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Proposition 1 The path (V,L,W ) returned by algorithm 1 corresponds to a sample from the semi-
Markov process parametrized by (π0, A).

Proof. Without any loss of generality, assume that the system has just entered state s ∈ S at time 0.

Suppose that t is the time of nth candidate jump, so that there were n − 1 rejected transitions on
the interval [0, t]. Let these occur at times (w1, w2, . . . , wn−1), with t = wn. Recalling that these
were generated from the hazard function Bs(t), and letting [n − 1] represent the set of integers
{1, · · · , n− 1}, we have:
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Integrating out w1 to wn−1 (and thus l1 to ln−1), we have

P (wn = t, {vi = s ∀i ∈ [n− 1]}, vn = s′, ln = 0|w0 = 0, v0 = s) (3)
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The expression above gives the probability of transitioning from state s to s′ after a wait of t time
units, with n − 1 rejected candidate jumps. Summing out n − 1, we get the transition probability.
Thus,

P (snext = s′, tnext = t|scurr = s, tcurr = 0)
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This is the desired result.

Proposition 2 Conditioned on a trajectory (S, T ) of the sMJP, the thinned events W̃ are distributed
as a Poisson process with intensity B(t)−A(t).

Proof. We will consider the interval of time [ti, ti+1], so that the sMJP entered state si at time ti,
and remained there until time ti+1, when it transitioned to state si+1. Exploiting the independence
properties of the sMJP and the Poisson process, we only need to consider resampling thinned events
on this interval. Call this set of thinned events W̃ ≡ {w̃1, · · · , w̃n−1} ∈ [ti, ti+1], and call the
corresponding set of labels Ṽ ≡ {ṽ1, · · · , ṽn−1} and L̃ ≡ {l̃1, · · · , l̃n−1} (to avoid notational
clutter, we do not indicate that W̃ and L̃ are actually restrictions to [ti, ti+1]). Observe that each
element of ṽj ∈ Ṽ equals si, while each element l̃j ∈ L̃ equals w̃j − ti. We write this as Ṽ = si
and L̃ = W̃ − ti. Then, by Bayes rule, we have

P (W̃ ,Ṽ = si, L̃ = W̃ − ti|si, ti, si+1, ti+1) (6)

=
P (W̃ , Ṽ = si, L̃ = W̃ − ti, vn = si+1, wn = ti+1, ln = 0|v0 = si, w0 = ti, l0 = 0)
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=
exp

(
−
∫ ti+1

ti
B(τ)dτ

)(∏n−1
k=1 (B(w̃k)−A(w̃k))

)
Asisi+1

(ti+1 − ti)

Asisi+1(ti+1 − ti) exp
(
−
∫ ti+1

ti
A(τ)dτ

)
= exp

(
−
∫ ti+1

ti

B(τ)−A(τ)dτ

)(n−1∏
k=1

(B(vk)−A(vk))

)
This is just the density of a Poisson process on (ti, ti+1) with intensity (B(t)−A(t)), which is what
we set out to prove.
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