Marginalized Samplers for Normalized Random Measure Mixture Models

Yee Whye Teh and Stefano Favaro

University of Oxford and University of Torino

2013

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

Dirichlet Process

- ► Random probability measure $\mu \sim \mathsf{DP}(\alpha, H)$.
- For each partition (A_1, \ldots, A_m) ,

 $(\mu(A_1),\ldots,\mu(A_m)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_m))$

Prior used in Bayesian nonparametric analysis.

 $X_i | \mu \sim \mu$

for *i* = 1, . . . , *n*.

- Large support over space of probability measures.
- Analytically tractable posterior distribution.

Dirichlet Process

- Random probability measure $\mu \sim \mathsf{DP}(\alpha, H)$.
- For each partition (A_1, \ldots, A_m) ,

 $(\mu(A_1),\ldots,\mu(A_m)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_m))$

Prior used in Bayesian nonparametric analysis.

 $\mathbf{x}_i | \mu \sim \mu$

for i = 1, ..., n.

- Large support over space of probability measures.
- Analytically tractable posterior distribution.

Dirichlet Process Mixture Models

Draws from Dirichlet processes are discrete probability measures,

$$\mu = \sum_{k=1}^{\infty} \mathbf{w}_k \delta_{\phi_k^*}$$

where w_k, ϕ_k^* are random.

Density estimation by convolving with a smooth kernel

$$\int f(\cdot|\phi)\mu(d\phi) = \sum_{k=1}^{\infty} w_k f(\cdot|\phi_k^*)$$

A mixture model with an infinite number of components.

$$x_i | \mu \sim \sum_{k=1}^{\infty} w_k f(\cdot | \phi_k^*)$$

Bayesian Nonparametric Clustering

 $\mu \sim \mathsf{DP}(\alpha, H)$ $\phi_i | \mu \sim \mu$ $\chi_i | \phi_i \sim F(\phi_i)$

- Repeated values among \u03c6_{1:n}
 - Induces a partition π of observations $x_{1:n}$.
 - Each cluster $c \in \pi$ corresponds to a distinct value ϕ_c^* .
 - Leads to a clustering model with a varying number of clusters.
- Properties of model for cluster analysis depends on the properties of the induced random partition π .
- Generalisations of DPs allow for more flexible prior specifications.

MCMC Inference in DP Mixtures

- Conditional samplers [Ishwaran and James 2001, Walker 2007, Kalli and Walker 2006, Papaspiliopoulos and Roberts 2008]
 - Simulate from the joint posterior of μ and $\phi_{1:n}$.
 - Difficulty is in the infinite nature of µ, requiring truncations and retrospective sampling techniques.
 - Easier to understand, parallelizable.
- Marginal samplers [Escobar and West 1995, Bush and MacEachern 1996, Neal 2000]
 - Marginalize out μ , and simulate from posterior for π and $\{\phi_c^*\}$.

```
egin{aligned} &\pi \sim \mathsf{CRP}(lpha) \ &\phi^*_{\mathit{c}} \sim \mathcal{H} \ &x_i | \pi, \{\phi^*_{\mathit{c}}\} \sim \mathcal{F}(\phi^*_{\mathit{c}}) \end{aligned}
```

for $c \in \pi$ for $c \in \pi$ with $i \in c$

Generally better mixing.

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

Completely Random Measures

 A completely random measure (CRM) ν is a random measure such that

$\nu(A) \perp \!\!\!\perp \nu(B)$

whenever *A* and *B* are disjoint sets.

The CRM can always be decomposed into 3 components:

$$\nu = \nu_0 + \sum_{j=1}^{\infty} \mathbf{v}_j \delta_{\eta_j^*} + \sum_{k=1}^{\infty} \mathbf{w}_k \delta_{\phi_k^*}$$

- $\nu_0, \{\eta_i^*\}$ are not random,
- $\{v_j\}$ are mutually independent and independent of $\{w_k, \phi_k^*\}$,
- {(w_k, φ^{*}_k)} is drawn from a Poisson process over ℝ₊ × Φ with rate measure ρ(w, φ)dwdφ (the Lévy measure).
- In most modelling applications, only require third component.

