
An Efficient Sequential Monte Carlo Algorithm for
Coalescent Clustering

Dilan Görür
Gatsby Unit

University College London
dilan@gatsby.ucl.ac.uk

Yee Whye Teh
Gatsby Unit

University College London
ywteh@gatsby.ucl.ac.uk

Abstract

We propose an efficient sequential Monte Carlo inference scheme for the recently
proposed coalescent clustering model [1]. Our algorithm has a quadratic runtime
while those in [1] is cubic. In experiments, we were surprised to find that in
addition to being more efficient, it is also a better sequential Monte Carlo sampler
than the best in [1], when measured in terms of variance of estimated likelihood
and effective sample size.

1 Introduction

Algorithms for automatically discovering hierarchical structure from data play an important role
in machine learning. In many cases the data itself has an underlying hierarchical structure whose
discovery is of interest, examples include phylogenies in biology, object taxonomies in vision or
cognition, and parse trees in linguistics. In other cases, even when the data is not hierarchically
structured, such structures are still useful simply as a statistical tool to efficiently pool information
across the data at different scales; this is the starting point of hierarchical modelling in statistics.

Many hierarchical clustering algorithms have been proposed in the past for discovering hierarchies.
In this paper we are interested in a Bayesian approach to hierarchical clustering [2, 3, 1]. This is
mainly due to the appeal of the Bayesian approach being able to capture uncertainty in learned struc-
tures in a coherent manner. Unfortunately, inference in Bayesian models of hierarchical clustering
are often very complex to implement, and computationally expensive as well.

In this paper we build upon the work of [1] who proposed a Bayesian hierarchical clustering model
based on Kingman’s coalescent [4, 5]. [1] proposed both greedy and sequential Monte Carlo (SMC)
based agglomerative clustering algorithms for inferring hierarchical clustering which are simpler
to implement than Markov chain Monte Carlo methods. The algorithms work by starting with each
data item in its own cluster, and iteratively merge pairs of clusters until all clusters have been merged.
The SMC based algorithm has computational cost O(n3) per particle, where n is the number of data
items.

We propose a new SMC based algorithm for inference in the coalescent clustering of [1]. The
algorithm is based upon a different perspective on Kingman’s coalescent than that in [1], where
the computations required to consider whether to merge each pair of clusters at each iteration is
not discarded in subsequent iterations. This improves the computational cost to O(n2) per particle,
allowing this algorithm to be applied to larger datasets. In experiments we show that our new
algorithm achieves improved costs without sacrificing accuracy or reliability.

Kingman’s coalescent originated in the population genetics literature, and there has been significant
interest there on inference, including Markov chain Monte Carlo based approaches [6] and SMC
approaches [7, 8]. The SMC approaches have interesting relationship to our algorithm and to that of
[1]. While ours and [1] integrate out the mutations on the coalescent tree and sample the coalescent

1

times, [7, 8] integrate out the coalescent times, and sample mutations instead. Because of this
difference, ours and that of [1] will be more efficient in higher dimensional data, as well as other
cases where the state space is too large and sampling mutations will be inefficient.

In the next section, we review Kingman’s coalescent and the existing SMC algorithms for inference
on this model. In Section 3, we describe a cheaper SMC algorithm. We compare our method with
that of [1] in Section 4 and conclude with a discussion in Section 5.

2 Hierarchical Clustering using Kingman’s Coalescent

Kingman’s coalescent [4, 5] describes the family relationship between a set of haploid individuals
by constructing the genealogy backwards in time. Ancestral lines coalesce when the individuals
share a common ancestor, and the genealogy is a binary tree rooted at the common ancestor of all
the individuals under consideration. We briefly review the coalescent and the associated clustering
model as presented in [1] before presenting a different formulation more suitable for our proposed
algorithm.

