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1 Introduction

Figure 1a shows an islands coastline. Figure 1b to 1d show views of the coastline as seen
from different locations and altitudes. When exploring the coastline, sometimes one may
need to have a high level view of the whole coastline where most of the details are missing,
as in figure la. Sometimes, one might “zoom” in and explore certain parts of the coastline
in detail, as in figures 1b to 1d.

In this project we explore ways of representing and storing coastline information for
efficient retrieval. By retrieval we mean getting sufficient information to reconstruct the
coastline on a computer screen with sufficient detail and accuracy for simple viewing pur-
poses. The views of the coastline can be from a range of altitudes and locations as in figure
1, so that the reconstruction can range from high resolution (low altitude) to low resolution
(high altitude), and can be for a restricted section of the coastline instead of the whole coast-
line. This is akin to the many web-based street mapping utilities but applies to coastlines
instead of streets.

For the purposes of this project we assume that the coastline is a discretized curve on the
plane represented as a sequence of coordinates (z1,y1), (2, ¥2), ... , (Zn, Yn). The number of
discretizations n can potentially be very large, so that naive algorithms will not apply. We
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Figure 1: a : The coastline of an island. b, ¢ and d : higher resolution views of the coastline.
Note in d that there are more than one contiguous sections of the coastline visible.
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assume that the correlations between the z-coordinates and the y-coordinates are sufficiently
small, so that encoding them separately as two sequences of real numbers will not incur much
loss in performance.

Sometimes from a single view many non-contiguous sections of the coastline are visible,
as in figure 1d. It is nontrivial to efficiently determine the visible sections of the coastline. In
this project we only deal with the case in which the required reconstructions are contiguous
sections of the coastline, i.e. we want (z;,v:), ..., (z;,y;) where 1 <1i < j <n. We define a
low resolution view of a section of the coastline as an approximation to the true coastline,
where the error of the approximation is bounded above by a tolerance value 6. 6 determines
whether the view is a high resolution (low #) or low resolution (high 6) view. We shall defer
defining the error measure we used to section 3.1.

The sequences of x and y coordinates are discretely sampled signals. Signal processing
is a well established field for the encoding of signals, and we shall be using a broad signal
processing technique called linear transforms for the representation of the coastlines. This
includes Fourier and wavelet analyses. Fourier analysis assumes periodic signals. In coastline
terms, this means that we should assume the coastlines are coastlines of islands that form
closed loops. There are transforms related to the Fourier transform that does not assume
periodicity, for example the discrete cosine transform. To keep things simple, we shall assume
periodic signal, i.e. the coastlines are of islands which form closed loops. We also assume
that the signals are dyadic —i.e. n = 2' for some [ where n is the number of coordinates. This
is because the discrete wavelet transforms we will be using and the fast Fourier transform
(FFT) and fast wavelet transform (FWT) algorithms assume dyadic signals.

1.1 How to generate coastlines

We could not get examples of coastlines based on real islands and land masses. However
there are many methods of generating fractal curves that look similar to coastlines. Here we
introduce one method and use it to generate toy “coastlines” for analysis in the rest of the
project.

First decide on a probability distribution P over R? with zero mean and an adjustable
variance o?. Here we use a zero mean circular Gaussian with variance 0. The method is
recursive. Take a line segment, as in figure 2a, and determine it’s midpoint m = (my, my)
(figure 2b). Generate a sample (d,,6,) from P and perturb the midpoint by m' = (m, +
0z, My + 0y), as in figure 2c. Now recurse on the two resulting line segments, but with the
variance of the perturbation decreased by a factor A to Ao? (figure 2d). Stopping after
recursions give us an approximately fractal curve consisting of 2' line segments.

Normally we take A\ to be approximately %, with larger values giving more wiggly curves
(higher fractal dimensions), and smaller values smoother curves (lower fractal dimensions).
We used a value of A = 0.54 as this gives a measured fractal dimension of around 1.14, which
is close to the measured fractal dimensions of the world’s coastlines [1]*).

The resulting fractal looks very similar to real coastlines, except that it often crosses itself.
However this is not an important problem because our techniques will not be assuming that

(*)For example, Portugal’s coastline has fractal dimension 1.12, Australia’s 1.13, Germany’s 1.12 and Great
Britain’s a wiggly 1.24.
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Figure 2: Generating a fractal by perturbing a line segment recursively.

coastlines do not cross themselves. However for visual appeal we chose one that did not
cross itself too often at a high level (figure 3). This curve consists of 26 segments and has
a fractal dimension of 1.14. It will be used as the test coastline for the rest of the project.

