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Abstract

We propose a novel class of Bayesian nonparametric models for variations in genetic data
called fragmentation-coagulation processes (FCPs). FCPs model a set of sequences us-
ing a partition-valued Markov process which evolves by splitting and merging clusters.
FCPs have a number of theoretically appealing properties: they are infinitely exchange-
able, stationary and reversible, with equilibrium distributions given by Chinese restaurant
processes. As opposed to hidden Markov models, FCPs allow for flexible modelling of
the number of clusters, and they avoid label switching non-identifiability problems. We
develop an efficient Markov chain Monte Carlo sampler for FCPs which uses the forward-
backward algorithm, and demonstrate FCPs on genotype imputation problems, showing
state-of-the-art results.

Keywords: Bayesian Nonparametrics, Fragmentation-Coagulation Processes, Genetic
Variations, Genotype Imputation, Hidden Markov Models, Markov Chain Monte Carlo

1. Introduction

Driven by advances in genotyping technology, there has recently been an explosion of avail-
able data pertaining to genetic variations in human populations. The International HapMap
Consortium (2003), The 1000 Genomes Project Consortium (2010), the Wellcome Trust
Case Control Consortium, as well as more recent endeavours have collected whole genome
data of thousands of individuals across the world, and promise to revolutionise our under-
standing of the genetic processes driving population change and adaptation, of the migratory
histories of human populations, and of the genetic bases of various diseases and phenotypes.

The analyses of such genetic variation data using sophisticated and scalable statistical
models are indispensable in unlocking their full potential. Early methods for analysing
genetic sequence data (Griffiths and Marjoram, 1996; Stephens and Donnelly, 2000) are
based around the celebrated coalescent model of Kingman (1982a,b), which is a model of
the genealogy of genetic material that does not undergo recombination and gene conversions,
so is a good model for short sequences of DNA. Over longer segments recombination and
other genetic processes become more prominent and an extension of the basic coalescent
accounting for recombination was proposed by Hudson (1983). Though of much theoretical
interest, these early models were unfortunately not usable as statistical models for the large
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Figure 1: An example mosaic structure for SNP sequences obtained from phased trios in the
CEU population in HapMap, from base pair positions 32790152 to 32795548 on
Chromosome 6 (NCBI Build 36 coordinates). Each SNP sequence corresponds to
a trajectory, from left to right, through the structure, passing through a number
of segments. Each segment consists of a sequence of alleles, while dotted lines
correspond to transitions between segments.

amounts of data now available, because of the computational difficulties associated with
integrating over the complex and latent genealogical structures posited by the coalescent
with recombination.

More recent and more scalable techniques are based on the insight that DNA sequences
undergoing a recombination process often exhibit “mosaic” structure (Daly et al., 2001).
That is, each sequence can be well approximated as a combination (or mosaic) of segments,
each of which may appear in multiple sequences. An example of such mosaic structure is
given in Figure 1.

Hidden Markov models (HMMs) (Rabiner, 1989; Scott, 2002) of mosaic structure, where
each latent state corresponds to a different segment, have been proposed by Daly et al.
(2001) and Scheet and Stephens (2006). These HMMs are learned using the expectation-
maximization (EM) algorithm (Dempster et al., 1977). Alternatively, instead of using the
EM algorithm, Li and Stephens (2003) and Marchini et al. (2007) proposed using observed
reference sequences as HMM states, while Browning and Browning (2009) proposed a fast
heuristic algorithm in which haplotypes are split and merged according a deterministic rule.

Though popular and widespread models for sequence data, HMMs suffer from two draw-
backs. Firstly, they cannot flexibly adapt the number of latent states to the data, unless
they use an external and often costly model selection mechanism. Secondly, as dynamical
generalizations of finite mixture models, they can suffer from the label switching problem
(Jasra et al., 2005), which is a non-identifiability among the HMM states resulting from the
fact that typically both the prior and the likelihood model of HMMs are invariant to per-
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mutations of the latent states. The label switching non-identifiability creates exponentially
many redundant modes in the posterior as well as a multitude of local optima.

Bayesian nonparametrics is a recent popular framework both to define and work with
models with large support, as well as to sidestep the model selection problem of many
probabilistic models (Hjort et al., 2010). For example, the Gaussian process (Rasmussen and
Williams, 2006) can have large support in the space of smooth functions, while the Dirichlet
process (DP) (Ferguson, 1973) is a prior whose support is the space of all probability
measures. In this paper we will make use of the Chinese restaurant process (CRP) (Aldous,
1985; Pitman, 2006), a distribution over partitions related to the DP which is commonly
used as a Bayesian nonparametric prior for clustering problems.

Clustering can be seen as the problem of inferring a partition of a heterogeneous data
set into multiple homogeneous “clusters”. A Bayesian approach to clustering starts with
a prior distribution over partitions, associate each partition to the observed data using a
likelihood model, and the clustering problem addressed as the computation of the posterior
distribution over partitions. The CRP can be seen as a prior over partitions of the data set
with sensible properties: it is exchangeable, it gives high probability to partitions with a
small (relative to the data set size) number of clusters, and it has large support in the space
of partitions, as opposed to finite mixture models which have support only on partitions
with a fixed maximum number of clusters.

Coming back to the problem of modelling mosaic structures, while a variety of Bayesian
nonparametric extensions of HMMs have been proposed (Beal et al., 2002; Teh et al.,
2006; Xing and Sohn, 2007), these models nevertheless still suffer from the label switching
problem. In this paper we propose a novel Bayesian nonparametric model for the mosaic
structure of genetic sequences based on fragmentation-coagulation processes (FCPs). Our
approach is based on the observation that a mosaic structure can be described as a sequence
of partitions, one at each location of the genome. A FCP models this sequence of partitions
as a Markov process on the space of partitions such that the partition at each location is
marginally a CRP and whose clusters are used in the place of HMM states. FCPs do not
require the number of clusters in each partition to be pre-specified (inferring them from
data instead), and do not have explicit labels for clusters thus avoid the label switching
problem. The partitions of FCPs evolve via a series of events, each of which involves either
two clusters merging into one, or one cluster splitting into two, thus the name.

We first give a brief description of CRPs in Section 2 and set-up the problem of statistical
modelling of mosaic structures in Section 3. We define FCPs and describe their properties
in Section 4. Section 5 discusses in more detail how FCPs are related to other probabilistic
and Bayesian nonparametric models. In Section 6 we derive a Gibbs sampler for FCPs
using an augmentation scheme, and in Section 7 we describe experimental results on SNP
data from the Thousand Genomes Project. Finally we conclude in Section 8.

2. The Chinese Restaurant Process

We start with a brief review of the Chinese restaurant process (CRP). Given a set S, let
ΠS denote the set of unlabelled partitions of S. That is, each π ∈ ΠS is a set of disjoint
non-empty subsets (which we call clusters) of S whose union is S. For each n ∈ N ∪ {∞}
let [n] denote the natural numbers {1, . . . , n}. In this paper we are interested in random
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partitions of S = [n]. The CRP (Aldous, 1985; Pitman, 2006) is the canonical distribution
on ΠS , and is parameterized by a mass parameter γ > 0. For finite S, it has a probability
mass function given as follows:

gS(π; γ) =
Γ(γ)γ|π|

∏
a∈π Γ(|a|)

Γ(n+ γ)
, (1)

for each π ∈ ΠS , with Γ(·) the gamma function. The CRP can be described using the follow-
ing metaphor: |S| customers corresponding to the elements of S enter a Chinese restaurant
one at a time. The first customer sits at some table, while subsequent customers sit at an
already occupied table with probability proportional to the number of customers already
seated there, or at a new table with probability proportional to γ. After all customers have
been seated, the seating arrangement of customers around tables form a partition π of S,
with occupied tables corresponding to the clusters of π. The probability mass function of
the CRP given in (1) is the product of the conditional probabilities under this generative
process. We write Π ∼ CRPS(γ) if Π is a CRP distributed random partition of S.

