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Overview

Continuous time discrete state systems: applications in physics,
chemistry, genetics, ecology, neuroscience etc.

The simplest example: the Poisson process on the real line.

Generalizations: renewal processes, Markov jump processes,
continuous time Bayesian networks etc.

These relate back to the basic Poisson process via the idea of
uniformization.

We use this connection to develop tractable models and efficient
MCMC sampling algorithms.
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Thinning
Uniformization generalizes the idea of ‘thinning’.

Thinning: to sample from a Poisson process with rate λ(t).

Sample from a Poisson process with rate Ω > λ(t) ∀t.

Thin or reject each point with probability 1− λ(t)
Ω

.

o

x

o

o

x

o

Follows from the complete randomness of the Poisson process.

Markov jump processes or renewal processes are not completely
random: Uniformization—thin points by running a Markov chain.
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Uniformization (at a high level)

Draw from a Poisson process with rate Ω.

Ω is larger than the fastest rate at which ‘events occur’.

Construct a Markov chain with transition times given by the
drawn point set.

The Markov chain is subordinated to the Poisson process.

Keep a point t with probability λ(t|state)/Ω.
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Markov jump processes (MJPs)

An MJP S(t), t ∈ R+ is a right-continuous piecewise-constant
stochastic process taking values in some finite space. S = {1, 2, ...n}.
It is parametrized by an initial distribution π and a rate matrix A.


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann


Aij : rate of leaving state i for j

Aii = −
n∑

j=1,j 6=i

Aij

|Aii | : rate of leaving state i
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Uniformization for MJPs

Alternative to Gillespie’s algorithm.

Sample a set of times from a Poisson process with rate
Ω ≥ maxi |Aii | on the interval [tstart , tend ].

Run a discrete time Markov chain with initial distribution π and
transition matrix B = (I + 1

Ω
A) on these times.

The matrix B allows self-transitions.
[Jensen, 1953]
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Uniformization for MJPs [Jensen, 1953]

Lemma
For any Ω ≥ maxi |Aii |, the (continuous time) sequence of states
obtained by the uniformized process is a sample from a MJP with
initial distribution π and rate matrix A.
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Auxiliary variable Gibbs sampler

Given noisy observations of an MJP, obtain samples from the
posterior.

Observations can include:

State values at the end points of an interval.

Observations x(t) ∼ F (S(t)) at a finite set of times t.

More complicated likelihood functions that depend on the entire
trajectory, e.g. Markov modulated Poisson processes and
continuous time Bayesian networks (see later).

State space of Gibbs sampler consist of:

Trajectory of MJP S(t).

Auxiliary set of points rejected via self-transitions.

[Rao and Teh, 2011a]
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Auxiliary variable Gibbs sampler
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Auxiliary variable Gibbs sampler

Given current MJP path, we need to resample the set of rejected
points. Conditioned on the path, these are:

I independent of the observations,
I produced by ‘thinning’ a rate Ω Poisson process with probability

1 +
AS(t)S(t)

Ω ,
I thus, distributed according to a inhomogeneous Poisson process

with piecewise constant rate (Ω + AS(t)S(t)).
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Auxiliary variable Gibbs sampler

Given all potential transition points, the MJP trajectory is
resampled using the forward-filtering backward-sampling
algorithm.

The likelihood of the state between 2 successive points must
include all observations in that interval.
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Comments

Complexity: O(n2P), where P is the (random) number of points.

Can take advantage of sparsity in transition rate matrix A.

Only dependence between successive samples is via the
transition times of the trajectory.

Increasing Ω reduces this dependence, but increases
computational cost.

Sampler is ergodic for any Ω > maxi |Aii |.
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Existing approaches to sampling

[Fearnhead and Sherlock, 2006, Hobolth and Stone, 2009] produce
independent posterior samples, marginalizing over the infinitely many
MJP paths using matrix exponentiation.

scale as O(n3 + n2P).

any structure, e.g. sparsity, in the rate matrix A cannot be
exploited in matrix exponentiation.

cannot be easily extended to complicated likelihood functions
(e.g. Markov modulated Poisson processes, continuous time
Bayesian networks).
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Continuous-time Bayesian networks (CTBNs)

Compact representations of large state space MJPs with
structured rate matrices.