1.2 Overview of the project

In section 2 we introduce linear transforms and how they can be useful in coding coastlines
as signals. We describe the Fourier transform and the frequency domain of signals, and
introduce wavelets as a trade-off between resolution in the frequency and spatial domains.
In section 3 we apply linear transforms to the representation of coastlines. We compare
the various transforms with respect to a number of criteria. In section 4 we discuss per-
ceptual differences in coastlines and methods to decrease the perceived differences between
approximate coastlines and the true coastlines. In section 5 we conclude.
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Figure 3: The example “coastline” we shall be using for the rest of the project.

2 Linear transforms

2.1 Nomenclature

For our purposes, a signal s is a sequence of real numbers, which we can write in vector form

s =[s1,...,8,)F. If B = C~!is an invertible n x n matrix, then we can represent s as a
linear combination of the columns B; of B,
s = ZnBi = Br (spl)
i
where r = [rq,...,7m,]7. The B;’s form a basis for R* and each B; is called a basis vector.

Since B is invertible, we have the inverse relation » = C's so that
r; =C"s (sp2)

where C" is the i row of C for all i. The application of C' to s is called a (linear) transform,
and the 7;’s the outputs or responses of the transform. The rows C%’s are called projection
vectors, since r; is the projection of s onto C'. Note that applying B to r to get s = Br is
also a transform — it is the inverse to the C transform. We identify matrices B and their
corresponding transforms to be the same thing and refer to them interchangeably.

We say B is orthonormal if B* = B~! = C where M* is the complex conjugate transpose
of a matrix M. In this case, we have C* = B}, so that the basis vectors coincide with the



CSC2508S project TEH Yee Whye 009753429

projection vectors up to conjugation. Orthonormal transforms are useful because the same
set of n vectors can be used for both processing the signal (r = Cs) and reconstructing the
signal from the response (s = Br). The power of a signal is simply the squared length :
P(s) = |s]|?>. In physical terms, this is the amount energy transmitted by the signal. Another
useful property of orthonormal transforms is that they conserve the power of a signal, i.e.
P(Cs) = P(s).

2.2 Fourier transform

An important linear transform is the Fourier transform. The Fourier transform is an or-
thonormal complex n X n matrix F' with

]_ LT (s ;
F, = %eﬂ(z—l)(a—l) (1)

where 1 = v/—1(). Because F'is complex the responses can be complex valued too. Complex
numbers take twice as much space to store than real numbers. However it turns out that

only half of the responses r; are needed as r; = r;,,, ; for i = 2,... 3 while both r; and

Tniq are real-valued, so really no extra space is required to store the Fourier responses.

The projection vector F* for + < 7 is a complex vector whose real component is a
discretized sine curve that oscillates for ¢ times. The complex component is a discretized
cosine curve oscillating for 7 times. This means that the response r; for ¢+ < 7 is the response
of the i frequency component of the signal. The i** frequency component is the component
of the signal that oscillates for ¢ times during the duration of the signal. The maximum
frequency we can determine from the signal is 3. This is called the Nyquist limit of the
signal.

Linear transforms normally require O(n?) time to transform signals into responses (a
matrix-vector multiplication). Due to the structure of the Fourier transform, O(nlogn)
algorithms called the fast Fourier transform (FFT) and the inverse fast Fourier transform
(IFFT) exist to transform dyadic signals to responses and back. This allows for the wide
spread application of Fourier transforms to large amounts of data.

This little subsection does little justice to Fourier transforms. For further information

there are countless texts devoted to this subject.

2.3 The frequency and spatial resolution trade-off

With the Fourier transform, Each response r; (along with r,,5_;) encodes all the information
related to a frequency component, and not any information about other frequency compo-
nents. On the other hand, each r; encodes just a little information about the value of each
s;, and hence one cannot determine the value of any s; accurately from just one r;. This can
be seen in the fact that the basis vector F' is global and not localized to some subset of the
SZ',S.

(t) Actually, the form of the Fourier transform that is generally known and used differs from (1) by a factor
of v/n. This is not important for the discussion here, and the form of (1) makes the transform orthonormal
instead “orthonormal up to multiplying by n”, which is troublesome.