Given a permutation σ of S, let σ(Π) be the partition of S obtained by replacing
each i ∈ S by σ(i). The CRP is exchangeable in that the laws of σ(Π) and Π coincide.
Metaphorically, the specific order in which customers enter the restaurant does not affect
the resulting distribution over seating arrangements. If S′ ⊂ S, define the restriction π|S′
of π onto S′ to be the partition of S′ obtained by removing the elements of S\S′ as well
as the resulting empty subsets from π. The CRP is also projective in that the restriction
Π|S′ is distributed as CRPS′(γ). Using Kolmogorov’s Extension Theorem, the exchangeable
and projective nature of the CRP imply that we can extend Π to an exchangeable random
partition of all of N. The CRP is also intimately associated with the Dirichlet process via
de Finetti’s Theorem (Blackwell and MacQueen, 1973). In particular, define a sequence of
random variables x1, x2, . . . by first associating each cluster c ∈ Π with an i.i.d. draw θc from
a base distribution H then assigning each xi = θc for the unique subset c ∈ Π containing i.
Then the sequence x1, x2, . . . is infinitely exchangeable, and by de Finetti’s Theorem has a
hierarchical representation of the form

G ∼ DP(γ,H)

xi|G ∼ G i.i.d. for each i = 1, 2, . . .. (2)

where the law of G, called the de Finetti measure, is given by the Dirichlet process (DP)
with mass parameter γ and base distribution H. If instead of assigning each xi = θc we draw
each xi ∼ F (θc) independently from some distribution parameterised by θc, then x1, x2, . . .
are still infinitely exchangeable, and the sequence has a DP mixture (with mixing kernel F )
(Lo, 1984) as its de Finetti measure. In clustering terms, the CRP serves as the prior over
partitions, and F (θc) is the likelihood model which describes the distribution of data items
in cluster c. The random number of clusters under a CRP has mean γ(ψ(n+ γ)− ψ(γ)) ≈
γ log(n − 1

2 + γ) and variance ≈ γ log(n − 1
2 + γ), where ψ(x) = ∂ log Γ(x)

∂x is the digamma
function.
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3. Modelling Mosaic Structures using Partition-valued Stochastic
Processes

Suppose we have n genetic sequences of length T , typed at m sites, which are located at
positions 0 < to1 < · · · < tom < T on the sequences. Each typed value (or allele) can take on
values in a discrete space X. In the case of single nucleotide polymorphisms (SNPs) each
site can take on only two alleles and we can assume X = {0, 1}. For i = 1, . . . , n the ith
haplotype xi = [xi1, . . . , xim] consists of the sequence of m alleles on the ith sequence, and
we denote the data set as X = {x1, . . . , xn}.

Daly et al. (2001) noted that genetic sequences undergoing a recombination process
exhibit structure where each haplotype is composed of a mosaic of contiguous segments
(Figure 1). One way to model such mosaic structure is via a hidden Markov model (HMM)
(Rabiner, 1989), where each sequence xi is modelled using a Markov chain of latent state
variables ci1, . . . , cim, each of which can take on one of K states, with cij representing the
local segment around site j in sequence xi.

Looking across sequences at a fixed location j, we can equivalently interpret the latent
state variables c1j , . . . , cnj as defining a partition of the sequences at location j which is
limited to have at most K clusters. In general we can model the mosaic structure using a
partition-valued stochastic process (Π(t) : t ∈ [0, T ]), where each Π(t) is a random partition
of the index set [n] that is not limited to a fixed number of clusters. At each site j, each
cluster in Π(toj) is a set of sequence indices and indicates that all sequences indexed by
it share the same local segment around site j. From the perspective of the ith sequence,
the cluster membership of index i through the sequence of partitions in (Π(to1), . . . ,Π(tom))
describes the sequence of mosaic segments constituting xi.

A partition-valued mosaic structure can be understood as an approximation to the
ancestral recombination graph (ARG), which describes the joint genealogies of the sequences
(Hudson, 1983). Embedded within the ARG is a tree-structured genealogy associated with
each location on the chromosome, with locations on either side of each recombination event
having different genealogies. By approximating the genealogical tree at each location by
a partition, for example with each cluster representing an ancestral population, we get a
partition-valued mosaic structure as described above.

Given the mosaic structure described by (Π(t)), we can model the observed sequences
X using the following hierarchical model:

xij |θcj ,Π(toj) ∼ F (θcj) where c is the unique cluster in Π(toj) containing i,

θcj |ωj ∼ H(ωj) for each c ∈ Π(toj).

ωj ∼ H0 for each site j, (3)

where F (θ) is a distribution over alleles parameterised by θ, H(ω) is a prior over the
parameters at each site, with ω being a hyperparameter and H0 its hyperprior. The model
assumes that sequences in the same cluster share the same parameter thus the alleles in the
cluster tend to be similar. We shall return to the specification of this hierarchy for SNP
data in Section 6.2.

What is left to specify now is the prior on (Π(t)) itself, which constitutes the main
objective of this paper. Before we proceed, it is prudent to consider properties that a
partition-valued stochastic process (Π(t)) should have, if it were used as a prior for mosaic
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structures. Firstly, it should be exchangeable and projective, so that inferences drawn are
invariant with respect to the number of sequences and the order in which they are numbered.
Without detailed knowledge of how genetic processes affect the mosaic structure, it is also
reasonable to assume that (Π(t)) is stationary and reversible. Finally, using a Markov
process for (Π(t)) can help in the development of computationally efficient methodologies
for posterior simulation that take advantage of the conditional independencies present in
Markov models.

Returning to the HMM, recall that the latent variables can be equivalently understood as
defining a partition-valued stochastic process. The HMM partition process is exchangeable
and projective, and can be made stationary and reversible with the right choice of initial
state distribution and transition probabilities. Further, the Markov property of the latent
state sequences translates into a Markov property of the sequence of random partitions.

In the following, we shall introduce a fragmentation-coagulation process (FCP) as an al-
ternative Markov process over partitions. As opposed to the HMM, which defines partitions
implicitly using labelled states, the FCP defines a Markov process directly in the space of all
(unlabelled) partitions of [n]. The FCP satisfies the desirable properties given above, and
has the advantages of not needing to pre-specify the maximum number of clusters in each
partition, and of not labelling the clusters so that the label switching problem is avoided
(see Section 5.1).

4. A Fragmentation-Coagulation Process

We will define a homogeneous pure jump Markov process (Π(t) : t ∈ [0,∞)) in which
each Π(t) is a random partition taking values in Π[n]. Since Π[n] is finite, it is sufficient to
describe the initial distribution of Π(0) and the transition rates from each partition in Π[n]

to another. We will show that our Markov process is ergodic and use the unique stationary
distribution as the initial distribution so that (Π(t)) is a stationary Markov process. First we
describe the transitions of the Markov process, of which there are two types, fragmentations
and coagulations, as the name of the process suggests. The transition rates are as follows:

• Fragmentation: Suppose π ∈ Π[n] and let c ∈ π be a cluster with |c| ≥ 2. Let a
and b be disjoint non-empty subsets such that a ∪ b = c. Suppose η = π − c + a + b
is obtained by fragmenting c into a and b. We define the rate of transitioning from π
to η to be given by:

q(π, η) = β
Γ(|a|)Γ(|b|)

Γ(|c|) (4)

where β > 0 is a parameter governing the rate of fragmentation. Each subset c
fragments independently, and the overall rate of c fragmenting into any pair of disjoint
non-empty subsets a and b can be shown to be∑

a,b:a∪b=c
β

Γ(|a|)Γ(|b|)
Γ(|c|) = βH|c|−1 (5)

where Hp =
∑p

i=1
1
i is the pth harmonic number. The overall rate of fragmentation

when the Markov process is in state π is thus β
∑

c∈πH|c|−1.
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• Coagulation: Suppose now that a, b ∈ π with a 6= b. Let c = a ∪ b, and let
η = π− a− b+ c be obtained by coagulating the two subsets a and b into c. The rate
of transitioning from π to η is simply given by

q(π, η) = α, (6)

where α > 0 is a parameter governing the rate of coagulation. The total rate of
coagulation when the Markov process is in state π is α |π|(|π|−1)

2 since there are |π|(|π|−1)
2

pairs of subsets a, b that can coagulate.

• For all other pairs of partitions π, η ∈ Π[n], the transition rate is q(π, η) = 0.

Note that these fragmentation and coagulation transitions are reverses of each other: If η is
obtained by fragmenting a subset of π, then π can be obtained by coagulating two subsets
of η and vice versa. Further, q(π, η) > 0 if and only if q(η, π) > 0. We will further elaborate
on reversibility of the Markov process in Proposition 3 below.

