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Abstract

Inference in Boltzmann machines is NP-hard in general. As a re-
sult approximations are often necessary. We discuss first order mean
field and second order Onsager truncations of the Plefka expansion
of the Gibbs free energy. The Bethe free energy is introduced and
rewritten as a Gibbs free energy. From there a convergent belief opti-
mization algorithm is derived to minimize the Bethe free energy. An
analytic expression for the linear response estimate of the covariances
is found which is exact on Boltzmann trees. Finally, a number of theo-
rems is proven concerning the Plefka expansion, relating the first order
mean field and the second order Onsager approximation to the Bethe
approximation. Experiments compare mean field approximation, On-
sager approximation, belief propagation and belief optimization.

1 Introduction

In 1982, Hopfield showed that a network of symmetrically-coupled binary
threshold units has a simple quadratic energy function that governs its dy-
namic behavior [6]. When the nodes are deterministically updated one at
a time the network settles to an energy minimum and Hopfield suggested
using these minima to store content-addressable memories. Hinton and Se-
jnowski realised that the energy function can be viewed as an indirect way
of defining a probability distribution over all the binary configurations of the



network and that if the right stochastic updating rule is used, the dynamics
eventually produces samples from this Boltzmann distribution [4] [5].

If this “Boltzmann machine” is divided into a set of visible nodes whose
states are clamped at the data and a disjoint set of hidden nodes, the stochas-
tic updating produces samples from the posterior distribution over configu-
rations of the hidden nodes given the current data. Hinton and Sejnowski
suggested that the sampled hidden configurations could be viewed as percep-
tual interpretations of the observed data in terms of hidden features. They
also showed that there is a surprisingly simple algorithm for performing maxi-
mum likelihood learning of the weights that define these hidden features. The
simplicity and locality of this learning rule led to much interest, but the set-
tling time required to get samples from the right distribution and the high
noise in the estimates required for the learning rule made learning slow and
unreliable.

There is however a number of approximate methods which can be em-
ployed, among which the “mean field” approximation is best known [23].
There, the best distribution is sought that assumes independence among all
the nodes. Variational approximations which employ more structured but
still tractable posterior distributions (e.g. chains or trees) have been pro-
posed to improve on the simple independence assumption of mean field [7].

From a different perspective, the mean field free energy can also be viewed
as the first term in a series expansion around small weights where the means
are kept fixed (Plefka’s expansion) [20]. Taking into account the next order
in this expansion produces Onsager’s reaction term. Higher orders have also
been computed in the physics literature [31] (for additional information see
113][21],]16].[18]).

A third possibility which has received a lot of attention lately in the
Al community is belief propagation. It is an efficient local message passing
protocol for exact inference on trees [22]. Applying the same rules to graphs
with cycles (loopy belief propagation) has proven a successful strategy for
approximate inference [15]. In particular, it was shown that the celebrated
method of “turbo decoding” is equivalent to loopy belief propagation on an
appropriate graphical model [12],[2].

At first there was not much theoretical justification for applying belief
propagation to loopy graphs. Lately however, much progress has been made
in understanding the convergence properties of the algorithm and the qual-
ity of the approximation [27],[26]. The most significant breakthrough came
with the insight that the fixed points of belief propagation are actually the
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stationary points of the Bethe free energy. It not only clarified the nature
of the approximation but it also opened the way to the more sophisticated
Kikuchi approximations and an algorithm to solve for its stationary points
(32].

In this paper we will prove a number of theorems, some of which were
conjectured in the physics literature a decade ago, which clarify the rela-
tion between the Bethe approximation and the Plefka expansion of the exact
Gibbs free energy. We also propose a novel algorithm, named belief opti-
mization, to minimize the Bethe free energy directly, as an alternative to the
fixed point equations of belief propagation. Unlike belief propagation, this
algorithm is provably convergent. Moreover a new linear response estimate
is derived to compute the covariances between all pairs of nodes and show
that it is exact on Boltzmann trees. Some of the results in this paper were
also reported in [29].

In experiments we confirm that belief optimization and belief propaga-
tion give identical results when the latter converges. We also show that in
the cases when belief propagation can not be made to converge, the Bethe
free energy is likely to be a bad approximation and belief optimization will
also give inaccurate results. Finally, the experiments confirm that the linear
response estimates of the covariances in the Bethe approximation are better
than their counterparts in the mean field and Onsager approximations.

2 Model and Notation

The model under consideration, a Boltzmann machine, can be represented as
an undirected graphical model, with binary nodes taking values either 0 or
1. Some nodes may be directly observed and are denoted by v, while others
remain unobserved (hidden) and will be denoted by h;. The probability
function is defined through its energy as

P({vp}, {hi}) = %exp (=E({vr}; {hi})) (1)

where Z is the normalization constant (the “partition function”). The en-
ergy contains bias terms, with thresholds 6; for the hidden units and oy, for
the visible units. Pairwise interaction terms are defined through symmetric
weights W;; = Wj; between the hidden units, Vj; = Vj; between the visible
units and J;; between hidden and visible units. There are no self interactions,



i.e. W;; = Vir = 0. The total energy can therefore be written as,

E({ve}, {hi}) = Z Vivgv — Z Oékvk—z Wijhih; Z 0;h; — Z Jiehive

(ki) (45)
(2)
where (ij) denote all pairs of neighboring hidden nodes and similarly for (k)
and (ik) (k and [ index visible nodes). In this paper we will only be concerned
with inference, i.e. our ability to compute the posterior probability function

P({hi}{ve} = {di}) = —GXP( E({hi}, {dx})) (3)

where {d;} is a data-vector and Z is the partition function for the posterior

distribution:
Z =Y exp(—E({h:},{d})) (4)
{hi}
The energy for the posterior distribution is given by,

E({h:},{dv}) = ZWZ]hh Z + Y Tudy)h (5)

kEN,(4)

where N, (i) denotes the set of visible neighbors of node i.

The effect of the observation is to change the thresholds by an amount
0; — 0 + > e No() Jiede- In the following we will simply absorb these shifts
into the definitions of the thresholds. The problem of computing the poste-
rior is now equivalent to the computation of the “prior” P({h;}) with these
shifted thresholds (and visible nodes removed). In subsequent sections we
will concern ourselves with computing this prior P({h;}). Further, instead
of trying to compute the entire prior probability table for all possible states
{hi}, we will restrict ourselves to approximating the marginals p;(h;) and
pairwise marginals p;;(h;, h;).

For binary variables it is convenient to reparametrize these marginals as
follows,

pi(hi =1) = (ki) = g; (6)
1) = (hihy) = &; (7)

All the other entries of the single node and pairwise probability tables can



be expressed in terms of this set of independent parameters,

pij(hi=1,h; =0) = ¢ —&; (8)
pij(hi = 0,h; =1) = ¢; —&; 9)
pij(hi=0,h; =0) = &§+1—q—gq; (10)

pi(hi=0) = 1—gq (11)

It can also be checked that all marginalization constraints are satisfied, e.g.

> pylhihi=1) = g (12)

h;=0,1
> pijlhi by =0) = 1—g (13)
h;=0,1

> pijhishy) = 1 (14)
hi,hj=0,1

Obviously, there are certain constraints on the values of the {¢;} and the
{&;} to ensure that all probabilities are between 0 and 1, but they are easy
to handle as will become evident in the rest of this paper.

