden nodes to their current marginals such that the rest of the hidden nodes

become singly connected, and apply UPS-T. Once UPS-T has converged, we clamp a different

set of hidden nodes and apply UPS-T again. The algorithm can be understood as coordinate

descent where we minimize
� ��� ����� with respect to the unclamped nodes at each iteration.

Let � � �
be a set of clamped nodes such that every loop in the graph � contains a node

from
� � � � � . Define �

�
to be the graph obtained from � as follows. For each node � � �

replicate it ��� times, and connect each replica to one neighbour of � and no other nodes. This is

shown in figure 5.4b and 5.4c for the graph in figure 5.4a. Clearly �
�
will be singly connected.

For � � �� � � �
�

define � � � � � � ��� � � �	� � 
 � � � � � ��� � �	��
 where � and  are the original nodes in � .
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Algorithm 5.3 UPS-T – Unified Propagation and Scaling on Trees.

1. Run propagation updates (5.23) until convergence.

2. Let � � � � be the root of depth first searches on � .

3. Run until convergence criterion is met:

4. Let � � � � � � � � � � � 9 be the sequence of nodes visited during a depth first search

starting at � � . Note � 9�� � � and � � � � � � � 
 � � � .
5. For ��� � � � � � � � � � 0 � :
6. If � �#� � perform scaling update (5.24) at � � .
7. Perform propagation update (5.23) for ������� � � � ����� � 
 .
8. Run propagation updates (5.23) until convergence.

Similarly for � � � ����� � 
 � � � � � � � ��� � � �	� � 
 and
� � � � ��� � 
 . Let

�
� �

�
denote the trees in �

�
. Define

� � ����
�� ������ � � �� ��� � 
 � ������ � �� � � � � � � � � � � � � ����� � � �	� � 
 �� � � � � � � ����� � 
 ��� � � � (5.30)

� � ����
�� ������ � � �� ��� � 
�� ������ � �� � � � � � � � � � � � � ����� � � �	� � 
 �
� � � � � � � ����� � 
 ��� � � � (5.31)

where ��� � is the number of neighbours of node � � in �
�
. By regrouping terms in

� ��� ����� we can

show the following:

Theorem 5.6.1 Let � � � ������
 be a distribution over � � for � � � . Then in the subspace defined by
� ������� 
�� � � ������� 
 for � � � and by the MN and Obs constraints, we have

� ��� ������� +����� � � � � � �� � � �� 
 � +
� ���

� � 0 ��� 
 + � � � � ��������
 "%$'& � � � � ����
� ��������
 (5.32)

To minimize
� ��� ����� , now all we have to do is to minimize each � � � � �� � � �� 
 individually. We

can already solve this using UPS-T. By clamping the marginals of nodes in � , we have reduced

the problem to one solved by UPS-T, where the observed nodes are taken to include those in� . The overall algorithm is given in algorithm 5.4.

It is clear that
� ��� ��� � � � � � � 
 � � ��� ������� � � � ��� � 
 for all � . Now by using the fact that both

scaling and propagation updates are fixed point equations for finding stationary points of
� ��� ��� �

we have,
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(a) (b) (c)

Figure 5.4: Clamping hidden nodes of a graph to make it singly connected. Hidden nodes are

white; observed nodes are grey; and clamped nodes are black. The little nodes are the replicas.

Algorithm 5.4 UPS – Unified Propagation and Scaling

1. Initialize beliefs
� � � � � � �

� � ���� � ��� � �	��
 � �
� � �� � ����
 � .

2. For ��� � � � � � � � � � until convergence criterion is met:

3. Find a set of nodes � � � � such that every loop in � is broken by � � � � � � .
4. Using UPS-T, set

� � � � � ��� &�	 + � � � ��� ����� � � 
 � � ������� 
 � � � � ��� �� ������
 for � � � � � � , and

MN and Obs constraints are satisfied � .

Theorem 5.6.2 If for all � and � � �
there is a � � � � with � �� � � � � � , then

� � � � will converge

to a local minimum (or saddle point) of
� ��� ����� with MN and Obs constraints satisfied.

Notice that when the Obs constraints are delta functions and generalized inference reduces

to ordinary inference, UPS reduces to a convergent alternative to loopy BP.

5.7 Experiments

In this section we report on two experiments on the feasibility of the various algorithms. In

the first experiment we compared the speed of convergence of the various algorithms. In the

second experiment we compared the accuracy of the two fastest algorithms – UPS and loopy

IS.
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In both experiments we used Boltzmann machines with 5 � 5 square lattice structure as

shown in figure 5.4a. The observed nodes are on the edges of the lattice while the rest are hid-

den nodes. The states are � � � � � valued. The weights are sampled randomly from a Gaussian

with mean 0 and standard deviation � � and the biases are sampled from a Gaussian with stan-

dard deviation � � and mean 0 � � incoming weights � � � . The means of the biases are shifted

so that if ��� is small, the mean values of � � will be approximately � � � . In fact we can show by

symmetry that if � � � � then the mean values of � � are exactly ��� � . The desired observational

marginals are � � � � � 
 � ��� � ��� � � � 
 where � � are sampled from a Gaussian with mean 0 and

standard deviation � � . For different values of � � the distribution of observed marginals is quite

different.

5.7.1 Speed of Convergence

We compared the speed of convergence for the following algorithms: loopy IS, IS+BP, GIS+BP

(parallel GIS with marginals estimated by loopy BP), UPS-V (clamping columns of nodes

every iteration as in figure 5.4b and UPS-HV (alternatingly clamping rows and columns). We

tested the algorithms on 100 networks, with � � � � , � ��� � and � � � �
. We find that the result

is not sensitive to the settings of � � � ��� and � � so long as the algorithms are able to converge

without damping. The result is shown in figure 5.5. IS+BP and GIS+BP are slow because the

loopy BP phase is expensive. UPS-V and UPS-HV both do better than IS+BP and GIS+BP

because the inner loops are cheaper, and scaling updates on the Lagrange multipliers � ��������
 are

run more frequently. Further we see that UPS-HV is faster than UPS-V since information is

propagated faster throughout the network. Loopy IS is the fastest. However the next experiment

shows that it also converges less frequently and there is a trade off between the speed of loopy

IS and the stability of UPS.
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Figure 5.5: Speed of convergence of the various algorithms. The box lines are at the median

and upper and lower quartiles, and the whiskers describe the extent of data. An algorithm or

subroutine is considered converged if the beliefs change by less than � � ����� .