Let π be the genealogy of n individuals. There are n−1 coalescent events in π, we order these events
with i = 1 being the most recent one, and i = n − 1 for the last event when all ancestral lines are
coalesced. Event i occurs at time Ti < 0 in the past, and involves the coalescing of two ancestors,
denoted ρli and ρri

, into one denoted ρi. Let Ai be the set of ancestors right after coalescent event i,
and A0 be the full set of individuals at the present time T0 = 0. To draw a sample π from Kingman’s
coalescent we sample the coalescent events one at a time starting from the present. At iteration i we
pick the pair of individuals ρli , ρri

uniformly at random from the n− i + 1 individuals available in
Ai−1, pick a waiting time δi ∼ Exp(

(
n−i+1

2

)
) from an exponential distribution with rate

(
n−i+1

2

)
equal to the number of pairs available, and set Ai = Ai−1 −{ρli , ρri

}+ {ρi}, Ti = Ti−1 − δi. The
probability of π is thus:

p(π) =
n−1∏
i=1

exp
(
−
(

n− i + 1
2

)
δi

)
. (1)

The coalescent can be used as a prior over binary trees in a model where we have a tree-structured
likelihood function for observations at the leaves. Let θi be the subtree rooted at ρi and xi be the
observations at the leaves of θi. [1] showed that by propagating messages up the tree the likelihood
function can be written in a sequential form:

p(x |π) = Z0(x)
n−1∏
i=1

Zρi(xi|θi), (2)

where Zρi is a function only of the coalescent times associates with ρli , ρri , ρi and of the local
messages sent from ρli , ρri

to ρi, and Z0(x) is an easily computed normalization constant in eq. (2).
Each function has the form (see [1] for further details):

Zρi(xi|θi) =
∫

p0(yi)
∏

c=li,ri

∫
p(yc|yi, θi)Mρc(yc) dyc dyi (3)

where Mρc is the message from child ρc to ρi. The posterior is proportional to the product of eq. (1)
and eq. (2) and our aim is to have an efficient way to compute the posterior. For this purpose, we
will give a different perspective to constructing the coalescent in the following and describe our
sequential Monte Carlo algorithm in Section 3.

2.1 A regenerative race process

In this section we describe a different formulation of the coalescent based on the fact that each stage
of the coalescent can be interpreted as a race between the

(
n−i+1

2

)
pairs of individuals to coalesce.

Each pair proposes a coalescent time, the pair with most recent coalescent time “wins” the race and
gets to coalesce, at which point the next stage starts with

(
n−i
2

)
pairs in the race. Naı̈vely this race

process would require a total of O(n3) pairs to propose coalescent times. We show that using the
regenerative (memoryless) property of exponential distributions allows us to reduce this to O(n2).

2

Algorithm 1 A regenerative race process for constructing the coalescent
inputs: number of individuals n,
set starting time T0 = 0 and A0 the set of n individuals
for all pairs of existing individuals ρl, ρr ∈ A0 do

propose coalescent time tlr using eq. (4)
end for
for all coalescence events i = 1 : n− 1 do

find the pair to coalesce (ρli , ρri
) using eq. (5)

set coalescent time Ti = tliri
and update Ai = Ai−1 − {ρli , ρri

}+ {ρi}
remove pairs with ρl ∈ {ρli , ρri

}, ρr ∈ Ai−1\{ρli , ρri
}

for all new pairs with ρl = ρi, ρr ∈ Ai\{ρi} do
propose coalescent time using eq. (4)

end for
end for

The same idea will allow us to reduce the computational cost of our SMC algorithm from O(n3) to
O(n2).

At stage i of the coalescent we have n− i + 1 individuals in Ai−1, and
(
n−i+1

2

)
pairs in the race to

coalesce. Each pair ρl, ρr ∈ Ai−1, ρl 6= ρr proposes a coalescent time

tlr|Ti−1 ∼ Ti−1 − Exp(1), (4)

that is, by subtracting from the last coalescent time a waiting time drawn from an exponential distri-
bution of rate 1. The pair ρli , ρri with most recent coalescent time wins the race:

(ρli , ρri) = argmax
(ρl,ρr)