3 The Mean Field Approximation

In the mean field (MF) approximation we try to find a factorized distribu-
tion that best describes the true posterior distribution. The most general
factorized distribution for binary variables has the form,

Q™ ({hi}) = qu’i (1—gq)™ (15)

The variational parameters {¢; } represent the means ¢; = (h;) and are chosen
so that QYF({h;}) is close to the true posterior by minimizing the following
Kullback-Leibler (KL) divergence,

KL (@ ({hi D[P ({i})) (16)



Using the explicit expressions for Q" (eqn.15) and P (eqn.3) this can be
written as,

KL(Q"[|[P) = (E)qur — S(Q™) +1og(2) (17)
(Byque = =Y Wiaqig; — Y big;
(i5) i
S@") = — Z (¢iln(g;) + (1 — ¢;) In(1 — ¢;))
Z (18)

where —log(Z) is the exact free energy. It is now an easy matter to derive
the mean field equations by taking the gradient of the above expression with
respect to g;,

OKL i
o > Wz’ij—Gleog(lq > (19)

JEN() S

with N (¢) the neighbors of node 7, and equating them to zero to get

=0 Z Wija; + 0; (20)

JEN(3)

where o(z) = 1/(1 + exp(—=x)) is the sigmoid function. When these mean
field equations are run sequentially, i.e. we fix all means g; except g; over
which we minimize, the KL-divergence is convex in ¢; and eqn.20 finds the
minimum in one step. This procedure can thus be interpreted as coordinate
descent in the {¢;} and each step is guaranteed to decrease the KL-divergence.
However, this procedure could suffer from slow convergence or entrapment
in local minima. Alternatively, all parameters ¢; can be updated in parallel,
which does not have the guarantee of decreasing the cost-function at every
iteration, but may converge faster. In practice, one often observes oscillatory
behavior which can be counteracted by damping the updates eqn. 20.l.
Finally, one can use any gradient based optimization technique to minimize
over all the nodes {¢;} simultaneously, making sure all {¢;} remain between
0 and 1. This can for instance be achieved by reparametrizing ¢; = o(y;) and

g agi+ (1-a)o() a€l0,1)



performing gradient descent on y; using,

OKL _ OKL
0y B dg;

g (1— ) (21)

We will see in subsequent sections that these three options: coordinate de-
scent, fixed point equations, and gradient descent have analogous counter-
parts in the Onsager and Bethe approximations.

It is important to understand when this mean field approximation is ex-
pected to be accurate. For large, densely connected, weakly interacting sys-
tems the cumulative effect of all nodes behaves as a “rigid” (mean) field,
Zje NG) Wi;h; ~ H; which acts as an additional bias term, resulting in a
factorized distribution. Also, the factorized MF distribution is clearly uni-
modal, and could therefore never represent multi-modal posterior distribu-
tions accurately. In particular, the KL-divergence eqn. 17, with @ in its
first argument, penalizes states with small posterior probability but non-
vanishing probability under the MF distribution much harder than the other
way around. The result of this asymmetry in the KIL-divergence is that
the MF distribution will choose to represent only one mode, ignoring the
other ones. A typical situation where we expect multiple modes in the pos-
terior is when there is not a lot of evidence clamped on the observation
nodes. Consider for instance the situation when the thresholds are given
by 6; = —% > ; Wi; in which case there is a symmetry in the system where
changing all nodes by h; — 1 — h; leaves all probabilities invariant. This
implies that there are at least two modes. In general, we expect many more
modes, and the MF distribution can only capture one. Moreover, when the
interactions are strong, we expect these modes to be concentrated on one
state, with little fluctuation around them. The marginals predicted by MF
would therefore be close to either 1 or 0 (they are polarized), while the true
marginal posterior probabilities are % due to the symmetry.

One way to overcome some of the difficulties mentioned above is to use
more structured variational distributions ) and minimize again the KL-
divergence eqn.17 [7, 30]. We will however pursue a different approach in
the following, where we directly approximate the free energy of the system,
without making reference to a variational distribution Q).



3.1 The Mean Field Approximation - Linear Response

Although the mean field approximation assumes independence between the
variables {h;}, it is still possible to obtain a nontrivial estimate of the corre-
lations within the MF framework [9]. The idea is to exploit the fact that the
negative log-partition function is the generating function of the centralized
moments (or cumulants), i.e.

() = 5 1o8(2) (22)
Ci = (hihs) = (){hs) = =g log(2) = S (29

The linear response estimate for the correlations is obtained by replacing
the true (h;) with the approximate ¢; and inverting the partial derivatives

matrix:
A(h;) dq; 80,1
Ci' = ~ = J 24
(Gl [ 90; } [39j 9q; 24
where [A;;] denotes a matrix with elements A;;. The mean field equations
eqn.20 provide us with an expression relating {6;} to {¢;} upon convergence.

By taking derivatives of eqn.20 with respect to g¢;, solving for 96;/0¢;, and
plugging into eqn.24, we get

00;,17" 0j; -t
=[RSy, -
T oa G(l—gq) 7
In the next section we will see that the mean field approximation can also
be viewed as the first order approximation in a small weight expansion of
the (Gibbs) free energy. In that context and for future reference we will also
expand the expression for the correlations up to linear order in the weights,
giving

Cij = ¢;(1 — ¢;)di5 + Wi;a:(1 — ¢;)q;(1 — ;) (26)

4 The Legendre Transform and Plefka’s Ex-
pansion

In the previous section the approach to obtain approximate posterior marginals
was to define a variational distribution () whose KL-divergence with the true
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posterior P was minimized over a set of free parameters {¢;}. The KL-
divergence was written as (eqn.17),

KLQ||P) = F(Q) - F(P); (27)

where
F(Q) =(E)q - S(Q) (28)

is the variational free energy and F(P) = —log(Z) is the true free energy.
Since the variational free energy and the KL-divergence are equal up to a
constant, we can also interpret the MF procedure in the previous section as
trying to minimize the variational free energy over distributions (). Equation
27 is then saying that since the KL-divergence is non-negative, the true free
energy is always upper bounded by the variational free energy. If we leave
@ unconstrained (except for the fact that it should sum to one), then it is
easy to show that the minimizing distribution is precisely the Boltzmann (or
equilibrium) distribution,

Q¥ ({hi}) =  exp (~E({hi})) (29)

We may also choose to perform a partial, constrained minimization over (),
where we keep the marginals fixed. The result is what is known as the Gibbs
free energy in the physics literature,

G({g:}) =min {F(Q) | (hi)e = a} (30)

The rationale behind this partial minimization is that we can approximate
this Gibbs free energy in terms of a small weight expansion, known as the
Plefka expansion. The approximate expression for the Gibbs energy should
then still be minimized over the parameters {¢;} to obtain an approximation
to the true free energy which is unfortunatly no longer guaranteed to be an
upper bound.