5.7.2 Accuracy of Estimated Marginals

We compared the accuracy of the estimated marginals obtained using UPS (in particular UPS-

HV) and loopy IS for four possible types of constraints, as shown in figure 5.6.

In case (a), the constraint marginals are delta functions, so that generalized inference re-

duces down to ordinary inference, loopy IS reduces to loopy BP and UPS becomes a convergent

alternative to loopy BP. In case (b), we did not enforce any Obs constraints so that the problem

is one of estimating the marginals of the prior
� ����
 . The general trend is that loopy BP and

UPS are comparable, and they perform worse as weights get larger, biases get smaller or there

is less evidence. This confirms the results in (Welling and Teh, 2001). Further, we see that

when loopy BP did not converge, UPS’s estimates are not better than loopy BP’s estimates.

The reason is that UPS tends to converge to solutions where the marginal distributions are

close to uniform when loopy BP did not converge. For a more detailed description of this see

Welling and Teh (2001).

In cases (c) and (d) we set � � � ��� � � ��� � , corresponding to � � � � � 
 � � � � and � � � � � 
 spread

out over ! � � � ( respectively. In these cases UPS and loopy IS did equally well when the latter
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(c) σ(α) = 0.2

1 3 5 7 9

(d) σ(α) = 2.0

Figure 5.6: Each plot shows the mean absolute errors for various settings of � � (x-axis) and

��� (y-axis). The top plots show errors for loopy IS and bottom plots show errors for UPS. The

inset shows the cases (black) when loopy IS did not converge within 2000 iterations, with linear

damping slowly increasing to � � � � . When loopy BP did not converge the errors are calculated

from the current beliefs after 2000 iterations.

converged, but UPS continued to perform well even when loopy IS did not converge. Since

loopy BP always converged when UPS performed well (for cases (a) and (b)), and we used

very high damping, we conclude that loopy IS’s failure to converge must be due to performing

scaling updates before accurate marginals were available.

Concluding, we see that UPS is comparable to loopy IS when generalized inference reduces

to ordinary inference, but in the presence of Obs constraints it is better.

5.8 Discussion

In this chapter we have shown that approximating the KL divergence with the Bethe free energy

leads to viable algorithms for approximate generalized inference. We also find that there is an

interesting and fruitful relationship between IS and loopy BP. Our novel algorithm UPS can
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also be used as a convergent alternative to loopy BP for ordinary inference.

Interesting extensions to approximate generalized inference are to cluster nodes together to

get more accurate approximations to the KL divergence analogous to the Kikuchi free energy,

and to handle marginal constraints over subsets of nodes. We can also explore other algorithms

to minimize
� ��� ����� , including the CCCP algorithm (Yuille, 2002).

In the next chapter, we will explore using the ideas developed in this section, in particular

approximating the KL divergence with the Bethe free energy, and the close relationship be-

tween IS and loopy BP, to the problem of approximately learning undirected graphical models.
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Chapter 6

The Bethe Free Energy for Learning

In the previous chapter, we showed how we can perform approximate inference by direct min-

imization of the Bethe free energy. An important concept there is to cast both loopy belief

propagation (BP) and iterative scaling (IS) updates as fixed point equations of a single con-

strained optimization problem. In this chapter we extend the results derived in the previous

chapter to learning undirected graphical models.

IS on junction trees is a standard algorithm for learning in undirected graphical models. By

again combining the IS and BP updates into a single framework, we derive a more efficient

message updating protocol than the well known effective IPF of Jiroušek and Přeučil (1995).

When the junction tree has an intractably large maximum clique size we propose to maximize

an approximate constrained entropy based on region graphs (Yedidia et al., 2002). Unfortu-

nately, it is unclear how to generalize UPS to this case so we propose a “loopy” version of

IPF to miximize the new objective instead. We show that this yields accurate estimates of the

weights of undirected graphical models in a simple experiment.

6.1 Introduction

Junction trees are widely used as efficient representations for probability models defined on

graphs. For instance, to perform exact inference in Bayesian networks one typically transforms

121



CHAPTER 6. THE BETHE FREE ENERGY FOR LEARNING 122

the directed graph into a junction tree and computes the posterior probability over the cliques

of the junction tree using local propagation rules. Two out of many well known schemes for

this purpose are Hugin propagation (Jensen, 1996) and Shafer-Shenoy propagation (Shafer and

Shenoy, 1990).

Junction trees are also indispensable for learning graphical models from data through the it-

erative proportional fitting (IPF) procedure, otherwise known as iterative scaling (IS) (Jiroušek

and Přeučil, 1995). This effective IPF procedure represents the joint probability distribution

in terms of the clique marginals of the junction tree, and alternates between updating the pa-

rameters of the model using IPF and propagating that change to the rest of the model using the

junction tree. For structured problems, the junction tree representation reduces the space and

time complexity of the IPF procedure drastically.

The first result we present in this chapter is a further decrease in the time complexity of the

effective IPF procedure. It is shown that both the IPF and junction tree propagation updates are

fixed point equations of a maximum entropy problem with certain constraints. This unifying

view lifts the strict separation in the effective IPF procedure between IPF and junction tree

propagation, and allows for more efficient schedulings of the IPF and junction tree propagation

updates.