The total rate of transition out of state π ∈ Π[n] is the sum of the fragmentation and
coagulation rates, given as:

q(π) = q(π, ·) = α
|π|(|π| − 1)

2
+ β

∑
c∈π

H|c|−1 (7)

We call (Π(t)) a fragmentation-coagulation process (FCP) with fragmentation rate β and
coagulation rate α. Due to the simplicity of the FCP, analysis of its properties is relatively
straightforward and we will describe a number of important properties in the rest of this
section.

4.1 Markov Properties

Proposition 1. The Markov process (Π(t), t ∈ [0,∞)) is ergodic with stationary distribu-
tion given by CRP[n](

β
α).

Proof Firstly, note that Π[n] is finite and that there is positive probability of (Π(t))
transiting from any π ∈ Π[n] to any η ∈ Π[n] within any positive amount of time, thus the
Markov process is ergodic. To show that the stationary distribution is given by the CRP,
we only need to demonstrate detailed balance. Since all other transition rates are zero
except for the pair-wise fragmentations and coagulations, which are reverses of each other,
it is sufficient to show detailed balance when π, η ∈ Πn are such that η can be obtained by
fragmenting a subset c ∈ π into two subsets a and b:

g[n](π; βα)× q(π, η) =
Γ(βα)(βα)|π|

∏
s∈π Γ(|s|)

Γ(n+ β
α)

× βΓ(|a|)Γ(|b|)
Γ(|c|)

=
Γ(βα)(βα)|π|+1Γ(|a|)Γ(|b|)∏s∈π,s6=c Γ(|s|)

Γ(n+ β
α)

× α

=
Γ(βα)(βα)|η|

∏
s∈η Γ(|s|)

Γ(n+ β
α)

× α = g[n](η; βα)× q(η, π) (8)
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Thus detailed balance holds and the equilibrium distribution is CRP[n](
β
α).

Now specifying the initial distribution to be the stationary distribution, that is,

Π(0) ∼ CRP[n](
β
α), (9)

we have the following result:

Proposition 2. The Markov process (Π(t) : t ∈ [0,∞)) is stationary with Π(t) ∼ CRP[n](
β
α)

marginally for each t ∈ [0,∞).

Since the Markov process is stationary, the detailed balance argument of Proposition 1
in fact shows that it is reversible as well:

Proposition 3. For each T > 0, define Π′(t) = Π(T−t). Then the process (Π′(t), t ∈ [0, T ])
has the same law as (Π(t), t ∈ [0, T ]).

Notice that the fragmentation events in Π′(t) are precisely the coagulation events in Π(t)
and vice versa. As properties of a model of genetic variations, stationarity and reversibility
may not necessarily be suitable, since the biological mechanisms responsible for recombi-
nation and gene conversion are likely to be non-reversible and vary across the genome.
However, as simplifying modelling assumptions these are sensible approximations of the
true biological process and ones that are also made in other models like the coalescent with
recombination of Hudson (1983). In Section 6.2 we describe how varying recombination
rates can be accommodated in the model.

4.2 The Joint Distribution

In this subsection we will consider the FCP (Π(t), t ∈ [0, T ]) over the finite interval [0, T ],
T > 0. With probability one a draw from the FCP will only contain a finite number of
jump events over the finite interval, each of which is either a fragmentation or a coagulation
event. It is thus possible to write the probability1 of a sample path (π(t), t ∈ [0, T ]) of
(Π(t), t ∈ [0, T ]).

First, we introduce an alternative description of (π(t)) based on the trajectory of clusters.
For each t ∈ [0, T ], the partition π(t) consists of a number of clusters. Each cluster c ∈ π(t)
was created either at time 0, or at a fragmentation or coagulation event prior to t, and
persists until it terminates at another event after t or at time T . We call the trajectory
of c, consisting the subset and its creation and termination times, a path, and overload
the notation c to refer to the path as well when there is no confusion. The structure of
(π(t)) can be visualized as a set of intersecting paths, where a path forks into two at a
fragmentation event, and two paths merge into one at a coagulation event; see Figure 2.
The path structure is discrete except for the event times. Let A be the set of paths in (π(t)).

1. In this paper we interpret probabilities P(·) as densities with respect to Lebesgue measure for continuous
quantities like the times of fragmentations and coagulations, and probability mass functions for discrete
quantities like partitions.
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Figure 2: Visualizing a fragmentation-coagulation process as a set of trajectories through
paths (segments). Each line is a sequence trajectory and bundled lines form
paths. C: coagulation event. F: fragmentation event. Fractions are, for the dark
blue trajectory leading from the lower path to the upper path, from left to right:
probability of joining cluster c at time 0, probability of following cluster a at a
fragmentation event, rate of starting a new path (a fragmentation event occur-
ring), and rate of joining with an existing path (a coagulation event occurring).

Proposition 4. The probability of a sample path (π(t)) under the law of the FCP is:

P((Π(t)) = (π(t))) =
β|A|−F−C

α|A|−2F−2C

Γ(βα)

Γ(n+ β
α)

exp

(
−
∫ T

0
q(π(t))dt

) ∏
c∈A<> Γ(|c|)∏
c∈A>< Γ(|c|) (10)

where A>< is the set of paths created by a coagulation and terminated by a fragmentation,
A<> is the set of paths created either at time 0 or fragmentation, and terminated at time
T or a coagulation, and F and C are the numbers of fragmentation and coagulation events
in (π(t)) respectively.

The proof is given in the appendix and consists simply of collecting terms in the probabil-
ities associated with events and waiting times. Notice that the probability (10) is unchanged
by reversing (π(t)) as in Proposition 3, since fragmentations become coagulations and vice
versa, while A<> and A>< are unchanged by reversing (except that the creation and termi-
nation times are reversed). This gives a direct proof of Proposition 3. It is also unchanged
by permuting each partition π(t) by the same permutation of [n], thus exchangeability
(Proposition 6 below) follows as well.

4.3 The Conditional Distribution

In this subsection we provide an alternative incremental construction of (Π(t)) which can be
seen as a dynamical generalization of the Chinese restaurant metaphor. Such a construction
will be useful in showing projectivity as well as in developing the Markov chain Monte Carlo
sampling algorithm described in Section 6.
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For each i = 1, . . . , n, let Π|[i](t) be the restriction of Π(t) onto [i]. The law of (Π(t)) can
be equivalently described as the sequence of conditional laws of (Π|[i](t)) given (Π|[i−1](t)),
with Π|[0](t) understood as the empty partition. Since Π|[i](t) differs from Π|[i−1](t) only
through the addition of the ith element, its conditional distribution can in turn be described
by the distribution of the trajectory of the ith element. At each time t, let ci(t) = c\{i}
where c is the unique cluster of Π|[i](t) containing i. Then (ci(t) : t ∈ [0, T ]) is a stochas-
tic process which describes the trajectory of the ith element through the existing mosaic
structure given in (Π|[i−1](t)). Each ci(t) is either a cluster in Π|[i−1](t) (if the ith element
is in an existing cluster) or the empty set (if the ith element is in its own cluster in Π|[i](t)).
We claim that the law of (ci(t)) is that of a Markov process, with initial distribution and
transition rates as described below:

• At time 0, since Π|[i](0) is CRP distributed, we have the initial distribution,

P(ci(0)|(Π|[i−1](t))) =


|c|

i−1+ β
α

if ci(0) = c ∈ Π|[i−1](0),
β
α

i−1+ β
α

if ci(0) = ∅.
(11)

• Subsequently, suppose the ith element is in an existing path, say ci(t−) = c ∈
Π|[i−1](t−). Here t− denotes an infinitesimal time prior to t. Then there are three
possible scenarios:

– If c fragmented into two clusters a, b ∈ Π|[i−1](t) at time t, then ci(t) will follow
one of the two resulting paths a or b with probabilities proportional to their sizes:

P(ci(t)|(Π|[i−1](t)), ci(t−) = c) =

{ |a|
|c| for ci(t) = a,
|b|
|c| for ci(t) = b.

(12)

– If c coagulated with another cluster in Π|[i−1](t−) at time t, forming a new
cluster c′ ∈ Π|[i−1](t), then the ith element will follow path c′, i.e. ci(t) = c′ with
probability 1.

– If no fragmentation or coagulation involving c occurs at time t, then the ith
element will fragment out from c to form its own cluster, that is, ci(t) = ∅, at
rate β

|c| .

• Finally, if ci(t−) = ∅, then the ith element will be in a path by itself so will not be
involved in any fragmentation events. On the other hand, the path will coagulate
with another path c ∈ Π|[i−1](t) with rate α, i.e. ci(t) will transition to c with rate α.
The total coagulation rate is α|Π|[i−1](t)| since there are |Π|[i−1](t)| other paths.