In the following we will briefly describe this Plefka expansion without
going into details. For more background material see [20],[3] and [24]. The
natural way to include the constraints on the marginals is by introducing
Lagrange multipliers {\;}, and adding the following term to the variational
free energy,

P(Q) = F(Q) = > A ((hi)e — a) (31)
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where the Lagrange multipliers {);} should be chosen so as to enforce the
constraints. One can now minimize F(Q)) over () in terms of the {\;} and
the {¢;}. The solution is again a Boltzmann distribution eqn.29, but with a
modified energy which includes additional bias terms,

E({h;}) = E({h:}) Zm (32)

After inserting this expression back into the variational free energy, we can
find the values of the Lagrange multipliers {\;} as a function of the {¢;} by
maximizing over them. The final result is then,

G({a}) = maX{ZAzqz log (Z ({/\i}))} (33)

where Z({\;}) is the normalizing constant for the Gibbs distribution with
energy defined in eqn.32. Equation 33 is known as the Legendre transform
between {);} and {g;}. By shifting the Lagrange multipliers as follows,

No= N\ +06; (34)

we can pull the contribution of the thresholds to the Gibbs free energy out
of the Legendre transform,

G({a}) Zﬁzqﬂrmax {ZA'% 10g(Z'({/\'}))} (35)

where Z' is the partition function with all thresholds {6;} set to zero,

{)\I Z exXp | — Z W”hzhj — Z )\;hz (36)
) g

{hi}

Plefka’s expansion can be derived by Taylor expanding the Gibbs free energy
for small weights W;;%. The approximate Gibbs free energy is then obtained
by truncating this series expansion, and in lowest order this turns out to be
the MF approximation.

ZNotice that in eqn.33 both log(Z) as well as {)\;} depend on W;; and should be
expanded out.
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5 Omnsager’s Second Order Reaction Term

Truncating the Plefka expansion after the second order results in what we
will call the Onsager approximation,given by

GO (gl = =Y Wydias Zozqz + Z ¢iln(g:) + (1 — ¢;) In(1 — ;)

(i9)

—% S WS a1 - a)g;(1 - q5) (37)
(i)

Higher order contributions were computed in [3]. The extra term in eqn.37,
takes into account dependencies between nodes which were ignored in the
MF approximation. Onsager’s term was first proposed in an entirely differ-
ent context for a specific physical system valid only under strict conditions
[17]. In this paper it will be considered as just another order in the Plefka
expansion of some finite spin system (i.e. a Boltzmann machine). Hence, we
cannot expect it to improve the accuracy of the approximation under gen-
eral conditions. The expansion only makes sense when it actually exists (i.e.
converges), which implies that the weights must be small. When not applied
with care the extra term could actually deteriorate the MF approximation
[10]. To compute the ¢; we simply compute their derivatives again,

)__1 2% Z %1 QJ)

JEN(i)

(38)

Equating the derivatives to zero provides a set of coupled fixed point equa-
tions which are generalizations of the MF equations,

8GONSAGER

T__ Z Wiiq;— 9+log<

JEN(4)

1_(12

=0 ZVViij'i'Hri‘ (1 —2g;) Z - qj) (39)

JEN(3) JEN(i)

Unfortunately, running these equations sequentially (or in parallel) does not
guarantee that the Onsager-Gibbs free energy decreases, since ¢; appears
both on the left and the right hand side. We may again apply damping
to encourage convergence. It is however not hard to see that if we fix the
means g; of all the neighbors of a node ¢, the Onsager-Gibbs free energy
is convex in the mean ¢; of this central node. We can therefore employ

11



any standard minimizer to find this unique minimum and cycle through the
nodes. This procedure can again be interpreted as a coordinate descent
algorithm and every step is guaranteed to decrease the Onsager-Gibbs free
energy. Alternatively, one may wish to perform gradient descent on all the
means simultaneously while making sure their values stay within [0, 1].

5.1 The Onsager Approximation - Linear Response

By applying the linear response estimate for the covariances to the Onsager-
Gibbs free energy we can improve the MF approximation by one order in the
weights W;,

dji 1
(Cij] - Wy + Z qu k) 0ji — §Wj2i(1 —2¢;)(1 — 2¢;)

Q

(] (1 - QJ
¢i(1 — ¢;)di; + Wijq:i(1 — ¢i)gi(1 — g5) +

(1= a)g;(1 = g5) DWWy qe(1 — qx) —
k

Q

a(1—¢)q;(1— ¢;) Y Wi ae(1 — qi)d +
k

1
¢i(1 —gi)g;(1 — qj)§Wi§(1 —2¢;)(1 — 2g;)

The first two terms clearly correspond to the MF-linear response result.

6 The Bethe Approximation

The Bethe approximation first made its appearance in the field of approxi-
mate inference and error correcting decoding in [19] and [8] under the names
TAP approximation and cavity method, but has a much longer history in
physics [13],[21]. The relation between belief propagation and the Bethe
approximation was further clarified in [32], where it was shown that belief
propagation, even when applied to loopy graphs, has fixed points at the sta-
tionary points of the Bethe free energy. In this section we will define the
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Bethe free energy for Boltzmann machines, rederive belief propagation up-
date rules and describe a novel algorithm that directly minimizes this Bethe
free energy.

In the case of the Onsager and MF approximation we first defined the
Gibbs free energy through a partial minimization (equivalent to a Legendre
transform) after which this was approximated with an expansion (Plefka’s
expansion) around small weights. We will follow a similar procedure for
the Bethe approximation, by formally defining a more constrained Gibbs
free energy, and then proposing an approximation of this Gibbs free energy
which is called the Bethe free energy (see [31]). This more constrained Gibbs
free energy is defined by,?

G({ai, &j}) = min {F(Q) | (hi)g=a & (hihj)q=E&;}  (41)

We have denoted this more constrained free energy with G({¢;, &;;}), to distin-
guish it from the Gibbs free energy G({¢;}) which is the result of minimizing
G({a:, &ij}) over {&;}

We will now proceed to define the Bethe free energy and in later
subsections convert it to a Bethe-Gibbs free energy by minimizing it over the
correlations {&;;}. Since the energy of a Boltzmann machine is a quadratic
function of the states its average in terms of {¢;} and {¢;;} is simple and
exact,

gBETHE

E=-> Wj&j— Zgi%’ (42)
(i5) i
The approximation is made for the entropy term of the free energy. The idea
is that we want to correct the MF approximation which overestimates the
entropy due to its assumption that all nodes are independent. The natural
next step is to take pairwise dependencies into account. But just adding
all pairwise entropy contributions to the MF approximation would clearly
over-count, the entropy contributions at the nodes. Correcting for this over-

3Note that for particular settings of {g;,&;;} there is no distribution Q with (h;)g = ¢
and (hih;)g = &; [11]. This is unimportant for the development of this paper and for
consistency we let G({g;,&;;}) = oo in such cases.
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counting then gives the following approximation to the entropy,

GBETHE Z S; + Z(S” -5 — Sj)
i (i5)

v (27)

where z; is defined as the number of neighbors of node 7, S; is the mean field
entropy for node 1,

Si=—(¢iln(g;) + (1 — @) In(1 — @;)) (44)
and S;; is the pairwise entropy which can be written as,

Sig=—( &my)+ E+1—g—q) (& +1-q—q)
+ (g — &ij) In(q — &ij) + (g5 — &j) In(g; — &) (45)

The Bethe free energy is now defined in terms of the energy eqn. 42 and
approximate entropy eqn. 43 as follows,

g7 ({4 &) = E({g, €53) — 5™ ({4, &5 }) (46)

The expression for the entropy eqn. 43 is exact when the graph is a tree?.
Since the expression for the energy eqn. 42 is exact for general Boltzmann
machines this implies that the Bethe free energy is also exact on trees. For
trees the probability distribution can be written as a function of the node
and pairwise marginals only,