For some graphs the maximum clique size in the corresponding junction tree is still in-

tractably large, and the problem needs to be tackled through approximations. To this extent we

propose a framework closely related to an exciting recent technique for approximate inference

variously known as loopy belief propagation, sum-product algorithm, or generalized distribu-

tive law (Yedidia et al., 2002). Using knowledge of the close relationship between propagation

and IPF updates, we propose a procedure that performs approximate IPF on region graphs,

which are natural extensions of junction trees that may contain cycles and be designed to have

smaller clique sizes. This loopy IS procedure consists of running fixed point equations which

solve for stationary points of a constrained approximate entropy similar to the region graph

free energies.

In section 6.2 we describe the maximum entropy problem that is the focus of the chapter,
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as well as the classical iterative scaling algorithm. We also show the relationship between

maximum entropy and maximum likelihood learning of graphical models. In section 6.3 we

describe the effective IPF procedure. Section 6.4 then describes the unifying view, as well as

our efficient schedule. Section 6.5 deals with approximate IPF on region graphs, and section

6.6 shows in a simple experiment the efficacy of the approximation. Section 6.7 closes with

some discussion and extensions.

6.2 Maximum Entropy

In this section we review the maximum entropy framework and its relationship to maximum

likelihood learning in undirected graphical models. Let � be a set of nodes. Each node � � �
is associated with a variable

� � . Denote the finite domain of values of
� � by

� � and let � ��� � �
be a value of

� � . For a set of nodes ��� � let
�
� � � � ��
�� � � be the variable associated with the

nodes in � ,
�
� � �

� � �
� � be the domain of

�
� , and � � � � � be values of

�
� . For simplicity

we write
� � � � and

� 	 � � � � 	 � ; similarly for � and
�

.

Let 
 be a family of subsets (clusters) of � . On each cluster � � 
 we are given a

joint distribution �
�
� � � � 
 over the random variables

�
� 1. The family of distributions � �� � � � ���

is consistent if there is a distribution
� ����
 satisfying the marginals

� ��� � 
 � �
�
� ��� � 
 for all

� � 
 . In this chapter we assume that � �� � � is indeed consistent. In such a case let the

maximum entropy extension be

��� & 	 ��� �
� � � 
 ��� � � � � 
�� �� � � � � 
 � � ��
�� (6.1)

where the entropy is
� � � 
 � 0 � � � ����
 "%$'& � ����
 and the domain of maximization is over

the probability simplex.

We use Lagrange multipliers � � ��� � 
 to impose the marginal constraints and � to enforce

1The extension to being given feature expectations ���� � �
	 ��� ������� is straight-forward and described in section
6.7.
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normalization (
� � � � ��
 � � ). The Lagrangian is

� � � � � 
/0 +
� �
��� � � ��� � 


�
�
�
� ��� � 
	0 � �

�
� � ����
 � 0 � �

� 0 � � � ����
 � (6.2)

Zeroing derivatives of
�

with respect to
� � ��
 and � ,

� � ��
�� �
� �

�

� � ��� � ��� ��� (6.3)

� � � 0 ".$'& + � �
� �

�

� � � � �
(6.4)

This expresses the primal variables
� ����
 in terms of the dual variables � � ��� � 
 . Finally, to

solve for � � ��� � 
 , we substitute (6.3, 6.4) into (6.2) to obtain the dual cost

� � � 0 +
� �
��� � � ��� � 
 �� � ��� � 
 � ".$'& + � �

� �
�

� � ��� �
(6.5)

Because the original cost function
� � � 
 is concave, its maximum coincides with the minimum

of the dual cost function, and the maximum entropy extension is given in terms of the optimal

� � ��� � 
 . Now the dual cost function
� �

is convex and can be solved by coordinate-wise descent

in � � ��� � 
 . This is the classical iterative scaling algorithm (Deming and Stephan, 1940), given

by the following updates:

� � ��� � 
�� � � � � � 
 � "%$'& �� � ��� � 
� � � � 
 (6.6)

where
� � ��
 is given by (6.3, 6.4). In terms of the primal variables

� � ��
 , we can understand

each update of (6.6) as setting the marginal
� ��� � 
 to be �

�
� ��� � 
 . In fact, (6.6) is equivalent to

the following primal update:

� ����
 �
� ����
 �

�
� � � � 


� � � � 
 (6.7)

The maximum entropy framework is intimately related to maximum likelihood learning of

undirected graphical models (Della Pietra et al., 1997). Let the clusters of the graphical model

be given by 
 . The distribution expressed by the graphical model has the form

� ����
�� �� ����� � � � � � ��� � 
 
 (6.8)
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where � � ��� � 
 are the parameters of the model and
�

is the normalizing partition function.

Let �
� � ��
 be an empirical distribution obtained from a set of fully observed training data. The

average log likelihood of the data is then

+ � �
� ����
 ".$8& � ����
�� +

�
�
� ��� � 
 � � � � � 
	0 ".$'& � (6.9)

which is easily seen to be the negative of the maximum entropy dual cost function (6.5). Fur-

ther, the distribution (6.8) is equivalent to (6.3, 6.4), hence the form of the graphical model can

be derived from maximum entropy considerations with marginal constraints. Note that in this

case the given distributions �
�
� � � � 
 are simply the marginal distributions �

� ��� � 
 of the empirical

distribution, hence they are always consistent.

6.3 Junction Trees

The straight forward implementation of iterative scaling uses a simple probability table to rep-

resent
� ����
 . As

� � �
grows exponentially with

� � � the computational cost of the algorithm is

high: each iterative scaling update requires  � � � � 
 time and  � � � � 
 space. In this section we

review the effective IPF procedure of Jiroušek and Přeučil (1995) which reduces the computa-

tional costs drastically for structured domains.

In short, effective IPF uses a junction tree to represent
� � ��
 instead of a simple probability

table. At each step of iterative scaling, our distribution
�

is given by (6.8), which has the

structure of an undirected graphical model with nodes � and clusters 
 . The corresponding

graph has an edge between two nodes if both are in the same cluster � ��
 . After triangulating

this graph, the maximal cliques � form a junction tree with separators � separating them. By

construction, each cluster ��� 
 is contained in some maximal clique � � � , therefore
� � ��


is decomposable with respect to the junction tree, i.e.