CSC2508S project TEH Yee Whye 009753429

This is simply a special case of the famous Heisenberg uncertainty principle, which is a
formal statement along the following sense : there is a constant c¢ so that if v is a vector
confined to an interval of width Az (v is zero or decreases quickly to zero outside of this
interval), and Af is the uncertainty in its frequency, then AzAf > c¢. The uncertainty
principle essential tells us that we cannot at the same time get lots of information both in
the spatial and frequency domains.

The trade-off between having a small A f and a small Az is the frequency versus spatial
resolution trade-off. Fourier responses have a small Af but large Az, while the original
signal components have small Az but large Af.

In coastline representation terms, note that low frequency components actually encode
large scale structures in the coastline, while high frequency components encode small scale
structures in the coastline. When reconstructing a low resolution view of the coastline, only
the large scale structures are important, so only the low frequency components are required.
In a linear transform with good frequency resolution, the components are stratified, ranging
from low frequency components to high frequency components. Since only the low frequency
components are needed, the reconstruction can be more efficiently carried out than if all
components of the transform are needed. So using a linear transform with good frequency
resolution is advantageous.

On the other hand, while reconstructing a section the coastline a component is only
required if the interval the component is confined to falls within the section of the coastline.
In a linear transform with good spatial resolution, the components are confined to small
intervals, i.e. they are localized in spatial extent. So using a linear transform with good
spatial resolution is advantageous also, since less components are required to reconstruct the
segment well.

Hence the frequency versus spatial resolution trade-off translates to a trade-off between
being able to reconstruct low resolution views efficiently and being able to reconstruct sub-
sections of the coastline efficiently.

2.4 Wavelet transforms

Wavelet transforms arise as a compromise between the frequency and spatial resolution
trade-off, where both Az and Af are reasonably small. That is, wavelet transforms are
orthonormal linear transforms that are both localized in space and frequency. So we can
expect wavelet transforms to fair well over a range of reconstructions of our coastlines.

Another important property of wavelets is that the basis vectors are all translations and
dilations of a single vector, called the mother wavelet®). This is shown in figure 4 for the
Haar wavelet. Note that the translations and dilations can be arranged into a binary tree
as shown in figure 4, where the two children of each wavelet each occupy half the interval
where the wavelet occupies. There are [ = logn levels, with level k for 0 < £ <[ —1 having
2% wavelets and each wavelet occupying 2% of the whole interval.

Another important property of wavelet transforms is that there exists an algorithm called
the fast wavelet transform (FWT) that can perform wavelet transforms in O(n) time and

() Except for one of them, called the father wavelet, which is the wavelet equivalent of the DC component
of the Fourier transform.
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Figure 4: The wavelet basis tree for the Haar wavelet.

an algorithm called the inverse wavelet transform (IWT) that can perform inverse wavelet
transforms in O(n) time [10].

Figure 5 shows some examples of wavelets. The Haar wavelet is the original wavelet
and is simple and useful for educational purposes, but is not often used in practice due to
poor approximation properties. The other three wavelets each belong to a class of wavelets
(indexed by the number following the names of the classes). The Daubechies wavelets are
fractals and are highly non-smooth.

For a simple introduction to wavelets, the reader is referred to Graps [4] and Wicker-
hauser [11]. For an introduction to the mathematics of wavelets, including why the dila-
tion/translation property is important, the reader is referred to Strang [7]. For all kinds of
information on wavelets on the web, the reader can go to [9] and [5].

2.5 Signal representation and linear transforms

Linear transforms change the basis with respect to which we represent a signal. The basis
vectors form a representation of the signal. The responses r are encodings of s with respect
to the representation. Different basis vectors give different representations. In the standard
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Haar Daubechies—4
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0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
0 500 1000 0 500 1000
Coiflet-3 Symmlet-6
0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
0 500 1000 0 500 1000

Figure 5: Four families of wavelets.

basis (given by the identity matrix), each response r; in the encoding describes a component
s; of the signal. In the basis for Fourier transform, each response describes a frequency
component of the signal, although it tells us nothing about what any of the s;’s are. In
wavelet bases, each response gives partial information about a range of frequencies and a
range of s;’s.

Each response contains some information about the original signal. If we can collect most
of the required information to reconstruct the signal s accurately in a few responses, then we
can compress the signal by representing it only with the important responses and pruning
the others away (by setting to 0 and ignoring). For example, if we know in advance that
signals s can be well represented® as

m
s = g riB; + € (2)
i=1
where m < nand e= )" . r;B;issome small zero mean additive noise, then in encoding

s it is sufficient just to use r; for s = 1,... ,m and ignore r; for ¢ > m. This lets us compress
the signal and even clean up the noise.

