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Abstract. We propose a framework for semi-supervised learning in reproducing
kernel Hilbert spaces using local invariances that explicitly characterize the be-
havior of the target function around both labeled and unlabeled data instances.
Such invariances include: invariance to small changes to the data instances, in-
variance to averaging across a small neighbourhood around data instances, and
invariance to local transformations such as translation and rotation. These invari-
ances are approximated by minimizing loss functions on derivatives and local
averages of the functions. We use a regularized cost function, consisting of the
sum of loss functions penalized with the squared norm of the function, and give a
representer theorem showing that an optimal function can be represented as a lin-
ear combination of a finite number of basis functions. For the representer theorem
to hold, the derivatives and local averages are required to be bounded linear func-
tionals in the reproducing kernel Hilbert space. We show that this is true in the
reproducing kernel Hilbert spaces defined by Gaussian and polynomial kernels.

1 Introduction

Semi-supervised learning is the problem of learning from labeled and unlabeled training
data. It is important in application domains where labeled data is scarce but unlabeled
data can be easily obtained. Accurate assumptions on the relationship between the data
distribution and the target function are essential for semi-supervised learning; without
such assumptions, unlabeled data would contribute no information to the learning pro-
cess [10]. However with incorrect assumptions, the outcome of using unlabeled data in
learning can actually be worse than not using the unlabeled data—the algorithm may
select a function that fits the data distribution assumption well but does badly on the
labeled data loss function, when it is unable to do both well.

In this paper, we consider two types of local invariance assumptions that are often
suggested by prior knowledge in various domains. The first type of assumption is that
the target function does not change much in the neighbourhood of each observed data
instance. This is reasonable when instances from the same class are clustered together
and away from instances from different classes. Since the function is allowed to change
more rapidly away from the observed data instances, the decision boundary is encour-
aged to fall in regions of low data density. We consider two methods for implementing
this type of assumption: the first restricts the gradient of the function to be small at the
observed data instances, while the second restricts the function value at each data in-
stance to be similar to the average value across a small neighbourhood of that instance.



The second type of invariance assumption used in this paper is invariance to certain
local transformations. Examples of useful transformations include translational and ro-
tational invariances in vision problems such as handwritten digit recognition. We utilize
this type of local transformation invariance assumption by assuming that the gradient
of the function is small along directions of transformation at each data instance.

To reduce the risk of not being able to approximate the target function well, we use
powerful reproducing kernel Hilbert spaces of functions for learning. It turns out that
incorporating the desired local invariances into learning can be elegantly done in this
approach by treating derivatives and local averages as linear functionals in those spaces.
The cost function that we minimize consists of the sum of loss functions on these linear
functionals, the usual loss functions on the labeled training data, and a regularization
penalty based on the squared norm of the function. We give a representer theorem,
showing that we can represent an optimal function that minimizes the cost using a
finite number of basis functions when the linear functionals are bounded. Furthermore,
with convex loss functions, the resulting optimization problem is convex. We then show
that the linear functionals that we use are bounded in the reproducing kernel Hilbert
spaces defined by the Gaussian and polynomial kernels, allowing their use within the
framework.

Previous works on semi-supervised learning have explored the assumption that the
decision boundary should pass through regions of low data density. Transductive sup-
port vector machines tries to label the unlabeled examples in such a way that margin
of the resulting function is large. This process is computationally expensive and is per-
formed using a heuristic in [3]. Methods based on minimizing the cut in a graph with
edges representing similarity between examples are proposed in [2, 11, 4]. These meth-
ods only produce labels on unlabeled data that are present during training and not on
future unseen examples. The manifold regularization method in [1] uses a regularizer
based on a graph Laplacian, extending graph based methods [11], and allowing a hy-
pothesis function to be produced. Like the method in [1], the methods proposed in this
paper results in convex optimization problems and produce hypothesis functions that
can be used for future predictions. In fact, the terms in the graph Laplacian regularizer
can be expressed as bounded linear functionals, allowing the method to be put within
the framework proposed here. We are not aware of any previous work on using local
transformation invariance for semi-supervised learning although it has been used in su-
pervised learning [7]. A similar representer theorem for bounded linear functional is
provided in [8], but not in the context of semi-supervised learning.