� � ��
�� � � ��� � � ��� 

� 9 � � � ���*9�
 (6.10)

Rather than representing
� ����
 as a straight probability table, we represent it as a set of smaller
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Figure 6.1: An ordering satisfying the running intersection property to distribute the iterative

scaling change at � � to the rest of the graph.

tables � � � ������
 � � ��� on the cliques2. These tables have to be consistent, i.e. if � � � ��� are neigh-

bouring cliques with � separating them, then
� � � ���*9 
 � � � � � �*9 
 3.

Consider the primal iterative scaling update (6.7). Let � � �,� be a clique containing � .

The iterative scaling update can be performed on � � rather than over all � :

� � � ����� � 
 �
� � � � ��� � 
 �� � � � � 
� � � ��� � 
 (6.11)

This changes the distribution
� ��� ������� 
 and makes it inconsistent with the other tables. To

maintain consistency, we propagate this change to the rest of the junction tree using a standard

DistributeEvidence phase4. This is illustrated in figure 6.1. Let � � � ��� � � � � be an ordering of the

cliques satisfying the running intersection property: for each � there is a unique � � � 
�� � with� � �� � ��� ��� � � � � � ��� � � � ��� ��� � � 
 . DistributeEvidence then amounts to

� � � ����� � 
 �
� � � ����� � 
 � �	� � � � � �*9 � 


� � � ���*9 � 
 (6.12)

for ��� � � � � � � � . In essence, we are replacing the marginal
� � � ���*9 � 
 with the new marginal

� �
� � � � ���*9 � 
 and the information carried in the marginals flows outward from the original cluster

� .

When the cliques are relatively small, the junction tree representation of
� ����
 is much more

efficient than a straight probability table. Let � � 	 � � � � � � � � ��� � � �
. Each iterative scaling

2The tables on the separators are not required as they can be computed by marginalizing a neighbouring clique.
3Because the cliques form a tree, this local consistency is equivalent to the global consistency we encountered

for  �� � ��� � ��� . This is unfortunately not true if the cliques do not form a tree (see section 6.5).
4Equivalently, we can use a CollectEvidence phase before each iterative scaling update to compute the required

marginal ��� � ����� � � (Bach and Jordan, 2002).
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update is followed by
�
�
�
propagation updates. So both the time and storage requirements are � � � � � 
 per iterative scaling update.

6.4 Unifying Propagation and Scaling

In section 6.3 we introduced junction trees as simply a computational tool to improve the effi-

ciency of the iterative scaling procedure. We will show in this section that both the propagation

updates (6.12) and the iterative scaling updates (6.11) can be derived as fixed point equations of

a constrained maximization problem. A consequence of this is that any intermixed schedule of

iterative scaling and junction tree propagation updates will converge to the maximum entropy

solution. This allows us more flexibility in designing efficient schedules of the updates. In par-

ticular, we propose a new scheduling which requires only � � � � propagation updates to perform

all
� 
 � iterative scaling updates once. This is more efficient than the algorithm in section 6.3.

6.4.1 Constrained Maximization

Consider the following constrained maximization problem:

��� & 	 ����   �  
�� � + � � � � � 
	06+ 9 � � � 9 
 ��� � � � � � 
�� �� � � � � 
 �
� � � �*9 
�� � 9 � �*9 
 � � � � � � with � � � � � � (6.13)

where the domains of
� � and

� 9 are probability simplexes. When the constraints are satisfied,

the distributions on the cliques and separators are consistent hence they can be combined into

a single distribution
� ����
 using (6.10). Then the cost function is

+ � � � � � 
	06+ 9 � � � 9�
�� � � � 
 (6.14)

This means that (6.13) is a specific case of the original maximum entropy problem (6.1) where
�

is assumed decomposable with respect to the junction tree. But section 6.3 shows that the

maximum entropy extension is itself decomposable with respect to the same junction tree.
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Figure 6.2: (a) Shafer-Shenoy propagation updates. (b) Computing clique distributions from

messages. (c) Computing separator distributions from messages.

Hence the marginal distributions of the maximum entropy extension form a solution to (6.13)

and the two problems are actually equivalent.

Again we will use Lagrange multipliers to solve (6.13). Let ��� 9 � �*9 
 impose the marginal

consistencies and let � � , � 9 make sure
� � and

� 9 are normalized. We identify each � ��

with a clique � � � � and let � � ��� � 
 impose the given constraint that

� � � � � � 
 � �
�
� ��� � 
 . Let
 ��� � � ��
 � � � � � � . The Lagrangian is then

� ��+ � � � � � 
	06+ 9 � � � 9�
	06+� � ��� � � � � � �
�

� � ��� � 
�0 � �
0 +� � 9 � � 
 � � 9 � �*9 
 �

� 9����*9 
	0 � �  �	
 � � � ����
 �
0 +
� �
� � � � � � � 


�
�
�
� � � � 
�0 � �  � � � � � � ����� � 
 � (6.15)

Solving the Lagrangian as before, we find that the marginal distributions are

� � ������
 � �
�

 �
 
 � � 
 � � � �

���  � � � ��� � (6.16)

� 9 ���*9 
 � �
�  �  
 � � 
 � (6.17)

while � � and ��� 9 are updated with the fixed point equations

� � � � � 
�� � � ��� � 
 � ".$'& �� � ��� � 
� � � ��� � 
 (6.18)

� �  � 
 � � 
 � � � + �  ��
 � � 
 ���� 
 �  
 � � � 
 � � � � �
�  � � ��� �

(6.19)

where � � and � are the two cliques separated by � , and � � are other separators neighbouring � . We

see that iterative scaling updates (6.6) are fixed point equations (6.18) to solve the Lagrangian.
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Also identifying messages and potentials as

� � 9����*9 
 �� � �
 
 � � 
 � ��� ������
 �� �

� �
�  � � ��� � (6.20)

(6.19) is easily shown to be

� � � 9����*9 
 � � + �  ��
 ��� ������
 �9 � � 9 � � 9 � ���*9 � 
 (6.21)

which can be identified as a Shafer-Shenoy propagation update for junction trees (Shafer and

Shenoy, 1990). The marginal distributions are then given by

� � ������
 � �*� � ����
 � 9 � � 9����*9 
 (6.22)

� 9����*9 
 � � � � � 9����*9 
 (6.23)

The Shafer-Shenoy updates are depicted in figure 6.2.

