Supplementary material for 'MCMC for continuous-time discrete-state systems'

Vinayak Rao
Gatsby Computational Neuroscience Unit
University College London
vrao@gatsby.ucl.ac.uk

Yee Whye Teh

Gatsby Computational Neuroscience Unit
University College London
ywteh@gatsby.ucl.ac.uk

Proposition 1 The path (V, L, W) returned by algorithm 1 corresponds to a sample from the semiMarkov process parametrized by $\left(\pi_{0}, A\right)$.

Proof. Without any loss of generality, assume that the system has just entered state $s \in \mathcal{S}$ at time 0 .
Suppose that t is the time of nth candidate jump, so that there were $n-1$ rejected transitions on the interval $[0, t]$. Let these occur at times $\left(w_{1}, w_{2}, \ldots, w_{n-1}\right)$, with $t=w_{n}$. Recalling that these were generated from the hazard function $B_{s}(t)$, and letting [$n-1$] represent the set of integers $\{1, \cdots, n-1\}$, we have:

$$
\begin{align*}
& P\left(\left(w_{1}, \ldots w_{n}\right),\left\{v_{i}=s, l_{i}=\left(w_{i}-w_{0}\right) \forall i \in[n-1]\right\}, v_{n}=s^{\prime}, l_{n}=0 \mid w_{0}, v_{0}=s\right) \\
&=\left(\prod_{k=1}^{n-1} B_{s}\left(l_{k}\right) \exp \left(-\int_{l_{k-1}}^{l_{k}} B_{s}(\tau) \mathrm{d} \tau\right)\left(1-\frac{A_{s}\left(l_{k}\right)}{B_{s}\left(l_{k}\right)}\right)\right) \tag{1}\\
&\left(B_{s}\left(l_{n-1}+\Delta w_{n-1}\right) \exp \left(-\int_{l_{n-1}}^{l_{n-1}+\Delta w_{n-1}} B_{s}(\tau) \mathrm{d} \tau\right)\left(\frac{A_{s s^{\prime}}\left(l_{n-1}+\Delta w_{n-1}\right)}{B_{s}\left(l_{n-1}+\Delta w_{n-1}\right)}\right)\right) \\
&= \exp \left(-\int_{0}^{l_{n-1}+\Delta w_{n-1}} B_{s}(\tau) \mathrm{d} \tau\right)\left(\prod_{k=1}^{n-1}\left(B_{s}\left(l_{k}\right)-A_{s}\left(l_{k}\right)\right)\right) A_{s s^{\prime}}\left(l_{n-1}+\Delta w_{n-1}\right) \tag{2}
\end{align*}
$$

Integrating out w_{1} to w_{n-1} (and thus l_{1} to l_{n-1}), we have

$$
\begin{align*}
P\left(w_{n}=\right. & \left.t,\left\{v_{i}=s \forall i \in[n-1]\right\}, v_{n}=s^{\prime}, l_{n}=0 \mid w_{0}=0, v_{0}=s\right) \tag{3}\\
= & \exp \left(-\int_{0}^{t} B_{s}(\tau) \mathrm{d} \tau\right) A_{s s^{\prime}}\left(w_{n}\right) \\
& \left(\int_{0}^{t} \int_{l_{1}}^{t} \cdots \int_{l_{n-2}}^{t} \prod_{k=1}^{n-1}\left(B_{s}\left(l_{k}\right)-A_{s}\left(l_{k}\right) \mathrm{d} l_{k}\right)\right) \\
= & A_{s s^{\prime}}(t) \exp \left(-\int_{0}^{t} B_{s}(\tau) \mathrm{d} \tau\right) \frac{1}{(n-1)!}\left(\int_{0}^{t} \mathrm{~d} \tau\left(B_{s}(\tau)-A_{s}(\tau)\right)\right)^{n-1} \tag{4}
\end{align*}
$$