The structure of (ci(t)) can be described using a Chinese restaurant metaphor as follows.
At time 0 the ith customer starts by sitting at either one of the tables in Π|[i−1](0) or a new
table. If she sits in an existing table, which splits into two tables at some time, she chooses
one of the two resulting tables. If the table merges with another one, she continues sitting
at the merged table. In addition, if she is sitting at an existing table, she can decide to
start a new table through a new fragmentation event at any time. Or, if she is sitting at a
table by herself, she could merge with an existing table through a new coagulation event.

10
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Proposition 5. The conditional distribution of (ci(t)) given (Π|[i−1](t)) under the FCP is
Markov and given by the above description.

Proof By multiplying the probabilities of the various events above, it is possible to derive
the conditional probability of a sample path of (ci(t)) given Π|[i−1]. The product of these
over i = 1, . . . , n can be shown to be equal to the joint probability (10) of a sample path
for the whole FCP (Π(t)), thus the conditional distribution of (ci(t)) under the FCP is as
given above.

4.4 Exchangeability and Projectivity

The discussions in the preceding two subsections on the joint and conditional distributions
already indicate that the FCP is both exchangeable and projective:

Proposition 6. The process (Π(t), t ∈ [0,∞)) is exchangeable: if σ is a permutation of [n],
then (σ(Π(t))) has the same FCP law as (Π(t)).

Proposition 7. The process (Π(t), t ∈ [0,∞)) is projective: the restriction (Π|[n′](t)) to
[n′] ⊂ [n] is a FCP defined over partitions of [n′] with the same parameters α and β.

Alternatively, we can see that the FCP is exchangeable and projective because both its
initial distribution CRP[n](

β
α) and its rates of fragmentation (4) and coagulation (6) are.

Specifically, they are invariant to permutations of [n], and if n′ < n and π′, η′ ∈ Π[n′], then
it can be shown that

qn′(π
′, η′) =

∑
π,η∈Π[n]

π|[n′]=π
′,η|[n′]=η

′

qn(π, η) (13)

where qn′ and qn are the jump rates of the FCP over partitions of [n′] and [n] respectively.
For example, in the context of Section 4.3, consider a cluster c ∈ Π|[i−1](t−) which fragments
into two cluster a, b ∈ Π|[i−1](t) at time t. Suppose that element i was in cluster c just prior
to t: ci(t−) = c. Then at the fragmentation event i can follow either a or b, and the rates
of the resulting fragmentation satisfy the equality

β
Γ(|a ∪ {i}|)Γ(|b|)

Γ(|c ∪ {i}|) + β
Γ(|a|)Γ(|b ∪ {i}|)

Γ(|c ∪ {i}|) = β
Γ(|a|)Γ(|b|)

Γ(|c|) (14)

As a model for mosaic structures in genetic sequences, these are sensible properties
for the FCP to have: exchangeability implies that the model should be invariant to the
indexing of the sequences x1, . . . , xn, while projectivity implies that inference based on the
model about some observed sequences will not be affected by knowledge of an additional but
unknown number of unobserved sequences. These properties are not shared by the PHASE
model of Li and Stephens (2003). Their comments regarding the non-exchangeability of
PHASE served as inspiration for this present work.

Just as the exchangeability and projectivity of the CRP implies the existence of an
exchangeable random partition over N, we have, by Kolmogorov’s Extension Theorem,

11
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Corollary 8. There is a Markov process (Π∞(t) : t ∈ [0,∞)) such that each Π∞(t) is an
exchangeable random partition of N with law CRPN(βα), and the restriction of (Π∞(t)) to
[n] is (Π(t)).

In fact the process (Π∞(t), t ≥ 0) is an example of the class of exchangeable fragmentation-
coagulation processes2 studied by Berestycki (2004). This is a large class of exchangeable
Markov processes over partitions of N that evolves via fragmentations and coagulations as
above. Berestycki (2004) showed that the evolution of all such processes can be described
using an erosion component where an item i ∈ N splits off from the cluster it belonged
to, forming a singleton cluster by itself, a Kingman component involving coagulations of
pairs of clusters as above (Kingman, 1982a,b), a fragmentation component involving the
fragmentation of a cluster into two or more (possibly an infinite number of) clusters, and
a multiple coagulation component involving the simultaneous coagulation of an infinite
number of clusters into one or more (possibly an infinite number of) clusters.

Our Markov process has no erosion, no multiple coagulations, a Kingman coagulation
rate of α, and a fragmentation component where each cluster can only fragment into exactly
two clusters. As such, the process described here is perhaps the simplest non-trivial example
of an exchangeable fragmentation-coagulation process, though we have not found references
in the literature describing it specifically. The closest work is by Bertoin (2007), who
described a class of reversible exchangeable fragmentation-coagulation processes that can
be thought of as generalizations of our process, along similar lines as the two-parameter
Pitman-Yor process (Perman et al., 1992; Pitman and Yor, 1997) is a generalisation of the
Dirichlet process.

The fascinating mathematical developments in Berestycki (2004) pertain to the prop-
erties of the projective limit (Π∞(t), t ≥ 0). Although the importance of this endeavour
cannot be neglected, our interests in this paper are in using the finite n version of these
processes to model variations in genetic data. As such, we refer the interested reader to
Berestycki (2004), and will concentrate on investigating and using properties of the finite n
case in the rest of this paper.

We will end this section with a discussion of the splitting rate of the fragmentation
component of our process. Given a p ∈ (0, 1), consider a random binary partition of
N consisting of only two subsets where each i ∈ N is independently in one subset with
probability p and in the other subset otherwise. Let %p denote the resulting law of the
random partition. The splitting rate of the fragmentation is a measure µ over ΠN given by
the mixture:

µ(dρ) =
β

2

∫ 1

0
%p(dρ)p−1(1− p)−1dp. (15)

The fragmentation rates in (4) can now be obtained as

µ({ρ ∈ ΠN : ρ|c = {a, b}}) = β
Γ(|a|)Γ(|b|)

Γ(|c|) , (16)

2. Berestycki (2004) referred to these as fragmentation-coalescent processes rather than fragmentation-
coagulation processes. To avoid confusion, here we use the word coagulation to describe the evolution
of partition-valued Markov processes along the genetic sequences, and reserve the word coalescent to
describe the genetic process of genealogies coalescing backwards in time.
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with the factor of 2 cancelled by the %p = %1−p symmetry in the binary partition con-
struction. This fragmentation component coincides with that in the beta-splitting model of
Aldous (1996) with beta equalling −1. It has been explored independently as a Bayesian
nonparametric model for densities by Neal (2003) who called it the Dirichlet diffusion tree.

4.5 Mean Statistics

Let n ∈ N and T > 0 both be finite, and (Π(t), t ∈ [0, T ]) be a FCP defined on the finite
interval [0, T ]. In this section we will derive the expectations of a number of useful statistics
of (Π(t)) under the FCP law, which will give further insights into the law of the FCP and
how it depends on α and β. The first is a direct consequence of the fact that the marginal
distribution of Π(t) is CRP[n](

β
α):

Proposition 9. The expected number of paths crossing time t is

E[|Π(t)|] =
β

α

(
ψ(n+ β

α)− ψ(βα)
)

(17)

where ψ(x) = ∂ log Γ(x)
∂x is the digamma function. For large n, this is O(βα log(n− 1

2 + β
α)).

If we define the length of a path to be the difference between the time the path was
created and when it was terminated, then the expected total length of all paths is simply∫ T

0
E[|Π(t)|]dt = T

β

α

(
ψ(n+ β

α)− ψ(βα)
)

(18)

The second mean statistics can be derived (in the appendix) by noting that the transition
rate of a Markov process is the expected number of events per unit time:

Proposition 10. The expected number of fragmentation and coagulation events is:

E[F + C] = T
β2

α

((
ψ(n+ β

α)− ψ(βα)
)2

+ ψ′(n+ β
α)− ψ′(βα)

)
(19)

where ψ′(x) is the trigamma function. For large n, this is O(T β2

α log(n− 1
2 + β

α)2).