Completely Random Measures

The Lévy Measure

~

$$\nu = \sum_{k=1}^{\infty} w_k \delta_{\phi_k^*} \qquad \{(w_k, \phi_k^*)\} \sim \mathsf{Poisson}(\rho)$$

► Homogeneous CRMs have $\rho(w, \phi) = \rho(w)h(\phi)$, implies:

 $\{w_k\} \sim \mathsf{Poisson}(\rho) \qquad \qquad \phi_k^* \sim H$

Want v to have infinitely many atoms:

$$\Rightarrow \int_0^\infty \rho(w) dw = \infty$$

Want v to have finite total mass:

$$\Rightarrow \int_0^\infty (1 - e^{-w}) \rho(w) dw < \infty$$

Normalized Random Measures

Normalizing a CRM gives a normalized random measure (NRM):

$$\mu = \frac{\nu}{\nu(\Phi)}$$

- μ is a random discrete probability measure.
- To study random partition structure, it suffices to assume
 - No fixed measure ($\nu_0 = 0$),
 - No fixed atoms ($v_i = 0$),
 - Homogeneous NRMs $\rho(w, \phi) = \rho(w)h(\phi)$.

Normalized Gamma Process

A gamma process is a CRM with Lévy measure

$$\rho_{\alpha,\tau}(\boldsymbol{w},\phi) = \alpha \boldsymbol{w}^{-1} \boldsymbol{e}^{-\tau \boldsymbol{w}} \boldsymbol{h}(\phi)$$

> The gamma process has gamma marginals:

$$\nu(\mathbf{A}) \sim \operatorname{Gamma}\left(\alpha \int_{\mathbf{A}} \mathbf{h}(\phi) \mathbf{d}\phi, \tau\right)$$

Normalizing a gamma process gives a Dirichlet process, with mass parameter α and base distribution H with density h.

Normalized Stable Process

A stable process is a CRM with Lévy measure

$$\rho_{\sigma}(w) = \frac{\sigma}{\Gamma(1-\sigma)} w^{-\sigma-1}$$

- It has positive stable marginals with index σ .
- Normalizing a stable process, and deriving the induced exchangeable partition process, leads to the following random partition:
 - Customer 1 sits at first table.
 - Subsequent customer n + 1:
 - sits at table *c* with probability $\frac{|c|-\sigma}{p}$,
 - sits at new table with probability $\frac{|\pi|\sigma}{n}$.
- Related to the two-parameter Poisson-Dirichlet process (aka Pitman-Yor process).

Normalized Generalized Gamma Process

There is one NRM that encompasses both DP and normalized stable. It is obtained by normalizing the generalized gamma process:

$$\rho_{\sigma,\alpha,\tau}(w) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-\tau w}$$

- It also has power-law properties (like the Pitman-Yor).
- Specializes to DP when $\sigma = 0$.
- Specializes to normalised stable when $\tau = 0, \alpha = \sigma$.
- Specializes to normalized inverse Gaussian process when $\sigma = \frac{1}{2}$.

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

NRM Hierarchical Model

for *i* = 1 . . . *n*

What is the posterior distribution?

 $\nu |\phi_{1:n}|$

What is the marginal distribution?

 $\phi_{1:n}$

NRM Hierarchical Model

 $u \sim \operatorname{CRM}(\rho, H)$ $\mu = \nu/\nu(\Phi)$ $\phi_i | \mu \sim \mu \quad \text{for } i = 1 \dots n$

- Let φ^{*}₁,..., φ^{*}_K be the K unique values among φ_{1:n}, with φ^{*}_k occurring n_k times.
- Intuitively,

$$\nu |\phi_{1:n} = \nu^* + \sum_{k=1}^{K} \nu_k \delta_{\phi_k^*}$$
$$p(\phi_{1:n} | \nu) = \frac{\prod_{k=1}^{K} \nu(\{\phi_k^*\})^{n_k}}{\nu(\Phi)^n}$$

Data Augmentation

$$p(\phi_{1:n}|\nu) = \frac{\prod_{k=1}^{K} \nu(\{\phi_k^*\})^{n_k}}{\nu(\Phi)^n}$$
$$= \prod_{k=1}^{K} \nu(\{\phi_k^*\})^{n_k} \int_0^\infty \frac{u^{n-1} e^{-u\nu(\Phi)}}{\Gamma(n)} du$$

Introducing an auxiliary variable u:

$$p(\phi_{1:n}, u|\nu) = \frac{u^{n-1}}{\Gamma(n)} e^{-u(\nu^*(\Phi) + \sum_{k=1}^{K} v_k)} \prod_{k=1}^{K} v_k^{n_k}$$