P({hi}) = Hpij(hi7 h;) Hpi(hi)l_Zi (47)
(i) i

Computing the free energy of this probability distribution gives back eqn. 46.
Expression 47 is of course not valid for graphs with loops, indeed it is not even
a properly normalized probability distribution in that case, which implies
that the Bethe free energy is not necessarily an upper bound to the exact
free energy as in the MF case. So, when can we expect the Bethe free energy

4However, it may also become negative on a highly connected, highly correlated graph.
For instance, 4 nodes with mean % which are all connected and perfectly dependent, have
—2 bits of entropy according to the Bethe approximation, while having +1 bit of entropy
in reality.
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to be a good approximation? The above argument suggests that this should
be the case when the graph is “close to a tree”, i.e. if there are not many short
loops in the graph. In the case of tight loops, evidence impinging on one node
can travel around these loops and return back to the original node, causing it
to be over-counted. We will see another argument supporting this in section
8. There it will also be proved that the MF and Onsager approximations
are small weight expansions of the Bethe approximation, suggesting that
the Bethe approximation should be accurate for small weights and improve
MF and Onsager. Intuitively, when the weights are small the evidence will
not run around in the loops, but “dies out” before it feeds back into its
node of origin. We have also observed that large thresholds, which represent
the external evidence, tend to break the dependencies between neighboring
nodes, and therefore improve the approximation. Summarizing, we could say
that the approximation is good when the correlation distance is shorter than
the shortest loops in the system. Small weights, large thresholds and long
loops help achieve that.

On the other hand, in the limit of very large weights, the energy term
will dominate the entropy term and the Bethe approximation should become
exact. However, we have not observed good performance of either loopy belief
propagation or belief optimization (see following sections) in this regime,
possibly due to the fact that the energy surface becomes very complicated.

6.1 The Gibbs Free Energy in the Bethe Approxima-
tion

To make contact with the MF and Onsager approximations we will now con-
vert the Bethe free energy eqn. 46 into an approximate Gibbs free energy.
This is done by minimizing the Bethe free energy with respect to the correla-
tions {&;;} and solving them exactly in terms of the marginals {¢;}. Taking
derivatives of the Bethe free energy with respect to {§;;} and setting them
to zero we find,

OGBETHE &i(&i+1—qi— Qj))
% W +1 —0 48
0ij 508 ( (g — &) (g — &ij) “48)

This can be simplified to a quadratic equation,

065 — (1 + i + i) & + (1 + i) qiq; = 0 (49)
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where we have defined
i =e"i -1 (50)

In addition to this equation we have to make sure that &;; satisfies the fol-
lowing bounds,

max(0,¢; + ¢; — 1) < &; < min(g, g;) (51)

These bounds can be understood by noting that eqn. 7,8,9 and 10, can not
become negative. The following theorem provides the desired unique solution

for {é-Z]}

Theorem 1 There is exactly one solution to the quadratic equation (49)
which satisfies the bounds (51). The analytic expression is given by’,

1
§j = 5— (Qz‘j - \/Q% — 4ay;(1+ az’j)Qin)
QOZZ'J'
Qij = 1+ g+ aug; (52)
Moreover, &; will never actually saturate one of the bounds.

Note that for o;; — 0 we have §;; = ¢;g; which is the correct limit.

Proof of theorem 1
We will first prove that there must be exactly one minimum inside the bounds
(51) (i.e. not on the bounds).

First, we compute the second derivative with respect to &;,

82 gBETHE 1 1 1 1

0¢;; & Gitl—gi—aq ¢6—& ¢ —&;
1 1 1 1

= + + + >0
pi;(1,1)  pi;(0,0)  pi(1,0)  pi;(0,1)

SFor computational reasons it is sometimes convenient to use the following equivalent

expression,
£ii = 4:9; if Q;; = 0
N 3 (Rij - Sign(ﬁij)\/Rz?j —4(1+ ﬂz'j)qiqj) otherwise
where Rij = Bij + @i + q; and Bij = %
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392??% in eqn. 48 we see that at the lower boundary the derivative

is —oo while at the upper boundary it is +00. Since the second derivative is
always positive between the bounds and since the free energy is continuous
between the bounds we infer that the free energy has exactly one minimum
inside the bounds.

Next we proof that the positive root,

Also from

1
Gj = D0, (Qij + \/Q% — 4oy (1 + Oéz'j)QiCIj)
Qij = 1+ ¢ + ay5q, (53)

to the quadratic eqn.49 is always located outside the bounds (except when
«;; = 0 in which case the equation is degenerate). We can assume without
loss of generality that ¢; > g;.

For cj; = 0 we have that the quadratic equation reduces to,

—&ij +qg; =0 (54)

with the obvious solution located within the bounds of eqn. 51. For a;; > 0
we will use the fact that,

?j — 40!2']'(1 + aij)qiqj
1+ 20450:(1 — q5) + 2045¢;(1 — ) + (g5 — q5)
1+ 2045 (qi(1 — ¢5) + ¢;(1 — @)
0

2

>
>

(this result is actually valid for all possible a;j, i.e. in the range (—1,0))
The above result can now be used to prove,

Gj = 20 (1 + aijg; + ijg;)
> .
- QOJZ'J' + q]
> q; (55)

which is always larger than the upper bound. Finally, for o;; € (—1,0), we
will use the fact that,

Z?j — 4oy (1 + aij)qiq; > Qi (56)
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with @;; defined in (53). This can be used to prove,

1

Gi < —+aqg+tg
Oéij

< —1+q,~+qj

which is always smaller than the lower bound.

Therefore, since we know one of the solutions must be located at the min-
imum between the boundaries, and the positive root is always located outside
the boundaries, we have proven that the negative root is precisely the valid
solution, located at the minimum of the free energy, inside the boundaries. [

Thus, by substituting this expression for {¢;;} back into the Bethe free energy
we obtain the Gibbs free energy in the Bethe approximation:

GBETHE({qi}) — gBETHE({qi’ gw(q)}) (57)

6.2 Belief Optimization

In the previous section we have derived an expression for the Gibbs free en-
ergy in the Bethe approximation, similar in spirit to the MF and Onsager
expressions for the Gibbs free energy. We will now proceed to derive fixed
point equations to solve the marginals {¢;}, which turn out to be generaliza-
tions of the MF and Onsager fixed point equations. We will call any algorithm
that minimizes the Bethe free energy in primal space (i.e. in terms of the
posterior probability distributions) belief optimization (BO) in the following.

We follow the by now familiar recipe: first compute derivatives of the
Bethe-Gibbs free energy with respect to {¢;} and then equate them to zero.

JdGBETHE HGBETHE OGPBETHE .. HGBETHE

= 58
dg; 0g; 0&; Og; 0q; (58)

JEN()

agBETHE

ag; ~ — 0 when the {&;} are solved in terms of the {¢;}. Using the
above we find,

since

BETHE 1—gq zi—10T. (g — &
g, ¢ jene & +1— 6 — )
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Equating these derivatives to zero gives the following set of fixed point equa-
tions,

g=o |6+ Z log (%‘((&j +1—q— qj)) (60)

N 1—q)(e — &)

These equations are direct generalizations of the MF and Onsager fixed point
equations. When the expression inside the sigmoid is expanded for small
weights and all terms up to quadratic order in the weights are retained we
find the Onsager fixed point equations. When only terms up to first order
are retained we find the MF equations.