In fact, since the process is reversible, E[F ] = E[C] so the expected numbers of fragmen-
tation events and coagulation events are both exactly half that in (19). Since the number
of paths is |A| = |Π(0)|+ 2F + C, we get that the expected number of paths is

E[|A|] =
β

α

(
ψ(n+ β

α)− ψ(βα)
)

+
3

2
T
β2

α

((
ψ(n+ β

α)− ψ(βα)
)2

+ ψ′(n+ β
α)− ψ′(βα)

)
(20)

The expected length of each path can now be approximated by dividing (18) by (20), which
for large n becomes O((β log(n− 1

2 + β
α))−1). In particular, note that as n→∞ we expect

path lengths to reduce to 0.
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5. Related Work

In this section we will how fragmentation-coagulation processes relate to a number of exist-
ing statistical and Bayesian nonparametric models. In particular, we will discuss relation-
ships to hidden Markov models, dependent Dirichlet processes, and Bayesian nonparametric
models for hierarchical clustering.

5.1 Hidden Markov Models and the Label Switching Problem

As noted in Section 2, the latent variables of hidden Markov models (HMMs) can be equiv-
alently expressed as Markov chains over partitions as in the case of FCPs. A subtle but
important distinction between FCPs and HMMs is that while the clusters in FCPs are un-
labelled, those in HMMs are labelled by the corresponding latent state. If both the HMM
prior and likelihood are invariant to permutations of the latent states then the posterior will
have exponentially many modes, each corresponding to a permutation of the labels. This
is called the label switching problem (Jasra et al., 2005; Spezia, 2009).

An even more subtle difficulty arises in applications of HMMs to genetic sequences, due
to fact that the observation models (3) at different sites are independent. In particular,
the likelihood is invariant to permuting the states at different positions using different
permutations, while the prior typically gives higher probabilities to self-transitions and so
is not invariant under such separate permutations. This implies that each such permutation
gives rise to a different sub-optimal local mode in the posterior distribution. As there are
a much larger number of such permutations, it is very easy for any posterior simulation
technique to get trapped in one of the local modes.

To demonstrate this difficulty, we compare FCPs against HMMs on a very simple data
set comprising 160 sequences. Half of the sequences consist of 16 observations of ‘0’ and
the other half consist of 16 observations of ‘1’. We use a Bayesian HMM with two latent
states and posterior simulations are obtained by alternating between the forward-filtering-
backward-sampling procedure to sample the latent state variables and Gibbs sampling for
the parameters. The probability τ of self-transitions is given a Beta(10, 0.1) prior, while
uniform priors are used for the emission probabilities. The FCP model uses the same
emission model as the HMM but the FCP prior over partition sequences. The global
posterior optima under both models assign all ‘0’ observations to one state (cluster) and all
‘1’ observations to another state (cluster).

Figure 3 shows the convergence of MCMC samplers for both models, with the HMM
requiring more iterations to converge than the FCP. This is because the random initialisation
of the HMM parameters gives higher probabilities under a state to ‘0’ or ‘1’ randomly at each
location in the sequence, and it takes a while before the prior preference for self-transitions
switches these around so that one state gives preference for one observed value. On the other
hand, the FCP simply assigns the ‘0’ sequences to one path and ‘1’ sequences Varying the
strength of the priors changes the speed of convergence but does not affect the qualitative
difference in convergence speeds of posterior simulations in the models. On the other hand,
increasing the amount of data actually worsens the convergence since the likelihood gets
peakier resulting in less chance for the MCMC sampler to traverse across modes unless
specialised label switching moves are implemented. We expect that this difficulty with
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Figure 3: Empirical comparison of convergence speeds for Bayesian HMM and FCP. We
used the number of MCMC iterations before each model first encountered its
respective optimal states as a test for convergence. 1000 independent runs were
conducted for each model. Left: Histogram of the number of iterations required
for convergence. Right: Box plot showing quartiles and median.

label switching will be worse in more complex models consisting of larger numbers of latent
states and more complex mosaic structures.

5.2 Dependent Dirichlet Processes

Since the fragmentation-coagulation process is exchangeable, projective, and is marginally
distributed as a CRP, the de Finetti measure of our model can be expressed as (G(t) : t ∈
[0,∞)) where each G(t) is marginally DP. In other words, it is a dependent Dirichlet process
(DDP) (MacEachern, 1999). These are a wide class of measure-valued stochastic processes
with DP marginal laws. Among other applications, they have been used for spatial models
(Gelfand et al., 2005; Griffin and Steel, 2006), text models (Rao and Teh, 2009), time series
models (Caron et al., 2007; Griffin, 2011), density regression (Griffin and Steel, 2008) and
in biostatistics (Dunson, 2010).

5.3 Hierarchical Clustering Models based on Fragmentation and Coagulation
Processes

The theory of fragmentation and coagulation processes have recently received much atten-
tion in the probability literature (Bertoin, 2006), though these have so far not significantly
impacted research on Bayesian nonparametrics. Nevertheless, in hindsight the theory can
serve to unify a number of previously investigated Bayesian nonparametric models for trees.

The first such model is the Dirichlet diffusion tree of Neal (2003), which combines a
fragmentation process with fragmentation rates given by (4) (allowing β to vary with posi-
tion t) and a Brownian diffusion on the paths forming the branches of the tree. Neal (2003)
showed that observations at the leaves of the tree are exchangeable and so by de Finetti’s
Theorem there is an underlying random distribution corresponding to the process. The
properties of this random distribution, including its structure and continuity, have not been
well explored. Recently Knowles and Ghahramani (2011) extended the model to a Pitman-
Yor diffusion tree, which produces a multifurcating tree rather than the binary Dirichlet
diffusion tree. While the Dirichlet diffusion tree is related to the beta-splitting cladogram of
Aldous (1996), the Pitman-Yor diffusion tree is related to the Gibbs fragmentation tree of
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McCullagh et al. (2008). The nested CRP of Blei et al. (2010) (see also the related nested
DP (Rodŕıguez et al., 2008)) can also be construed as a fragmentation process, albeit in
discrete steps instead of continuous time as here. It is possible to derive the Dirichlet dif-
fusion tree as a continuous time limit of the nested CRP, by taking the mass parameters to
scale with the step sizes as they go to zero.

While fragmentation processes construct trees in a top down manner, coagulation pro-
cesses construct these from the bottom up. The canonical example is the coalescent (King-
man, 1982a,b), which has coagulation rates (6) with α = 1. The coalescent is a cornerstone
in mathematical genetics, with a large variety of extensions and generalisations (Hein et al.,
2005). It has also been used as a prior for Bayesian hierarchical clustering in machine learn-
ing (Teh et al., 2008), who suggested that the bottom up construction is more amenable
to efficient sequential Monte Carlo posterior simulations. Ho et al. (2006) noted that the
Chinese restaurant franchise, a CRP representation of the hierarchical Dirichlet process
(Teh et al., 2006), is a discrete time coagulation process, thus making a connection between
coagulation processes and certain classes of hierarchical Bayesian nonparametric models
(Teh and Jordan, 2010). Wood et al. (2009) made use of this connection, along with a
fragmentation-coagulation duality (Pitman, 1999) related to the FCPs described here, to
develop an efficient Bayesian nonparametric model for natural language sequences.

6. Posterior Simulation

In this section, we describe a Markov chain Monte Carlo inference algorithm for obtaining
posterior samples of the partition structure (Π(t)) and the hyperparameters α, β and ω.
Sampling the hyperparameters given (Π(t)) uses standard techniques, and the main diffi-
culty is in sampling (Π(t)) given the observations and hyperparameters. Although (Π(t)) is
just a Markov process, using the standard forward-backward inference is infeasible because
of the exponentially large space over partitions and because (Π(t)) is a continuous-time
Markov process. We take a Gibbs sampling approach by making use of exchangeability:
each step of the algorithm treats a sequence i as the last sequence to be added into the
partition structure of (Π(t)), resampling its trajectory (ci(t)) given (Π|[n]\i(t)) and data xi.

6.1 Gibbs Sampling the Mosaic Structure

Recall that the ith sequence xi consists of observations xij at positions toj , j ∈ [m]. The
conditional distribution of the trajectory (ci(t)) given the trajectories (Π|[n]\{i}(t)) of the
other sequences is a Markov jump process as described in Section 4.3, suitably altered
to condition on (Π|[n]\{i}(t)) instead of on (Π|[i−1](t)). The conditional probability of xi
given the other sequences and the trajectory (ci(t)) is derived from emission model (3).
We will assume that H(ω) is conjugate to F (θ), so that this can be computed efficiently.
The product of these two conditional probabilities gives the desired conditional distribution
of (ci(t)) given xi and the rest of the model. Since the observations are conditionally
independent given the trajectory, which is Markov, this has a structure similar to a HMM,
and hence it is conceivable to develop a similar forward-backward algorithm to sample (ci(t))
from its conditional distribution. The main difficulty is that (ci(t)) is a continuous-time
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Markov jump process. One approach is to discretise time3 t, which is approximate and
can be computationally expensive if a fine discretisation is used. Another is to compute
the transition probability of ci(t

o
j+1) given ci(t

o
j) by matrix exponentiation, which is also

expensive since this has to be computed anew for each iteration, each i and each j separately.

