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Abstract

We propose the hierarchical Dirichlet process (HDP), a aoametric
Bayesian model for clustering problems involving multigieoups of
data. Each group of data is modeled with a mixture, with thalmer of
components being open-ended and inferred automaticaltiidoynodel.
Further, components can be shared across groups, alloependencies
across groups to be modeled effectively as well as confggameraliza-
tion to new groups. Such grouped clustering problems ocftenadn
practice, e.g. in the problem of topic discovery in docuneempora. We
report experimental results on three text corpora showiegeffective
and superior performance of the HDP over previous models.

1 Introduction

One of the most significant conceptual and practical toolh@1Bayesian paradigm is
the notion of ahierarchical model Building on the notion that a parameter is a random
variable, hierarchical models have applications to a tad&forms of grouped or relational
data and to general problems involving “multi-task leagiior “learning to learn.” A
simple and classical example is the Gaussian means probilemhich a grand meap,

is drawn from some distribution, a set &f means are then drawn independently from a
Gaussian with meang, and data are subsequently drawn independently fko@aussian
distributions with these means. The posterior distribubased on these data couples the
means, such that posterior estimates of the means are stowakds each other. The
estimates “share statistical strength,” a notion that camiade precise within both the
Bayesian and the frequentist paradigms.

Here we consider the application of hierarchical Bayesiaas to a problem in “multi-task
learning” in which the “tasks” are clustering problems, and goal is to share clusters
among multiple, related clustering problems. We are mtad/éy the task of discovering
topics in document corpora [1]. A topic (i.e., a cluster) @istribution across words while
documents are viewed as distributions across topics. We watiscover topics that are
common across multiple documents in the same corpus, assvatiross multiple corpora.

Our work is based on a tool from nonparametric Bayesian aiskpnown as th®irichlet
procesgDP) mixture model [2, 3]. Skirting technical definitiong foow, “nonparametric”



can be understood simply as implying that the number of etess open-ended. Indeed,
at each step of generating data points, a DP mixture modeditiaer assign the data point
to a previously-generated cluster or can start a new clu3tee number of clusters is a
random variable whose mean grows at rate logarithmic in timelyer of data points.

Extending the DP mixture model framework to the setting oftiple related clustering
problems, we will be able to make the (realistic) assumptiat we do not know the
number of clusters a priori in any of the problems, nor do wevkhow clusters should be
shared among the problems.

When generating a new cluster, a DP mixture model selectsatameters for the cluster
(e.g., in the case of Gaussian mixtures, the mean and coeanmatrix) from a distribution
Go—the base distribution So as to allow any possible parameter value, the distabuti
G| is often assumed to be a smooth distribution (i.e., non-efonunfortunately, if we
now wish to extend DP mixtures to groups of clustering protdgthe assumption thét,

is smooth conflicts with the goal of sharing clusters amorgugs. That is, even if each
group shares the same underlying base distribufiprnthe smoothness @, implies that
they will generate distinct cluster parameters (with ptilig one). We will show that this
problem can be resolved by taking a hierarchical Bayesignoggh. We present a notion
of ahierarchical Dirichlet procesgHDP) in which the base distributia, for a set of DPs
is itself a draw from a DP. This turns out to provide an elegartt simple solution to the
problem of sharing clusters among multiple clustering prots.

The paper is organized as follows. In Section 2, we provigebtisic technical definition
of DPs and discuss related representations involving-ftiekking processes and Chinese
restaurant processes. Section 3 then introduces the HDi®jated by the requirement
of a more powerful formalism for the grouped data setting. férsthe DP, we present
analogous stick-breaking and Chinese restaurant repedgas for the HDP. We present
empirical results on a number of text corpora in Section malestrating various aspects of
the HDP including its nonparametric nature, hierarchielre, and the ease with which
the framework can be applied to other realms such as hiddekavianodels.

2 Dirichlet Processes

The Dirichlet process (DP) and the DP mixture model are ntayssof nonparametric
Bayesian statistics (see, e.g., [3]). They have also begbe seen in applications in ma-
chine learning (e.g., [7, 8, 9]). In this section we give a&baverview with an eye towards
generalization to HDPs. We begin with the definition of DPfs [£&t (O, B) be a measur-
able space, witl a probability measure on the space, andigihe a positive real number.
A Dirichlet processs the distribution of a random probability measd®ver (©, B) such
that, for any finite partitior{4,, ..., A,) of ©, the random vectofG(4,),...,G(A,)) is
distributed as a finite-dimensional Dirichlet distributio

(G(Al), ey G(AT)) ~ DiI‘(OéoGo(Al), ce ,OéoGo(AT)) . (1)

We write G ~ DP(«g, Go) if G is a random probability measure distributed according to
a DP. We callGy the base measure 6f, andag the concentration parameter.