()If we do not know what the best representation is in advance, there are statistical techniques available
allowing us to “learn” a good representation given the probability distribution over signals. Some examples
are PCA, ICA and factor analysis [3].
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The viewing of coastlines is another example. When viewing the coastline at large scales,
we really only need information about that coastline that is visible at large scales, and not
information at smaller scales. If we can represent the coastline signals using a transform that
partitions the information into bands of different scales, we can then obtain a large scale
view of the coastline efficiently using only the information in the large scale bands.

3 Representing coastlines with linear transforms

Recall that a coastline consists of the sequence of z-coordinates x = [z1,... ,7,|” and the
sequence of y-coordinates y = [y1,... ,y]T. We assume that n = 2! for some integer .

We used MATLAB [6] as our test bed. We used the WaveLab [8] toolbox for manipulating
wavelets and for DWT and IWT. We shall compare the various linear transforms on a typical
generated coastline, as shown in figure 3.

The linear transforms we shall be comparing are : the identity transform (i.e. the trans-
form associated with the identity matrix, i.e. representing the coastline directly), the Fourier
transform, and the Haar, Daubechies-6, Coiflet-3 and Symmlet-6 wavelet transforms.

There are many ways of comparing the relative merits of the various linear transforms. In
the following subsections we compare the various transforms mentioned earlier with respect
to two criteria — the reconstruction error and computational efficiency.

3.1 Reconstruction error

When reconstructing the coastline from the transform responses it is often not necessary to
use all the available responses to obtain a reasonably good reconstruction (i.e. “close enough”
to the naked eye). A criteria to consider when we have approximate reconstructions is how
close the approximation is to the true coastline.

One way of quantifying the error or difference from the true coastline is by the total area
bounded between the approximation and the true coastline. Another way is by the maximum
displacement of the approximation from the true coastline. Even though they make more
intuitive sense, the previous two distance measures are hard to compute. We resort to a
simpler distance measure. Suppose the real coastline has coordinates = = [z1,... ,z,]", y =
[Y1,---,ys)", and the approximation has coordinates =’ = [z},...,z.]", v' = [v],--. ,¥.]7,
then we define the distance between the two as

S @i — ) + (i — 9)? = llo — 2| + [ly — /|1 (3)

=1

To compare the various transforms we did a simple experiment. We compared the re-
construction errors of the various transforms while varying the number of responses used for
the reconstructions.

For the identity transform, every ™ response is used, where n is the total length of
the coastline, and m is the number of responses used. Then linear interpolation is used to
approximate the coordinates of the points in between every two responses. For the Fourier
and wavelet transforms, the m lowest frequency responses are used. The reconstructions for

10
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Figure 6: Error measured versus number of responses used on a log-log plot.

m = 16,64, 256 and 1024 for each transform are given in the appendix. Note that with only
1024 or even 256 components, all the transforms are already giving very good reconstructions
of the coastline.

Figure 6 shows the reconstruction errors versus the fraction of responses used for the vari-
ous linear transforms. Figure 6 shows that the Haar transform is the worst, while the Fourier
and other wavelet transforms are better than both the Haar and the identity transform. The
Haar transform does the worst because it has the worst approximation properties among the
wavelets. Using every few responses of the identity transform and linearly interpolating be-
tween them can be seen as an approximation to a non-orthonormal wavelet transform whose
basis vectors are “Mexican hat” vectors, as shown in figure 7. This has better approxima-
tion properties than the Haar transform ¥, although it is seldom used as a wavelet because
it is non-orthonormal. Besides having worse reconstructions than the Fourier and wavelet
transforms (except Haar transform), using every few responses of the identity transform has
another problem. It is not guaranteed to be a good reconstruction. For example, if our signal
consists of alternating 0’s and 1’s then, using just the odd responses, we would believe that
the signal is just 0. With Fourier and wavelet transforms we can prove theorems bounding
the reconstruction errors.

(1) The basis vectors are at least continuous, as opposed to the Haar basis vectors.

11
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Figure 7: The Mexican Hat “non-orthonormal wavelet”.

3.2 Computational efficiency

Due to the potentially large amounts of data the methods might need to handle, the amount
of processing required to reconstruct the coastlines is an important criteria.