Instead, we will make use of a recently proposed algorithm for continuous-time Markov
jump processes (Rao and Teh, 2011, 2012). This algorithm is based on the idea of uniformi-
sation (Jensen, 1953), which is an alternative generative process for Markov jump processes
different from the more well-known Gillespie (1977) algorithm. It operates by first generat-
ing a set of potential jump times Jpot according to a Poisson process whose rate dominates
that of the Markov jump process. Given Jpot, the trajectory of the Markov jump process is
then generated using a Markov chain which can only transition at the potential jump times.
This Markov chain is allowed to stay in the same state and not transition, which amounts
to rejecting the potential jump, an idea similar to that of thinning a Poisson process (Lewis
and Shedler, 1979).

The idea of Rao and Teh (2011, 2012) is to treat Jpot as an auxiliary variable to the
Markov jump process, and simply apply Gibbs sampling to the augmented system. Condi-
tioned on Jpot, the Markov jump process may only transition at the times in Jpot, reducing
it to a discrete-time Markov chain, and the normal forward-filtering-backward-sampling al-
gorithm can be applied to get a new trajectory conditioned on observed data as well. On
the other hand, conditioned on the trajectory of the Markov jump process, Jpot can be
shown to be independent of the observed data, and consists only of the transition times of
the trajectory along with a random finite set of times drawn according to a Poisson process
with piecewise constant rates.

We shall adapt this algorithm to our situation, which is somewhat more complicated than
in Rao and Teh (2011, 2012) as our Markov jump process (ci(t)) is not itself homogeneous.
For each time t, let S(t) = Π|[n]\{i}(t)∪ {∅} be the state space for ci(t), and let Qt(s

′, s) be
the rate of ci(t) transiting from state s′ ∈ S(t−) to s ∈ S(t) as described in Section 4.3.
The diagonal terms of the transition rate matrices are

Qt(s, s) = −
∑
s′ 6=s

Qt(s, s
′). (21)

Let Ut be a dominating rate with

Ut > max
s∈S(t)

|Qt(s, s)| (22)

We use Ut = 2 maxs∈S(t)−Qt(s, s) in our simulations. Let Jfixed consist of the start time 0,
end time T , times of fragmentation and coagulation events in (Π|[n]\{i}(t)), and observation
times {to1, . . . , tom}, all of which are distinct with probability one. These constitute the
fixed event times of (ci(t)) when the forward-backward algorithm needs to account for the
probabilities of these events. Outside of these fixed event times, (ci(t)) can also transition
at additional jump times, which are defined as follows. Let (cprev

i (t)) be the previous sample
trajectory of (ci(t)) and Jprev the set of jump times in (cprev

i (t)) beside those in Jfixed. These

3. In this section we will refer to t as time to be consistent with continuous-time Markov jump processes,
although in the genetics context t is a location on the chromosome.
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consist of the times when the ith trajectory split off from an existing cluster to form its own
cluster, and when it merged back to another existing cluster in (Π|[n]\{i}(t)). Let Jaux be an
additional set of jump times drawn according to a Poisson process with piecewise constant
rates

Ut − |Qt(cprev
i (t), cprev

i (t))|. (23)

The potential jump times now consist of Jpot = Jprev ∪ Jaux, and it can be shown that the
above process describes precisely the conditional distribution of Jpot given (cprev

i (t)). On
the other hand, conditioned on Jpot the discrete-time Markov chain (ci(t) : t ∈ J ∪ Jfixed)
has initial probabilities (11), transition probabilities given in Section 4.3 at the fixed event
times t ∈ Jfixed, and transition probabilities given by

P(ci(t) = s|ci(t−) = s′) = δ(s′, s) +
Qt(s

′, s)

Ut
for s′ ∈ S(t−), s′ ∈ S(t), (24)

at the potential jump times t ∈ Jpot, where t− now denotes the last time step prior to t in
the Markov chain, and δ(s′, s) is the Kronecker delta function.

We can now define the forward messages at the above event times t ∈ Jfixed ∪ Jpot as
follows:

λ(s, t−) = P
(
{xij : toj < t}

∣∣ ci(t−) = s, Jpot
)

for s ∈ S(t−),

λ(s, t) = P
(
{xij : toj ≤ t}

∣∣ ci(t) = s, Jpot
)

for s ∈ S(t), (25)

where we have suppressed the conditioning on (Π|[n]\{i}(t)) and {xi′j : i′ 6= i} for simplicity.
Note that the above forward messages are not the standard forward messages for HMMs.
They were defined in a reversible manner, making use of the reversibility of the FCP, so that
the same algorithmic implementation can be applied to compute the backward messages
as well. The messages can be computed using a forward filtering phase (which operates on
the reverse of the process in Section 4.3 so that fragmentation events appear as coagulation
events and vice versa):

• At the starting position t = 0, we have simply that

λ(s, t) = 1 for s ∈ S(0). (26)

• At an observed site t = toj , we incorporate the local likelihood term:

λ(s, t) = λ(s, t−)`(xij |{xi′j : i′ ∈ s}, ωj) for s ∈ S(t). (27)

where `(xij |{xi′j : i′ ∈ s}, ωj) is the conditional probability of xij given the other
observations in subset s:

`(xij |{xi′j : i′ ∈ s}) =

∫
f(xij |θsj)

∏
i′∈s f(xi′j |θsj)h(θsj |ωj)dθsj∫ ∏

i′∈s f(xi′j |θsj)h(θsj |ωj)dθsj
(28)

where f(x|θ) is the probability of x under F (θ), and h(θ|ω) is the probability of θ
under the prior H(ω).
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• At an existing fragmentation event where a cluster c ∈ S(t−) fragments into a, b ∈
S(t),

λ(a, t) = λ(b, t) = λ(c, t−), λ(s, t) = λ(s, t−) for s ∈ S(t)\{a, b}. (29)

• At an existing coagulation event where subsets a, b ∈ S(t−) merges into c ∈ S(t),

λ(c, t) = λ(a, t−) |a||c| + λ(b, t−) |b||c| , λ(s, t) = λ(s, t−) for s ∈ S(t)\{c}. (30)

• At a potential jump time t ∈ Jprev ∪ Jaux,

λ(s, t) = λ(s, t−) +
∑

s′∈S(t−)

λ(s′, t−)Qt(s
′,s)

Ut
for s ∈ S(t). (31)

• Finally, at t = T , we make use of the stationarity of the FCP to compute,

P
(
{xi1, . . . , xim}, ci(t) = s

∣∣ Jpot
)

= λ(s, t−)×


|s|

n−1+ β
α

if s ∈ Π|[n]\{i}(t),
β
α

n−1+ β
α

if s = ∅.
(32)

A backward-sampling phase can be easily derived corresponding to the forward-filtering
phase, giving a new sample path (cnext

i (t)).
In our experiments the mosaic structure (Π(t)) was initialised by starting with an empty

structure, and adding sequences in the dataset into the structure one at a time using the
uniformised forward-backward method described above.

6.2 Hyperparameter and Emission Model Specification and Updates

We parameterise the FCP using an alternative parameterisation to α, β which is more
intuitive and amenable for more informed prior specification. In particular, consider µ = β

α
and ν = α. Then Proposition 2 shows that µ controls the marginal behaviour of the
FCP with the marginal distribution of each Π(t) simply CRP[n](µ). On the other hand,
both rates of fragmentation (4) and coagulation (6) are linear in ν, so that ν controls the
evolution rate of the Markov process. In our simulations we allow ν to vary with location,
taking on value νj between sites toj and toj+1. This allows for the effective distances between
sites to be adapted to account for possibly varying recombination rates and hotspots on the
chromosome. The joint probability for a sample path (π(t)) is then:

P ((Π(t)) = (π(t))) = µ|A|−F−C
Γ(µ)

Γ(n+ µ)

∏
c∈A<> Γ(|c|)∏
c∈A>< Γ(|c|)

×
m−1∏
j=1

ν
Fj+Cj
j exp

−∫ toj+1

toj

νj
|π(t)|(|π(t)| − 1)

2
+ νjµj

∑
c∈π(t)

H|c|−1dt

 (33)

where Fj , Cj are the numbers of fragmentation and coagulation events between locations toj
and toj+1 respectively. In our experiments we use a log normal prior for logµ centered at
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10 and spanning a six orders of magnitude range, and an independent log normal prior for
each νj centered at a value such that the approximate expected length of each path (see
Section 4.5) spans 100 sites.