The DP can be used in the mixture model setting in the follgwiray. Consider a set
of data,x = (z1,...,z,), assumed exchangeable. Given a d@w~ DP(ag, Gy),
independently draw: latent factorsfrom G: ¢; ~ G. Then, for each = 1,...,n,
drawz; ~ F(¢;), for a distributionF'. This setup is referred to a2 mixture model

If the factors¢; were all distinct, then this setup would yield an (unintéreg mixture
model withn components. In fact, the DP exhibits an importalnstering propertysuch
that the draws); are generallyot distinct. Rather, the number of distinct values grows as
O(logn), and it is this that defines the random number of mixture carepts.



There are several perspectives on the DP that help to uaddrstis clustering property.
In this paper we will refer to two: th€hinese restaurant proce¢€RP), and thestick-
breaking processThe CRP is a distribution on partitions that directly capithe cluster-
ing of draws from a DP via a metaphor in which customers stednles in a Chinese restau-
rant [5]. As we will see in Section 4, the CRP refers to prapsrof the joint distribution
of the factors{¢;}. The stick-breaking process, on the other hand, refersdpepties of
G, and directly reveals its discrete nature [6]. koe 1,2.. ., let:

0 ~ Go B3, ~ Beta(l, a) Ge=0 1 -8 (@)

Then with probability one the random measure definedsby: Y72 | 8ids, is @ sample
from DP(ay, Go). The construction fopi, (s, ... in (2) can be understood as taking a
stick of unit length, and repeatedly breaking off segmehtsragth ;.. The stick-breaking
construction shows that DP mixture models can be viewed ssirsimodels with a count-
ably infinite number of components. To see this, identifyhetacas the parameter of the
k™ mixture component, with mixing proportion given by.

3 Hierarchical Dirichlet Processes

We will introduce thehierarchical Dirichlet procesgHDP) in this section. First we de-
scribe the general setting in which the HDP is most usefubt-ti grouped data We
assume that we havé groups of data, each consistingsof data pointyz;i, ..., Zjn,).
We assume that the data points in each group are exchanwatbkﬁfe to be modeled with
a mixture model. While each mixture model has mixing propos specific to the group,
we require that the different groups share the same set déirmicomponents. The idea is
that while different groups have different charactersstioven by a different combination
of mixing proportions, using the same set of mixture compdsallows statistical strength
to be shared across groups, and allows generalization t@raaps.

The HDP is a nonparametric prior which allows the mixture eledo share components.
It is a distribution over a set of random probability measuwreer(©, 5): one probability
measuré ; for each groug, and a global probability measut&. The global measur@

is distributed adDP (v, H), with H the base measure andhe concentration parameter,
while each; is conditionally independent give®y, with distributionG; ~ DP(aq, Go).
To complete the description of the HDP mixture model, we eis$e eaclx ;; with a factor
¢;i, with distributions given by'(¢,;) andG; respectively. The overall model is given in
Figure 1 left, with conditional distributions:

GO |77H ~ DP(/}/?H) G] |OC,G0 ~ DP(a07GO) (3)
¢ji |Gy ~ G zji | pji ~ F(dji) - 4)

The stick-breaking construction (2) shows that a draé/gtan be expressed as a weighted
sum of point massesZy = Y -, Brdy,. This fact that3, is atomic plays an important
role in ensuring that mixture components are shared acifiesetht groups. Sincé&r is

the base distribution for the individu@l; s, (2) again shows that the atoms of the individual
G; are samples fromiro. In partlcular since&x, places non-zero mass only on the atoms
0 = (0x)52,, the atoms of7; must also come fror, hence we may write:

Go = 3521 Brde, Gj = > 521 Tikdo, - (5)

Identifying 6;, as the parameters of th& mixture component, we see that each submodel
corresponding to distinct groups share the same set of reixtamponents, but have dif-
fering mixing proportionssyr; = (m;x)52 ;.

