Supplementary material for 'Gaussian process modulated renewal processes'

Vinayak Rao
Gatsby Computational Neuroscience Unit
University College London
vrao@gatsby.ucl.ac.uk

Yee Whye Teh

Gatsby Computational Neuroscience Unit
University College London
ywteh@gatsby.ucl.ac.uk

We first prove equation (4) of the main text for a general nonstationary hazard function $h(\tau, t)$.
Proposition S. 1 For a renewal process with nonstationary hazard function $h(\tau, t)$, the waiting time τ given that the last event occured at time $t_{\text {prev }}$ is given by

$$
\begin{equation*}
g\left(\tau \mid t_{\text {prev }}\right)=h\left(\tau, t_{\text {prev }}+\tau\right) \exp \left(-\int_{0}^{\tau} h\left(u, t_{\text {prev }}+u\right) d u\right) \tag{1}
\end{equation*}
$$

Proof. By definition (see equation (2) in the main text),

$$
\begin{equation*}
h\left(\tau, t_{\text {prev }}+\tau\right)=\frac{g\left(\tau \mid t_{\text {prev }}\right)}{1-\int_{0}^{\tau} g\left(u \mid t_{\text {prev }}\right) d u} \tag{2}
\end{equation*}
$$

Let $y=1-\int_{0}^{\tau} g\left(u \mid t_{p r e v}\right) d u$. It follows that

$$
\begin{align*}
& h\left(\tau, t_{\text {prev }}+\tau\right)=\frac{-d y / d \tau}{y}, \text { so that } \tag{3}\\
& \quad y=\exp \left(-\int_{0}^{\tau} h\left(u, t_{\text {prev }}+u\right) d u\right) \tag{4}
\end{align*}
$$

Substituting back for y and differentiating w.r.t. τ, we get equation (??).

We now prove proposition 2 from the main text.
Proposition 2 For any $\Omega \geq \max _{t, \tau} h(\tau) \lambda(t), F$ is a sample from a modulated renewal process with hazard $h(\cdot)$ and modulating intensity $\lambda(\cdot)$.

Proof. We need to show that $F_{i}-F_{i-1} \sim g$.
Denote by E_{i}^{*} the restriction of E to the interval $\left(F_{i-1}, F_{i}\right)$, not including boundaries. Note that

$$
\begin{equation*}
P\left(F_{i}, E_{i}^{*} \mid F_{i-1}\right)=\left(\prod_{e \in E_{i}^{*}} 1-\frac{\lambda(e) h\left(e-F_{i-1}\right)}{\Omega}\right) \frac{\lambda\left(F_{i}\right) h\left(F_{i}-F_{i-1}\right)}{\Omega} \tag{5}
\end{equation*}
$$

Defining $n=\left|E_{i}^{*}\right|$ and $t_{0}=F_{i-1}$, we have

$$
\begin{align*}
& P\left(F_{i}, n \mid F_{i-1}\right)=\frac{\lambda\left(F_{i}\right) h\left(F_{i}-F_{i-1}\right)}{\Omega} \\
& \int_{F_{i-1}}^{F_{i}} \int_{t_{1}}^{F_{i}} \ldots \int_{t_{n-1}}^{F_{i}} d t_{1} d t_{2} \ldots d t_{n}\left(\prod_{j=1}^{n} \Omega \exp -\Omega\left(t_{j}-t_{j-1}\right)\right)\left(\prod_{j=1}^{n} 1-\frac{\lambda\left(t_{j}\right) h\left(t_{j}-F_{i-1}\right)}{\Omega}\right)\left(\Omega \exp -\left(\Omega\left(F_{i}-t_{n}\right)\right)\right) \\
& =\lambda\left(F_{i}\right) h\left(F_{i}-F_{i-1}\right) \exp \left(-\Omega\left(F_{i}-F_{i-1}\right)\right) \int_{F_{i-1}}^{F_{i}} \int_{t_{1}}^{F_{i}} \ldots \int_{t_{n}}^{F_{i}} d t_{1} d t_{2} \ldots d t_{n}\left(\prod_{j=1}^{n}\left(\Omega-\lambda\left(t_{j}\right) h\left(t_{j}-F_{i-1}\right)\right)\right) \tag{6}\\
& =\lambda\left(F_{i}\right) h\left(F_{i}-F_{i-1}\right) \exp \left(-\Omega\left(F_{i}-F_{i-1}\right)\right) \frac{1}{n!}\left(\int_{F_{i-1}}^{F_{i}} d t\left(\Omega-\lambda(t) h\left(t-F_{i-1}\right)\right)\right)^{n} \tag{7}
\end{align*}
$$

Marginalizing out n, we then have

$$
\begin{align*}
P\left(F_{i} \mid F_{i-1}\right) & =\lambda(t) h\left(F_{i}-F_{i-1}\right) \exp \left(-\Omega\left(F_{i}-F_{i-1}\right)\right)\left(\sum_{n=0}^{\infty} \frac{1}{n!}\left(\int_{F_{i-1}}^{F_{i}} d t\left(\Omega-\lambda(t) h\left(t-F_{i-1}\right)\right)\right)^{n}\right) \\
& =\lambda\left(F_{i}\right) h\left(F_{i}-F_{i-1}\right) \exp \left(-\int_{F_{i-1}}^{F_{i}} \lambda(t) h\left(t-F_{i-1}\right) d t\right) \tag{8}
\end{align*}
$$

Comparing equation (4) of the main text, we have the desired result.