{
tlr, ρl, ρr ∈ Ai−1, ρl 6= ρr

}
(5)

and coalesces into a new individual ρi at time Ti = tliri
. At this point stage i+1 of the race begins,

with some pairs dropping out of the race (specifically those with one half of the pair being either ρli
or ρri

) and new ones entering (specifically those formed by pairing the new individual ρi with an
existing one). Among the pairs (ρl, ρr) that did not drop out nor just entered the race, consider the
distribution of tlr conditioned on the fact that tlr < Ti (since (ρl, ρr) did not win the race at stage i).
Using the memoryless property of the exponential distribution, we see that tlr|Ti ∼ Ti − Exp(1),
thus eq. (4) still holds and we need not redraw tlr for the stage i + 1 race. In other words, once tlr
is drawn once, it can be reused for subsequent stages of the race until it either wins a race or drops
out. The generative process is summarized in Algorithm 1.

We obtain the probability of the coalescent π as a product over the i = 1, . . . , n − 1 stages of the
race, of the probability of each event “ρli , ρri wins stage i and coalesces at time Ti” given more
recent stages. The probability at stage i is simply the probability that tliri = Ti, and that all other
proposed coalescent times tlr < Ti, conditioned on the fact that the proposed coalescent times tlr
for all pairs at stage i are all less than Ti−1. This gives:

p(π) =
n−1∏
i=1

(
p(tliri = Ti | tliri < Ti−1)

∏
(ρl,ρr) 6=(ρli

,ρri
)

p(tl′r′ < Ti | tl′r′ < Ti−1)
)

(6)

=
n−1∏
i=1

(
p(tliri

= Ti)
p(tliri

< Ti−1)

∏
(ρl,ρr) 6=(ρli

,ρri
)

p(tlr < Ti)
p(tlr < Ti−1)

)
(7)

where the second product runs over all pairs in stage i except the winning pair. Each pair that
participated in the race has corresponding terms in eq. (7), starting at the stage when the pair entered
the race, and ending with the stage when the pair either dropped out or wins the stage. As these
terms cancel, eq. (7) simplifies to,

p(π) =
n−1∏
i=1

(
p(tliri = Ti)

∏
ρl∈{ρli

,ρri
},ρr∈Ai−1\{ρli

,ρri
}

p(tlr < Ti)
)

, (8)

3

where the second product runs only over those pairs that dropped out after stage i. The first term
is the probability of pair (ρli , ρri

) coalescing at time Ti given its entrance time, and the second
term is the probability of pair (ρl, ρr) dropping out of the race at time Ti given its entrance time.
We can verify that this expression equals eq. (1) by plugging in the probabilities for exponential
distributions. Finally, multiplying the prior eq. (8) and the likelihood eq. (2) we have,

p(x, π) = Z0(x)
n−1∏
i=1

(
Zρi(xi|θi)p(tliri = Ti)

∏
ρl∈{ρli

,ρri
}, ρr∈Ai−1\{ρli

,ρri
}

p(tlr < Ti)
)

. (9)

3 Efficient SMC Inference on the Coalescent

Our sequential Monte Carlo algorithm for posterior inference is directly inspired by the regenerative
race process described above. In fact the algorithm is structurally exactly as in Algorithm 1, but with
each pair ρl, ρr proposing a coalescent time from a proposal distribution tlr ∼ Qlr instead of from
eq. (4). The idea is that the proposal distribution Qlr is constructed taking into account the observed
data, so that Algorithm 1 produces better approximate samples from the posterior.

The overall probability of proposing π under the SMC algorithm can be computed similarly to
eq. (6)-(8), and is,

q(π) =
n−1∏
i=1

(
qliri(tliri = Ti)

∏
ρl∈{ρli

,ρri
},ρr∈Ai−1\{ρli

,ρri
}

qlr(tlr < Ti)
)

, (10)

where qlr is the density of Qlr. As both eq. (9) and eq. (10) can be computed sequentially, the weight
w associated with each sample π can be computed “on the fly” as the coalescent tree is constructed:

w0 = Z0(x)

wi = wi−1
Zρi

(xi|θi)p(tliri
= Ti)

qliri(tliri = Ti)