The amount of storage required is not a concern for us. As a matter of fact every response
should be stored because the user can zoom in to a part of the coastline and view it at the
finest resolution. If instead our aim was to compress the whole coastline for viewing purposes
at the coarsest resolutions, then the amount of storage required will be an issue, and will be
related to the reconstruction errors incurred as a result of compressing the responses.

There are two things we need to consider : the amount of processing time required and the
number of responses used to reconstruct the coastline. The number of responses required is
an important consideration when retrieving the responses might take a much longer amount
of time than the processing, for example reading from a slow secondary storage or retrieving
through the internet.

First consider the case when we wish to achieve the highest resolution reconstruction on
a section of the coastline, say between indices ¢ to ¢ + j — 1. With the identity transform,
this requires j responses and O(j) processing time just to retrieve the responses. With the
Fourier transform, as every basis vector is global, every response is required to reconstruct
the section, hence n responses are required and at least O(n log j) processing time is required
(FFT requires O(nlogn) time but since we only require j signal values this may be improved
to O(nlogj)). With wavelet transforms, the only responses required are those whose corre-
sponding basis vectors are non-zero on the section of the reconstruction. On level k of the
wavelet tree, each wavelet is confined to an interval of length 2/=* where | = logn, hence at
most [Qﬂfkw + 1 basis vectors are relevant to reconstructing the coastline section, so in total
at most

logn—1 ] logn—1 j
1+Z[W]+1§1+ZW+2§j+210gn+1 (4)
k=0 k=0

responses are required. Further, the IWT can easily be adapted to ignore irrelevant com-
putations and run in O(j + logn) time. With j < n, the Fourier transform is clearly at a

12



CSC2508S project TEH Yee Whye 009753429

Transform Relation

Identity logm = —0.7986 log E + 9.0168
Fourier logm = —0.8236log E + 8.6063
Haar logm = —0.8363 log E + 10.0346
Daubechies-6 | logm = —0.8342log E + 8.6317
Coiflet-3 logm = —0.83151og E + 8.5916
Symmlet-6 logm = —0.8516log E + 8.5894

Table 1: Relation between error (E) and number of responses used (m).

disadvantage, while the wavelet transforms are only worse than the identity transform by an
additive factor of O(logn).

Now consider the case when we wish to achieve a low resolution reconstruction of the
whole coastline. That is, we want an approximate coastline (z,v}),...,(z!,y}) such that
the error measured is within some tolerance 6 of the true coastline. Given a tolerance 6, one
can estimate the number of responses required from figure 6. First, using linear regression
we fit straight lines to the log-log plot, giving equations relating the error to the number
of responses required for each linear transform. This is shown in table 1. We see that in
general the gradients of the lines are all approximately 0.83, while the additive constants
differ more significantly. This can be seen from figure 6 directly. In particular the additive
constants of the Haar transform is 10.0346 and that of the identity transform is 9.0168, both
being larger than the other transforms, which are all approximately 8.6. The differences in
additive constants shows that the number of responses required by the Haar transform is
about 12:& = 1.166 times the number required by the Fourier and other wavelet transforms,
while the identity transform needs about % = 1.0485 times as many responses. As for the
processing time required, both the identity transform and wavelet transforms require only
O(n) processing time, while the Fourier transform requires O(nlogn) (again this might be
improved to O(nlogm) where m is the number of responses used.). All in all, in this case,
the Haar and identity transform require slightly more responses to achieve the same quality
of reconstruction, while the Fourier transform needs more processing time. However, with
the identity transform, there is no guarantee that it will perform as well as it did here, as
the way we pick the responses is only a heuristics.

Finally consider the case when an approximate reconstruction of a segment of the coast-
line is required. With the Fourier transform, we first determine the responses required to
approximate the whole coastline within the given tolerance. But as the corresponding basis
vectors are global, all of the responses are required, even though we only need to reconstruct
a segment of the coastline. However it may be possible to spend less processing time re-
constructing just the segment instead of the whole coastline. With the identity and wavelet
transforms, after determining the responses required to reconstruct the whole coastline to
the given tolerance, instead of using all of them, we only use those that are relevant to the
segment of the coastline we are interested in. This can be done efficiently.

While Fourier transforms are inefficient at reconstructing just a subsection of the coast-
line, there are no guarantees on the performance of the identity transform at reconstructing

13
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coastlines at low resolutions. On the other hand, wavelet transforms (except Haar transfor-
m) can efficiently reconstruct subsections of coastlines at various resolutions, and there are
bounds on the reconstruction errors incurred.