For the emission model, we use a very simple model where each cluster parameter θcj
is binary, indicating whether sequences in cluster c at location j exhibit a 0 or 1 allele.
The prior H(ωj) for θcj is Bernoulli with mean ωj , and ωj is in turn given a conjugate
beta prior with mean 0.5 and mass γj . Finally, log γj is given a uniform prior over the
range [log(10−4), log(1)], corresponding to the observation that most allele frequencies are
skewed to either extremely. We have found this to perform significantly better than the
obvious hierarchy with F (θ) a beta distribution. This is because the true mosaic structure
is non-Markov and exhibits long range dependencies which is not easily captured by the
Markov FCP. Using a beta emission allows the model to “cop out” by merging multiple
mosaic segments into single paths, and using the beta to model the resulting variations.
Using the Bernoulli emission forces the FCP to model each distinct sequence of alleles using
a different path, creating more and longer paths in the posterior.

In our simulations all hyperparameters were initialised at the respective means in the
log domain, and updated using slice sampling (Neal, 2003), while ωj is integrated out. The
parameters are updated ten times for each Gibbs sweep over all sequences to update (Π(t)).

7. Experimental Evaluation

We conducted empirical studies on 20 datasets generated from Phase 1 Release v3 of the
Thousand Genomes Project acquired on 17/5/2012. The datasets were obtained from the
non-pseudoautosomal region of 524 male X chromosomes. Each dataset consists of a non-
overlapping segment of 500 contiguous SNPs, spanning an average length of about 105 base
pairs. Software for fastPHASE, one of the alternatives we compared against, requires all
sequences to be paired, so we could only compare an even number of X chromosomes. For
each dataset we randomly discarded one of the 525 male X chromosomes that were included
in Phase 1 of the Thousand Genomes Project, and randomly paired up the remaining 524
chromosomes (preserving the phase information).

Datasets were generated with some alleles masked, and various methods are tested on
their accuracies in imputing masked alleles. The masking is carried out under two scenarios.
In the first scenario, a proportion of the alleles were masked uniformly at random from
among all pairs of sequences and SNP sites. Assuming that the same assaying protocol
were applied to all of the individuals in a study, this condition models noise intrinsic to
that assaying protocol. The proportion of missing alleles was varied between 10% and 50%.
Large genetic datasets such as the 1000 Genomes Project can be used as a reference panel
against which noisy and sparsely assayed individuals are registered (Howie et al., 2009).
The second scenario was designed to simulate this study/reference framework. A portion
of the sequence pairs in each dataset were randomly chosen to be in the study panel, and a
randomly chosen portion of the SNP sites were masked in the study panel. The remaining
sequence pairs were not masked and were used as the reference panel. Both proportions
were varied between 10% and 50%. In both scenarios, the masking was done such that at
each site at least one minor allele was observed. Each method is used to impute all masked
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Figure 4: Left: Posterior µ samples over the course of the MCMC run. Right: histogram
of samples 10001 to 20000.

alleles and tested on its imputation accuracy. The baseline accuracy, found by predicting the
major allele for every missing entry, averaged over all scenarios and segments, was 93.88%.

7.1 Posterior Distribution

We first investigate the convergence of the proposed MCMC algorithm and the posterior
distribution obtained on one of the datasets and under the first scenario with 25% of the
alleles masked. The MCMC algorithm was run for 40000 iterations, from which we collected
20000 samples. Figure 4 shows the posterior samples of µ, which indicates convergence after
about 20000 iterations. In the top two rows of Figure 5 we show the same plots for three
νj parameters. One was chosen with lowest mean value of νj among the second 10000
samples, one with highest mean, and one with a medium value. There are significantly
higher auto-correlations in the νj samples with slower mixing (particularly the middle νj).
In the bottom row we plot the corresponding numbers of fragmentation and coagulation
events Fj + Cj . Higher values of νj are associated with larger Fj + Cj , which is to be
expected from (33), and is the cause of the higher auto-correlations in νj .

Figure 6 summarises some posterior statistics of the mosaic structure. The mosaic
structure exhibits clear spatial variations, with different numbers of clusters and events
present in different parts of the chromosome. The numbers of fragmentation and coagulation
events in each segment between consecutive sites varies widely, with most segments having
very small number of events, while a few has significantly larger numbers.

In Figure 7 we plot the accuracy of the method over the course of the MCMC run. For
each S, after S samples were collected, these were used to impute the missing alleles and
the accuracy on predicting the true alleles was computed. We find that the imputation
accuracy of the sampler converges much more rapidly than the parameters would indicate.
In fact we see that the accuracy already achieves its highest value after only approximately
500 iterations.
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Figure 5: Top row: Posterior νj samples over the course of the MCMC run. Middle row:
Histogram of samples 10001 to 20000. Bottom row: corresponding Fj + Cj sam-
ples. Left column shows the νj with lowest posterior mean as estimated by the
second half of the samples, right column shows the νj with highest mean, and
middle shows a νj with medium mean.

22



Modelling Genetic Variations using Fragmentation-Coagulation Processes

0 100 200 300 400 500
0

10

20

30

40

50

site

|π
(t

o j
)|

0 10 20 30 40 50
0

10

20

30

40

50

#
 s

it
e
s

|π(t
o

j
)|

0 100 200 300 400 500
0

2

4

6

8

10

12

14

E[F
j
+C

j
]

s
it
e

0 2 4 6 8 10 12
0

50

100

150

200

E[F
j
+C

j
]

#
 s

it
e
s

Figure 6: Top Left: posterior mean and standard deviation of the number of clusters at each
SNP site. Top Right: Histogram of the mean number of clusters. Bottom Left:
posterior mean of the number of fragmentation and coagulation events between
each pair of consecutive sites. Bottom Right: Histogram of the mean number of
fragmentation and coagulation events.
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Figure 7: Imputation accuracy over the course of the MCMC run.

7.2 Imputation Results

In view of the above observation regarding imputation accuracies, we used the following
MCMC scheme for the second set of experiments. The MCMC chain is initialised with the
log hyperparameters at their prior means and the mosaic structure constructed sequentially.
3 sweeps of Gibbs updates to the mosaic structure are performed with fixed hyperparam-
eters, followed by 3 more sweeps where hyperparameters are updated too. We have found
that the first sweeps with fixed hyperparameters are important because the sequential ini-
tialisation tends to produce larger numbers of clusters and events, so if hyperparameters
are updated right afterward they will become too large and the sampler will take longer to
converge. These constitute the burn-in period, and are followed by 40 MCMC iterations,
from which we collect 20 samples. The above is repeated 5 times, resulting in 100 samples
which are used to impute missing alleles. For each subsequent repeat the hyperparameters
are kept at the previously sampled values, but the mosaic structure is reinitialised as before.
The 5 repeats increase the chance that the MCMC sampler will explore multiple modes of
the posterior over mosaic structures.

In the following, we compared imputation accuracies obtained by our method (Frag-
Coag) to that by FastPHASE (Scheet and Stephens, 2006) and Beagle (Browning and
Browning, 2009), two state of the art methods for genotype imputation. In preliminary
experiments we have found that Impute2 (Howie et al., 2009) does not work well on phased
data as in our situation, and produced significantly worse results than FastPHASE and
Beagle. In addition we have also compared against a FragCoag implementation with a beta
emission model (see Section 6.2) which we refer to as FragCoag-beta.