We give some mathematical preliminaries in Section 2, the representer theorem in
Section 3, and show that the linear functionals used are bounded in Section 4. A pre-
liminary experiment on a simple synthetic data set using the gradient functional shows
encouraging result and is described in Section 5. We discuss other potential applications
for the techniques in this paper in Section 6.



2 Preliminaries

2.1 Kernels

Definition 1 (Positive Definite Kernel Matrix). Given a functionk : X2 → R and
x1, . . . , xl ∈ X, the matrixK whereKij = k(xi, xj) is called the kernel matrix ofk
with respect tox1, . . . , xl ∈ R. If

∑l
i,j=1 αiαjKij ≥ 0 for all α1, . . . , αl ∈ R. we say

the kernel matrix ispositive definite.

Note that we follow the convention in [6] of using the term positive definite even though
the inequality is not strict.

Definition 2 (Positive Definite Kernel Function).A functionk : X2 → R is called
a positive definite kernelif for all l ∈ N and all x1, . . . , xl ∈ X, the kernel matrixK
formed byKij = k(xi, xj) is symmetric positive definite.

We will refer to positive definite kernel functions simply askernels.

Example 1 (Kernels).The most commonly used nonlinear kernels are the Gaussian
and polynomial kernels. The Gaussian kernel, defined onRd × Rd, is k(x1, x2) =
exp

(
− 1

2σ2
k
‖x1 − x2‖2

)
. The polynomial kernel and the homogeneous polynomial ker-

nel of degreem, defined onRd ×Rd, arek(x1, x2) = (x1 · x2 + 1)m andk(x1, x2) =
(x1 · x2)m respectively.

2.2 Reproducing Kernel Hilbert Space

Given a positive definite kernel, we can use the functionsk(x, ·), x ∈ X to construct a
normed space by defining an appropriate inner product. We define the vector space by
taking linear combinations of the functions

f(·) =
l∑

i=1

αik(xi, ·)

for arbitrary l ∈ N, αi ∈ R andx1, . . . , xl ∈ X. The inner product betweenf and

g =
∑l′

j=1 βjk(x′j , ·) is defined as

〈f, g〉 =
l∑

i=1

l′∑
j=1

αiβjk(xi, x
′
j).

This definition can be shown to satisfy the properties of an inner product, namely, sym-
metry (〈f, g〉 = 〈g, f〉), linearity (〈af + bg, h〉 = a〈f, h〉 + b〈g, h〉) and positive defi-
niteness (〈f, f〉 ≥ 0; and〈f, f〉 = 0 impliesf = 0) [6].

With this definition, we have

‖f‖2 = 〈f, f〉 =
l∑

i,j=1

αiαjk(xi, xj) ≥ 0.



Another useful property of this space is the fact thatk is areproducing kernel, that is

f(x) = 〈k(x, ·), f〉,

which follows from the definition of the inner product.
With the inner product on the vector space, we have obtained apre-Hilbert space.

We complete the space by adding the limit points of convergent sequences to form a
Hilbert space, usually called areproducing kernel Hilbert space (RKHS).

2.3 Operators and Functionals

Definition 3 (Linear Operator and Functional). A linear operatorT is a mapping
from a vector spaceX to a vector spaceY , such that for allx, y ∈ X and scalarα,

T (x + y) = Tx + Ty

T (αx) = αTx.

If the rangeY ⊆ R, the operator is called afunctional.

Definition 4 (Bounded Linear Operator). Let T : X → Y be a linear operator on
a normed spacesX andY . The operatorT is said to be bounded if there exists some
c > 0 such that for allx ∈ X

‖Tx‖ ≤ c‖x‖.
The smallest value ofc such that the inequality holds for all nonzerox ∈ X is called
the norm of the operator and denoted‖T‖.

Bounded linear operators defined onX can be extended to the completion of the
space such that its norm is preserved [5]. Throughout this paper, we define our bounded
linear functionals on the pre-Hilbert space constructed with the kernels and use its ex-
tension on the completion of the space.

Example 2.For eachx in a reproducing kernel Hilbert spaceH the linear functional
f 7→ 〈f, k(x, ·)〉 = f(x) is bounded since|〈f, k(x, ·)〉| ≤ ‖k(x, ·)‖‖f‖ = k(x, x)1/2‖f‖
by the Cauchy-Schwarz inequality.