Finally, it is useful to explicitly describe the relationgh between the mixing proportions
B and(w.j)jzl. Details are provided in [10]. Note that the weightsare conditionally in-
dependent give since eaclty; is independent give@'y. Applying (1) to finite partitions
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Figure 1:Left: graphical model of an example HDP mixture model withr8ups. Corresponding
to each DP node we also plot a sample draw from the DP usingtittlelseaking construction.
Right: an instantiation of the CRF representation for thedtig HDP. Each of the 3 restaurants has
customers sitting around tables, and each table is serveshgwdhich corresponds to customers in
the Chinese restaurant for the global DP).

of 8, we getmr; ~ DP(ay, 3), where we interpreB andw; as probability measures over
the positive integers. Heng2 is simply the putative mixing proportion over the groups.
We may in fact obtain an explicit stick-breaking constrantior ther ;’s as well. Applying
(1) to partitions({1, ...,k — 1}, {k}, {k + 1,...}) of positive integers, we have:

nh o~ Beta (a0 a0 (1- 50, 4))  m = w05 ). (©)

4 The Chinese Restaurant Franchise

We describe an alternative view of the HDP based directlywipe distribution a HDP in-
duces on the sampleg;, where we marginalize odt, andG;’s. This view directly leads
to an efficient Gibbs sampler for HDP mixture models, whicHesailed in the appendix.
Consider, for one group, the distribution ofp;1, . .., ¢;,, as we marginalize out';. Re-
call that sinceG; ~ DP(ag, Gy) we can describe this distribution by describing how to
generatep;, . .., ¢;n, using the CRP. Imagine; customers (each corresponds t¢;a)

at a Chinese restaurant with an unbounded number of tabltesfirt customer sits at the
first table. A subsequent customer sits at an occupied taittheprobability proportional

to the number of customers already there, or at the next wipied table with probability
proportional tog. Suppose customeisat at table ;;. The conditional distributions are:

.. . .. njt [e70)
tﬂ | tjl, L. ,tﬂ_l,ao ~ E ) DREIEE O + D ONEIRE= Ognew , (7)
t

wheren;, is the number of customers currently at tabl®nce all customers have sat down
the seating plan corresponds to a partitiorgf, . .. , ¢;,,. This is an exchangeable pro-
cess in that the probability of a partition does not depentherorder in which customers

sit down. Now we associate with tabd@ drawi;; from Go, and assignb;; = ¥;¢,, -

Performing this process independently for each grgupe have now integrated out all the
Gj's, and have an assignment of eagh to a samplapjtﬂ from Gy, with the partition
structures given by CRPs. Notice now thatigl]’s are simply i.i.d. draws frondro, which

is again distributed according P (~, H), so we may apply the same CRP patrtitioning
process to the;;'s. Let the customer associated with, sit at tablek;,. We have:

Kje lkis oo king kory oo e,y ~ Z ST Z:k/+75k +5— T Tag Oknew . (8)
k
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Figure 2:Left: comparison of LDA and HDP mixture. Results are avedaneer 10 runs, with error
bars being 1 standard error. Right: histogram of the numbipics the HDP mixture used over 100
posterior samples.

Finally we associate with tablea drawd,. from H and assigny;; = 6y,. This completes
the generative process for the;'s, where we marginalize o, andG;’s. We call this
generative process tizhinese restaurant franchi¢€RF). The metaphor is as follows: we
haveJ restaurants, each with; customersg;;'s), who sit at tablesy;;'s). Now each table
is served a dish¥(;'s) from a menu common to all restaurants. The customersoaialse,
prefering large tables with many customers present, adeatsfer popular dishes.

5 Experiments

We describe 3 experiments in this section to highlight thiéovs aspects of the HDP: its
nonparametric nature; its hierarchical nature; and the eath which we can apply the
framework to other models, specifically the HMM.

Nematode biology abstracts. To demonstrate the strength of the nonparametric approach
as exemplified by the HDP mixture, we compared it agalasnt Dirichlet allocation
(LDA), which is a parametric model similar in structure teethlDP [1]. In particular,

we applied both models to a corpus of nematode biology atistyavaluating the per-
plexity of both models on held out abstracts. Here absti@miespond to groups, words
correspond to observations, and topics correspond to reixtomponents, and exchange-
ability correspond to the typical bag-of-words assumptlarorder to study specifically the
nonparametric nature of the HDP, we used the same expeairsattp for both models
except that in LDA we had to vary the number of topics used betwl0 and 120, while
the HDP obtained posterior samples over this automatically

The results are shown in Figure 2. LDA performs best usingvéen 50 and 80 topics,
while the HDP performed just as well as these. Further, tleéepior over the number of
topics used by HDP is consistent with this range. Notice hawthat the HDP infers the
number of topics automatically, while LDA requires some inoetof model selection.