∏
ρl∈{ρli

,ρri
}, ρr∈Ai−1\{ρli

,ρri
}

p(tlr < Ti)
qlr(tlr < Ti)

. (11)

Finally we address the choice of proposal distribution Qlr to use. [1] noted that Zρi(xi|θi) acts as a
“local likelihood” term in eq. (9). We make use of this observation and use eq. (4) as a “local prior”,
i.e. the following density for the proposal distribution Qlr:

qlr(tlr) ∝ Zρlr
(xlr|tlr, ρl, ρr, θi−1)p(tlr |Tc(lr)) (12)

where ρlr is a hypothetical individual resulting from coalescing l and r, Tc(lr) denotes the time
when the pair (ρl, ρr) enters the race, xlr are the data under ρl and ρr, and p(tlr |Tc(lr)) =
etlr−Tc(lr)I(tlr < Tc(lr)) is simply an exponential density with rate 1 that has been shifted and
reflected. I(·) is an indicator function returning 1 if its argument is true, and 0 otherwise.

The proposal distribution in [1] also has a form similar to eq. (12), but with the exponential rate
being

(
n−i+1

2

)
instead, if the proposal was in stage i of the race. This dependence means that at

each stage of the race the coalescent times proposal distribution needs to be recomputed for each
pair, leading to an O(n3) computation time. On the other hand, similar to the prior process, we need
to propose a coalescent time for each pair only once when it is first created. This results in O(n2)
computational complexity per particle1.

Note that it may not always be possible (or efficient) to compute the normalizing constant of the
density in eq. (12) (even if we can sample from it efficiently). This means that the weight updates
eq. (11) cannot be computed. In that case, we can use an approximation Z̃ρlr

to Zρlr
instead. In the

following subsection we describe the independent-sites parent-independent model we used in the
experiments, and how to construct Z̃ρlr

.

1Technically the time cost is O(n2(m + log n)), where n is the number of individuals, and m is the cost of
sampling from and evaluating eq. (12). The additional log n factor comes about because a priority queue needs
to be maintained to determine the winner of each stage efficiently, but this is negligible compared to m.

4

3.1 Independent-Sites Parent-Independent Likelihood Model

In our experiments we have only considered coalescent clustering of discrete data, though our ap-
proach can be applied more generally. Say each data item consists of a D dimensional vector where
each entry can take on one of K values. We use the independent-sites parent-independent mutation
model over multinomial vectors in [1] as our likelihood model. Specifically, this model assumes that
each point on the tree is associated with a D dimensional multinomial vector, and each entry of this
vector on each branch of the tree evolves independently (thus independent-sites), forward in time,
and with mutations occurring at rate λd on entry d. When a mutation occurs, a new value for the
entry is drawn from a distribution φd, independently of the previous value at that entry (thus parent-
independent). When a coalescent event is encountered, the mutation process evolves independently
down both branches.

Some calculations show that the transition probability matrix of the mutation process associated
with entry d on a branch of length t is e−λdtIK + (1 − e−λdt)φ>d 1K , where IK is the identity
matrix, 1K is a vector of 1’s, and we have implicitly represented the multinomial distribution φd as
a vector of probabilities. The message for entry d from node ρi on the tree to its parent is a vector
Md

ρi
= [Md1

ρi
, . . . ,MdK

ρi
]>, normalized so that φ>d Md

ρi
= 1. The local likelihood term is then:

Zd
ρlr

(xlr|tlr, ρl, ρr, θi−1) = 1− eλd(2tlr−tl−tr)

(
1−

K∑
k=1

φdkMdk
ρl

Mdk
ρr

)
(13)

The logarithm of the proposal density is then:

log qlr(tlr) = constant + (tlr − Tc(lr)) +
D∑

d=1

log Zd
ρlr

(xlr|tlr, ρl, ρr, θi−1) (14)

This is not of standard form, and we use an approximation log q̃lr(tlr) instead. Specifically, we use
a piecewise linear log q̃lr(tlr), which can be easily sampled from, and for which the normalization
term is easy to compute.