Whether run sequentially or in parallel, the above equations are not guar-
anteed to decrease the Gibbs free energy or to converge at all. In analogy
with the MF and Onsager equations we may achieve this by temporarily fix-
ing all neighboring marginals ¢; and minimizing over the central node ¢;. We
can show again that this subproblem is a convex minimization problem® and
can be solved by many standard techniques. By cycling through all nodes
we perform coordinate descent on the Bethe-Gibbs free energy. This idea is
readily extended to an algorithm where each sub-problem is a convex mini-
mization problem on a tree and a mix of BP and iterative scaling is used to
solve it. In fact, this algorithm is applicable to general discrete networks and
we refer to [25] for a more detailed description of that idea.

Alternatively, one can choose again to perform gradient descent on all the
means simultaneously while enforcing the constraint that they stay within
the interval [0, 1].

6.3 The Bethe Approximation - Linear Response

To compute the covariances for neighboring nodes we can use §;; —¢;q; where
&; and ¢; minimize the Bethe free energy. However, for non-neighbors (where
W;; = 0), this expression vanishes since &;; = ¢;¢; as W;; = 0. To improve the
covariance estimates for both neighbors and non-neighbors we can use the
linear response estimate eqn.24 again, applied to the Bethe approximation.
Eqn.59 directly relates {¢;} and {6;} at the minimum of the Bethe-Gibbs

6Since the central node i and its links to its neighbors is a tree the expression for the
Bethe-Gibbs free energy of that region is exact. Moreover, the Gibbs free energy is the
minimum of the variational free energy F(Q), with linear constraints fixing the means
to {g;}. Since the variational free energy is convex in @), the Gibbs free energy must be
convex in {g;}.
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free energy. Taking derivatives of that expression with respect to ¢; provides
an expression for 06;/0¢; which is inverted to compute an approximation for
the covariances,

1— 2 1 1 01
Cyl=| | ——=+ ( + )(1——’) 8
(G [ q;(1 —g;) kg\/%j) G —&r Ertl—q —q 0q; !

+< 1 ( 1 1 )agﬁ>5_ |
5)1 +1—-qgi—gq q; — g]z g]z +1—-gj—uq aqi N E)

(61)
where d; n(;) is 1 if 7 and j are neighbors and vanishes otherwise, and
o _ 0 _ 1 1+ 0y = ) — 20 2)
aqj 8(]]' 2 \/Q 4041] 1 + azg)(bq]
Qij = 1+ @i54; + Q545 (63)
Q5 = €WU —1 (64)

while &;; is given by theorem 1. One can now check’ that the Taylor expansion
of this expression up to second order in the weights W;; is identical to the
Onsager result eqn.40. In fact, the Bethe approximation is not just a higher
order truncation of the Plefka expansion, but contains contributions from all
orders in Wj; (see section 8). Further, since the Bethe approximation is exact
on trees for arbitrary thresholds {6;}, the following statement must hold,

Theorem 2 The covariances between two arbitrary nodes (including non-
neighbors) on a Boltzmann tree, are exactly given by the linear response ex-
pression 61.

This theorem is interesting because belief propagation will produce the exact
covariances on trees only for neighboring nodes. The fact that all covariances
are given by an analytic expression is somewhat surprising.

6.4 A Different Perspective

Much of the results presented in the previous subsections revolve around
two equations, 48, relating the weights to the posterior marginals, and 59

"We used MAPLE to Taylor expand the expression for C;;.
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relating the thresholds to the posterior marginals. It is well known that the
Boltzmann machine, being an exponential model, can be parameterized with
either the weights and thresholds or with the sufficient statistics (h;) = ¢; and
(hih;) = &;j [1]. The above mentioned equations relate the parameters and
the sufficient statistics in the Bethe approximation. Therefore all we have
been doing is to invert these equations in order to compute the sufficient
statistics in terms of the parameters.

Could we have predicted eqns. 48 and 59 without making reference to
the Bethe free energy? With hindsight, yes. First, let’s try to change param-
eterization on a Boltzmann tree. For every pair of nodes we reparameterize
as follows,

pij(hi, hj) = exp(K,jh;h; + Hjih; + Hijh; + Cij) (65)

This can then be inverted,

/ 8 (pZ](hz = ]-’ hj = 0)p1] (hz Oa hj = 1) ( )
pz](hz =1, hj = O)) (plj( 7hJ 1))

H:. = ]og ( H; = lOg 67

! ij(hi = 0,h; = 0) ! pij(hi =0, h; (67)

Cij = log(pij(hi =0,h; =0)) (68)

Analogously, for a node marginal we write,

which can again be solved to give,

Ho= e (245 ) (1
B; = log(pi(h; =0)) (71)

But on a tree we know the form of the full joint distribution in terms of the
node and pairwise marginals, namely eqn. 47. This should be equal to

P({hi}) = exp(>_ Wihih; + > 0ih; + F) F=—log(Z) (72

(%) ¢
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Combining all this gives the following relations,

Wi = Ky (73)
0; = > Hi+(1-2z)H, (74)
JEN(2)

F = > Cyi+> (1-2)B (75)
(i) i

Finally inserting the expressions 66, 67, 68, 70 and 71 into the above ex-
pression, and using the definitions of section 2, we precisely arrive at 48 and
59. Although the conversion from marginal posterior probabilities to weights
and thresholds is very simple, the transformation the other way round is
obviously not so easy, since it is precisely solved by belief propagation and
belief optimization. In the Bethe approximation, these same conversion rules
are now employed on graphs with loops.

7 Loopy Belief Propagation

As an alternative to the above procedure we give a simple derivation of a set of
fixed point equations equivalent to the equations for loopy belief propagation
(BP). We follow the derivation in [14].

We shall begin with writing expressions for the node and pairwise marginals
in terms of the weights, thresholds and “mean fields” p;; that parameterize
the influence of neighboring nodes.

pi(hi) o e(Oihit Eienco i) (76)

pij(hia hj) x e(Wijhihj+9ihi+6’jhj+2ke{w(i)\j} prihit S e (Gt Bty (77)
Next, we solve for the mean fields by requiring that,
y g

sz‘j(hi, hj) = pi(hs) (78)

for all 7 and j. Inserting eqns. 76 and 77 into the consistency equation 78,
we arrive at the following fixed point equations,

pii =log | 14+ oy o | 0; + Z i (79)
lEN(3)
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where «a;; = eVii — 1 was defined in 50.

The mean fields p turn out to be the logarithm of the messages in belief
propagation as defined in [32]. In that paper it was elegantly shown that the
fized points of the belief propagation updates, equivalent to 79, correspond to
the stationary points of the Bethe free energy. Lagrange multipliers were used
to enforce the consistency constraints 78 and the mean fields (or messages)
turn out to be simple functions of those Lagrange multipliers.

An important property of the belief propagation updates is that on trees
they converge within a finite number of iterations (equal to the length of the
longest path in the tree) to the exact result.