Applications include ecology, chemistry , network intrusion
detection, human computer interaction etc.

The rate matrix of a node at time is determined by the
configuration of its parents at that time.

[Nodelman et al., 2002]
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Gibbs sampling CTBNs via uniformization

?

NP C

The trajectories of all nodes are piecewise constant.

In a segment of constant parent (P) values, the dynamics of N
are controlled by a fixed rate matrix AP .

Each child (C) trajectory is effectively a continuous-time
observation.
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Gibbs sampling CTBNs via uniformization

?

NP C

Sample candidate transition times from a Poisson process with
rate Ω > AP

ii .

Between two successive Poisson events, N remains in a constant
state.

I This state must account for the likelihood of children nodes’
states.

I The state must also explain relevant observations.

With the resulting ‘likelihood’ function and transition matrix
B = (I + 1

Ω
AP), sample new trajectory using forward-filtering

backward-sampling.
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Existing approaches to inference

[El-Hay et al., 2008] describe a Gibbs sampler involving time
discretization, which is expensive and approximate.

[Fan and Shelton, 2008] uses particle filtering which can be
inaccurate for long time intervals.

[Nodelman et al., 2002, Nodelman et al., 2005,
Opper and Sanguinetti, 2007, Cohn et al., 2010] use deterministic
approximations (mean-field and expectation propagation) which are
biased and can be inaccurate.
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Experiments

We compare our uniformization-based sampler with a
state-of-the-art CTBN Gibbs sampler of [El-Hay et al., 2008].
search on the time interval.

When comparing running times, we measured times required to
produce same effective sample sizes.

Vinayak Rao, Yee Whye Teh (Gatsby Unit) MCMC for Continuous Time Systems 15 / 40



Experiments
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Figure: CPU time vs length of
CTBN chain.
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Figure: CPU time vs number
of states of CTBN nodes.

The plots above were produced for a CTBN with a chain topology,
increasing the number of nodes in the chain (left) and the number of
states of each node (right).
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Experiments
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Figure: CPU time vs time
interval of CTBN paths.
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Figure: Average relative error
vs number of samples

Produced for the standard ‘drug network’.
Left: required CPU time as length of the time interval increases.
Right: (normalized) absolute error in estimated parameters of the
network as the (absolute) number of samples increases.
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Experiments

Compared against the mean-field approximation of
[Opper and Sanguinetti, 2007], for the predator-prey model, a CTBN
describing the Lotka-Volterra equations.
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Posterior (mean and 90% confidence intervals) over predator paths
(observations (circles) only until 1500).
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Renewal processes

Renewal processes: point processes on the real line (‘time’).

Inter-event times drawn i.i.d. from some renewal density.

Homogeneous Poisson process: exponential renewal density.

Can capture burstiness or refractoriness.

Our contribution: modulated renewal processes:

Nonstationarity: allow external time-varying factors to modulate
the inter-event distribution.

We place a (transformed) Gaussian process prior on the intensity
function.

[Rao and Teh, 2011b]
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Modulated renewal processes

Associated with the renewal density g is a hazard function h.

For an infinitesimal ∆, h(τ)∆ is the probability of the inter-event
interval being in [τ, τ + ∆] conditioned on it being at least τ :

h(τ) =
g(τ)

1−
∫ τ

0
g(u)du

Modulate the hazard function by some time-varying intensity
function λ(t):

h(τ, t) ≡ m(h(τ), λ(t))

m(·, ·) is some interaction function.

We use multiplicative interactions, h(τ, t) = h(τ)λ(t).

Another interaction function is additive h(τ, t) = h(τ) + λ(t).
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Modulated renewal processes (continued)

We place a Gaussian Process prior on the intensity function
λ(t), transformed via a sigmoidal link function.