The approximation is constructed as follows. Note that log Zd
ρlr

(xlr|tlr, ρl, ρr, θi−1), as a function
of tlr, is concave if the term inside the parentheses in eq. (13) is positive, convex if negative, and
constant if zero. Thus eq. (14) is a sum of linear, concave and convex terms. Using the upper and
lower envelopes developed for adaptive rejection sampling [9], we can construct piecewise linear
upper and lower envelopes for log qlr(tlr) by upper and lower bounding the concave and convex
parts separately. The upper and lower envelopes give exact bounds on the approximation error
introduced, and we can efficiently improve the envelopes until a given desired approximation error
is achieved. Finally, we used the upper bound as our approximate log q̃lr(tlr). Note that the same
issue arises in the proposal distribution for SMC-PostPost, and we used the same piecewise linear
approximation. The details of this algorithm can be found in [10].

4 Experiments

The improved computational cost of inference makes it possible to do Bayesian inference for the co-
alescence models on larger datasets. The SMC samplers converge to the exact solution in the limit of
infinite particles. However, it is not enough to be more efficient per particle, the crucial point is how
efficient the algorithm is overall. An important question is how many particles we need in practice.
To address this question, we compared the performance of our algorithm SMC1 to SMC-PostPost
on the synthetic data shown in Figure 12. There are 15 binary 12-dimensional vectors in the dataset.
There is overlap between the features of the data points however the data does not obey a tree struc-
ture, which will result in a multimodal posterior. Both SMC1 and SMC-PostPost recover the
structure with only a few particles. However there is room for improvement as the variance in the
likelihood obtained from multiple runs decreases with increasing number of particles. Since both
SMC algorithms are exact in the limit, the values should converge as we add more particles. We can
check convergence by observing the variance of likelihood estimates of multiple runs. The variance

2The comparison is done in the importance sampling setting, i.e. without using resampling for comparison
of the proposal distributions.

5

(a) (b)

2

4

6

8

10

12
333344555511122

0

0.5

1

1.5

Figure 1: Synthetic data features is shown on the left; each data point is a binary column vector. A
sample tree from the SMC1 algorithm demonstrate that the algorithm could capture the similarity
structure. The true covariance of the data (a) and the distance on the tree learned by the SMC1
algorithm averaged over particles (b) are shown, showing that the overall structure was corerctly
captured. The results obtained from SMC-PostPost were very similar to SMC1 therefore are
not shown here.

should shrink as we increase the number of particles. Figure 2 shows the change in the estimated
likelihood as a function of number of particles. From this figure, we can conclude that the compu-
tationally cheaper algorithm SMC1 is more efficient also in the number of particles as it gives more
accurate answers with less particles.

0 200 400 600 800 1000
−1

0

1

2

3

4

5

6

7
x 10

−30

lik
el

ih
oo

d

number of particles, 7 runs each
0 200 400 600 800 1000

50

100

150

200

ef
fe

ct
iv

e
sa

m
pl

e
si

ze

number of particles, 7 runs each

Figure 2: The change in the likelihood (left) and the effective sample size (right) as a function of
number of particles for SMC1 (solid) and SMC-PostPost (dashed). The mean estimate of both
algorithms are very close, with the SMC1 having a much tighter variance. The variance of both
algorithms shrink and the effective sample size increases as the number of particles increase.

A quantity of interest in genealogical studies is the time to the most recent common ancestor
(MRCA), which is the time of the last coalescence event. Although there is not a physical inter-
pretation of this quantity for hierarchical clustering, it gives us an indication about the variance of
the particles. We can observe the variation in the time to MRCA to assess convergence. Similar to
the variance behaviour in the likelihood, with small number of particles SMC-PostPost has
higher variance than SMC1 . However, as there are more particles, results of the two algorithms
almost overlap. The mean time for each step of coalescence together with its variance for 7250
particles for both algorithms is depicted in Figure 3. It is interesting that the first few coalescence
times of SMC1 are shorter than those for SMC-PostPost. The distribution of the particle weights
is important for the efficiency of the importance sampler. Ideally, the weights would be uniform
such that each particle contributes equally to the posterior estimation. If there is only a few particles
that come from a high probability region, the weights of those particles would be much larger than