The expression above gives the probability of transitioning from state s to s^{\prime} after a wait of t time units, with $n-1$ rejected candidate jumps. Summing out $n-1$, we get the transition probability. Thus,

$$
\begin{align*}
P\left(s_{n e x t}\right. & \left.=s^{\prime}, t_{\text {next }}=t \mid s_{\text {curr }}=s, t_{\text {curr }}=0\right) \\
& =A_{s s^{\prime}}(t) \exp \left(-\int_{0}^{t} B_{s}(\tau) \mathrm{d} \tau\right) \sum_{n-1=0}^{\infty} \frac{1}{(n-1)!}\left(\int_{0}^{t} \mathrm{~d} \tau\left(B_{s}(\tau)-A_{s}(\tau)\right)\right)^{n-1} \\
& =A_{s s^{\prime}}(t) \exp \left(-\int_{0}^{t} A_{s}(\tau) \mathrm{d} \tau\right) \tag{5}
\end{align*}
$$

This is the desired result.
Proposition 2 Conditioned on a trajectory (S, T) of the sMJP, the thinned events \tilde{W} are distributed as a Poisson process with intensity $B(t)-A(t)$.

Proof. We will consider the interval of time $\left[t_{i}, t_{i+1}\right]$, so that the sMJP entered state s_{i} at time t_{i}, and remained there until time t_{i+1}, when it transitioned to state s_{i+1}. Exploiting the independence properties of the sMJP and the Poisson process, we only need to consider resampling thinned events on this interval. Call this set of thinned events $\tilde{W} \equiv\left\{\tilde{w}_{1}, \cdots, \tilde{w}_{n-1}\right\} \in\left[t_{i}, t_{i+1}\right]$, and call the corresponding set of labels $\tilde{V} \equiv\left\{\tilde{v}_{1}, \cdots, \tilde{v}_{n-1}\right\}$ and $\tilde{L} \equiv\left\{\tilde{l}_{1}, \cdots, \tilde{l}_{n-1}\right\}$ (to avoid notational clutter, we do not indicate that \tilde{W} and \tilde{L} are actually restrictions to $\left[t_{i}, t_{i+1}\right]$). Observe that each element of $\tilde{v}_{j} \in \tilde{V}$ equals s_{i}, while each element $\tilde{l}_{j} \in \tilde{L}$ equals $\tilde{w}_{j}-t_{i}$. We write this as $\tilde{V}=s_{i}$ and $\tilde{L}=\tilde{W}-t_{i}$. Then, by Bayes rule, we have

$$
\begin{align*}
& P(\tilde{W}, \tilde{V}\left.=s_{i}, \tilde{L}=\tilde{W}-t_{i} \mid s_{i}, t_{i}, s_{i+1}, t_{i+1}\right) \tag{6}\\
&=\frac{P\left(\tilde{W}, \tilde{V}=s_{i}, \tilde{L}=\tilde{W}-t_{i}, v_{n}=s_{i+1}, w_{n}=t_{i+1}, l_{n}=0 \mid v_{0}=s_{i}, w_{0}=t_{i}, l_{0}=0\right)}{P\left(s_{i+1}, t_{i+1} \mid s_{i}, t_{i}\right)} \\
&=\frac{\exp \left(-\int_{t_{i}}^{t_{i+1}} B(\tau) \mathrm{d} \tau\right)\left(\prod_{k=1}^{n-1}\left(B\left(\tilde{w}_{k}\right)-A\left(\tilde{w}_{k}\right)\right)\right) A_{s_{i} s_{i+1}}\left(t_{i+1}-t_{i}\right)}{A_{s_{i} s_{i+1}}\left(t_{i+1}-t_{i}\right) \exp \left(-\int_{t_{i}}^{t_{i+1}} A(\tau) \mathrm{d} \tau\right)} \\
& \quad=\exp \left(-\int_{t_{i}}^{t_{i+1}} B(\tau)-A(\tau) \mathrm{d} \tau\right)\left(\prod_{k=1}^{n-1}\left(B\left(v_{k}\right)-A\left(v_{k}\right)\right)\right)
\end{align*}
$$

This is just the density of a Poisson process on $\left(t_{i}, t_{i+1}\right)$ with intensity $(B(t)-A(t))$, which is what we set out to prove.