We use a gamma family for the hazard function:

h(τ) =
xγ−1e−x∫∞

x
uγ−1e−udu

where γ is the shape parameter. The generative process is:

l(·) ∼ GP(µ,K )

λ(·) = λ̂σ(l(·))

G ∼ R(λ(·), h(·))

We place hyperpriors on λ̂, γ and the GP hyperparameters
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Direct sampling from prior

The modulated renewal density is:

g(τ |tprev ) = λ(tprev + τ)h(τ) exp

(
−
∫ τ

0

λ(tprev + u)h(u)du

)
where tprev is the previous event time.
Näıvely, need to numerically evaluate integrals to generate samples.

can be time consuming and introduce approximation errors.
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Sampling via uniformization
Assume the intensity function λ(t) and the hazard function h(τ)
are bounded

∃Ω ≥ max
t,τ

h(τ)λ(t)

Sample E = {E0 = 0,E1,E2, . . .} from a Poisson process with
rate Ω.
Let {Y0 = 0,Y1,Y2, . . .} be an integer-valued Markov chain on
the times in E , where each Yi either equals Yi−1 or i .

I Yi = Yi−1 → reject Ei ,
I Yi = i → keep Ei .

Ei − EYi
: time since the last accepted event. For i > j ≥ 0,

define

p(Yi = i |Yi−1 = j) =
h(Ei − Ej )λ(Ej )

Ω

Define G = {Ei ∈ E s.t. Yi = i}.
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Sampling via uniformization

Lemma
For any Ω ≥ maxt,τ h(τ)λ(t), G is a sample from a modulated
renewal process with hazard h(·) and modulating intensity λ(·).
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Sampling via uniformization
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Figure: Green: rejected events, Red: sample for a Gamma(3) modulated
renewal process.
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Reduction to thinning of Poisson processes

For a Poisson process, the hazard function is a constant:

h(τ) = h

Then, the transition probabilities of the Markov chain becomes:

p(Yi = i |Yi−1 = j) =
hλ(Ej )

Ω

This reduces to independent thinning [Adams et al., 2009].
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Inference

Given a set of event times G , obtain sample from the modulating
function λ(·) (and hyperparameters).

As before, directly sampling from the GP posterior is impossible.

Introduce the rejected events as auxiliary variables and proceed by
alternately sampling the rejected events given G and the intensity
function, and then the intensity function given G and rejected events.
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Inference
Assume the modulating function λ(t) is known for all t.

In the interval (Gi−1,Gi ), events from a rate Ω Poisson process were
rejected with probability:

1− λ(t)h(t − Gi−1)

Ω

Under the posterior, these rejected events are distributed as an
inhomogeneous Poisson process with rate:

Ω− λ(t)h(t − Gi−1)

Catch: we know λ(t) only at a discrete set of times. Use thinning
method of GP Cox processes [Adams et al., 2009].

Vinayak Rao, Yee Whye Teh (Gatsby Unit) MCMC for Continuous Time Systems 28 / 40



Inference
Assume the modulating function λ(t) is known for all t.

In the interval (Gi−1,Gi ), events from a rate Ω Poisson process were
rejected with probability:

1− λ(t)h(t − Gi−1)

Ω

Under the posterior, these rejected events are distributed as an
inhomogeneous Poisson process with rate:

Ω− λ(t)h(t − Gi−1)

Catch: we know λ(t) only at a discrete set of times. Use thinning
method of GP Cox processes [Adams et al., 2009].

Vinayak Rao, Yee Whye Teh (Gatsby Unit) MCMC for Continuous Time Systems 28 / 40



Inference
Assume the modulating function λ(t) is known for all t.

In the interval (Gi−1,Gi ), events from a rate Ω Poisson process were
rejected with probability:

1− λ(t)h(t − Gi−1)

Ω

Under the posterior, these rejected events are distributed as an
inhomogeneous Poisson process with rate:

Ω− λ(t)h(t − Gi−1)

Catch: we know λ(t) only at a discrete set of times. Use thinning
method of GP Cox processes [Adams et al., 2009].

We resample the GP on the events and the rejected points using ellip-
tical slice sampling [Murray et al., 2010].
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Computational considerations

Complexity: O(N3), where N = |G |+ 2|E |, |G | is the number of
observations and |E | is the number of rejected points.

For large G , we must resort to approximate inference for
Gaussian processes [Rasmussen and Williams, 2006].

Question: how do these approximations compare with
time-discretized approximations like [Cunningham et al., 2008]?
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Experiments
Three synthetic datasets generated by modulating a Gamma(3)
renewal process.