NIPS sections. We applied HDP mixture models to a dataset of NIPS 1-12 papejs
nized into sectior’s To highlight the transfer of learning achievable with thBP® we

Available athttp:/elegans.swmed.eduiwliicgebib. There are 5838 abstracts in total. After removing
standard stop words and words appearing less than 10 tineesreneft with 476441 words in total
and a vocabulary size of 5699.

2In both models, we used a symmetric Dirichlet distributicithwveights of0.5 for the prior H
over topic distributions, while the concentration parangtre integrated out using a vague gamma
prior. Gibbs sampling using the CRF is used, while the comagon parameters are sampled using
a method described in [10]. This also applies to the NIPS@ecexperiment on next page.

3To ensure we are dealing with informative words in the doaus)ave culled stop words as well
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Figure 3: Left: perplexity of test VS documents given training documsefrom VS and another
section for 3 different models. Curves shown are averagedtbe other sections and 5 runs. Right:
perplexity of test VS documents given LT, AA and AP documeetpectively, using M3, averaged
over 5 runs. In both, the error bars are 1 standard error.

show improvements to the modeling of a section when the medd$o given documents
from another section. Our test section is always the VSdwisiciences) section, while
the additional section is varied across the other eight. tfdiaing set always consist of
80 documents from the other section (so that larger seclibm#\A (algorithms and ar-
chitecures) do not get an unfair advantage), plus betweerd®@a documents from VS.
There are 47 test documents, which are held fixed as we varytevether section and the
numberN of training VS documents. We compared 3 different modelgHartask. The
first model (M1) simply ignores documents from the additiaetion, and uses a HDP to
model the VS documents. It serves as a baseline. The secalel (M) uses a HDP mix-
ture model, with one group per document, but lumping togettaéning documents from
both sections. The third model (M3) takes a hierarchicat@g@gh and models each section
separately using a HDP mixture model, and places anotherioPqver the common base
distributions for both submodéls

As we see in Figure 3 left, the more hierarchical approach 8fgdrforms best, with per-
plexity decreasing drastically with modest values\afwhile M1 does worst for smalV.
However with increasingV, M1 improves until it is competitive with M3 but M2 does
worst. This is because M2 lumps all the documents togethes, 3ot able to differentiate
between the sections, as a result the influence of docunremtstfie other section is un-
duly strong. This result confirms that the hierarchical apph to the transfer-of-learning
problem is a useful one, as it allows useful information tareasfered to a new task (here
the modeling of a new section), without the data from the joev tasks overwhelming
those in the new task.

We also looked at the performance of the M3 model on VS doctsgven specific other
sections. This is shown in Figure 3 right. As expected, théopmance is worst given LT
(learning theory), and improves as we move to AA and AP (apfibns). In Table 1 we
show the topics pertinent to VS discovered by the M3 modektkie trained the model
on all documents from the other section. Then, keeping thigasients of words to topics
fixed in the other section, we introduced VS documents andrtbéel decides to reuse
some topics from the other section, as well as create new drestopics reused by VS
documents confirm to our expectations of the overlap betM&and other sections.

as words occurring more than 4000 or less than 50 times indbendents. As sections differ over
the years, we assigned by hand the various sections to onprot&ypical sections: CS, NS, LT,
AA, IM, SP, VS, AP and CN.

“Though we have only described the 2 layer HDP the 3 layer sideris straightforward. In
fact on our websitettp://www.cs.berkeley.edu/"ywteh/research/npbayes we have an implementation of the
general case where DPs are coupled hierarchically in astraetured model.



