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Abstract

We describe a method for generating independent samples from univariate density func-
tions using adaptive rejection sampling without the log-concavity requirement. The method
makes use of the fact that many functions can be expressed as a sum of concave and convex
functions. Using a concave-convex decomposition, we bound the log-density by separately
bounding the concave and convex parts using piecewise linear functions. The upper bound
can then be used as the proposal distribution in rejection sampling. We demonstrate the
applicability of the concave-convex approach on a number of standard distributions and
describe an application to the efficient construction of sequential Monte Carlo proposal dis-
tributions for inference over genealogical trees. Computer code for the proposed algorithms
are available online.
Keywords: Random number generation, Monte Carlo sampling, Concave-convex decomposi-
tion, Log-concave densities

1 INTRODUCTION

Probabilistic graphical models have become popular tools for addressing many statistical and

machine learning problems in recent years (Cowell et al., 1999; Jensen, 1996). This has been

especially accelerated by the development of general-purpose approximate inference techniques

based on Markov chain Monte Carlo (Gilks et al., 1996; Neal, 1993), sequential Monte Carlo

(SMC) (Doucet et al., 2001) and variational approximations (Opper and Saad, 2001; Wainwright
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and Jordan, 2008). Recent years have even seen the development of software toolkits automating

the process of constructing inference algorithms so that users can concentrate their efforts on the

design of probabilistic models rather than on developing inference algorithms (Spiegelhalter et al.,

1999, 2004; Winn, 2004; Minka et al., 2008). Adaptive rejection sampling (ARS) (Gilks and Wild,

1992) and other approaches to generating from univariate densities are important components in

the growing suite of Monte Carlo inference methods.

The basic adaptive rejection sampler assumes densities are log-concave and constructs piecewise

exponential proposal distributions which are adaptively refined using past rejected samples. In

this paper we propose a novel generalization of adaptive rejection sampling to distributions whose

log-densities can be expressed as sums of concave and convex functions. These form a very large

class of distributions; roughly, the only requirements are that the log-densities are differentiable

with derivatives of bounded variation and that the tails decrease to −∞ at least exponentially

quickly. Further, many distributions of interest, including some multimodal distributions, have

log-densities that trivially decompose into a sum of concave and convex components. We call our

generalization concave-convex adaptive rejection sampling (CCARS).

The basic idea of CCARS is illustrated in Figure 1 and described in detail in Section 3. The

logarithm of the density function is decomposed into a concave and a convex component. Upper

bounds on both components are built using piecewise linear functions. These bounds are added to

form an upper bound on the log-density. Exponentiating, we have a piecewise exponential upper

bound on the density, which we use as a proposal distribution for rejection sampling. The bound

is iteratively refined to improve the acceptance probability of future proposals.

In recent years a number of different generalizations of ARS has been proposed. Adaptive

rejection Metropolis sampling (ARMS) (Gilks et al., 1995) and ARMS2 (Meyer et al., 2008) use

adaptively refined proposals within a Metropolis-Hastings sampler. ARMS uses piecewise linear

proposal distributions whereas ARMS2 uses second order polynomials to construct the proposal

density. Both algorithms do not require log-concave densities, but they do not produce exact

samples (since they are MCMC samplers). This is not a serious drawback if the sampler were

used as a part of a more extensive MCMC sampler. However there are other occasions for which

exact samples are desirable (e.g. if used as a component of a SMC algorithm). Hoermann (1995)

extended the concept of log-concavity to T -concavity (Hoermann, 1995) and Evans and Swartz
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g(x) = exp(f(x))

Figure 1: Bounding the log-density function using CCARS. The sum of the concave function

(a) and the convex function (b) give the log-density function (c). Piecewise linear bounds are

constructed separately on the concave and convex functions and summed to form the bound on

the log-density function. (d) shows the true density and the piecewise exponential bounds on the

density. The functions are drawn with dashed black lines, and the bounds with solid red lines.

(1998) used this idea to develop a generalization of ARS (we refer to this as ES-ARS in the

following) where the logarithmic transform is generalized to a monotonic transformation T . ES-

ARS uses the inflection points of the transformed density to partition the domain into regions

where the density is T -concave or T -convex, and adaptively constructs piecewise linear upper

bounds separately on each partition to use as the proposal distribution. Though we restrict the

description of CCARS to log-transforms of densities over a single interval, note that the same idea

can be used with T -transforms and partitioning of the interval as well. We show experimentally

in Section 4 that CCARS can be competitive with ES-ARS given the same information about

inflection points. However, as opposed to ES-ARS, CCARS does not necessarily need knowledge

of the inflection points, which may not always be easy to compute. In Section 3 we will further

elaborate on the relationship between CCARS and ES-ARS.

3



We describe ARS in detail in Section 2 for completeness and to set the stage for the contribu-

tions of this paper in the following sections. We explain the CCARS algorithm and give details

about how to decompose functions into concave and convex parts in Section 3. Section 4 presents

example function decompositions and simulation results of CCARS on standard distributions. A

distinguishing characteristic of CCARS is that it does not require knowledge of inflection points.

The merit of this property is demonstrated in Section 5 where we describe use of CCARS in a

SMC algorithm for inferring genealogical trees. We conclude in Section 6 with some discussion on

the properties of CCARS and further extensions of the method.

2 ADAPTIVE REJECTION SAMPLING

Rejection sampling is a standard Monte Carlo technique for sampling from a distribution. Suppose

the distribution has density p(x), and assume that we have a proposal distribution with density

q(x) for which there exists a constant c ≥ 1 such that p(x) ≤ cq(x) for all x, and from which

it is easy to obtain samples. Rejection sampling proceeds as follows: obtain a sample x ∼ q(x);

compute the acceptance probability α = p(x)/cq(x); and accept x with probability α, otherwise

reject and repeat the procedure until some sample is accepted.