Figure 8 shows the imputation accuracies obtained by the four methods on the first
scenario, where alleles were masked uniformly at random. We see that FragCoag produces
consistently and significantly better accuracies than both FastPHASE and Beagle, while
FastPHASE and Beagle produced similar results. We also see that FragCoag-beta performed
significantly worse than the other methods, as discussed in Section 6.2. Accuracy differences
among the 20 datasets at each percentage of alleles withtheld were significant according to
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Figure 8: Imputation accuracies on the first scenario where alleles are missing uniformly at
random. Left: Each point compares the accuracy obtained by FragCoag against
that obtained by FastPHASE and Beagle on one dataset. Sometimes FastPHASE
and Beagle obtained accuracies less than 90%, in which case they were clipped
at 90% (points on y-axis of figure). FragCoag accuracies were always above 90%.
Right: Accuracies for each proportion of masked alleles, averaged over the 20
datasets, with vertical bars showing the standard errors.

a sign test at 95% confidence level. The accuracies of all methods degrade as the proportion
of masked alleles increases. Above 40% masked alleles the FastPHASE software produced
abnormal behaviour and reported accuracies plummet below 90%. We believe this is an
issue with the released software and not with the method itself.

In Figure 9 we compare the imputation accuracies of the four methods on the second
study/reference panel scenario. The qualitative trends are similar, with FragCoag signifi-
cantly better than both fastPHASE and Beagle. One difference from the previous scenario
is that FastPHASE is better than Beagle here, and did not produce the runtime errors
observed in the previous scenario. Accuracy differences were significant except for p% with-
held sites, q% withheld sequences, for (p, q) ∈ {(30, 10), (40, 30), (50, 30)}, where differences
between FastPHASE and FragCoag were insignificant at 95% confidence.

Figure 10 shows the calibration of the probabilities imputed by FragCoag. For each
dataset, the missing alleles are binned in terms of the imputed probabilities of the major
allele. The proportion of major alleles for each bin is then plotted against the average im-
puted probability. The imputation probabilities are slightly under-estimated but reasonably
well-calibrated. In preliminary experiments we have found that imputed probabilities be-
come better calibrated for longer MCMC runs. Here we have reported only the calibration
of the short runs described above.
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Figure 9: Imputation accuracies on study/reference panel scenario. Left: Accuracies of
methods are plotted against the proportion of sequence pairs in the study panel.
The proportion of masked sites in the study panel is held fixed at 30%. Right:
Accuracies of methods as the proportion of masked sites in study panel is varied.
The proportion of sequence pairs in the study panel is fixed at 30%.
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Figure 10: Calibration of allele imputation probabilities. Left plot shows the uniformly
missing at random scenario, while right plot shows the study/reference panel
scenario.
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8. Discussion

We have described a novel model of genetic variations accounting for linkage disequilibrium
based on fragmentation-coagulation processes. Our Bayesian nonparametric model can
automatically adapt the number of clusters it uses to model data, and does not suffer from
the label switching problems of HMMs. We described a scalable Markov chain Monte Carlo
inference algorithm, and showed in experiments that our model achieves state-of-the-art
performance in imputation accuracy.

We are currently extending the research in a few directions. We are experimenting with
an extension to handle unphased data, and in using fragmentation-coagulation processes for
phasing such data. We are also exploring ways to scale up our method to handle chromosome
scale datasets, and are intending to release the software for public use.

Other future directions include MCMC methods to improve the mixing of the loci dis-
tance parameters νj , and in investigating the relationship between the νj parameters and
recombination rates and hotspots. We have found positive correlation between these, which
is unsurprising given that hotspots are where there are breaks in haplotypes.

Our work is the first application of fragmentation-coagulation processes to the statistical
analysis of sequence data. We expect such processes will find more statistical applications
beyond modelling genetic variations in the future. For example, FCPs can be used to model
community structure in evolving social networks, where communities can split and merge
with time.
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Appendix A. Proof of Proposition 4

The probability of (Π(t)) = (π(t)) can be written as the product of the probability of the
initial state Π(0) = π(0), times the probabilities of each subsequent jump. Since the initial
distribution is CRP[n](

β
α), the probability of the initial state is:

P(Π(0) = π(0)) = g[n](π(0); βα) =
Γ(βα)(βα)|π(0)|∏

a∈π(0) Γ(|a|)
Γ(n+ β

α)
(34)

For each subsequent jump, let t be the time of the jump, and t′ the time of the previous jump
(or 0 for the first jump). The distribution of the holding time in state π(t′) is exponential
with rate given by (7), so

P(Π(s) = π(s) = π(t′)∀s ∈ [t′, t),Π(t) 6= π(t′)|Π(t′) = π(t′))

=q(π(t′)) exp(−(t− t′)q(π(t′))) (35)
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At the jump, the probability of a fragmentation of c ∈ π(t′) into two clusters a, b ∈ π(t) is:

P(Π(t) = π(t)|Π(t−) = π(t−)) =
β

q(π(t−))

Γ(a)Γ(b)

Γ(c)
(36)

where t− denotes an infinitesimal time prior to t. On the other hand, the probability of a
coagulation of a, b ∈ π(t′) into c ∈ π(t) is:

P(Π(t) = π(t)|Π(t−) = π(t−)) =
α

q(π(t−))
(37)

Multiplying (34), (35), (36) and (37) over all jumps as well as the final hold state until time
T , we get the probability of (Π(t)) = (π(t)) in Proposition 4. The first term of (10) uses
the identity |A| = |π(0)|+ 2F + C = |π(T )|+ F + 2C, which is a result of each path being
created either at time 0 or by a fragmentation (which creates two paths) or coagulation, and
similarly terminated at time T or by a fragmentation or coagulation (which terminates two
paths). The exponential integral is from (35) summed over all hold states between events.
The q(π(t′)) factors in (35) cancels the q(π(t−)) factors in (36) or (37). Finally, the last
ratio of gamma factors results from the ratios of gammas in (36). Only the gamma factors
associated with paths in A<> and A>< are left, all other gamma factors cancel off.

Appendix B. Proof of Proposition 10

The number of events can be expressed as a sum over each subsequent trajectory, of the
number of new fragmentation and coagulation events introduced by that trajectory. Noting
a transition rate is the expected number of events per unit time, the expected total number
of events is:

E

 n∑
i=2

∫ T

0
P(ci(t) = ∅|Π|[i−1])α|Π|[i−1](t)|+

∑
c∈Π|[i−1](t)

P(ci(t) = c|Π|[i−1])
β

|c|dt


Using Fubini’s Theorem,

=

n∑
i=2

∫ T

0
E

P(ci(t) = ∅|Π|[i−1])α|Π|[i−1](t)|+
∑

c∈Π|[i−1](t)

P(ci(t) = c|Π|[i−1])
β

|c|

 dt
Using Proposition 2, that the marginal distributions are CRP[n](

β
α),

=

n∑
i=2

∫ T

0
E

 β
α

i− 1 + β
α

α|Π|[i−1](t)|+
∑

c∈Π|[i−1](t)

|c|
i− 1 + β

α

β

|c|

 dt
=β

n∑
i=2

1

i− 1 + β
α

∫ T

0
E

|Π|[i−1](t)|+
∑

c∈Π|[i−1](t)

1

 dt
=2β

n∑
i=2

1

i− 1 + β
α

∫ T

0
E
[
|Π|[i−1](t)|

]
dt
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with Π|[i−1](t) ∼ CRP[i−1](
β
α). The expectation of the number of clusters under a CRP is

well-known, and gives,

=2βT

n∑
i=2

1

i− 1 + β
α

i−1∑
j=1

β
α

j − 1 + β
α

=
2β2T

α

1

2

( n∑
i=1

1

i− 1 + β
α

)2

−
n∑
i=1

(
1

i− 1 + β
α

)2


=
β2T

α

((
ψ(n+ β

α)− ψ(βα)
)2

+ ψ′(n+ β
α)− ψ′(βα)

)
(38)

where ψ(·) is the digamma function and ψ′(·) its derivative the trigamma function.
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XIII–1983, pages 1–198. Springer, Berlin, 1985.

D. Aldous. Probability distributions on cladograms. In D. Aldous and R. Pemantle, editors,
Random Discrete Structures, pages 1–18. Springer, 1996.

M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden Markov model. In
Advances in Neural Information Processing Systems, volume 14, 2002.

J. Berestycki. Exchangeable fragmentation-coalescence processes and their equilibrium mea-
sures. Electronic Journal of Probability, 9:770–824, 2004.

J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge University Press,
2006.

J. Bertoin. Two-parameter Poisson-Dirichlet measures and reversible exchangeable
fragmentation-coalescence processes. Combinatorics, Probability and Computing, 17:329–
337, 2007.

D. Blackwell and J. B. MacQueen. Ferguson distributions via Pólya urn schemes. Annals
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