6

2 4 6 8 10 12 14

10
−3

10
−2

10
−1

10
0

smc1
smcPostPost

Figure 3: Times for each coalescence step averaged over 7250 particles. Note that both algorithms
almost converged at the same distribution when given enough resources. There is a slight difference
in the mean coalescence time. It is interesting that the SMC1 algorithm proposes shorter times for
the initial coalescence events.

the rest, resulting in a low effective sample size. We will discuss this point more in the next section.
Here, we note that for the synthetic dataset, the effective sample size of SMC-PostPost is very
poor, and that of SMC1 is much higher, see Figure 2.

5 Discussion

We described an efficient Sequential Monte Carlo algorithm for inference on hierarchical clustering
models that use Kingman’s coalescent as a proir. Our method makes use of a regenerative perspec-
tive to construct the coalescent tree. Using this construction, we achieve quadratic run time per
particle. By employing a tight upper bound on the local likelihood term, the proposed algorithm is
applicable to general data generation processes.

We also applied our algorithm for inferring the structure in the phylolinguistic data used in [1]. We
used the same Indo-European subset of the data, with the same subset of features, that is 44 lan-
guages with 100 binary features. Three example trees with the largest weights out of 7750 samples
are depicted in Figure 4. Unfortunately, on this dataset, the effective sample size of both algorithms
is close to one. A usual method to circumvent the low effective sample size problem in sequential
Monte Carlo algorithms is to do resampling, that is, detecting the particles that will not contribute
much to the posterior from the partial samples and prune them away, multiplying the promising
samples. There are two stages to doing resampling. We need to decide at what point to prune away
samples, and how to select which samples to prune away. As shown by [11], different problems may
require different resampling algorithms. We tried resampling using Algorithm 5.1 of [12], however
this only had a small improvement in the final performance for both algorithms on this data set.

Note that both algorithms use ”local likelihoods” for calculating the weights, therefore the weights
are not fully informative about the actual likelihood of the partial sample. Furthermore, in the
recursive calculation of the weights in SMC1 , we are including the effect of a pair only when they
either coalesce or cease to exist for the sake of saving computations. Therefore the partial weights
are even less informative about the state of the sample and the effective sample size cannot really
give full explanation about whether the current sample is good or not. In fact, we did observe
oscillations on the effective sample size calculated on the weights along the iterations, i.e. starting
off with a high value, decreasing to virtually 1 and increasing later before the termination, which
also indicates that it is not clear which of the particles will be more effective eventually. An open
question is how to incorporate a resampling algorithm to improve the efficiency.

References

[1] Y. W. Teh, H. Daume III, and D. M. Roy. Bayesian agglomerative clustering with coalescents.
In Advances in Neural Information Processing Systems, volume 20, 2008.

7

012

Romance −Catalan
Romance −Italian
Romance −French
Romance −Portuguese
Romance −Spanish
Albanian−Albanian
Celtic −Cornish
Romance −Romanian
Baltic −Lithuanian
Slavic −Russian
Slavic −Ukrainian
Slavic −Slovene
Slavic −Serbian
Germanic−Danish
Germanic−Swedish
Germanic−Norwegian
Germanic−Dutch
Germanic−German
Germanic−English
Germanic−Icelandic
Armenian−Armenian E
Armenian−Armenian W
Indic −Hindi
Indic −Panjabi
Indic −Maithili
Indic −Marathi
Indic −Nepali
Iranian −Pashto
Iranian −Ossetic
Indic −Bengali
Indic −Kashmiri
Indic −Sinhala
Iranian −Kurdish
Iranian −Persian
Iranian −Tajik
Slavic −Bulgarian
Greek −Greek
Celtic −Breton
Celtic −Welsh
Celtic −Gaelic
Celtic −Irish
Slavic −Czech
Baltic −Latvian
Slavic −Polish