The intuition behind rejection sampling is straightforward. Generating a sample from p(x) is

equivalent to generating a sample from a uniform distribution under the curve p(x). We obtain

this sample by generating a uniform sample from under the curve cq(x), and only accepting the

sample if it by chance also falls under p(x). This intuition also shows that the average acceptance

probability is 1/c, thus the expected number of samples required from q(x) is c.

The choice of the proposal distribution is crucial to the efficiency of rejection sampling. When

a sample is rejected, the computations performed to obtain the sample are discarded and thus

wasted. Adaptive rejection sampling (ARS) (Gilks and Wild, 1992) is a sampling method for

univariate densities which addresses this issue by making use of the rejected samples to improve

the proposal distribution so that future proposals have higher acceptance probabilities.

ARS assumes that the density p(x) is log-concave, that is, f(x) = k + log p(x) is a concave

function, where k is an arbitrary constant making f(x) tractable to compute. Since f(x) is

concave, it is upper bounded by its tangent lines: f(x) ≤ T fx0
(x) for all x0 and x, where T fx0

(x) =

f(x0)+(x−x0)f
′(x0) is the tangent to f(x) at abscissa x0. ARS uses proposal distributions whose
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log-densities are constructed as the minimum of a finite set of tangents:

f(x) ≤ g(x) = min
i=1...n

T fxi
(x) (1)

q(x) ∝ exp(g(x)) (2)

where x1, . . . , xn are the abscissae of the tangent lines and q(x) is the proposal density. Since

the envelope function g(x) is piecewise linear, q(x) is a piecewise exponential density that can

be efficiently sampled from. Say we propose a point x′ ∼ q, and accept x′ with probability

exp(f(x′)− g(x′)). That is, x′ will be accepted with low probability if the sampling density is far

from the true density at that point. If the sample is rejected, instead of simply discarding it, we

add it to the set of abscissae so that the new q(x) will more closely match p(x) around x′.

It will generally be costly to evaluate the function f(x). We can improve the computational

efficiency of the procedure by using a lower bound l(x) on f(x) based on secant lines subtended

by consecutive abscissae. This allows testing for acceptance of the proposed point x′ without the

need to evaluate f(x′) every time. We first sample u ∼ Uniform(0, 1). Then the proposal x′ is

accepted if u ≤ exp(l(x′) − g(x′)). This is called the squeezing step. If x′ is not accepted, then

we apply the rejection step where we accept if u ≤ exp(f(x′) − g(x′)). If the proposal x′ is not

accepted at the squeezing step, this implies that it is likely to be located in a part of the real line

where the upper and lower bounds differ significantly. Therefore we add it to the set of abscissae

even if it is accepted at the subsequent rejection step, that is, whenever we evaluate f(x).

The idea of using both tangent and secant lines of f(x) can be used in different ways to improve

ARS. In ES-ARS, the assumption of f(x) being log-concave is relaxed by partitioning the real line

into intervals using its inflection points, so that each interval is either log-concave or log-convex

(Evans and Swartz, 1998). On the log-convex intervals the upper bounds are constructed using

secant lines instead. In the next section we decompose f(x) into the sum of a log-concave and a

log-convex part, and upper bound them individually using tangent and secant lines respectively.

In both ES-ARS and our approach we can construct lower bounds as well by inverting the roles

of the tangent and secant lines, though we will not detail this straightforward extension here.
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3 CONCAVE-CONVEX ADAPTIVE REJECTION

SAMPLING

In this section we propose a generalization to ARS that produces independent samples without

requiring log-concavity. We assume that the log-density f(x) = k + log p(x) can be decomposed

into a concave f∩(x) and a convex f∪(x) function: f(x) = f∩(x) + f∪(x). As we will see in

Section 3.1, many densities of interest satisfy this condition (Hartman, 1959). The approach we

take is to bound f∩(x) and f∪(x) separately using piecewise linear functions, so that the sum of

the bounds is itself piecewise linear and a bound on f(x). A pictorial depiction of the bound is

given in Figure 1. For simplicity we start by describing in detail the case where the support of p(x)

is a finite closed interval [dl, dr] with both f∩(x) and f∪(x) continuous on [dl, dr]. We discuss the

general case in Section 3.2. Finally, Section 3.3 uses the same ideas to approximate normalization

constants.

As mentioned, concave-convex adaptive rejection sampling (CCARS) maintains separate piece-

wise linear upper bounds on f∩(x) and f∪(x). Sum of these are used to construct a proposal

distribution for rejection sampling. If the proposed point is rejected, the bounds are refined to be

tight at that point and the algorithm repeats until a proposal is accepted. CCARS is depicted in

Figure 2, and given in pseudocode in Algorithm 1.

As in ARS, the upper bound on the concave part f∩(x) is formed by a series of tangent lines

at a set of n abscissae, say ordered dl < x1 · · · < xn < dr. At each abscissa xi we form the tangent

line T f∩xi
(x) = f∩(xi) + (x− xi)f ′∩(xi), and the upper bound on f∩(x) is:

f∩(x) ≤ g∩(x) = min
i=1...n

T f∩xi
(x). (3)

The consecutive tangent lines T f∩xi
, T f∩xi+1

intersect at a point yi ∈ (xi, xi+1):

yi =
f∩(xi+1)− f ′∩(xi+1)xi+1 − f∩(xi) + f ′∩(xi)xi

f∩(xi)− f∩(xi+1)

and g∩(x) is piecewise linear.