Sometimes, it is more intuitive and effective to perform iterative scaling using the primal

updates of (6.7) rather than the dual updates of (6.6). Similarly, sometimes propagation up-

dates which deal directly with clique marginals are more desirable. One of these is Hugin

propagation, given by

� � � ����� � 
��
� � � ����� � 
 � � � �*9 


� 9 � �*9 
 � 9 � �*9 
 �
� � � �*9 
 (6.24)

Hugin propagation can be shown to be equivalent to Shafer-Shenoy where we identify the

messages and marginal distributions using (6.22, 6.23).

6.4.2 Efficient Scheduling

The previous subsection shows that both iterative scaling and Shafer-Shenoy propagation up-

dates are fixed point equations to solve the maximum entropy problem (6.13). Because the

cost function of (6.13) is concave in the space where the constraints are satisfied, the fixed

point equations are guaranteed to converge to the global optimum. However this does not im-

ply anything about the efficiency of various schedules. We now propose a particular class of

schedules which will be efficient in the sense to be defined below.
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We can understand the iterative scaling update (6.18) as changing the Lagrange multiplier

� � � ��� � 
 , given the current estimate
� � � ��� 
 of the true marginal distribution

� � ��� 
 , so as to

satisfy the constraint
� ��� � 
�� �

�
� � � � 
 . On the other hand, the propagation updates (6.19) or

(6.21) compute the required marginal distributions
� ��� � 
 and store them in

� � � ����
 from the

current Lagrange multipliers. If the propagation updates are run until convergence after every

iterative scaling update, then the given
� � ������
 will be the true

� � �*� 
 . This is the schedule of the

effective IPF procedure. However it is clear that this schedule is inefficient since it calculates

all the marginal distributions exactly even though only one is needed for the next iterative

scaling update. On the other hand, if the propagation updates have not converged before an

iterative scaling update is performed, then the calculated marginal distribution
� � � ����
 might

not be exact. As a result the iterative scaling update might not be as effective.

In view of the above issues, we shall show that our proposed schedule, unified propagation

and scaling for junction trees (UPS-JT), is efficient in that it satisfies the following proper-

ties: (1) whenever an iterative scaling update is performed, the current estimate of the required

marginal
� � � ����
 is exact; (2) between any two iterative scaling updates, only at most one prop-

agation update is performed to ensure
� � ������
 is exact for the second iterative scaling update.

Algorithm 6.1 UPS-JT – Unified Propagation and Scaling for Junction Trees

1. Initialize the junction tree so that each
� � and

� 9 is uniform.

2. Initialize messages or Lagrange multipliers to uniform as well.

3. Initialize � � to some clique in � .

4. For ��� � � � � � � � until convergence criterion is met:

5. Perform iterative scaling updates for those clusters � ��
�� � identified with � � .
6. Choose a clique � ��� � neighbouring � � .
7. Perform the propagation update from � � to � ��� � .

Note that UPS-JT does not prescribe the ordering in which we visit the cliques except for

the implicit requirement that all cliques are visited enough times. One possible ordering is to



CHAPTER 6. THE BETHE FREE ENERGY FOR LEARNING 131
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Figure 6.3: The dashed lines are the messages which are still correct, while the solid line

denotes the message that is updated to become correct.

visit the cliques in a depth first search manner on the junction tree. This guarantees that every

Lagrange multiplier is updated once for a total of � � � � propagation updates. This is much

more efficient than the ordering in the effective IPF procedure (Jiroušek and Přeučil, 1995),

which takes
�
�
�
propagation updates for every iterative scaling update. The UPS-T algorithm

of chapter 5 uses this scheduling.

Compared with the effective IPF procedure, we see that UPS-JT performs multiple iterative

scaling updates on each clique, and, more importantly, substituted a full DistributeEvidence

phase with a single propagation update. Hence it satisfies condition 2 above. We now prove by

induction that condition 1 is satisfied when using Shafer-Shenoy propagation. The inductive

hypothesis is that at each iteration all incoming messages to � � are correct. At time � � �
this is trivially true. In figure 6.3 we depict one step of the UPS-JT algorithm for time �
� � .
we have updated the Lagrange multipliers � � ��� � 
 in clique � � . Next, as required by step 7 of

the UPS-JT algorithm, we choose a neighboring clique in the tree, � ��� � , to perform our next

scaling update. As required by condition 1, we need the exact marginal
� ��� � � � � 
 . To compute

that we collect evidence to the clique � ��� � , by propagating inward from the leaves. But note

that all messages (e.g. dashed arrows in figure 6.3), except message � � ��� � 9 � �*9 
 (solid arrow),

are unchanged by the scaling update at node � � . Hence, we only recompute the latter and use

(6.16) to get the correct marginal at clique � ��� � .
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6.5 Loopy Iterative Scaling

UPS-JT is an efficient algorithm for entropy maximization if the cliques of the junction tree

are small. However, its complexity scales exponentially with the size of the maximal clique.

To combat this, we propose an approximate algorithm named loopy iterative scaling based on

region graphs.