[James et al. 2009] 19/43

NRM Marginal Characterisation

$$p(\phi_{1:n}, u|\nu) = \frac{u^{n-1}}{\Gamma(n)} e^{-u\nu^*(\Phi)} \prod_{k=1}^{K} v_k^{n_k} e^{-uv_k}$$
$$p(\phi_{1:n}, u) = \mathbb{E}[p(\phi_{1:n}, u|\nu)] = \frac{u^{n-1}}{\Gamma(n)} e^{-\psi(u)} \prod_{k=1}^{K} \kappa(u, n_k) h(\phi_k^*)$$

The Laplace transform of ρ is

$$\psi(u) = -\log \mathbb{E}[e^{-u\nu(\Phi)}] = \int_0^\infty (1 - e^{-uw})\rho(w)dw$$

The *m*th moment of the *u*-exponentially tilted Lévy measure:

$$\kappa(u,m) = \int_0^\infty w^m e^{-uw} \rho(w) dw$$

[James et al. 2009] 20 / 43

NRM Posterior Characterisation

$$\nu |\phi_{1:n}, u = \nu^{*} + \sum_{k=1}^{K} v_{k} \delta_{\phi_{k}^{*}}$$

$$p(\phi_{1:n}, u | \nu) = \frac{u^{n-1} e^{-u\nu^{*}(\Phi)}}{\Gamma(n)} \prod_{k=1}^{K} v_{k}^{n_{k}} e^{-uv_{k}}$$

$$\nu^{*} |\phi_{1:n} \sim \operatorname{CRM}(\rho^{*}, H)$$

$$\rho^{*}(w, \phi) = e^{-uw} \rho(w)$$

$$p(v_{k} | \phi_{1:n}, u) \propto v_{k}^{n_{k}} e^{-uv_{k}} \rho(v_{k})$$

$$\nu | \phi_{1:n}$$

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

NRM Mixture Model

 $u \sim \mathsf{CRM}(
ho, H)$ $\mu =
u /
u(\Phi)$

For *i* = 1, . . . , *n*:

 $\phi_i | \mu \sim \mu$ $x_i | \phi_i \sim F(\phi_i)$

- The distinct values among $\phi_{1:n}$ induces a partition π .
- Let ϕ_c^* be the distinct value associated with cluster $c \in \pi$.

Conjugate case

$$p(\pi, u, x_{1:n}) = \frac{u^{n-1}e^{-\psi(u)}}{\Gamma(n)} \prod_{c \in \pi} \left(\kappa(u, |c|) \int_{\Phi} h(\phi_c^*) \prod_{i \in c} f(x_i | \phi_c^*) d\phi_c^* \right)$$

- Gibbs sampling:
 - Marginalize out cluster parameters $\{\phi_c^*\}$.
 - Update u given π using slice sampling.
 - ► Gibbs sample cluster assignment of each item *x_i* in turn:

$$p(i \in c | \pi_{\backslash i}, x_{1:n}) \\ \propto \begin{cases} \frac{\kappa(u, |c|+1)}{\kappa(u, |c|)} \int f(x_i | \phi_c^*) p(\phi_c^* | (x_j)_{j \in c}) d\phi_c^* & \text{for } c \in \pi_{\backslash i}, \\ \kappa(u, 1) \int f(x_i | \phi_c^*) p(\phi_c^*) d\phi_c^* & \text{for } c = \text{new cluster.} \end{cases}$$

Conjugate case

Normalised generalised gamma processes:

$$p(i \in c | \pi_{\backslash i}, x_{1:n}) \\ \propto \begin{cases} (|c| - \sigma) \int f(x_i | \phi_c^*) p(\phi_c^* | (x_j)_{j \in c}) d\phi_c^* & \text{for } c \in \pi_{\backslash i}, \\ \alpha(u + \tau)^{\sigma} \int f(x_i | \phi_c^*) p(\phi_c^*) d\phi_c^* & \text{for } c = \text{new cluster.} \end{cases}$$

Non-conjugate case

• Cannot marginalize out cluster parameters $\{\phi_c^*\}$.