On the other hand, the upper bound on the convex part f∪(x) is formed by a series of n secant

lines subtended at the same set of points {x1 . . . xn} and the domain limits x0 = dl, xn+1 = dr.

For each consecutive pair xi < xi+1 the secant line

Sf∪xixi+1
(x) =

f∪(xi+1)− f∪(xi)
xi+1 − xi

(x− xi) + f∪(xi)
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Figure 2: Concave-convex adaptive rejection sampling. First column: upper and lower bounds

on functions f(x), f∪(x) and f∩(x). We start with a single abscissa x1. A point x′ is proposed

from the upper bound. Second column: refined bounds after the proposed point x′ is rejected.

x′ is included in the set of abscissae and the abscissae are re-indexed. y1 denotes the intersection

of the two tangent lines.

is an upper bound on f∪(x) on the interval [xi, xi+1]. Therefore the upper bound on f∪(x) is:

f∪(x) ≤ g∪(x) = max
i=0...n−1

Sf∪xixi+1
(x). (4)

Finally the overall upper bound on the function f(x) is just the sum of both upper bounds:

f(x) ≤ g(x) = g∩(x) + g∪(x). (5)

Note that g(x) is a piecewise linear function with 2n segments, therefore the proposal distribution

is a piecewise exponential distribution with 2n segments, q(x) ∝ exp(g(x)).
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Algorithm 1 Concave-Convex Adaptive Rejection Sampling

inputs: functions f∩, f∪, domain (dl, dr), numsamples

initialize: abscissae

search for a point x0 on the left tail of f∩ + f∪, add x0 as left abscissa.

search for a point x1 on the right tail of f∩ + f∪, add x1 as right abscissa.

initialize: bounds g∩ and g∪, numaccept = 0.

while numaccept < numsamples do {generate samples}
sample x′ ∼ q(x) ∝ exp(g∩(x) + g∪(x)).

sample u ∼ Uniform(0, 1).

if u < exp(l∩(x
′) + l∪(x

′)− g∩(x′)− g∪(x′)) then {squeezing step}
accept the sample x′.

numaccept := numaccept +1.

else if u < exp(f∩(x
′) + f∪(x

′)− g∩(x′)− g∪(x′)) then {rejection step}
accept the sample x′.

numaccept := numaccept +1.

include x′ in the set of abscissae.

update the bounds.

else

reject sample x′.

include x′ in the set of abscissae.

update the bounds.

end if

end while

As in Gilks and Wild (1992) we can also construct a lower bound l(x) of f(x) so that costly

function evaluations can be avoided whenever possible using squeezing steps. This lower bound

can be constructed by reversing the operations on the concave and convex functions: we lower

bound f∩(x) using its secant lines, and lower bound f∪(x) using its tangent lines. This reversal

is perfectly symmetrical and the same procedure described above can be used. We use the same

set of points {x0, . . . , xn} to construct the lower bound, however note that the intersection points

of the tangents are going to be different from those of the upper bound since they will depend on

the derivative of f∪ rather than that of f∩.

The data structure maintained by CCARS consists of the n abscissae, the n− 1 intersections

of consecutive tangent lines of f∩, the n− 1 intersections of the tangent lines of f∪, and the values

of g∩, g∪, l∩ and l∪ evaluated at these points and the domain limits. Given the bounds, the
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algorithm is the same as ARS. At each iteration a sample x′ ∼ q(x) is drawn from the proposal

distribution and a value u from Uniform(0, 1). The proposed point is accepted in the squeezing

step if u < exp(l(x) − g(x)). If the proposal fails at the squeezing step, it is accepted at the

rejection step if u < exp(f(x)− g(x)). If not accepted at the squeezing step, x′ is added to the list

of points to refine the upper and lower bounds. Pseudocode for CCARS is given in Algorithm 1.

3.1 Concave-Convex Decompositions

In this section we will briefly consider the existence of concave-convex decompositions before

describing two different constructions for such decompositions. The following proposition gives a

condition for existence which is satisfied by most log-densities of practical interest. In the next

section we will describe conditions under which there are decompositions leading to valid CCARS

procedures.

Proposition 1. If f(x) is differentiable with a derivative of bounded variation on every finite

closed interval in its domain, then there exists a concave function f∩(x) and a convex function

f∪(x) such that f(x) = f∩(x) + f∪(x).

Proof. This is straightforward and a slightly stronger proposition already noted by Hartman

(1959). Since the derivative f ′(x) has bounded variation on every finite closed interval in the

domain, it has a Jordan decomposition f ′(x) = h↓(x) +h↑(x) into a non-decreasing function h↑(x)

and a non-increasing function h↓(x) (Hazewinkel, 1998). Integrating, we get f(x) = k+
∫ x
dl
h↓(x)+

h↑(x) dx where f∩(x) =
∫ x
dl
h↓(x) dx is concave and f∪(x) =

∫ x
dl
h↑(x) dx is convex.

Note that the concave-convex decomposition of a function is not unique: one can always add a

convex function to f∪(x) and subtract the same from f∩(x). Some decompositions may be easier

to construct algebraically and some may result in more efficient sampling. Below we describe a

procedure for obtaining the minimal concave-convex decomposition of a function (Hartman, 1959)

and another algebraically simpler one that exploits additive structure (if there is one).

Minimal concave-convex decomposition using inflection points

A concave-convex decomposition f(x) = f∩(x) + f∪(x) is minimal if there is no concave func-

tion (save affine ones) that can be subtracted from f∩(x) and added to f∪(x) while maintaining

concavity and convexity of f∩(x) and f∪(x) respectively. Intuitively, both f∩(x) and f∪(x) have
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minimal amounts of variation, so we expect the bounds on f(x) to be tighter and the resulting

CCARS algorithm more efficient. This will be validated in the experiments in Section 4.