4 Perceptual importance

4.1 Perceptual differences

Although the error measures we suggested in section 3.1 are mathematically quantifiable,
they do not necessarily correspond to how different we actually perceive the approximation
to be from the true coastline. To reduce the perceptual difference between the approximation
and the true coastline, it is important that the perceptual characteristics of the true coastline,
like the degree of wiggliness (fractal dimension) and shapes of bays and river mouths, are
matched as closely as possible. A drawback of this criteria is that it is very hard to quantify
perceptual difference. Also, perceptual differences may depend on outside factors.

4.2 Perceptual importance

As a first step towards measuring perceptual difference, we can introduce an importance
factor to each location on the coastline. Often, some parts of the coastline are more important
than others. For example, the coastline close to a city might be more important than the
surrounding areas simply because users might pay more attention to the cities rather than the
country side. For another example, given the east coast of the United States, it is important
for approximations to get the shape and location of Florida right, as the peninsula of Florida
is a salient feature of the east coast. To handle differences in importance, we can weigh
the errors in section 3.1 in each part of the coastline by how important that part is, so
that deviations from more important parts of the coastline are penalized more, so the more
important sections will be better approximated.

Another way of using the importance of sections of the coastline is related to the com-
putational criteria. When we have limited computational capabilities or time limits, it is
important to concentrate the available computations on more important parts of the coast-
line, so that these parts are better approximated.

One way to assignment importances is to look at the shape of the coastline. Normally
parts of the coastline with high curvature are more salient hence important than parts with
low curvature, i.e. straight lines etc. However the problem is that it is hard to determine
what is the curvature of a coastline. This is because coastlines are fractals, and are highly
irregular and non-smooth. What looks like a smooth curve at one scale will turn out to have
intricate structure at lower scales. This makes analyzing the shape of coastlines a challenge.

An interesting line of research is to determine some ways of quantifying perceptual im-
portance based on user input. This is along the same line of thought as Cutzu and Tarr
[2] where the idea is to let users choose good views of a 3-dimensional object, and based
on those views, determine which parts of the object are salient (important). In our case,
we can define the importance of a part of the coastline as a positive number. Start off the
program with all parts of the coastline equally important, and let users zoom in to parts of

14
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the coastline at will. Presumably the parts of the coastline which users zoom in at are more
important, so we can increase the importance of those parts, and decrease the importance
of other parts. If we make sure that the sum of the importances is a fixed constant after
every update, this procedure will converge to the perceived importance of each part of the
coastline. Further, this procedure can also adapt to changing user preferences so long as user
preferences do not change abruptly often.

4.3 Perceptual characteristics of linear transforms

As seen in the reconstructions in the appendix, the characteristics of reconstructed coastlines
depend critically on the types of linear transforms used. The reconstructions based on the
identity and Haar transforms seem to be made up of straight line segments, just as the basis
vectors of the Haar transform and the Mexican hat vectors in figure 7 do. The reconstructions
based on the Fourier, Coiflet-3 and Symmlet-6 transforms look like smooth curves, just as the
corresponding basis vectors do. The reconstructions based on the Daubechies-6 transform
are somewhat wiggly, as the basis vectors of the Daubechies-6 transform are fractals.

If the basis vectors of a transform have perceptual characteristics that differ significantly
from coastlines, then more responses will be required to match the characteristics of the
coastline better. An interesting idea is to find a fractal orthonormal wavelet transform
whose perceptual characteristics like wiggliness etc match as closely as possible to those of
coastlines, while at the same time can be shown to have good approximating properties.
Such a transform will require less responses to reconstruct coastlines at an acceptable level
of accuracy, as measured both by the error measure and by perceptual differences.

5 Conclusion

We show that wavelet transforms except the Haar transform are better at efficiently ap-
proximating coastlines and subsections of coastlines at a range of resolutions. The Fourier
transform is not suitable at reconstructing subsections of the coastline, while the identity
transform is not guaranteed to work well at low resolutions.

Our techniques developed for coastline representation can potentially be applied to other
domains, for example, elevation maps, images, and audio signals.

Two interesting lines of research were pointed out in section 4. One is to find some way
of determining the perceptual importance of parts of the coastline. The second is to find a
wavelet transform whose perceptual characteristics match as closely as possible to those of
coastlines.
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