0.0151504

c) with resampling
012

Slavic −Serbian
Slavic −Slovene
Slavic −Russian
Baltic −Lithuanian
Slavic −Czech
Slavic −Ukrainian
Slavic −Polish
Baltic −Latvian
Albanian−Albanian
Romance −Romanian
Romance −French
Romance −Portuguese
Slavic −Bulgarian
Greek −Greek
Romance −Catalan
Romance −Italian
Romance −Spanish
Germanic−Danish
Germanic−Norwegian
Germanic−Swedish
Germanic−Dutch
Germanic−German
Germanic−English
Germanic−Icelandic
Armenian−Armenian W
Indic −Sinhala
Indic −Bengali
Indic −Kashmiri
Indic −Hindi
Indic −Panjabi
Iranian −Pashto
Indic −Maithili
Indic −Marathi
Indic −Nepali
Iranian −Ossetic
Armenian−Armenian E
Celtic −Breton
Celtic −Cornish
Celtic −Welsh
Celtic −Gaelic
Celtic −Irish
Iranian −Kurdish
Iranian −Persian
Iranian −Tajik

0.000379939

b) no resampling
012

Armenian−Armenian E
Armenian−Armenian W
Iranian −Kurdish
Iranian −Persian
Iranian −Tajik
Indic −Bengali
Indic −Marathi
Indic −Sinhala
Indic −Maithili
Iranian −Ossetic
Indic −Nepali
Indic −Hindi
Indic −Panjabi
Iranian −Pashto
Indic −Kashmiri
Albanian−Albanian
Slavic −Bulgarian
Greek −Greek
Romance −Catalan
Romance −Italian
Romance −Romanian
Romance −French
Romance −Portuguese
Romance −Spanish
Germanic−Danish
Germanic−Swedish
Germanic−Norwegian
Germanic−Dutch
Germanic−German
Germanic−English
Germanic−Icelandic
Celtic −Breton
Celtic −Cornish
Celtic −Welsh
Celtic −Gaelic
Celtic −Irish
Slavic −Czech
Baltic −Latvian
Baltic −Lithuanian
Slavic −Serbian
Slavic −Slovene
Slavic −Polish
Slavic −Ukrainian
Slavic −Russian

0.998921

a) no resampling

Figure 4: Tree structure infered from WALS data. (a),(b) Samples from a run with 7750 particles
without resampling. (c) Sample from a run with resampling. The values above the trees are nor-
malized weights. Note that the weight of (a) is almost one, which means that the contribution from
the rest of the particles is infinitesimal although the tree structure in (b) also seem to capture the
similarities between languages.

[2] R. M. Neal. Defining priors for distributions using Dirichlet diffusion trees. Technical Report
0104, Department of Statistics, University of Toronto, 2001.

[3] C. K. I. Williams. A MCMC approach to hierarchical mixture modelling. In Advances in
Neural Information Processing Systems, volume 12, 2000.

[4] J. F. C. Kingman. On the genealogy of large populations. Journal of Applied Probability,
19:27–43, 1982. Essays in Statistical Science.

[5] J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13:235–248,
1982.

[6] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17:368–376, 1981.

[7] R. C. Griffiths and S. Tavare. Simulating probability distributions in the coalescent. Theoretical
Population Biology, 46:131–159, 1994.

[8] M. Stephens and P. Donnelly. Inference in molecular population genetics. Journal of the Royal
Statistical Society, 62:605–655, 2000.

[9] W.R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics,
41:337–348, 1992.

[10] D. Görür and Y.W. Teh. Concave convex adaptive rejection sampling. Technical report, Gatsby
Computational Neuroscience Unit, 2008.

[11] Y. Chen, J. Xie, and J. Liu. Stopping-time resampling for sequential monte carlo methods.
Journal of the Royal Statistical Society, 67, 2005.

[12] P. Fearnhead. Sequential Monte Carlo Method in Filter Theory. PhD thesis, Merton College,
University of Oxford, 1998.

8