The construction in the proof of Proposition 1 is in fact a minimal concave-convex decomposi-

tion since the Jordan decomposition of f ′(x) involves minimally non-decreasing and non-increasing

functions h↑(x) and h↓(x) respectively. This yields the following proposition:

Proposition 2. Let f(x) be differentiable with a derivative of bounded variation on every finite

closed interval in its domain. The inflection points partition the domain of f(x) into intervals over

which f(x) is either concave or convex. Denote by D∩ the union of the concave intervals, and

likewise by D∪ for the convex intervals. If f(x) has countably many inflection points {ξ1, . . . , ξM},

then it has a minimal decomposition given by

f∩(x) = f(x) I(x ∈ D∩) +
M∑
j=1

T fξj (x)
[
I
(
x > ξj ∧ (ξ−j ∈ D∩)

)
∨ I
(
x < ξj ∧ (ξ+

j ∈ D∩)
)]
, (6)

f∪(x) = f(x) I(x ∈ D∪)−
M∑
j=1

T fξj (x)
[
I
(
x > ξj ∧ (ξ−j ∈ D∩)

)
∨ I
(
x < ξj ∧ (ξ+

j ∈ D∩)
)]
. (7)

where I(A) is the indicator function taking value 1 when A is true and 0 otherwise, T fξ (x) is the

tangent line of f(x) at ξ, and ξ±j means ξj ± ε for an infinitesimal ε > 0.

The first term in eq. (6) captures the concave parts of f(x) but is only concave on each interval

in D∩. The tangent lines are added to make f∩(x) concave over the whole domain. Similarly for

f∪(x). The above equations allow for countably infinitely many inflection points M , however note

that algorithmically the minimal concave-convex decomposition can be constructed only if f(x)

has a finite number of inflection points.

Using the minimal decomposition for CCARS has the same flavor as ES-ARS in that knowledge

of the inflection points is necessary to partition the function domain. In ES-ARS each interval is

treated independently thus allowing more flexibility. For example, different transform functions

other than the logarithm can be applied on different intervals, and the decompositions need not

be continuous at inflection points. On the other hand CCARS with the minimal decomposition

potentially requires smaller numbers of abscissae since only one decomposition is used over the

whole domain. We will compare the two algorithms experimentally in Section 4.

The construction of the minimal decomposition is generally applicable since most practically

encountered functions have a finite number of inflection points. However the computation of the
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inflection points may require tedious algebra or expensive numerical solutions, neither of which is

desirable. The next construction for concave-convex decompositions apply when f(x) has additive

structure, and it can be substantially cheaper to obtain. However it can be less efficient for CCARS

(though possibly still cheaper than solving for the inflection points).

Concave-convex decomposition exploiting the additive structure

The CCARS algorithm is most naturally applied when the log density consists of a collection of

additive components, f(x) =
∑m

i=1 fi(x). If each fi(x) is either concave or convex we can simply

partition the sum accordingly to get a concave-convex decomposition of f(x). When this is not

the case, we can instead apply the minimal decomposition to each fi(x) separately and sum up the

decompositions to form one for f(x). This can be easier than finding the minimal decomposition

of the whole function f(x) since each fi(x) is typically much simpler.

Note that in principle CCARS is not limited to using the log transform and any transform

function that can be used for ES-ARS can be used for CCARS as well. However the log transform

will generally be the natural choice for CCARS for popular classes of models such as exponential

family models or generalized linear models (Nelder and Wedderburn, 1972) which naturally have

log additive structures.

3.2 Conditions for Applicability of CCARS

The first condition for CCARS to be applicable is that the log density f(x) should be decompos-

able into concave f∩(x) and convex functions f∪(x). This condition is satisfied by most densities

of practical interest, as discussed in the previous section. Secondly, CCARS uses piecewise ex-

ponential bounds on the density as the proposal distribution which is obtained by constructing

piecewise linear upper bounds on the concave-convex decomposition of the log density. Therefore,

f(x) should be such that it can be upper bounded using piecewise linear functions with a finite

number of segments (we call this a FPL bound in the following) and the area under the piecewise

exponential bound on the density should be finite. The construction of the algorithm as described

thus far along with Proposition 2 show that this condition is satisfied for differentiable log densities

with a derivative of bounded variation defined over a finite closed interval. For functions that are

not continuous at domain limits and for infinite domains, we need to check the tail behaviour.

The proposition below sets out the conditions for the applicability of CCARS.
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Proposition 3. Let f(x) be a log density defined over an interval with left and right limits dl

and dr. Suppose f(x) is differentiable with a derivative of bounded variation on every finite closed

interval in the domain, and has finitely many inflection points. If one of the following holds on

the right limit:

1. dr <∞ and limx→dr f(x) <∞, or

2. dr =∞ and f(x) has a right tail decreasing to −∞ at least linearly fast,

and similarly for the left limit, then f(x) has a minimal decomposition f(x) = f∩(x)+f∪(x) where

both f∩(x) and f∪(x) have FPL bounds. Furher, it follows that f(x) has a FPL bound, and the

exponentiated bound on the density has finite area.