8 Plefka’s Expansion Revisited

In the previous sections we have encountered 3 approximations, the Mean
Field, Onsager and Bethe approximations. In this section we hope to further
clarify their relationship through the Plefka expansion of the Gibbs free en-
ergy which was explained in section 4. There we have seen that the Onsager
approximation contains precisely all terms up to second order in the weights,
while the mean field approximation contains all terms up to first order. The
question to be answered is if we can characterize the Bethe approximation us-
ing this Plefka expansion. In this section we will prove George’s and Yedidia’s
conjecture, [3],[31] which states that the Bethe approximation consists of an
infinite subset of terms in the Plefka expansion, namely exactly those which
contain one or two nodes. We start with the proof of a more general result,
also conjectured by Georges and Yedidia, stating that the Plefka expansion
only contains so called “strongly irreducible diagrams”. By a diagram we
mean a graph drawn for a particular term in the Plefka expansion where the
vertices correspond to the nodes present in that term and edges correspond
to weights W;; between nodes (a separate edge is drawn for every W;; in
the term). Strongly irreducible diagrams corresponds to graphs that have
the property that removing any node from the graph does not split it in
two pieces. As an example of a strongly irreducible diagram we have drawn
Onsager’s reaction term in figure 1a.

Theorem 3 Plefka’s expansion of the exact Gibbs free energy has no strongly
reducible diagrams.
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Figure 1: Diagram for Onsager’s reaction term (a) and hypothetical bottleneck
diagram (b).

Proof of Theorem 3
First let us assume that there exists a strongly reducible diagram in the
Plefka expansion. Then, construct a subgraph of the original graph by setting
all weights that do not appear in the diagram to zero, and removing the
disconnected nodes. Construct the Plefka expansion of the subgraph by
setting to zero these same weights in the Plefka expansion of the full graph,
and removing the disconnected single node terms. In the above construction,
the strongly reducible diagram will appear in the expansion of the subgraph
and has the general form depicted in figure 1b, which we named a bottleneck-
diagram where the bottleneck node 7 is the node which is causing the diagram
to be strongly reducible (i.e. removing it cuts the diagram in two).

From the structure of the subgraph we can infer that its probability dis-
tribution can be written as follows,

P(hg, hi,hg) = Pr(hr|h;) Pr(hr|h;) Pi(h;) (80)

implying that the energy can be written as®,

E({h;}) = Er(hr, hi) + Er(hg, hi) + E;(h;) (81)

We will now show that the variational formulation of the Gibbs free energy
together with the above decomposition of the energy and the constraint that
the marginal of node 7 is fixed, are enough to show that the Gibbs free energy
decomposes as in eqn. 88. Recall that the Gibbs free energy is defined as,

A

G{Q;}) = min § (E)q — S(Q) + Z D Xi(h)(Qhy) = Q(hy)) ¢ (82)

8 Actually for BMs the energy decomposed even further as F = Z(i i) E;j).
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where the Lagrange multipliers {\;(h;)} should be chosen so that they en-
force the marginalization constraints. Equating the functional derivatives of
G with respect to () to zero and using the energy decomposition eqn.81, we
arrive at the following form for @),

Q({hj}) — %e—E‘L(hL,hi) e—ER(hR,hi) e_Ei(hi) (83)

where Z is the normalization constant and we have defined,

Ep(hp, hi) = Ep(hp, hi) + Z/\z oy (84)
leL

Ep(hr,hi) = Er(hg,hi)+ Y Ni(h) (85)
leER

Ei(h)) = Ei(hs) + \i(h) (86)

In other words, the presence of the Lagrange multipliers hasn’t changed the
form of the energy decomposition eqn.81, which means that () factorizes in
precisely the same way as P in eqn.80. The constraint that the bottleneck
node i has a marginal Q; is trivially imposed leading to the following form

for @,
Q({h;}) = Qr(hslhs) Qr(hrlhi) Qi(hi) (87)

Feeding this expression for ) back into eqn.82 and using once again the
energy decomposition eqn.81 we find that the Gibbs free energy decomposes
as

GH{Q;}) = min (B +108(Q1)g,0, + Y D Xi(hi)(Q;(hy) — Q;(hy))

jeEL hj

+ min (Er+108(Qr)) g0, + D D Xi(h)(@Q;(hy) — Q;(hy))
JER h;
+ (Ei+ 10%(@))@
= G +Ggr+G; (88)
where Q.Q; = QL(hL|hi)Qz-(hi) and similarly for QzQ,. But, because the

strongly reducible diagram is part of the Plefka expansion, and it contains
nodes in both L and R, the Gibbs free energy can never decompose into the
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above form. This implies that we have proven a contradiction based on the
assumption that the strongly reducible diagram is part of Plefka’s expansion,
which must therefore be false. [

Notice that the above decomposition of the Gibbs free energy does not imply
that systems L and R are independent. What it does imply is that changes
in the parameters of one subsystem do not influence the probabilities of the
other subsystem. For instance, assume that the bottleneck node is the only
node whose marginal is fixed. Changing the evidence impinging on some of
the nodes of subsystem L will change the thresholds and subsequently all
marginal posterior probabilities of that system. However, these changes do
not affect the marginal posterior probabilities of the other subsystem, since
they are the marginals of the distribution QRQZ- that minimizes Gr. The
minimizations over (J; and Qg are independent since (); = QZ is fixed. In
other words, the Lagrange multiplier associated with the constrained bot-
tleneck node counteracts the changes of the parameters so that its effect on
the posterior probabilities remain isolated to the subsystem in which they
occurred. The same effect was exploited in [25] to formulate a convergent co-
ordinate descent algorithm (the UPS algorithm) on more general undirected
graphical models.

We are now ready to formulate the precise relation between the Bethe
free energy and the Plefka expansion,

Theorem 4 The Plefka expansion of the Gibbs free energy in the Bethe ap-
proximation contains precisely all diagrams with one or two nodes present in
the Plefka expansion of the exact Gibbs free energy.

Proof of Theorem 4

We have already seen that the Bethe free energy is a sum of terms, where
each term either depends on a marginal or a pairwise marginal. In addition,
we have seen that the pairwise marginals can be solved in terms of their
neighboring marginals only. Substituting these solutions into the Bethe free
energy then shows that there are only terms in the Bethe-Gibbs free energy
that depend on neighboring marginals.

Next, consider any two neighboring nodes. Construct a subgraph of the
original graph by setting all weights, except the one connecting the two nodes
in question to zero, and removing all other nodes. Set the same weights to
zero in both the exact expansion as well as in the Bethe expansion (and
remove disconnected single node terms). Since the Bethe approximation is
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exact on that diagram (it is a tree), their expansions must be equal. Apply-
ing this argument to any two nodes implies that all the diagrams consisting
of one or two nodes in the exact expansion must also be present in the ex-
pansion of the Bethe-Gibbs free energy. [

Finally, the relation between the MF, Onsager and Bethe approximations
is clarified by the following theorem,

Theorem 5

GBETHE  _ GONSAGER_i_O(Wi?;_) (89)
(GONSAGER GMF+O(I/V£_) (90)

This can be proven by expanding out the Bethe-Gibbs free energy up to
second order in the weights and checking the result against the expressions
for the Onsager- and MF-Gibbs free energies. Therefore, since the Bethe ap-
proximation includes more terms of the Plefka expansion than the Onsager
approximation, which in turn includes more terms than the MF approxima-
tion, we expect that the accuracy of the approximations behaves accordingly,
at least when the Plefka expansion exists (i.e. converges).

From the above result, it immediately follows that the fixed point equa-
tions to compute {¢;} in the Bethe approximation reduce to the fixed point
equations for the Onsager approximation when expanded to second order
in the weights, which in turn reduces to MF when only linear terms are
included. The analogous results for the linear response estimates of the co-
variances were already established.

