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Motivation

» Large scale datasets are becoming more commonly available across
many fields.

» Learning complex models from these datasets will be the future.

» Current successes in scalable learning methods are optimization-based
and non-Bayesian.

» Bayesian methods are currently not scalable, e.g. each iteration of
MCMC sampling requires computations over the whole datasets.

» Aim: develop Bayesian methodologies applicable to large scale
datasets.

» Best of both worlds: scalability, and Bayesian protection against
overfitting.
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Contribution

» A very simple twist to standard stochastic gradient ascent.

» Turns it into a Bayesian algorithm which samples from the full posterior
distribution rather than converges to a MAP mode.

» Resulting algorithm is related to Langevin dynamics—a classical
physics method for sampling from a distribution.

» Applied to Bayesian mixture models, logistic regression, and
independent components analysis.
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Setup

\4

Parameter vector 6.

v

Large numbers of data items x1, X2, ..., xy Where N > 1.

Model distribution is:

v

N
p(6, X) = p(0) ] [ p(xil6)

i=1

v

Aim: obtain samples from posterior distribution p(9|X).
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Stochastic Gradient Ascent

» Also known as: stochastic approximation, Robbins-Munro.
> Atiterationt=1,2,...:

» Get a subset (minibatch) x4, . .., x;, of data items where n < N.
» Approximate gradient of log posterior using the subset:

Vlog p(6:|X) ~ V log p(6:) + Z V log p(xii|01)

» Take a gradient step:

Oi1 =0+ = <V log p(6 Z V log p( Xnﬂ))

i=1
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Stochastic Gradient Ascent

» Major requirement for convergence on step-sizes’:

e < o0
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» Intuition:

» Step sizes cannot decrease too fast, otherwise will not be able to
traverse parameter space.

» Step sizes must decrease to zero, otherwise parameter trajectory
will not converge to a local MAP mode.

'In addition to other technical assumptions.
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Langevin Dynamics

» Stochastic differential equation describing dynamics which converge to
posterior p(6] X):

do(t) = %V log p(0(1)|X) + db(t)
where b(t) is Brownian motion.
» Intuition:

» Gradient term encourages dynamics to spend more time in high
probability areas.

» Brownian motion provides noise so that dynamics will explore the
whole parameter space.
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Langevin Dynamics

First order Euler discretization:

v

Opp1 = 0; + %V log p(6:|X) + 0t nt = N(0, €)

v

Amount of noise is balanced to gradient step size.

v

With finite step size there will be discretization errors.

v

Discretization can be fixed by Metropolis-Hastings accept/reject step.

» As ¢ — 0 acceptance rate goes to 1.
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Stochastic Gradient Langevin Dynamics

v

Idea: Langevin dynamics with stochastic gradients.

Ot1 =601+ = (V log p(6;) + Z V log p( th|9t)> + ¢

i=1

- N(Oa et)

v

Update is just stochastic gradient ascent plus Gaussian noise.

v

Noise variance is balanced with gradient step sizes.

\4

¢ decreases to 0 slowly (step-size requirement).
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Stochastic Gradient Langevin Dynamics—Intuition

N n
91+1 =0+ % (V |Og p(@t) + F ; \% |Og p(th01)> + e

Nt = N(O7 61‘)

» Only computationally expensive part of Langevin dynamics is the
gradient computation. If gradient can be well-approximated on small
minibatches the algorithm will work well.

» As ¢ — 0

» Variance of gradient noise is O(¢?), while variance of 7, is ; > 2.
Gradient noise dominated by 7; so can be ignored.
Result: Langevin dynamic updates with decreasing step sizes.

» MH acceptance probability approaches 1, so we can ignore the
expensive MH accept/reject step.

» ¢; approaches 0 slowly enough, so discretized Langevin dynamics
still able to explore whole parameter space.

13/21



Outline

Demonstrations

14/21



Mixture of Gaussians
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Mixture of Gaussians
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Logistic Regression
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Independent Components Analysis

Amari distance

Instability Metric
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Independent Components Analysis

PDF W(1,1) vs W(1,2) Corr. Lan. PDF W(1,1) vs W(1,2) Stoc. Lan.
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Discussion

» This is the first baby step towards Bayesian learning for large scale
datasets.

» Future work:

» Theoretical convergence proof.
» Better scalable MCMC techniques.
» Methods that do not require decreasing step sizes.
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