Proof. Proposition 2 shows that f(x) has a minimal decomposition given by eqs. (6) and (7). The

usual approach of ARS shows that concave functions, thus f∩(x), have FPL upper bounds. Next

we show that f∪(x) has a FPL upper bound on its right tail as well (similar arguments hold for

the left tail). Since f(x) has a finite number of inflection points, it is either concave or convex

on the right limit (ξ, dr), where ξ is the rightmost inflection point (use ξ = dl if f(x) does not

have any inflection points). If it is concave, eq. (7) shows that f∪(x) is linear on (ξ, dr) so it will

have a FPL upper bound. Next suppose f(x) is convex on (ξ, dr) so that f∪(x) is not linear in

this range. Consider the two conditions in the proposition. In case 1, limx→dr f∪(x) must be

finite since it is convex so is lower bounded by the tangent line T f∪ξ (x) subtended at ξ, so the

CCARS procedure as described previously will produce a FPL upper bound on f∪(x). In case 2,

limx→∞ f
′
∪(x) exists and has some finite value f ′0, since f ′∪(x) is monotone increasing but f∪(x) is

upper bounded by a line on (ξ,∞). We can construct a FPL bound on f∪(x) using a set of secant

lines subtended at a set of points {x1, . . . , xn} as before, except that on [xn,∞) we use the upper

bound f∪(xn) + (x−xn)f ′0 instead. The sum of the FPL upper bounds on f∩(x) and f∪(x) gives a

FPL upper bound on f(x). For a FPL upper bound on f(x) with finite area after exponentiation,

use any CCARS bound (with the above alteration) with xn > ξ (and x1 less than the leftmost

inflection point to handle the left limit).

Note that the above bound construction on f∪(x) is valid for the minimal decomposition. If

a specific choice of f∪(x) does not have a FPL upper bound a different decomposition should be

sought. Alternatively, we can partition the domain into tail and non-tail regions and construct
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Algorithm 2 Concave Convex Function Approximation

inputs: f∩, f∪, domain (a, b), error threshold.

initialize: abscissae and upper and lower bounds g∩, g∪, l∩ and l∪ as in Algorithm 1.

initialize: calculate the areas under the bounds in each segment, {Agi , Ali}.
while (

∑
iA

l
i)/(
∑

iA
g
i ) < threshold do {refine bounds}

find i with largest difference in bound areas between abscissae xi−1 and xi.

if i = a log concave tail segment then

sample x′ ∼ q(x) ∝ exp(g∩(x) + g∪(x)) on tail segment.

else

x′ = argmaxx∈(xi−1,xi)
g(x)− l(x).

end if

include x′ in the set of abscissae.

update the bounds.

end while

bounds separately in the different regions, using different function decompositions. In general, we

can incorporate ideas from Evans and Swartz (1998) to partition the domain and apply different

concave-convex decompositions on the transformed density (possibly using functions other than

the logarithm). CCARS reduces to ES-ARS the domain is partitioned at every inflection point

and the transformed density f(x) is assigned to either f∩(x) or f∪(x) depending on whether it is

concave or convex respectively.

3.3 Approximating Density Functions

The upper and lower bounds constructed by CCARS provide piecewise exponential envelopes ap-

proximating the true unnormalized density, and their easily evaluated integrals are approximations

of the integral of the unnormalized density. This can be exploited to obtain a piecewise linear fit

to the density function for instance to use as the proposal distribution within a sequential Monte

Carlo algorithm.

The upper and lower bounds l(x) ≤ f(x) ≤ g(x) provide bounds on the integral of f(x),∫ b

a
exp(l(x))dx ≤

∫ b

a
exp(f(x))dx ≤

∫ b

a
exp(g(x))dx.

Thus, the area under the upper (lower) bounding piecewise exponential function gives an upper

(lower) bound on the area under the unnormalized function exp(f(x)) and the ratio of the areas

under the upper and lower bounds can be used as a measure of the approximation error.
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Algorithm 1 described above is optimized for requiring as few function evaluations as possible

for generating samples from the distribution. Since in function approximation we are interested

in optimally placing the abscissae rather than generating random samples, we can avoid sampling

and update the bounds by deterministically choosing the abscissae. We start by initializing the

abscissae and the upper and lower bounds g(x), l(x), and calculating the area under both bounds.

At each iteration, we find the consecutive pair of abscissae with maximum area between g(x) and

l(x) and add to the set of abscissae the point with largest discrepancy between g(x) and l(x) in this

interval. The modification of CCARS for approximating functions is summarized in Algorithm 2.

4 EXPERIMENTS

In this section we demonstrate the performance of CCARS on a number of non-log-concave density

functions for which there is no standard specialized sampling method. For all the log-density

functions, we provide concave-convex decompositions obtained by exploiting the natural additive

structure as well as noting the inflection points for obtaining the minimal decomposition described

in Section 3.1. We compare CCARS using the two decompositions given and ES-ARS with the log

transform, using the number of abscissae used by each algorithm as the measure of efficiency. We

start with a description of the three classes of density functions and the corresponding concave-

convex decompositions.

The generalized inverse Gaussian (GIG) distribution, introduced by Barndorff-Nielsen

and Halgreen (1977), is ubiquitously used across many statistical domains, especially in financial

data analysis (Eberlein and von Hammerstein, 2004). It is an example of an infinitely divisible

distribution and this property allows the construction of nonparametric Bayesian models based

on it (Barndorff-Nielsen, 1998; Jørgensen, 1982). The GIG density function on x > 0 is

p(x) =
(a/b)λ/2

2Kλ(
√
ab)

xλ−1 exp

{
−1

2
(ax+ bx−1)

}
,

where Kλ(·) is the modified Bessel function of the third kind and a, b > 0 and λ are parameters.