6.5.1 Region Graphs

After Yedidia et al. (2002) we define a region graph as an acyclic directed graph where the

vertices are labelled with subsets of nodes, or regions. The top layer consists of a family of

large regions which cover the original graph, such that each cluster � � 
 is contained in at

least one of them. A directed edge can only exist between a parent and a child if the nodes

associated with the child are a subset of the nodes associated with its parent. With each vertex

(or region) we will also associate a “counting number” � � ,
� � � � 0 +� � ������� ��� � � � � � � (6.25)

where
�
	 � � � ��� 
 consists of all regions which strictly contain � , and � � � � for the top layer

regions. A valid region graph should fulfill the following two conditions: (1) for each node,

the subgraph induced by the vertices containing that node must be connected; (2) the sum of

the counting numbers of each such subgraph must add up to one.

With each region graph we can associate an approximate entropy

� � � � � ��
��,+ � � � � � � � 
 � � � � 
 � (6.26)

and generalized belief propagation algorithms to maximize it (see Yedidia et al. (2002) for

details). The collection � � � � are now approximate marginals satisfying local consistency con-

straints5:
� � � �*9 
 � � 9 � �*9 
 for every child � of region � . The region-based entropy maximiza-

5Note that since the region graph can contain cycles there might not be a distribution which is consistent with
all ��� � , i.e. they may not be globally consistent.
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tion problem is then given by

��� & 	 � ��  �� � � � � � � � ��
 ��� � � � � � 
�� �� � � � � 
 � � � � �*9 
�� � 9 ���*9 
 � � � � � � with � � � � � � (6.27)

The solutions to (6.27) are approximations to the marginals of the true maximum entropy dis-

tribution. Further, the optimal Lagrange multipliers are approximate solutions to the maximum

likelihood parameters, if we are doing maximum likelihood training of a graphical model.

Solving the above region-based entropy maximization problem, it is not hard to show that

the fixed point equations are given again by the scaling updates (6.18) for the Lagrange mul-

tipliers, and the fixed point equations of generalized belief propagation. Here the Lagrange

multipliers associated with the constraints
� � � ��� � 
�� �

�
� � � � 
 are � � � � � � 
 , and the potentials

for the top layer regions � are � � ��� � 
 �� �
� �
� � � � �

� � � � �
, where � � is some top layer region

containing � , and 
 � � � � � � � � � � . These loopy iterative scaling updates can be performed

using any convenient scheduling, but convergence is unfortunately not guaranteed.

Unfortunately, the technique of clamping units used in chapter 5 to derive convergent al-

ternatives to loopy iterative scaling cannot be extended to here. The reason is that in chapter 5

the observational constraints and the clamping constraints are always consistent, while adding

constraints by clamping the marginals at some subset of nodes here can easily make the con-

straints inconsistent. However it is conceivable that algorithms which maximize lower bounds

on the approximate entropy (e.g. Yuille, 2002) can be made to work here.

Although region graphs conveniently translate into loopy iterative scaling algorithms, it

has not been made clear how to construct a valid region graph given a family of large regions.

There are two distinct methods described in the literature, one based on junction graphs, the

other called the cluster variation method.

6.5.2 Junction Graph Method

A junction graph is a two layer region graph with large regions called cliques and their chil-

dren, called separators. Since the region graph has such a simple structure, we typically ignore

the directionality of the edges. For each node we require that the subgraph constructed from all
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Figure 6.4: (a) An example of a graphical model. (b) A junction graph for the model. Notice

that the separator on the bottom only contains � and not � . (c) A region graph constructed using

the cluster variational method.

cliques and separators containing that node should form an undirected tree. Note that this con-

dition is stronger than the region graph condition, and automatically ensures that all counting

numbers in that subgraph sum to one. This property is the equivalent of the running intersec-

tion property for junction trees and guarantees that junction graphs “look like” junction trees

locally. An example of a junction graph is shown in figure 6.4.

Given a cluster set 
 , there is a variety of junction graphs that are consistent with 
 . On

one end of the spectrum, there are junction trees, on which we can perform exact entropy

maximization. On the other end, we have junction graphs with small cliques that are poor

approximations but admit efficient algorithms to maximize the approximate entropy. In fact,

Aji and McEliece (2001) show that for any collection of subsets of nodes (in particular, for
 ) it is easy to construct a junction graph whose cliques consist precisely of the subsets in the

collection: first define the separators as the intersections of pairs of cliques, then for every node

construct the subgraph induced by the cliques and separators containing that node and delete

nodes from separators as well as remove separators which are empty until the subgraph is a

tree.

Junction graphs are particularly convenient because the propagation updates reduce pre-

cisely to the junction tree updates (6.19). Moreover, the approximate entropy (6.26) reduces to
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the following Bethe entropy,

� � � � � � � 9 ��
�� + � � � � ��
	0 + 9 � � � 9 
 (6.28)

6.5.3 Cluster Variation Method

An alternative road to constructing valid region graphs is provided by the cluster variation

method. We start again with a family of large regions such that each cluster is contained in at

least one of them. Next, the children of the large regions are defined as their intersections6,

and the children of those are given by the intersections of the intersections. This process

is repeated until no further (non-trivial) region can be added. The resultant layered region

graph, with counting numbers assigned to regions using (6.25) is automatically valid, and the

corresponding approximate entropy is known as the Kikuchi entropy. The corresponding loopy

iterative scaling algorithm is now based on the generalized belief propagation algorithms as

described in Yedidia et al. (2001).

6.6 Experiment

We explored the behaviour of loopy iterative scaling on junction graphs on a simple task of

learning the weights of pairwise Markov networks. The training data consists of 8 � 8 binary

images of hand-written ‘8’s pre-processed from the CEDAR dataset (see figure 6.5).