In fact, the bounded linear functionals on a Hilbert spaceH are in 1-1 correspondence
with elementsx ∈ H, as shown by Riesz’s Theorem (see [5]).

Theorem 1 (Riesz).Every bounded linear functionalL on a Hilbert spaceH can be
represented in terms of an inner product

L(x) = 〈x, z〉

where therepresenterof the functional,z, has norm

‖z‖ = ‖L‖

and is uniquely determined byL.

WhenH is a reproducing kernel Hilbert space the representer of the functional has the
form

z(x) = 〈z, k(x, ·)〉 = L(k(x, ·)).
Riesz’s theorem will be useful for our paper since it allows us to represent functionals
related to local invariances as elements of the reproducing kernel Hilbert space.



3 Representer Theorem

We wish to learn a target functionf both from labeled data and from local invariances
extracted from labeled and unlabeled data. Let(x1, y1), . . . , (xl, yl) be the labeled train-
ing data, andl2(y, f(x)) be the loss function onf when training inputx is labeled asy.
We measure deviations from local invariances around each labeled or unlabeled input
instance, and express these as bounded linear functionalsLl+1(f), . . . , Ln(f) on the
reproducing kernel Hilbert spaceH. The linear functionals are associated with another
loss functionl1(Li(f)) penalizing violations of the local invariances. As an example,
the derivative off with respect to an input feature at some training instancex is a lin-
ear functional inf , and the loss function penalizes large values of the derivative atx.
Section 4 describes other local invariances we can consider and show that these can
be expressed as bounded linear functionals. Finally, we place a squared loss function
‖f‖2 as a regularization term, penalizing functions with large norms. Putting these loss
functions together, we set out to find the function minimizing the cost

l∑
i=1

l2(yi, f(xi)) + ρ2

n∑
i=l+1

l1 (Li(f)) + ρ1‖f‖2.

whereρ1, ρ2 > 0 are the relative strengths of the loss functions. Reasonable examples
of l2 include the logistic loss, hinge loss and squared loss while examples ofl1 include
the squared loss, absolute loss andε-insensitive loss. These are all convex loss functions
and result in convex optimization problems for finding the optimalf .

In the following, we derive a representer theorem showing that the solution of the
optimization problem lies in the span of a finite number of functions associated with
the labeled data and the functionals. Similar results are available in [8].

Theorem 2. LetLi, i = l +1, . . . , n, be bounded linear functionals in the reproducing
kernel Hilbert spaceH defined by the kernelk. The solution of the optimization problem

g = argminf∈H

l∑
i=1

l2(yi, f(xi)) + ρ2

n∑
i=l+1

l1 (Li(f)) + ρ1‖f‖2

for ρ1, ρ2 > 0 can be expressed as

g(·) =
l∑

i=1

αik(xi, ·) +
n∑

i=l+1

αizi(·)

wherezi is the representer ofLi. Furthermore, the parametersα = [α1, . . . , αn]T can
be obtained by minimizing

l∑
i=1

l2(yi, f(xi)) + ρ2

n∑
i=l+1

l1 (Li(f)) + ρ1α
T Kα (1)

wheref =
∑l

i=1 αik(xi, ·) +
∑n

i=l+1 αizi(·) andKi,j = 〈k′i, k′j〉 wherek′i = k(xi, ·)
if i ≤ l andk′i = zi(·) otherwise.



Proof. By Riesz’s Theorem, the linear functionalLi(f) can be represented as an inner
product

Li(f) = 〈f, zi〉
wherezi is a member of the Hilbert space andzi(x) = 〈zi, k(x, ·)〉.

We now claim that the solution of the optimization problem can be represented as

l∑
i=1

αik(xi, ·) +
n∑

i=l+1

αizi(·).

To see this, any functionf in the RKHS can be represented as

f(·) =
l∑

i=1

αik(xi, ·) +
n∑

i=l+1

αizi(·) + f⊥(·)

wheref⊥(x) is in the orthogonal complement of the span ofk(xi, ·) for 1 ≤ i ≤ l and
of zi(·) for l + 1 ≤ i ≤ n. Each of the terms that contains the loss functionl2 depends
only onf(xk) which can be written as

f(xk) = 〈f(·), k(xk, ·)〉

=
l∑

i=1

αi〈k(xi, ·), k(xk, ·)〉+
n∑

i=l+1

αi〈zi(·), k(xk, ·)〉+ 〈f⊥(x), k(xk, ·)〉

=
l∑

i=1

αik(xi, xk) +
n∑

i=l+1

αizi(xk).