Sampling from this distribution is not trivial, the most commonly used method being that of

Dagpunar (1989). The unnormalized log-density is f(x) = (λ− 1) log(x)− 1
2
(ax+ bx−1), which is

14



log-concave when λ ≥ 1 and a sum of concave and convex terms when λ < 1:

f∩(x) = −1

2
(ax+ bx−1), f∪(x) = (λ− 1) log(x).

This decomposition constitutes an example of the case where the left tail of f∪(x) cannot be

bounded using a finite piecewise linear bounds. Therefore, we partition the domain into two

regions (0, ε) and [ε,∞) and use a different decomposition for the left tail. In detail, the log-densty

is concave in (0, b
1−λ) and we can simply use f∪(x) = 0, f∩(x) = f(x) in (0, ε), ε < b/(1− λ).

To get the minimal decomposition, we note that f(x) has one inflection point ξ = b
1−λ for

λ < 1. It is concave in (0, ξ) and convex in (ξ,∞), with f ′(x) → −a/2 as x → ∞. We get a

minimal decomposition by using the procedure outlined in Section 3.1, eq. (6) and (7).

Makeham’s distribution is used to model the mortality rates at adult ages (Makeham, 1860).

The density is

p(x) = (a+ bcx) exp

{
−ax− b

ln(c)
(cx − 1)

}
,

where x > 0 and the parameters are b > 0, c > 1, a > −b. To the best of our knowledge, no

specialized method for efficiently sampling from this distribution exists (Scollnik, 1995). When

a > 0 the logarithm of the first term is convex, while that for the last term is concave. The natural

concave-convex decomposition for the log-density f(x) = log p(x) is thus:

f∩(x) = −ax− b

ln(c)
(cx − 1), f∪(x) = log(a+ bcx).

This distribution also has a single inflection point which is at ξ = log
√
a log c−a

b

/
log c with

the function being convex in (0, ξ) and concave in (ξ,∞). Evans and Swartz (1998) considered

sampling from this distribution with parameter values a = 0.01, b = 0.01, and c = e. In this case

the log-density has an inflection point at ξ = 2.197.

The polynomial-normal distribution (Evans and Swartz, 1998) constitutes an interesting

decomposition example. The unnormalized density function is given by

p(x) = exp

(
−x

2

2

) m∏
k=1

((x− ak)2 + b2k), (8)

where ak and bk > 0 are the parameters, and the product term defines a general nonnegative

polynomial. Unlike the previous examples, the log-density function f(x) = log p(x) is not simply

a sum of concave and convex terms. It is a sum of a quadratic term and logarithms of quadratic
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Figure 3: Numbers of abscissae as a function of the numbers of accepted samples generated by

CCARS on the additive decomposition (dashed, black) and the minimal decomposition (solid,

red), and ES-ARS using the log transform (dashed, green) averaged over 100 runs. The numbers

of abscissae grow slowly for all methods. CCARS using the minimal decomposition is more efficient

than the other two. Initially ES-ARS utilizes more abscissae but the gap disappears after a number

of samples are accepted.

terms and computing its inflection points may be rather expensive for large m. It is however

straightforward to calculate the inflection points of the logarithm of each quadratic term separately,

construct a concave-convex decomposition for each term, and exploit the additive structure to

obtain an overall concave-convex decomposition for f(x). In detail, fk(x) = log((x − ak)2 + b2k)

has inflection points at ak ± bk; it is convex in
(
ak − bk, ak + bk

)
and concave outside. Thus we

can decompose it as:

f∩(x) =− x2

2
+

m∑
k=1

fk(x)I(x 6∈ (ak−bk, ak+bk)) + T fk

ak−bk(x)I(x > ak−bk) + T fk

ak+bk
(x)I(x < ak+bk),

f∪(x) =
m∑
k=1

fk(x)I(x ∈ (ak−bk, ak+bk))− T fk

ak−bk(x)I(x > ak−bk)− T fk

ak+bk
(x)I(x < ak+bk). (9)

Evans and Swartz (1998) considered this distribution for m = 2, (a1, b1) = (1, .5) and (a2, b2) =

(−3, .5). For this case there are four inflection points, ξ = {−3.398, −2.605, 0.605, 1.398} and a

minimal decomposition can be obtained using these. Note that computing inflection points, hence

using ES-ARS and the minimal decomposition for CCARS, becomes harder for large m whereas

the decomposition in eq. (9) is straightforward for any m.
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Figure 4: The numbers of abscissae used for generating a single sample from a GIG distribution

with a = b = 1 and different values of λ, over 1000 runs. For each value of λ the left box-plot

is CCARS with the natural decomposition, middle is CCARS with minimal decomposition, and

right is ES-ARS. When λ ≥ 1 the density function is log-concave and all methods reduce to

ARS, thus have identical performances. CCARS with the natural but non-minimal decomposition

consistently utilize more abscissae as expected, though the numbers are still reasonable. CCARS

with the minimal decomposition and ES-ARS are comparable.

4.1 Generating Multiple Samples

For our first experiment, we compared CCARS with both decompositions against ES-ARS on the

task of generating multiple samples from a given density. We experimented with one density from

each family. For the GIG distribution we used parameter values a = 1, b = 1 and λ = −1. We used

the parameter settings in (Evans and Swartz, 1998) for Makeham’s distribution (a = 0.01, b = 0.01,

c = e) and for the polynomial-normal distribution (m = 2, (a1, b1) = (1, .5), (a2, b2) = (−3, .5)).

Figure 3 shows the number of abscissae used as a function of the number of accepted samples

generated by each algorithm, averaged over 100 runs. As expected, we observe that CCARS using

the minimal decompositions generally utilize less abscissae than the natural but non-minimal

decompositions. The performance of CCARS using the minimal decomposition is comparable to

ES-ARS for these densities which also hold for other parameter settings that we tried.
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Figure 5: Accuracies of the integral approximations as a function of the number of abscissae.