CS NS LT AA IM SP AP CN
task cells cell signal layer algorithms test |processing visual images |approach ii tree pomdp
representation |activity gaussian cells |approach pattern video language |based trained |observable
pattern response fig nonlinearity | methods based |approach image pixel test layer strategy class
processing neuron visual |nonlinear rate |point problems |architecture acoustic delta |featurestable |stochastic
trained patterns eq cell form large single shows  |lowpass flow classification history
representations | pattern single paper simple based rate paper strategies
three process |fig large control density
unit patterns
examples visual cells large examples | distance motion visual |signals image images | policy optimal
concept cortical form point see |tangentimage |velocity flow separation face similarity [reinforcement
similarity orientation parameter images target chip eye [signal sources |pixel visual control action
bayesian receptive consider transformation |smooth source matrix | database states actions
hypotheses contrast spatial |[random small |transformations | direction optical | blind mixing matching facial |step problems
generalization |cortex stimulus |optimal pattern vectors gradient eq examples goal
numbers tuning convolution
positive classes simard
hypothesis

Table 1: Topics shared between VS and the other sections. Shown egvthtopics with most
numbers of VS words, but also with significant numbers of wdrdm the other section.

Alice in Wonderland. The infinite hidden Markov modgiHMM) is a nonparametric
model for sequential data where the number of hidden statepén-ended and inferred
from data [11]. In [10] we show that the HDP framework can beliggl to obtain a cleaner
formulation of the iIHMM, providing effective new inferenedgorithms and potentially hi-
erarchical extensions. In fact the original IHMM paper [5&fved as inspiration for this
work and first coined the term “hierarchical Dirichlet preses’—though their model is
not hierarchical in the Bayesian sense, involving priorsrupriors, but is rather a set of
coupled urn models similar to the CRF. Here we report expamiad comparisons of the
iHMM against other approaches on sentences taken from L&aisoll’'s Alice’s Adven-
tures in Wonderland

ML, MAP, and variational Bayesian (VB)

Perplexity on test sentences of Alice

50 [12] models with numbers of states rang-
M;P ing from 1 to 30 were trained multiple
4or VB 4]  times on 20 sentences of average length
g / 51 symbols (27 distinct symbols, consist-
3% ing of 26 letters and * ), and tested on
5 40 sequences of average length 100. Fig-
e 20 ~ = ure 4 shows the perplexity of test sen-
100 tences. For VB, the predictive probability
is intractable to compute, so the modal set-
o . ting of parameters was used. Both MAP

o ber orbidden aaes 2> and VB models were given optimal set-
Figure 4: Comparing iHMM (horizontal line) fings of the hyperparameters found in the
versus ML, MAP and VB trained HMMs. Er- iIHMM. We see that the iHMM has a lower

ror bars are 1 standard error (those for iHMM togderlexity than every model size for ML,

small to see). MAP, and VB, and obtains this with one

countably infinite model.

6 Discussion

We have described the hierarchical Dirichlet process, matthical, nonparametric model
for clustering problems involving multiple groups of datdDP mixture models are able
to automatically determine the appropriate number of métomponents needed, and
exhibit sharing of statistical strength across groups byrftacomponents shared across
groups. We have described the HDP as a distribution overitilitions, using both the
stick-breaking construction and the Chinese restaurantfrise. In [10] we also describe
a fourth perspective based on the infinite limit of finite rabe models, and give detail for



how the HDP can be applied to the iHMM. Direct extensions efittodel include use of
nonparametric priors other than the DP, building higheellderarchies as in our NIPS
experiment, as well as hierarchical extensions to the iHMM.

Appendix: Gibbs Samplingin the CRF

The CRF is defined by the variables= (t;;), k = (k;:), and@ = (). We describe an
inference procedure for the HDP mixture model based on Gihbwlingt, k andé given
data itemsx. For the full derivation see [10]. Left(-|¢) andh be the density functions for
F(0) and H respectivelyy;,* be the number of;;'s equal tot exceptt;, andm,:” be
the number of;/,,’s equal tok exceptk;;. The conditional probability fot;; given the
other variables is proportional to the product of a prior Bkelihood term. The prior term
is given by (7) where, by exchangeability, we can takeo be the last one assigned. The
likelihood is given byf (z;;|0,, ) where fort = t"*" we may samplé:; v using (8), and
Ornew ~ H. The distribution is then:

o B aof(:cji|9k”) If t= tnew
pltis = t]t\tsi, k. 0,%) o {nj‘j (zi|0k,,) if ¢ currently used. ©)
Similarly the conditional distributions fdt;, andd,, are:
o . 'YHz‘:tji:t f(]0k) if k= ke
plkse = k[ 8, k\kje, 0,%) o {m;t [Tis,,—¢ f(xjil6r) i k currently used. (10)
(O |8,F,0\0k, x) o h(0k) [  f(wsul6n) (11)

Jikje;, =k

wherefew ~ H. If H is conjugate tdF'(-) we have the option of integrating o@it
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