Hence, each of those terms depends only on the projection of the function onto the span.
Similarly, each of the terms that contain the loss functionl1 depends only on the

projection of the function onto the span.

Lk(f) = 〈f, zk〉 =
l∑

i=1

αi〈k(xi, ·), zk〉+
n∑

i=l+1

αi〈zi, zk〉+ 〈f⊥(x), zk〉

= 〈
l∑

i=1

αik(xi, ·) +
n∑

i=l+1

αizi, zk〉.

Since all the values in the loss functionsl1 andl2 depends only on the component
that lies in the span, any function that has components in the orthogonal complement
has higher cost than its projection onto the span. Hence, the solution of the optimization
problem must lie in the span of the desired functions.

Finally, note that the squared norm of the function

f(·) =
l∑

i=1

αik(xi, ·) +
n∑

i=l+1

αizi(·)

can be written asαT Kα whereKi,j = 〈k′i, k′j〉 wherek′i = k(xi, ·) if i ≤ l and
k′i = zi(·) otherwise. �



In practice, learning machines such as the support vector machine often use an ad-
ditional constant value (bias) that is not penalized in the optimization. The following
more general version of the representer theorem covers this case as well. The proof is
similar to that of Theorem 2.

Theorem 3. LetLi, i = l +1, . . . , n, be bounded linear functionals in the reproducing
kernel Hilbert spaceH defined by the kernelk. LetF be the span of a fixed set of basis
functionsφj , j = 1, . . . ,m. The solution of the optimization problem

g = argminf=f1+f2,f1∈F,f2∈H

l∑
i=1

l2(yi, f(xi)) + ρ2

n∑
i=l+1

l1 (Li(f)) + ρ1‖f2‖2

for ρ1, ρ2 > 0 can be expressed as

g(·) =
m∑

j=1

wjφj(·) +
l∑

i=1

αik(xi, ·) +
n∑

i=l+1

αizi(·)

wherezi is the representer ofLi. Furthermore, the parametersw = [w1, . . . , wm]T

andα = [α1, . . . , αn]T can be obtained by minimizing

l∑
i=1

l2(yi, f(xi)) + ρ2

n∑
i=l+1

l1 (Li(f)) + ρ1α
T Kα

wheref =
∑m

j=1 wjφj(·) +
∑l

i=1 αik(xi, ·) +
∑n

i=l+1 αizi(·) andKi,j = 〈k′i, k′j〉
wherek′i = k(xi, ·) if i ≤ l andk′i = zi(·) otherwise.

4 Local Invariances as Bounded Linear Functionals

4.1 Derivatives

Let xi be thei-th component of the vectorx. The following theorem from functional
analysis shows that derivatives as well as the transformation and local average func-
tionals described later are all bounded on reproducing kernel Hilbert spaces defined by
polynomial kernels.

Theorem 4 (see [5]).Let X be a finite dimensional normed space. Then every linear
functional onX is bounded.

Corollary 1. The linear functionalLxi,j
(f) = ∂f(x)

∂xj

∣∣∣
xi

is bounded in the reproducing

kernel Hilbert spaces defined by the polynomial kernel and the homogeneous polyno-
mial kernel.

For polynomial kernelk(x, y) = (x · y + 1)n, we have

zxi,j (x) = n(x · xi + 1)n−1xj



and

〈zxi,j
, zxp,q

〉 =

{
(n− 1)n(xp · xi + 1)n−2xj

px
q
i if j 6= q and

(n− 1)n(xp · xi + 1)n−2xj
px

q
i + n(xp · xi + 1)n−1 if j = q.

For Gaussian kernels, we will need the following known results.

Lemma 1 (see [6]).The following are properties of kernels:

– if k1 andk2 are kernels, andα1, α2 ≥ 0, thenαk1 + α2k2 is a kernel.
– if k1, k2, . . . are kernels, andk(x, x′) = limn→∞ kn(x, x′) exists for allx, x′, then

k is a kernel.