Dashed black curves are for the additive decompositions while the solid red lines are for minimal

decompositions. Integral estimates quickly get more accurate as more abscissae are added.

4.2 Generating a Single Sample

Generally when these ARS methods are used within Gibbs sampling, one only needs a single sample

from the conditional distribution for each Gibbs iteration. Therefore it is important to assess the

cost of generating a single sample from a density. We consider the efficiencies of CCARS using

both decompositions and of ES-ARS in this situation. We experimented with the GIG distribution

with various parameter settings. We found that the comparative results are not sensitive to values

of a and b thus report results only for a = b = 1 and various values of λ. Figure 4 shows the

numbers of abscissae for the three methods and for different λ values over 1000 runs. The numbers

of abscissae used increase with decreasing λ for all methods since the convexity increases. CCARS

with the minimal decomposition performs similar to ES-ARS while both are faster than CCARS

with the natural decomposition. It is interesting to note that the minimum number of abscissae

used by ES-ARS is more than that used by CCARS with the minimal decomposition for most

parameter settings.

4.3 Function Approximation

Figure 5 shows the performance of CCARS for approximating the unnormalized density func-

tions using different function decompositions. We experimented with the three densities used for

the experiment on generating multiple samples in Section 4.1. We see that only a small num-

ber of abscissae are needed to estimate the normalization constants accurately and the minimal
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decompositions are more efficient as expected.

5 PASSAGE TIMES AND GENEALOGICAL TREES

In this section we describe an application of CCARS to the inference of passage times in Markov

processes. We first describe our problem formulation and then briefly describe how our solution to

this passage time problem is used as part of a sequential Monte Carlo sampler for the coalescent

(Kingman, 1982a,b).

5.1 Passage Times of Independent Markov Processes

Problems of determining passage (or waiting) times of diffusion and other stochastic processes arise

from a variety of domains including statistics (Darling and Siegert, 1953; Durbin, 1971), probability

(Ciesielski and Taylor, 1962; Kou and Wang, 2003), biology (Ewens, 1979), and engineering (Blake

and Lindsey, 1973). Our problem differs from standard formulations in three ways: each Markov

process is simple and discrete, but we deal with multiple Markov processes, and we deal with

partial observations of the processes.

Let D be a positive integer and X1(·), . . . , XD(·) be D independent continuous time Markov

processes. Each Markov process Xd(·) takes values in a finite state space {1, . . . , K} and has

transition rate matrix Φd = λd(φd1
> − I), where λd > 0 is the rate at which transitions occur, φd

is the equilibrium distribution probability vector, 1 is a vector of 1’s and I is the identity matrix.

Each Xd(·) is a simple Markov process: transitions occur according to a Poisson process with

uniform rate λd and at each transition the next state is independent of the previous state and has

distribution φd.

Consider the problem of inferring the passage time t = r− l separating observations at times l

and r. For each s ∈ {l, r}, d ∈ {1, . . . , D} and k ∈ {1, . . . , K} let observation ysd be conditionally

independent of the rest of the Markov chains given Xd(s) and let M s
dk be the likelihood of Xd(s) = k

given ysd. The likelihood for t given all observations is:

L(t) =
D∏
d=1

{
e−λdt

(
K∑
k=1

φdkM
l
dkM

r
dk

)
+
(
1− e−λdt

)( K∑
k=1

φdkM
l
dk

)(
K∑
k=1

φdkM
r
dk

)}
. (10)

The first term is the probability of the observations and there being no transitions in Xd between

times l and r. The second term is the probability of there being a transition and of the observations
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given that there was a transition. If
∑K

k=1 φdkM
l
dkM

r
dk > (

∑K
k=1 φdkM

l
dk)(
∑K

k=1 φdkM
r
dk) then the

term in curly braces is convex; otherwise it is concave. Thus logL(t) has a simple concave-convex

decomposition. If the prior on t has a concave-convex decomposition as well, the resulting posterior

will also have a concave-convex decomposition. Thus CCARS can be used to efficiently obtain

samples from the posterior, and the function approximation can be used to obtain tight bounds

on the posterior density.

5.2 Inference on Kingman’s coalescent

In ?, we used the above technique to develop a novel sequential Monte Carlo (SMC) sampler for

the coalescent, a standard model of the genealogical structure of populations (Kingman, 1982a,b;

Ewens, 2004). Given an observed set of genotypes, our aim is to estimate the posterior distribution

over the possible genealogies, for the purpose of inferring parameters about the population.

Our SMC sampler operates assuming multiple independent sites, parent-independent mutation,

and without recombination and selection. Under these assumptions, the genealogy of n genotypes

has a binary tree structure with the n genotypes on the leaves of the tree. Our SMC sampler mirrors

closely the generative process of the coalescent, constructing the genealogical tree by starting with

the n observed genotypes each in its own (trivial) genealogy, and iteratively merging (coalescing)

genealogies. In each iteration, a coalescence time for each pair of genealogies is proposed, and the

pair with the shortest coalescence time is picked to be merged. The algorithm stops after n − 1

iterations when all genotypes have been coalesced into one genealogy. Being a SMC algorithm,

multiple such runs (particles) are used, and resampling steps are taken to ensure that the particles

are representative of the posterior distribution.