$$p(\pi, u, \{\phi_c^*\}, x_{1:n}) \propto \frac{u^{n-1}e^{-\psi(u)}}{\Gamma(n)} \prod_{c \in \pi} \left(\kappa(u, |c|)h(\phi_c^*) \prod_{i \in c} f(x_i | \phi_c^*)\right)$$

Gibbs sample cluster assignment of item x_i:

$$p(i \in c | \pi_{\setminus i}, x_{1:n}) \propto egin{cases} rac{\kappa(u, |c|+1)}{\kappa(u, |c|)} f(x_i | \phi_c^*) & ext{for } c \in \pi_{\setminus i}, \ \kappa(u, 1) \int f(x_i | \phi_c^*) p(\phi_c^*) d\phi_c^* & ext{for } c = ext{new cluster.} \end{cases}$$

- Integral for new clusters expensive to evaluate.
- ► When singleton cluster is emptied, parameter is discarded.

Neal's Algorithm 8

- Framed as a data augmentation scheme:
 - Introduce *M* "new" clusters, with parameters ψ_k for k = 1, ..., M.

 $\psi_{\mathbf{k}} \sim \mathbf{H}$

- Drawn before each Gibbs update.
- Exists only during the Gibbs update, and discarded afterwards.
- The parameter of an emptied cluster is used as the parameter for one of the new cluster.

$$p(i \in \boldsymbol{c} | \pi_{\backslash i}, x_{1:n}) \propto \begin{cases} \frac{\kappa(\boldsymbol{u}, |\boldsymbol{c}| + 1)}{\kappa(\boldsymbol{u}, |\boldsymbol{c}|)} f(x_i | \phi_{\boldsymbol{c}}^*) & \text{for } \boldsymbol{c} \in \pi_{\backslash i}, \\ \frac{\kappa(\boldsymbol{u}, 1)}{M} f(x_i | \psi_k) & \text{for } \boldsymbol{c} = k \in \{1, \dots, M\}. \end{cases}$$

Xi

Xi

Reuse Algorithm

- Computationally expensive to generate many parameters from base distribution *h*.
- Would like to somehow reuse unused parameters.
- A transdimensional algorithm:
 - Augment state space permanently with *M* new clusters.
 - Reversible jump Metropolis-Hastings updates.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i .
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Reuse Algorithm

Xi

• Augment state space with *M* new clusters.

Unassign x_i; if current cluster is a singleton,

- Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Reuse Algorithm

Xi

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.

Acceptance probability always one.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.

Acceptance probability always one.

Reuse Algorithm

- Augment state space with *M* new clusters.
- Unassign x_i; if current cluster is a singleton,
 - Replace the parameter of a randomly chosen new cluster with its parameter.
- Reassign cluster assignment of x_i.
- If x_i is assigned to a new cluster,
 - Create a cluster with the parameter,
 - Generate a new parameter from base distribution.
- Acceptance probability always one.

Outline

Dirichlet Process Mixture Models

Normalized Random Measures

Posterior and Marginal Characterisations

MCMC Samplers for NRM Mixture Models

Numerical Illustrations

NRM Mixture of Normals

- One-dimensional examples:
 - ► Galaxy (*n* = 82)
 - Acidity (*n* = 155)
- Multi-dimensional examples:
 - ► Old Faithful, (*p* = 2, *n* = 272)
 - ▶ Neural spike sorting, (*p* = 6, *n* = 1000, 2000)
- ► Non-conjugate prior over mean and covariance of normals: $m \sim \mathcal{N}(m_0, S_0)$ $\Sigma \sim \mathcal{IW}(\alpha_0, \Sigma_0)$
- Hierarchical prior for $\Sigma_0 \sim \mathcal{IW}(\beta_0, \gamma_0 S_0)$.
- Weakly informative, using prior knowledge of data range.
- In 1D case reduces to prior used in [Richardson and Green 1997].

NRM Mixture of Normals

- One-dimensional examples:
 - ▶ Galaxy (*n* = 82)
 - Acidity (*n* = 155)
- Multi-dimensional examples:
 - ► Old Faithful, (*p* = 2, *n* = 272)
 - ▶ Neural spike sorting, (*p* = 6, *n* = 1000, 2000)
- Non-conjugate prior over mean and covariance of normals:

 $m \sim \mathcal{N}(m_0, S_0)$ $\Sigma \sim \mathcal{IW}(\alpha_0, \Sigma_0)$

- Hierarchical prior for $\Sigma_0 \sim \mathcal{IW}(\beta_0, \gamma_0 S_0)$.
- Weakly informative, using prior knowledge of data range.
- In 1D case reduces to prior used in [Richardson and Green 1997].