One useful conclusion we can draw from the above theorems is the fol-
lowing,

Corollary 1 If the set of links of the shortest loop in a graph is denoted as
L, and the Plefka expansion converges, then the difference between the exact
Gibbs free energy and the Bethe approximation of the Gibbs free energy is at
least of the order [ ] e, Wij-

ij

9 Experiments

To assess the quality of the various approximations introduced in this paper
we computed the mean activation g; and covariance §;; — ¢;g; for all nodes and
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pairs of neighboring nodes on a 10 x 10 square lattice, where only nearest
neighbors were connected. Weights and thresholds were sampled from a
zero mean Gaussian distribution with varying standard deviations sy, and
sg respectively. The thresholds were also shifted by an amount 6; — 6, —
% > JENG) Wi;, such that in a network with no external evidence, a node with

zero (shifted) threshold will have a mean of % Exact computations are still
feasible on these graphs using the junction tree algorithm, where each row is
converted into a super-node.

9.1 Comparing MF, Onsager, BP, and BO

In this experiment four methods were compared against the exact junction
tree algorithm on a 10 x 10 lattice. The fixed point equations for MF (20),
Onsager (39), BP (79) and BO (60) were used to compute the means while
the linear response expressions for MF (25), Onsager (40) and BO (61) and
expression 77 for BP were used to compute the covariances for neighboring
nodes. We also computed the approximate free energies by inserting the
means and correlations at convergence into the respective Gibbs free energies.
For MF, Onsager and BO the code was halted when the maximum change in
the means was smaller than 107! or 1000 iterations were performed. For BP
analogous stopping criteria were used for the messages. For MF, Onsager
and BO the means were randomly initialized between 0 and 1, while all
messages were initialized at 1. To promote convergence we applied linear
damping on the fixed point equations slowly increasing from 0 to 0.9. The
absolute error averaged over 10 random draws of the networks for the means
¢; (averaged over all nodes), neighboring covariances C;; (averaged over all
pairs of neighboring nodes) and free energy F' are shown in figure 2 (standard
deviation of thresholds is 1) and 3 (standard deviation of thresholds is 5).
We also show the errors on a logarithmic scale in order to zoom in on the
results for small weights. From these results we may conclude that in
this regime of the weights, i.e. between 0 and 4, BP and BO converge to
exactly the same means. Moreover, these BP/BO estimates are always better
than Onsager and MF, while Onsager in turn is always more accurate than
MF. One can also observe that the linear response estimates in the Bethe
approximation of the covariances for neighboring nodes always improves the
covariance estimates given by BP, Onsager and MF. When the weights grow,
and the thresholds are kept constant, the results deteriorate. The same is
true when the thresholds become smaller and the weights are kept constant
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Figure 2: Absolute errors in means (a),(b), covariances for neighboring nodes
(c),(d), and free energy (e),(f) on a 10 x 10 grid. Diamonds (“¢”) indicate MF
data, squares (“CJ”) Onsager data, crosses (“+”) BP data and circles (“0”) BO
data. Right hand plots are on a log-scale. BP and BO results sometimes coincide.
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30



scale thresholds: 1 scale thresholds: 1

o
[=}
@®

0.025¢

(=}
(=3
]

0.015¢

o
o
=

0.005¢

error non—neighboring covariances
error non—neighboring covariances

g A/e\//‘ o , . . . . . .
05 1 15 2 25 3 35 4 05 1 15 2 25 3 35 4
scale weights scale weights

a b

Figure 4: Linear (a) and logarithmic (b) plots of covariances for non-neighboring
nodes on a 4 x 4 square lattice with scale of thresholds fixed at 1. Everything else
is as in figure 2.

(note that the errors for sy = 5 are much smaller than for sy = 1). The regime
where all methods fail to produce accurate estimates is when the weights are
large and the thresholds small. In this case the energy surface is expected to
be highly multi-modal. A more thorough analysis of the behavior of BP and
BO in this regime is deferred to the next section.

To compare the covariances of non-neighbors we had to resort to smaller
(4 x 4) networks, since they are not readily computed using the junction tree
algorithm. Instead, exact values were computed by exhaustive summation
over all 2'¢ states. The respective linear response estimates were computed
for MF, Onsager and BO and compared with the exact computation. Figures
4 and 5 show these results for thresholds with scale 1 and 5 respectively. We
conclude again that the linear response estimates of the Bethe approximation
improve the linear response estimates of MF and Onsager considerably.

9.2 A Better Look at BP versus BO

In this section we compare the performance of BO and BP on a 10 x 10
square lattice. The standard deviations sy and sy in this experiment were
chosen from {0.1,1,3,6,10} separately. For each setting of sy and sg, 20
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Figure 5: Same as in figure 4 with scale of thresholds fixed at 5.

networks are generated to compare BP and BO. For large weights sy > 6
and small thresholds sy < 3, we generated and used 40 networks instead, as
BP does not converge all the time.

For BO, we iterate over the nodes ¢ of the network, clamping the neigh-
boring marginals ¢;, j € N(¢) to their current values and running iterative
scaling on the star-shaped segment to solve for the marginal ¢;. This algo-
rithm has the advantage that it is guaranteed to converge to a local minimum
of the Bethe free energy. For BP, we used a strong damping factor of 0.9 so
that it has a higher chance of convergence. For both algorithms, the con-
vergence criteria was for all the means ¢; to be changed by less than 10~*
for twenty consecutive iterations. We stop if BP has not converged by 10000
iterations.

For a given setting of sy and sy, the generated networks are separated
into two sets: one in which BP converged, and one in which it failed to
converge. For each set separately, we compared BO and BP using the mean
error in the estimated marginals ¢; averaged over all nodes and all networks
in the set. We also compared the mean error in the estimated covariances
&i; — ¢iq;, averaged over all neighboring pairs of nodes and all networks in
each set?. Accompanying each mean we also looked at the mean absolute

9Note that the linear response correction was not used here.
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deviation (MAD). The results are given in figure 6.

Each row of figure 6 corresponds to a setting of sy, increasing from top
to bottom. Within each row the left plot shows the errors in the estimated
marginals, while the right plot shows the errors in the estimated covariances.
In each plot there are five groups of four bars each. Each group corresponds
to a setting of sy, increasing from left to right. In each group, the first two
bars show the errors using BO and BP respectively, when BP converged.
The next two bars show the errors for both BO and BP when BP failed
to converge in 10000 iterations. The number associated with each group
indicates the percentage of runs that BP failed to converge.

The qualitative behavior of the errors of the marginals and covariances
are the same. Hence we shall concentrate on the errors of the marginals. The
general trends in figure 6 confirm our expectations. With increasing weights,
both BP and BO performed increasingly worse, as the distribution becomes
more complicated and multi-modal. With increasing thresholds, both BP
and BO performed better, as the distribution tends toward a single mode.

For small weights or large thresholds (s < 3, or sy > 6, or sy = 6
and sy > 1), BP always converged and both algorithms performed equally
well. As a matter of fact, most of the time both algorithms converged to very
similar solutions. This is shown in the left plot of figure 7, where we plot
the marginals obtained by BO versus those obtained by BP. In the right plot
of figure 7, the algorithms sometimes get stuck in local minima or plateaus,
resulting in a very small number of marginals being different : out of a total
of 12000 points on the plot, only 372 lie outside the region |z — y| < 0.01.

The situation is more complicated for large weights and small thresholds
(sw =6 and sy = 0.1, or sy = 10 and sy < 3). In the regime where sy = 0.1
and sy = 6,10, BO performed better than BP, especially when sy, = 10. In
the regime where sy > 1 and sy = 10, BP amazingly performed better than
BO even when BP did not converge.