Theorem 5. The linear functionalLxi,j (f) = ∂f(x)
∂xj

∣∣∣
xi

is bounded in the reproducing

kernel Hilbert space defined by Gaussian kernels with||Lxi,j
|| = 1/σ.

Proof. We will first show that the theorem holds for thosef with

f(x) =
l∑

k=1

αk exp
(
− 1

2σ2
‖tk − x‖2

)
for somel andt1, . . . , tl ∈ Rd. We have

∂f(x)
∂xj

∣∣∣∣
xi

=
l∑

k=1

αk exp
(
− 1

2σ2
‖tk − xi‖2

)
1
σ2

(tjk − xj
i )

and so(
∂f(x)
∂xj

∣∣∣∣
xi

)2

=
∑
k1,k2

αk1αk2 exp
(
− 1

2σ2

(
‖tk1 − xi‖2 + ‖tk2 − xi‖2

))
· 1
σ4

(tjk1
− xj

i )(t
j
k2
− xj

i ).

On the other hand, we have by definition that

‖f‖2 =
∑
k1,k2

αk1αk2 exp
(
− 1

2σ2
‖tk1 − tk2‖2

)

=
∑
k1,k2

αk1αk2 exp
(
− 1

2σ2

(
‖tk1 − xi‖2 + ‖tk2 − xi‖2

))

· exp
(

1
σ2

(tjk1
− xj

i )
T (tjk2

− xj
i )
)

.

where we have used the identity

‖tk1 − tk2‖2 = ‖tk1 − xi‖2 + ‖tk2 − xi‖2 − 2(tk1 − xi)T (tk2 − xi).



If ‖f‖2 = 0, we have the zero function which has zero gradient as well. Suppose
‖f‖2 > 0. We will find values ofc such that(

∂f(x)
∂xj

∣∣∣∣
xi

)2

≤ c‖f‖2.

Substituting the above expansions into the inequality, we get

∑
k1,k2

αk1αk2 exp
(
− 1

2σ2

(
‖tk1 − xi‖2 + ‖tk2 − xi‖2

))

·
(

c exp
(

1
σ2

(tjk1
− xj

i )
T (tjk2

− xj
i )
)
− 1

σ4
(tjk1

− xj
i )(t

j
k2
− xj

i )
)
≥ 0

Let βk = αk exp
(
− 1

2σ2 ‖tk − xi‖2
)

anduk = tk−xi

σ . The above simplifies to∑
k1,k2

βk1βk2

(
c exp

(
uT

k1
uk2

)
− 1

σ2
uj

k1
uj

k2

)
≥ 0. (2)

We now show that whenc ≥ 1/σ2 the expression within the parentheses above, as a
function ofuk1 anduk2 , is a positive definite kernel. As a result the inequality of (2) will

hold for anyβk andc is an upper bound on the norm of the linear functional∂f(x)
∂xj

∣∣∣
xi

.

Expanding the exponential term using its Taylor series, we get

c exp(uT
k1

uk2)−
1
σ2

uj
k1

uj
k2

=c + cuT
k1

uk2 −
1
σ2

uj
k1

uj
k2

+
c

2!
(uT

k1
uk2)

2 +
c

3!
(uT

k1
uk2)

3 + · · ·

=c +
(

c− 1
σ2

)
uT

k1
uk2 +

1
σ2

∑
j′ 6=j

uj′

k1
uj′

k2
+

c

2!
(uT

k1
uk2)

2 +
c

3!
(uT

k1
uk2)

3 + · · ·

Sincec ≥ 1/σ2, all the coefficients are positive. Each of the terms(uT
k1

uk2)
n is a

homogeneous polynomial kernel hence is positive definite. The
∑

j′ 6=j uj′

k1
uj′

k2
term

is positive definite as well. Since the sum converges, by Lemma 1, the kernel in the
parentheses of (2) is a positive definite kernel.

In summary, we have shown that∣∣∣∣∣ ∂f(x)
∂xj

∣∣∣∣
xi

∣∣∣∣∣ ≤ 1
σ
‖f(x)‖

for all

f(x) =
l∑

k=1

αk exp
(
− 1

2σ2
‖tk − x‖2

)
.

Since the number of termsl is arbitrary, we can extend the linear functional to the
Hilbert space while retaining the norm, thus||Lxi,j

|| ≤ 1/σ.