Efficiency Evaluation

- 10000 iterations burn-in, 10000 samples collected from 200000 iterations.
- ► Effective sample size of number of clusters *K* using Coda.
- Reports mean ESS and standard error over 10 repeats.
- Compared:
 - Conjugate marginalized sampler
 - Neal's Algorithm 8 marginalized sampler
 - Reuse Algorithm marginalized sampler
 - Slice sampler based on posterior representation
 - Variation on [Griffin and Walker 2011]
 - Truncation required.

Galaxy Dataset

Acidity Dataset

Comparative Results

Galaxy and Acidity datasets (conjugate model)

Sampler	Galaxy		Acidity	
	Runtime (s)	ESS	Runtime (s)	ESS
Cond Slice	239.1 ± 4.2	2004 ± 178	196.5 ± 1.0	910 ± 142
Marg (<i>C</i> = 1)	215.7 ± 1.4	$\textbf{7809} \pm \textbf{87}$	395.5 ± 1.7	$\textbf{5236} \pm \textbf{181}$
Cond Slice	133.0 ± 3.2	1594 ± 117	77.4 ± 0.7	1099 ± 49
Marg Neal 8 (C=1)	74.4 ± 0.6	5815 ± 145	133.3 ± 1.8	4175 ± 85
Marg Neal 8 (C=2)	87.9 ± 0.6	$\textbf{6292} \pm \textbf{94}$	163.8 ± 1.5	4052 ± 158
Marg Neal 8 (C=3)	101.9 ± 0.7	$\textbf{6320} \pm \textbf{137}$	188.2 ± 1.1	$\textbf{4241} \pm \textbf{99}$
Marg Neal 8 (C=4)	115.9 ± 0.6	$\textbf{6283} \pm \textbf{86}$	216.6 ± 1.7	4266 ± 122
Marg Neal 8 (C=5)	130.0 ± 0.6	6491 ± 203	243.8 ± 2.0	4453 ± 123
Marg Reuse (C=1)	64.3 ± 0.3	4451 ± 79	114.6 ± 2.0	3751 ± 65
Marg Reuse (C=2)	67.6 ± 0.5	5554 ± 112	123.1 ± 1.9	4475 ± 110
Marg Reuse (C=3)	71.3 ± 0.5	5922 ± 157	128.2 ± 2.2	4439 ± 158
Marg Reuse (C=4)	74.9 ± 0.5	6001 ± 101	140.1 ± 1.6	4543 ± 108
Marg Reuse (C=5)	78.7 ± 0.6	6131 ± 124	147.7 ± 1.5	$\textbf{4585} \pm \textbf{116}$

Comparative Results

Galaxy and Acidity datasets (non-conjugate model)

Sampler	Galaxy		Acidity	
campion	Runtime (s)	ESS	Runtime (s)	ESS
Cond Slice	75.5 ± 1.2	939 ± 92	50.9 ± 0.5	949 ± 70
Marg Neal 8 (C=1)	65.0 ± 0.5	4313 ± 172	110.9 ± 0.8	4144 ± 64
Marg Neal 8 (C=2)	78.6 ± 0.4	4831 ± 168	139.2 ± 1.8	4290 ± 125
Marg Neal 8 (C=3)	92.5 ± 0.5	4785 ± 97	162.7 ± 0.9	4368 ± 72
Marg Neal 8 (C=4)	106.3 ± 0.5	4849 ± 120	187.6 ± 1.1	4234 ± 142
Marg Neal 8 (C=5)	119.7 ± 0.6	$\textbf{5029} \pm \textbf{89}$	215.4 ± 1.3	4144 ± 213
Marg Reuse (C=1)	55.2 ± 0.5	$\textbf{3830} \pm \textbf{103}$	91.3 ± 0.9	4007 ± 122
Marg Reuse (C=2)	58.7 ± 0.5	$\textbf{4286} \pm \textbf{101}$	98.1 ± 0.9	4192 ± 138
Marg Reuse (C=3)	$\textbf{62.4} \pm \textbf{0.6}$	4478 ± 124	105.1 ± 0.9	4260 ± 136
Marg Reuse (C=4)	$\textbf{66.1} \pm \textbf{0.5}$	4825 ± 63	112.3 ± 1.0	4191 ± 139
Marg Reuse (C=5)	69.8 ± 0.6	4755 ± 141	121.0 ± 1.8	4186 ± 121