One possible explanation for this phenomenon is that BO is stuck in local
minima or plateaus, in which case we can diagnose this by seeing if the Bethe
free energy of the final beliefs obtained using BO is larger than the Bethe
free energy of the beliefs obtained using BP!°. This is shown in figure 8. We
see that the reverse is true instead — BO always converges to a point where

10When BP did not converge we computed the Bethe free energy by computing the
means {¢;} using eqn.76 and the correlations {¢;;} using theorem 1 (instead of eqn.77) to
ensure that they are consistent.
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between neighboring nodes (right).
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Figure 7: Scatter plots of the estimated marginals b;(1) for BP on the z-axis and
for BO on the y-axis. The left plot is for networks with sy < 3 or sy = 6 and
sg = 6,10. The right plot is for networks with sy = 6 and sy = 1,3, or sy = 10
and sy = 6, 10.

the Bethe free energy is lower than the Bethe free energy obtained with BP.
This shows that BO is not stuck in local minima and also shows that BO
does what it was advertised to do — to decrease the Bethe free energy.

To understand why BO gives larger errors than BP we look at how the
marginals estimated by BO and BP are related to the true marginals. This
is shown in figure 9. We did not separate out cases where BP converged from
those where it did not because the analyses turn out to be similar. Consider
first the left plot of BP marginals versus the true marginals. Most of the
points are concentrated near the (1,1) and (0,0) corner. This means that
if a true marginal is close to 0 or 1, BP often converges to a limit cycle or
stationary point close to the true marginal. Otherwise the BP marginal can
be totally unrelated to the true marginal, as seen by the uniform spread of
the points on the plot away from (0,0) and (1,1). In summary, BP often
got the right marginal but sometimes got it totally wrong. Now consider
the right plot of BO marginals versus the true marginals. Since there are
not many points in the top left and bottom right quadrants, we see that the
BO marginals are often on the same side of 0.5 as the true marginals. The
problem lies with the (almost) horizontal ridge of points, where regardless of
what the true marginal is, the BO estimate is often close to 0.5 (even though
the BO estimate might lie on the same side of 0.5). This is true even when
the true marginal is near to 0 or 1 (observe the two clumps of points, one
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Figure 8: Scatter plot of Bethe free energy obtained using BO versus those ob-
tained using BP.

near (0,0.5) and one near (1,0.5)). It is the points near (0,0.5) and (1,0.5)
which contributed to the high error as report in figure 6. BO prefers its
marginals to be near 0.5 because they give a lower Bethe free energy, as seen
in figure 8.

The same analysis shows why BO does better than BP when sy = 6,10
and sy = 0.1. The results are shown in figure 10 for sy = 10. The results
are similar for sy = 6. Again we did not distinguish between whether BP
converged or not as the analyses were similar. First of all note that because
the thresholds are so small, the true marginals are mostly between 0.3 and
0.7. Loopy BP did not converge in 87.5% of the networks, and we can see
from figure 10 that the marginals it estimated are essentially random. For
BO, the points in the right plot of figure 10 can be approximately split into
two strips : a horizontal strip from (0,0.5) to (1,0.5), and a less distinct
vertical strip from (0.5,0) to (0.5,1). This means that BO marginals are
either close to 0.5 (horizontal strip), or are totally random (vertical strip).
This should not be much better than what BP did on the left plot. The
reason the BO errors in figure 6 are so much smaller than the BP errors is
because the true marginals themselves are coincidentally often close to 0.5.

The above detailed analysis shows that BP always converges when the
Bethe approximation is good and both BO and BP will converge to the same
solution in this case. If however the Bethe approximation is bad, BP often
does not converge, but BO does not seem to do much better either.
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Figure 9: Scatter plot of BP and BO marginals versus the true marginals
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10 Discussion

In this paper we have reviewed the mean field, Onsager and Bethe approxi-
mations. Our contribution was to convert the Bethe free energy to a Gibbs
free energy by solving the pairwise marginals &;; in terms of the neighboring
marginals ¢; and ¢;. This resulted in a new algorithm to minimize the Bethe
free energy in “primal” space (i.e. directly in terms of the node and pairwise
marginals), which forms a direct generalization of the fixed point equations
for the MF and Omnsager approximations. Moreover, provably convergent
algorithms were derived to directly minimize the Bethe free energy. A fur-
ther result of this primal formulation allowed us to improve the estimates of
the correlations through the use of the linear response theorem. Finally we
proved a number of long standing conjectures concerning the Plefka expan-
sion of spin systems (i.e. the Boltzmann machine), which further clarified
the relationship between the MF, Onsager and Bethe approximations.

A notable difference between BP and BO is the fact that BP need not
satisfy the marginalization constraints before it has converged. In contrast,
BO is parameterized such that it will satisfy these constraints automatically.
The above implies that the dynamics by which BP and BO try to minimize
the Bethe free energy are of a very different nature. An undesirable property
of BP, namely its failure to converge under certain circumstances, is certainly
avoided by BO. However, the general conclusion from our experiments is
that the Bethe approximation probably breaks down before any significant
difference between the two methods shows up.

In previous work we have also developed BO algorithms for the Gaussian
case and the non-binary discrete case [29],[25]. For Gaussian belief propaga-
tion (GaBP) it is important to notice that message updates do not necessarily
maintain positive definiteness of the covariance matrix. This does not come
as a surprise since it is a global constraint, while BP only performs local com-
putations. As a consequence, the Bethe free energy is not always bounded
from below and we have observed that exactly in these cases both GaBP and
Gaussian BO (GaBO) do not converge. In all other cases GaBP and GaBO
find the same answer experimentally. For a certain class of interactions (di-
agonally dominant) it was proved in [28] that GaBP always converges. An
algorithm for undirected graphical models with more than two states per
node, named “Unified Propagation and Scaling” (UPS) was proposed in [25].
It segments the graph in a forest of trees by fixing the marginals of certain
nodes. A combination of iterative scaling and BP is then performed on these
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trees. Next a new set of nodes is clamped to their current marginal posterior
estimates, resulting in a new forest of trees, etc. When no nodes remain
frozen all the time, the UPS algorithm will converge to a stationary point of
the Bethe free energy. An interesting alternative is Yuille’s CCCP algorithm
[33], which is also guaranteed to converge to a stationary point of the Bethe
free energy.

The Bethe approximation is actually the simplest of a whole family of
“Kikuchi” approximations which treat larger clusters exactly. In [32] the
“generalized belief propagation” algorithm was derived to find stationary
points of these Kikuchi approximations. Extending the ideas presented in
this paper to these more accurate approximations is a topic of future research.

Another direction for future research is the extension of the theorems
proven in section 8 to more general situations. One evident consequence of
these theorems is the following. Consider a graph which has a bottleneck of
more than one node, and moreover the joint distribution of these nodes is
kept fixed (not just the node marginals of these nodes). Then, changes in the
parameters of a subgraph on one side of the bottleneck (e.g. by changing the
evidence) will not influence the posterior probabilities in the other subsystem.
This idea can be used to define more general Plefka expansions, where not
just single node marginals but also marginal distributions of larger clusters
are frozen. A similar theorem, stating that in such expansions no diagrams
can appear where deleting any cluster of frozen nodes will cut the diagram
in two, should apply.
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