First we generated the models to be fit to the data. These are generated so that they could

assign reasonably high likelihood to the data, while at the same time have junction trees of

manageable sizes. To do this, we first computed the maximum likelihood tree. This is obtained

by calculating the mutual information from the training data between all pairs of pixels. Then

the maximum likelihood tree is the maximum weight spanning tree where the weights are

the mutual informations. Given the maximum likelihood tree, the models are generated by

randomly sampling 5% of the edges connecting nodes a distance of at most � apart on the

6For each layer we do not include regions which are subsets of other regions in that layer.
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Figure 6.5: Some examples of the images of ‘8’s. The images have been binarized by thresh-

olding.

maximum likelihood tree. Junction trees are constructed by triangulating the resulting graphs

using node elimination, where at each stage the node with the least neighbors is chosen. The

maximal clique sizes of these junction trees vary between
�

and � � .
Second we constructed the junction graphs over which we approximate the entropy. For

each model, starting with the edges as the cliques of the junction graph, a range of junction

graphs is constructed by growing its cliques one node at a time, and making sure that the

resulting cliques are contained within the cliques of the corresponding junction tree. At each

stage a node is added to a clique such that the increase in the total mutual information7 is

largest, and removing cliques which are subsumed by other cliques.

Finally, on all the junction graphs so constructed we used loopy iterative scaling to learn

the parameters, where both scaling and propagation updates were damped geometrically. Fur-

ther, to encourage convergence, propagation updates were iterated until convergence before the

scaling updates were performed once. Using these convergence improving measures we find

that all our loopy iterative scaling runs converge (although we note that loopy iterative scaling

is not guaranteed to converge).

After loopy iterative scaling has converged, we assessed the accuracy of the results using

7Total mutual information is defined as the sum of the mutual informations between all pairs of nodes within
the same cliques.
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Figure 6.6: (a) Average log likelihoods over training data as a function of junction graph clique

size. Each curve is averaged over all models with a certain maximal clique size of the corre-

sponding junction tree. For models of treewidth 9, we also plotted the standard deviation of

the log likelihoods. The circles denote the log likelihood under the exact maximum likelihood

parameters (i.e. when the junction graph coincides with the junction tree). (b) Average � �
distances of the various models. The notations are the same as in (a).

two measures. In figure 6.6a we plot the log likelihoods of the data under the learned models,

while in figure 6.6b we show the � � distances between the empirical marginal distributions

�
�
� � � � 
 and those of the learned models

� ��� � 
 , averaged over the edges � . The approximation

is reasonably accurate, and its accuracy improves as we increase the maximum clique size of

the junction graph.

6.7 Discussion

In this chapter we have shown that propagation and iterative scaling on junction trees can be

unified as fixed point equations for solving a certain constrained maximum entropy problem.

From this insight we have proposed a more efficient scheduling for iterative scaling on junction

trees. For graphs with a maximal clique size which is prohibitively large, we have proposed a
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loopy iterative scaling algorithm, based on region graphs.

There are a number of important extensions of the methods discussed in this chapter.

Firstly, rather than finding a distribution with maximum entropy we can find a distribution

with minimum relative entropy (KL divergence) to a given distribution
�

� . The relative en-

tropy from
�

to
�

� is defined to be

� � � � � �

� 
�� + � � ����
 "%$'& � ����

�

� ����

(6.29)

When
�

� is the uniform distribution, minimizing � � � � � �

� 
 is equivalent to maximizing the

entropy of
�

. This extension is useful when we would like to learn undirected graphical models

where certain potentials are fixed. These potentials are cast into
�

� in the minimum relative

entropy framework. Our results on unifying junction tree propagation and iterative scaling

carry through if
�

� is decomposable with respect to the junction tree as well.

Secondly, the results are straightforwardly extended to constraints on feature expectations,

rather than on marginals. Here each cluster � �6
 is associated with a vector-valued feature

� � � � � � � �

�

, and
� ����
 is constrained to have

� � � ����
 � � � � � 
�� �� � � � �

�

. When dualized,

the maximum entropy problem becomes a maximum likelihood problem for an undirected

graphical model where � � are the features. The Lagrange multipliers � � � � �

�

imposing

the expectation constraints become the weights corresponding to the features in the undirected

graphical model

� ����
�� �� �
� �

�
�

� " � � � � �
(6.30)

The required expectations �� � are obtained by averaging over a training set. The algorithms

discussed in this chapter therefore open the way for more efficient training of maximum entropy

models (Della Pietra et al., 1997), conditional maximum entropy models (Lafferty et al., 2001b)

and thin junction trees (Bach and Jordan, 2002).

In this chapter we have proposed novel algorithms for learning fully observed undirected

graphical models. When the models are partially observed, a standard method to train them is

the EM algorithm. When the posterior distribution is intractable, a number of researchers have

looked at approximating the E steps with loopy belief propagation (Frey and Kannan, 2001).
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Because there is no global cost function which both the E and M steps are minimizing, we

cannot make any statements on the accuracy or convergence properties of such algorithms. An

exciting research direction is to extend our framework to the partially observed case, where we

now have an approximate EM algorithm where both E and M steps are derived as fixed point

equations minimizing a region-based free energy.

As a final remark, there have been many approximate free energy methods proposed for

approximate inference. Many of these methods can be applied to learning partially observed

directed graphical models. An example of this are the variational methods. In this chapter we

have shown that these methods can also be applied to learning undirected graphical models. To

do this, we looked at maximum likelihood learning as solving a maximum entropy problem,

and applied the approximations to the entropy instead. This insight opens up many possibilities

for approximate learning in undirected graphical models, some of which have been described

in detail here.
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Chapter 7

Discussion

In this thesis we described contributions to modelling with PoEs and EBMs, and to performing

approximate inference and learning using Bethe free energies.

7.1 Products of Experts and Energy-based Models

PoEs are a new class of flexible density models for unsupervised learning. They are obtained

by combining simpler density models (experts) by multiplying their densities together and

normalizing. The advantage of such a combination is that data is represented efficiently in

a distributed fashion across the experts, while keeping inference tractable. To deal with the

intractable partition function during learning, contrastive divergence learning is employed.

Initial applications of PoEs to continuous-valued domains were not very successful. In

chapters 3 and 4 we described new classes of PoEs that are effective for modelling continuous-

valued data.