Next, we show that‖Lxi,j
‖ ≥ 1/σ, so necessarily‖Lxi,j

‖ = 1/σ. Without loss of
generality, supposej = 1 andc < 1/σ2. We consider a simple family off with l = 2,
andu1 = (x, 0, . . . , 0)T andu2 = (−x, 0, . . . , 0)T . The left hand side of (2) is(

c exp
(
x2
)
− 1

σ2
x2

)
β2

1 + 2
(

c exp
(
−x2

)
+

1
σ2

x2

)
β1β2

+
(

c exp
(
x2
)
− 1

σ2
x2

)
β2

2 (3)

Treated as a quadratic function in(β1, β2), the discriminant is

4c2
(
exp

(
−x2

)
+ exp

(
x2
))(

exp
(
−x2

)
− exp

(
x2
)

+
2

cσ2
x2

)
.

Whenx = 0, the discriminant is0. Denoter (x) = exp
(
−x2

)
− exp

(
x2
)

+ 2
cσ2 x2 ,

then the derivativer′ (x) = 2x
(
− exp

(
−x2

)
− exp

(
x2
)

+ 2
cσ2

)
. As c < 1

/
σ2, there

existsδ > 0, such thatr′ (x) > 0 for all x ∈ (0, δ). Thusr (x) and the discriminant
are positive forx ∈ (0, δ), in which case the function (3) crosses 0. So there are values
of β1, β2 such that (3) is less than 0, contradicting the inequality (2). Thereforec cannot
be less than1/σ2 and||Lxi,j || ≥ 1/σ. �

Finally we can evaluate the representer of the derivative functional for the Gaussian
kernelk(x, y) = exp(− 1

2σ2 ‖x− y‖2),

zxi,j (x) =
1
σ2

(xj − xj
i ) exp(− 1

2σ2
‖x− xi‖2).

We also have

〈zxi,j , zxp,q 〉 =

{
− 1

σ4 (xj
i − xj

p)(x
q
i − xq

p) exp(− 1
2σ2 ‖xi − xp‖2) if j 6= q and

1
σ4 (σ2 − (xj

i − xj
p)

2) exp(− 1
2σ2 ‖xi − xp‖2) if j = q.

4.2 Transformation Invariance

Invariance to known local transformations of input has been used successfully in super-
vised learning [7]. Here we show that transformation invariance can be handled in our
framework for semi-supervised learning in reproducing kernel Hilbert spaces, by show-
ing that gradients with respect to the transformations are bounded linear functionals.

We require a differentiable functiong that maps points from a spaceX to R. Next,
we consider a family of bijective transformationstα : X 7→ X, parametrized byα and
differentiable in bothα andX. We usetα to define a family of operatorss(g, α) =
g ◦ t−1

α that takes in a functiong and outputs another function. Finally, we sample a
fixed number of locations inX to obtain a vector,g, that is presented to the learning
algorithm.

Example 3.As an example, consider an imageg to be a function that maps points in the
planeR2 to the intensity of the image at that point. Digital images are discretization of



real images where we sample at fixed pixel locations of the functiong to obtain a fixed
sized vector. In practice, given the digital image, the image function is reconstructed
by convolving it with a two dimensional Gaussian function [7]. Translation can now be
represented as an operatortα:

tα :
(

x
y

)
7→
(

x + αx

y + αy

)
.

The functions(g, α)(x, y) gives us the intensity at location(x, y) of the image trans-
lated by an amount(αx, αy). Finally the translated image is digitized by evaluating
s(g, α) at the same set of pixel locations. Notice that for a fixedg, the digital image,g,
is a vector valued function ofα.

The following result allows us to use derivatives with respect to each of the param-
eters inα within the framework.

Theorem 6. The derivatives∂f(g(α))
∂αi

∣∣∣
α=0

with respect to each of the parameters inα

are bounded linear functionals when derivatives with respect to each component of the
vector functiong is a bounded linear functional.

