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Motivation

I Large scale datasets are becoming more commonly available across
many fields.

I Learning complex models from these datasets will be the future.

I Current successes in scalable learning methods are optimization-based
and non-Bayesian.

I Bayesian methods are currently not scalable, e.g. each iteration of
MCMC sampling requires computations over the whole datasets.

I Aim: develop Bayesian methodologies applicable to large scale
datasets.

I Best of both worlds: scalability, and Bayesian protection against
overfitting.
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Contribution

I A very simple twist to standard stochastic gradient ascent.

I Turns it into a Bayesian algorithm which samples from the full posterior
distribution rather than converges to a MAP mode.

I Resulting algorithm is related to Langevin dynamics—a classical
physics method for sampling from a distribution.

I Applied to Bayesian mixture models, logistic regression, and
independent components analysis.
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Setup

I Parameter vector θ.

I Large numbers of data items x1, x2, . . . , xN where N � 1.

I Model distribution is:

p(θ,X ) = p(θ)
N∏

i=1

p(xi |θ)

I Aim: obtain samples from posterior distribution p(θ|X ).
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Stochastic Gradient Ascent

I Also known as: stochastic approximation, Robbins-Munro.

I At iteration t = 1,2, . . .:

I Get a subset (minibatch) xt1, . . . , xtn of data items where n� N.
I Approximate gradient of log posterior using the subset:

∇ log p(θt |X ) ≈ ∇ log p(θt) +
N
n

n∑
i=1

∇ log p(xti |θt)

I Take a gradient step:

θt+1 = θt +
εt
2

(
∇ log p(θt) +

N
n

n∑
i=1

∇ log p(xti |θt)

)
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Stochastic Gradient Ascent

I Major requirement for convergence on step-sizes1:

∞∑
t=1

εt =∞
∞∑

t=1

ε2t <∞

I Intuition:

I Step sizes cannot decrease too fast, otherwise will not be able to
traverse parameter space.

I Step sizes must decrease to zero, otherwise parameter trajectory
will not converge to a local MAP mode.

1In addition to other technical assumptions.
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Langevin Dynamics

I Stochastic differential equation describing dynamics which converge to
posterior p(θ|X ):

dθ(t) =
1
2
∇ log p(θ(t)|X ) + db(t)

where b(t) is Brownian motion.

I Intuition:

I Gradient term encourages dynamics to spend more time in high
probability areas.

I Brownian motion provides noise so that dynamics will explore the
whole parameter space.
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Langevin Dynamics

I First order Euler discretization:

θt+1 = θt +
ε

2
∇ log p(θt |X ) + ηt ηt = N(0, ε)

I Amount of noise is balanced to gradient step size.

I With finite step size there will be discretization errors.

I Discretization can be fixed by Metropolis-Hastings accept/reject step.

I As ε→ 0 acceptance rate goes to 1.
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Stochastic Gradient Langevin Dynamics

I Idea: Langevin dynamics with stochastic gradients.

θt+1 = θt +
εt
2

(
∇ log p(θt) +

N
n

n∑
i=1

∇ log p(xti |θt)

)
+ ηt

ηt = N(0, εt)

I Update is just stochastic gradient ascent plus Gaussian noise.

I Noise variance is balanced with gradient step sizes.

I εt decreases to 0 slowly (step-size requirement).
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Stochastic Gradient Langevin Dynamics—Intuition

θt+1 = θt +
εt
2

(
∇ log p(θt) +

N
n

n∑
i=1

∇ log p(xti |θt)

)
+ ηt

ηt = N(0, εt)

I Only computationally expensive part of Langevin dynamics is the
gradient computation. If gradient can be well-approximated on small
minibatches the algorithm will work well.

I As εt → 0:

I Variance of gradient noise is O(ε2t ), while variance of ηt is εt � ε2t .
Gradient noise dominated by ηt so can be ignored.
Result: Langevin dynamic updates with decreasing step sizes.

I MH acceptance probability approaches 1, so we can ignore the
expensive MH accept/reject step.

I εt approaches 0 slowly enough, so discretized Langevin dynamics
still able to explore whole parameter space.
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Mixture of Gaussians
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Mixture of Gaussians
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Logistic Regression
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Independent Components Analysis
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Independent Components Analysis
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Discussion

I This is the first baby step towards Bayesian learning for large scale
datasets.

I Future work:

I Theoretical convergence proof.
I Better scalable MCMC techniques.
I Methods that do not require decreasing step sizes.
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