Comparative Results

Old Faithful and spike sorting datasets (non-conjugate model)

Sampler	Old Faithful		Spike Sorting	
	Runtime (s)	ESS	Runtime (s)	ESS
Cond Slice	142.6 ± 1.1	574 ± 36	732.6 ± 8.1	17.1 ± 2.3
Marg Reuse (C=1)	$\textbf{208.0} \pm \textbf{1.3}$	2770 ± 209	1120.3 ± 8.8	35.7 ± 2.4
Marg Reuse (C=2)	$\textbf{225.3} \pm \textbf{1.4}$	$\textbf{3236} \pm \textbf{73}$	1164.5 ± 5.4	$\textbf{46.9} \pm \textbf{2.9}$
Marg Reuse (C=3)	241.5 ± 1.3	3148 ± 71	1204.1 ± 7.3	$\textbf{57.0} \pm \textbf{3.9}$
Marg Reuse (C=4)	257.7 ± 1.7	$\textbf{3291} \pm \textbf{145}$	1238.5 ± 7.8	61.4 ± 3.3
Marg Reuse (C=5)	$\textbf{274.8} \pm \textbf{1.7}$	3144 ± 70	1291.8 ± 7.9	69.8 ± 4.9
Marg Reuse (C=10)	356.3 ± 2.5	$\textbf{3080} \pm \textbf{135}$	1513.8 ± 11.9	90.8 ± 5.6
Marg Reuse (C=15)	446.6 ± 4.9	3312 ± 154	1746.3 ± 10.7	95.9 ± 4.2
Marg Reuse (C=20)	550.4 ± 3.5	$\textbf{3336} \pm \textbf{109}$	1944.0 ± 14.7	114.5 ± 8.4

Spike Sorting Dataset

Spike Sorting Dataset

Discussion

- Marginalised samplers for NRMs more efficient than conditional slice samplers.
- Simple algorithms, introducing an additional auxiliary variable *u*.
- Pitman-Yor processes are not normalised random measures.
- Marginalised samplers for all σ-stable Poisson-Kingman mixture models (including Pitman-Yor) (Lomeli et al).
- Motivation for normalised random measures?
 - Power-law properties
 - Dependent normalised random measures

References I

- Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2(6):1152–1174.
- Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Advances in Applied Probability, 31:929–953.
- Bush, C. A. and MacEachern, S. N. (1996). A semiparametric Bayesian model for randomised block designs. *Biometrika*, 83:275–285.
- Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. *Journal of the American Statistical Association*, 90:577–588.
- Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209–230.
- Griffin, J. E. and Walker, S. G. (2011). Posterior simulation of normalized random measure mixtures. *Journal of Computational and Graphical Statistics*, 20(1):241–259.
- Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161–173.
- James, L. F., Lijoi, A., and Prüenster, I. (2009). Posterior analysis for normalized random measures with independent increments. Scandinavian Journal of Statistics, 36:76–97.
- Kalli, M. and Walker, S. G. (2006). Slice sampling for the Dirichlet process mixture model. Poster presented at the Eighth Valencia International Meeting on Bayesian Statistics.
- Kingman, J. F. C. (1967). Completely random measures. Pacific Journal of Mathematics, 21(1):59–78.
- Lo, A. (1984). On a class of bayesian nonparametric estimates: I. density estimates. Annals of Statistics, 12(1):351–357.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. *Journal of Computational and Graphical Statistics*, 9:249–265.
- Nieto-Barajas, L. E., Pruenster, I., and Walker, S. G. (2004). Normalized random measures driven by increasing additive processes. Annals of Statistics, 32(6):2343–2360.
- Papaspiliopoulos, O. and Roberts, G. O. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. *Biometrika*, 95(1):169–186.

References II

- Perman, M., Pitman, J., and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields, 92(1):21–39.
- Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Annals of Probability, 25:855–900.
- Regazzini, E., Lijoi, A., and Prüenster, I. (2003). Distributional results for means of random measures with independent increments. *Annals of Statistics*, 31:560–585.
- Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. *Journal of the Royal Statistical Society B*, 59(4):731–792.
- Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics Simulation and Computation, 36:45.