Proof. Using the chain rule and the fact that the derivatives with respect to each com-
ponent of the vector function is a bounded linear functional, we have

|Lg,i(f)| =
∣∣∣∣ ∂f(g(α))

∂αi

∣∣∣∣
α=0

∣∣∣∣
=

∣∣∣∣∣∣
J∑

j=1

∂f(g(α))
∂gj(α)

∂gj(α)
∂αi

∣∣∣∣
α=0

∣∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣ ∂gj(α)
∂αi

∣∣∣∣
α=0

∣∣∣∣ ∣∣∣∣ ∂f(g(α))
∂gj(α)

∣∣∣∣
α=0

∣∣∣∣
≤

J∑
j=1

∣∣∣∣ ∂gj(α)
∂αi

∣∣∣∣
α=0

∣∣∣∣Cj‖f‖.

= C‖f‖.

�

Corollary 2. The derivatives∂f(g(α))
∂αi

∣∣∣
α=0

with respect to each of the parameters inα

are bounded linear functionals in the reproducing kernel Hilbert spaces defined by the
polynomial and Gaussian kernels.

4.3 Local Averaging

Using gradients to enforce the local invariance that the target function does not change
much around data instances increases the number of basis functions by a factor ofd



whered is the number of gradient directions that we use. The optimization problem can
become computationally expensive ifd is large. When we do not have useful informa-
tion about the invariant directions, it may be useful to have methods that do not increase
the number of basis functions by much. We consider linear functionals

Lxi
(f) =

∫
X

f(τ)p(xi − τ)dτ − f(xi)

wherep(·) is a probability density function centred at zero. Minimizing a loss with such
linear functionals will favour functions whose local averages given by the integral are
close to the function values at data instances. Ifp(·) is selected to be a low pass filter, the
function should be smoother and less likely to change in regions with more data points
but is less constrained to be smooth in regions where the data points are sparse. Hence,
such loss functions may be appropriate when we believe that data instances from the
same class are clustered together.

To use the framework we have developed, we need to select the probability density
p(·) and the kernelk such thatLxi(f) is a bounded linear functional. In addition, for
efficient implementation, we require that the linear functional be efficiently evaluated.
We show that the Gaussian kernel together with the Gaussian density function satisfies
the required properties.

Theorem 7. The linear functionalLxi
(f) =

∫
X

f(τ)p(xi−τ)dτ−f(xi) is bounded in
the reproducing kernel Hilbert space defined by a Gaussian kernel for any probability
densityp(·).

Proof. Using the reproducing kernel property and the Cauchy-Schwarz inequality,

|f(x)| = |〈f, k(x, ·)〉| ≤ ‖f‖‖k(x, ·)‖ = ‖f‖k(x, x)1/2 = ‖f‖.

Now we have

Lxi(f) =
∫

X

f(τ)p(xi − τ)dτ − f(xi)

≤
∫

X

|f(τ)|p(xi − τ)dτ + ‖f‖

≤ ‖f‖
∫

X

p(xi − τ)dτ + ‖f‖

= 2‖f‖.

�

To complete all the calculations efficiently, we need to be able to efficiently eval-
uatezxi

(x) = 〈zxi
, k(x, ·)〉 = Lxi

(k(x, ·)) and〈zxi
, zxj

〉 = Lxi
zxj

wherezxi
is the

representer of the local average functionalLxi
. Recall that the Gaussian kernel is de-

fined ask(x1, x2) = exp
(
− 1

2σ2
k
‖x1 − x2‖2

)
while the Gaussian density isp(x) =

1
(2π)d/2σd

p
exp

(
− 1

2σ2
p
‖x‖2

)
. Since the convolution of a Gaussian density with another



Gaussian density is a Gaussian density, we have

zxi
(x) = Lxi

(k(x, ·))

=
∫

X

k(x, τ)p(xi − τ)dτ − k(xi, x)

= (2π)d/2σd
k

∫
X

1
(2π)d/2σd

k

exp
(
− 1

2σ2
k

‖x− τ‖2

)
1

(2π)d/2σd
p

exp
(
− 1

2σ2
p

‖xi − τ‖2

)
dτ − k(xi, x)

=
σd

k

(σk + σp)d
exp

(
− 1

2(σk + σp)2
‖xi − x‖2

)
− exp

(
− 1

2σ2
k

‖xi − x‖2

)
Finally, 〈zxi , zxj 〉 = Lxi(zxj ) can also be efficiently evaluated as

Lxizxj =(2π)d/2σd
k

∫
X

[
1

(2π)d/2(σk + σp)d
exp

(
− 1

2(σk + σp)2
‖xj − x‖2

)
− 1

(2π)d/2σd
k

exp
(
− 1

2σ2
k

‖xj − x‖2

)]
1

(2π)d/2σd
p

exp
(
− 1

2σ2
p

‖xi − τ‖2

)
dτ − zxj

(xi)