First we extended RBMs so that they can model discretized continuous-values. This is

done by replicating the units in the RBM and using each group of replicas to model a single

discretized value. We showed that this RBMrate model can be successfully applied to the tasks

of face modelling and recognition.

For face recognition, we used an interesting model where pairs of faces belonging to the

140
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same individual are modelled, rather than single faces. This allows us to model well both the

features common to face images of the same individual (e.g. moustache, shape of nose), and

the facial changes which do not affect the identity of the individual (e.g. mouth movements,

glasses). To identify the individual in a test image, we have to pair the test image with every

gallery image and find the gallery image most well matched to the test image. This requires a

model in which inference can be done easily and cheaply – a role perfect for a PoE. Another

class of models where inference can be done easily and cheaply is the linear Gaussian models,

e.g. principal components analysis or factor analysis. It will be interesting to compare using

these simple models, which have proved quite successful for face recognition, to using PoEs

to model pairs of faces. However, we should note that PoEs can model much more complex

distributions. This allows more room for improvements which will hopefully translate to better

face recognition performance.

Another interesting direction of research is to determine which experts in a PoE contribute

most to improving face recognition rates, and to use only those experts. This can further

improve the efficiency of inference, and even improve recognition rates, since experts which

have not captured useful features of faces and are only contributing noise to the similarity

measure, will be pruned. This pruning of experts can be done using cross validation, or class

discriminability analysis Bartlett et al. (2002).

RBMrate is not entirely satisfactory as a model for continuous-valued domains, since the

data has to be bounded and discretized. EBMs are much more natural models for continuous-

valued data. EBMs are generalizations of PoEs in that each expert now need not be a nor-

malized distribution – each expert (called an energy term here) only has to be some easily

computed function of the data. The only constraint is that the integral over the data space of

����� � � � where
� � ��
 is the sum of energy terms must not be infinite. This constraint is needed so

that the EBM actually defines a proper distribution over the data space. This is typically easy

to impose by restricting the functional form of the experts (e.g. letting them be the negative log

of heavy-tailed density functions).

Although in chapter 4 we have only explored EBMs with a single layer of linear features,
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EBMs can be very flexible models of data. For example, EBMs can be defined using feed-

forward or recurrent neural networks (e.g. Welling et al., 2003). They can also be defined for

dynamical data using recurrent neural networks. In future work, we would like to explore the

various extensions to multiple layers, recurrent connections, and dynamical systems. Another

obvious future direction is to apply EBMs to face recognition.

7.2 Bethe Free Energy Approximations

After Yedidia et al. (2001) showed that the fixed points of loopy BP are exactly the stationary

points of the Bethe free energy, the next important steps are to understand what is the Bethe

free energy, and to understand the relationship between the stable fixed points of loopy BP and

the Bethe free energy.

The initial aim of our work here is to derive an algorithm to directly minimize the Bethe

free energy. In Welling and Teh (2001, 2003) we derived such an algorithm for Boltzmann

machines based on gradient descent. This led to a better understand of the nature of the Bethe

free energy in terms of Plefka’s expansion. We also showed that the naive mean field and

naive TAP methods are low order truncations of the Bethe free energy. In experiments we

verified that the mean field and TAP approximations are less accurate than the Bethe free

energy approximation.

In chapter 5 we derive another algorithm to directly minimize the Bethe free energy. This

algorithm works for the more general case of discrete pairwise Markov networks. The algo-

rithm is based on two ideas. Firstly, it uses the fact that the Bethe free energy is convex when

the network is tree structured. Secondly, it makes use of an interesting relationship between

loopy BP and IS – that they are both fixed point equations derived from trying to minimize the

Bethe free energy subject to constraints on certain node marginals.

The algorithm we derived, called UPS, is one of the first algorithms that directly minimizes

the Bethe free energy. Another such algorithm is CCCP by Yuille (2002). In contrast with

UPS, which is based on the graph theoretic intuition that the Bethe free energy is convex if the
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graph is a tree, CCCP is based on the algebraic intuition that the Bethe free energy consists

of convex and concave terms. Like UPS, CCCP is a double loop algorithm. At each iteration

of the outer loop, the concave terms are upper bounded linearly. The resulting bound on the

Bethe free energy is then convex and fixed point equations are derived that are guaranteed to

find the global minimum. The inner loop then consists of running these fixed point equations

until convergence. This convex-concave decomposition is very powerful, as is seen in that fact

that it is easily adapted to the more general case of the Kikuchi free energy. In an exciting

recent development, Heskes (2003) uses a similar convex-concave decomposition to show that

the stable fixed points of loopy BP are minima of the Bethe free energy.

The relationship between loopy BP and IS, along with the fact that IS is a standard al-

gorithm to learn the parameters of undirected graphical models, allows us to apply the ideas

developed in chapter 5 to learning. This is described in chapter 6. In particular, we first describe

UPS-JT, a more efficient version of the standard effective IPF procedure of Jiroušek and Přeučil

(1995). Then using the fact that the Bethe free energy is the simplest of a hierarchy of approx-

imate free energies based on region graphs (Yedidia et al., 2002), we then proposed a range of

approximate learning algorithms based on free energies from this hierarchy. We showed that

we can get good results on a simple experiment on hand-written digits using junction graphs.

Unfortunately, because the Bethe free energy and its generalizations based on region graphs

are not in general convex, loopy IS is not guaranteed to converge. In the future it would be

interesting to develop convergent alternatives to loopy IS. Another interesting direction, taken

by Wainwright et al. (2002a,b), is to start with a convexified form of the Bethe free energy

that lower bounds the log likelihood. Because the cost function is convex, the derived fixed

point equations (called tree-reweighted BP) are guaranteed to find the global optimum. In the

future it will be interesting to compare the accuracy of tree-reweighted BP versus loopy IS

and to analyze their accuracies c.f. Wainwright et al. (2002b). Another interesting direction of

research is to derive convexified region graph free energies that give tighter bounds on the log

likelihood.
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