λ1(t) = 2 exp(t/5) + exp(−((t − 25)/10)2, t ∈ [0, 50]: 44 events

λ2(t) = 5 sin(t2) + 6, t ∈ [0, 5]: 12 events

λ3(t): a piecewise linear function, t ∈ [0, 100]: 153 events

Three settings of our model and a strawman:

with the shape parameter fixed to 1 (MRP Exp),

with the shape parameter fixed to 3 (MRP Gam3),

with a hyperprior on the shape parameter (MRP Full),

an approximate discrete time sampler on a regular grid covering
the interval, all intractable integrals were approximated
numerically.
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Experiments
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Figure: Synthetic datasets 1-3: Posterior mean intensities (top) and
Gamma shape posteriors (bottom). Results from 5000 MCMC samples
after a burn-in of 1000 samples.
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Experiments

MRP Exp MRP Gam3 MRP Full Disc25 Disc100

l2 error 7.85 3.19 2.55 4.09 2.43
log pred. -47.55 -38.07 -37.37 -41.65 -41.02

l2 error 141.01 56.22 58.44 91.32 57.9

log pred. -3.70 -2.95 -3.28 -5.25 -3.85

l2 error 82.03 11.42 13.44 122.34 38.05

log pred. -89.88 -48.28 -48.57 87.17 -55.80

Table: l2 distance from the truth and mean log predictive probabilities of
test sets for synthetic datasets 1 (top) to 3 (bottom).

Vinayak Rao, Yee Whye Teh (Gatsby Unit) MCMC for Continuous Time Systems 32 / 40



Experiments

Dataset: the coal mine disaster dataset, recording the dates of a
series of 191 coal mining disasters (each of which killed ten or more
men [Jarrett, 1979]).
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Figure: Left: posterior mean of the intensity function. The posterior for
shape parameter was close to 1. Middle and right: results after deleting
every alternate event.
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Experiments
Dataset: neural spike train recorded from grasshopper auditory
receptor cells [Rokem et al., 2006].
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Figure: Left: Posterior mean intensity for neural data with 1 standard
deviation error bars. Superimposed is the log stimulus (scaled and
shifted). Right: Posterior over the gamma shape parameter.
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Experiments
We compare our uniformization based blocked Gibbs sampler with
the sampler of [Adams et al., 2009].

Synthetic dataset 1

Mean ESS Minimum ESS Time(sec)

Gibbs 93.45± 6.91 50.94± 5.21 77.85

MH 56.37± 10.30 19.34± 11.55 345.44

Coalmine dataset

Mean ESS Minimum ESS Time(sec)

Gibbs 53.54± 8.15 24.87± 7.38 282.72

MH 47.83± 9.18 18.91± 6.45 1703

Table: Sampler comparisons. Numbers are per 1000 samples.

Besides mixing faster our sampler:

is simpler and more natural to the problem,

does not require any external tuning.
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Conclusions

The idea of uniformization relates more complicated continuous
time discrete state processes to the basic Poisson process.

We demonstrated how this connection can be used to develop
tractable models and efficient MCMC inference schemes.

We can look into extending the models we discussed here:
I renewal processes with unbounded hazard rates,
I semi-Markov jump processes,
I inhomogeneous MJPs, MJPs with infinite state spaces etc.

Other applications we wish to study, such as survival analysis,
queuing systems etc.
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Algorithm 1 Blocked Gibbs sampler for GP-modulated renewal pro-
cess on the interval [0,T ]

Input: Set of event times G , set of thinned times G̃prev and l instanti-
ated at G ∪ G̃prev .
Output: A new set of thinned times G̃new and a new instantiation
lG∪G̃new

of the GP on G ∪ G̃new .

1: Sample A ⊂ [0,T ] from a Poisson process with rate Ω.
2: Sample lA|lG∪G̃prev

.
3: Thin A, keeping element a ∈ A ∩ [Gi−1,Gi ] with probability(

1− λ̂σ(l(a))h(a−Gi−1)
Ω

)
.

4: Let G̃new be the resulting set and lG̃new
be the restriction of lA to

this set. Discard G̃prev and lG̃prev
.

5: Resample lG∪G̃new
using, for example, elliptical slice sampling.
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