=
σd

k

(σk + 2σp)d
exp

(
− 1

2(σk + 2σp)2
‖xi − xj‖2

)
− σd

k

(σk + σp)d
exp

(
− 1

2(σk + σp)2
‖xi − xj‖2

)
− zxj

(xi)

5 Experimental Result

We experimented with the “two moon” dataset shown in Figure 1, with only two labeled
data instances (red circle and blue square). We used the Gaussian kernel withσ = 0.12
and the gradient invariances. Equation (1) is minimized with the hinge loss forl2 and
theε-insensitive loss forl1. This quadratic programming problem can be reformulated
into its dual which has only bound constraints, allowing it to be solved more efficiently
as follows: minimize

1
2

l+n∑
i,j=l+1

pij (α′i − αi)
(
α′j − αj

)
+

1
2

l∑
i,j=1

pijyiyjβiβj +
l+n∑

i=l+1

l∑
j=1

pijyj (α′i − αi) βj

+ ε
l+n∑

i=l+1

(α′i + αi)−
l∑

i=1

βi

subject toαi, α
′
i ∈ [0, ρ2/(2ρ1)], βj ∈ [0, 1/(2ρ1)], for all i = l + 1, . . . , l + n, and

j = 1, . . . , l, wherepij arek(xi, xj), zi(xj), zj(xi) or 〈zi(·), zj(·)〉 depending on(i, j).
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Fig. 1. The decision boundary for the two moon dataset with two labeled instances,ρ2 = 0 (top
left), ρ2 = 0.001 (top center),ρ2 = 0.005 (top right),ρ2 = 0.01 (bottom left),ρ2 = 0.1 (bottom
center) andρ2 = 10 (bottom right).

We useρ1 = 1, ε = 0.001 andρ2 ∈ {0, 0.001, 0.005, 0.01, 0.1, 10} in the experi-
ment. The proportion of basis functions with non-zero coefficients are 0.5, 36.6, 50.9,
61.7, 77.4, and 74.1 percent respectively. We also tried the squared loss for bothl1 and
l2 with similar classification results. The result shows that the method can be made to
work in this simple case. Further empirical work with real datasets is required before
we can tell whether the method is practically interesting.

6 Discussion

Another example utilizing loss functions on linear functionals that fits within the frame-
work that we are using is the graph Laplacian regularizer [1]. The graph Laplacian reg-
ularizer can be written as

∑n
i=1

∑n
j=1 wij(f(xi)− f(xj))2 wherewij is a measure of

similarity betweenxi andxj . If we define the linear functional as〈f, k(xi, ·)−k(xj , ·)〉
and loss functionwij(·)2 for each(xi, xj) pair, the optimization problem can be put into
the same form as the other examples in this paper. However, it is simpler to use the usual
representer theorem [6] for this problem, as we only use the values of the functions in
the optimization problem.

It is interesting to ask whether the invariances used in this paper are better exploited
by using global invariance constraints on the function class, thus eliminating the need
for unlabeled data. We note that enforcing global invariance can degrade the discrimi-
nation power of the function class, for example, the digit ‘6’ would be indistinguishable
from the digit ‘9’ under global rotational invariance [7]. In contrast, local invariances
does not prevent the function from changing in regions of low data density.

Enforcing the local invariance constraints in reproducing kernel Hilbert spaces is
also likely to be helpful in the case of supervised learning, where no additional unla-



beled data is available. An example of this is provided in [7] where translation, rotation
and various other constraints were used in supervised learning for handwritten digit
recognition using neural networks in a framework similar to that used in this paper.
Another potential application of the techniques in this paper is to the problem of im-
balanced data learning [9], where we may wish to keep the decision boundary further
away from instances of the minority class and closer to the instances of majority class.

Local transformation invariances such as translation and rotation invariances are
widely used in visual tasks. Finding invariances that are useful for other application
domains, e.g., language processing, would also be interesting.
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