The passage time technique described above is used to construct the proposal distribution

of the coalescence time of each pair of genealogies. With the assumption of independent sites

and parent-independent mutation, the mutation process over genotypes is precisely the Markov

process described above. The likelihood function of the coalescence time is of the form given in

eq. (10), with the passage time being the total time from the proposed coalescence time to the

times of the most recent common ancestors of both genealogies, while the partial observations are

of the genotypes in each genealogy (with ancestral genotypes marginalized out). We use bounds fit

using Algorithm 2 as the proposal densities. Figure 6 shows the density function and the proposal
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Figure 6: Sampling coalescence times using CCARS. For all plots, x-axis is time, running from

past to present. The domain of the density function is truncated to [−300, 0] for simplicity. Most

coalescence times are greater than −10 therefore −300 is a safe bound and only one abscissa used

at −297 was enough to appropriately bound the tail. Top: The concave and convex components

of the log-density function (dashed, black) of coalescence times for a pair of subtrees and piecewise

linear upper bounds on the functions (solid, red) using four abscissae (×) and an example tree

structure inferred by sequential Monte Carlo sampling. Middle: Progressive fit of the CCARS

bounds (solid, red) on the log-density function (dashed, black) and the abscissae (×) used to con-

struct the bounds. Bottom: The density function and the piecewise exponential upper bounds.

The abscissae are sequentially added to have a better fit. Note that the abscissae are concentrated

around the high density region with high curvature.
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density (i.e. the upper bound on the density) for a pair of genealogies. The tree in Figure 6 is a

sample produced by the algorithm.

Our SMC sampler is related to a number of algorithms from the population genetics literature.

The algorithm most similar to ours is by Slatkin (2002). Both Slatkin’s and ours represent the

coalescent events and the coalescence times, while they integrate out the ancestral genotypes.

Where the algorithms differ is in their proposal distributions. Ours use a tight approximation to

the posterior distributions of the coalescence times, while Slatkin’s use their priors ignoring the

genotypic observations. CCARS was essential in making our algorithm efficient, since the posterior

distributions are not of standard form.Stephens and Donnelly (2000); Griffiths and Tavaré (1998);

Chen et al. (2005) proposed sequential importance samplers with a similar flavour to our algorithm.

The major difference is that while theirs marginalize out coalescence times, we marginalize out

ancestral genotypes instead. As a result of this difference, their samplers can only efficiently handle

single sites rather than multiple sites, since the space of ancestral genotypes becomes too large

with multiple sites. We report detailed comparisons of our algorithm against these prior works in

a separate manuscript under preparation.

6 DISCUSSION

We have proposed a generalization of adaptive rejection sampling to the case where the log density

can be expressed as a sum of concave and convex functions. The generalization is based on the

idea that both concave and convex functions can be upper bounded by piecewise linear functions,

so that the sum of the piecewise linear functions is a piecewise linear upper bound on the log

density itself. We experimentally verified that CCARS works efficiently on a number of well-

known distributions, and showed that it is an indispensable component of a recently proposed

SMC inference algorithm for genealogical trees under the coalescent.

The fact that the concave-convex decomposition is not unique has both advantages and dis-

advantages. An advantage is that we can have some function decompositions which may be

straightforward, requiring minimal algebra, like the trivial decomposition of additive terms. A

disadvantage is that we need to carefully choose between alternative decompositions as the re-

dundancy in the decomposition may reduce efficiency of the sampler. Although the same function

is being sampled from, a näıve decomposition may require more abscissae. We therefore suggest

watching out for redundancy in the decomposition and when feasible, using a “effectual” concave-
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convex decomposition—one where both components are as close to linear as possible since the

envelope functions are piecewise linear. The minimal concave-convex decomposition can consid-

ered to be effectual since in each interval defined by consecutive inflection points either f∩ or f∪

will be linear, and a single abscissa in that interval will make the bound exact on this term in that

interval. Therefore CCARS will in general be more efficient on this decomposition since we can

have a tighter envelope using the same number of abscissae. This can be seen as a compromise

between the amount of calculations necessary to obtain the inflection points of the function versus

the reduced efficiency of the sampler.

In the examples, we have employed concave-convex decompositions that fall out naturally from

the functional forms of the log densities, as well as minimal decompositions that require knowledge

of inflection points. We found that the minimal decompositions produce more efficient samplers,

as expected. Another issue with an effect on efficiency, especially for single sample generation,

is the initial abscissae positions. If available, information about the modes of the distribution or

earlier runs of the algorithm can be used for better initialization. For example, if using CCARS

as part of MCMC sampling, the abscissae information of previous iterations can be used, since

the conditional distributions typically do not change drastically within a few MCMC iterations.

CCARS can be generalized by incorporating a number of ideas used to generalize the original

adaptive rejection sampling. For log-concave densities Gilks (1992) proposed an alternative upper

bound that is looser but does not require derivative evaluations. This can be applied to CCARS as

well to obtain upper bounds on f∩(x) (the upper bounds on f∪(x) already do not require derivative

information). We can also incorporate the ideas in ES-ARS (Evans and Swartz, 1998) to CCARS.

Firstly, we can generalize the log transform to an arbitrary monotonic T transform. Secondly,

we can partition the domain and apply a separate concave-convex decomposition (possibly with

a different T transform) in each interval. Using interval partitions based on inflection points and

the log transform across all intervals, we have found in our experiments (Section 4.2) that this

approach has similar efficiency as CCARS with the minimal decomposition. The advantage of

CCARS is that it can be applied in situations where inflection point information is unavailable or

difficult to obtain.

Our algorithm is based on the fact that functions can be expressed as a sum of concave and

convex functions, in other words a difference of convex functions (DC) (Hartman, 1959). A closely
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related area of research in the optimization literature is DC programming, where the objective

function to be minimized is expressed as a DC function(Horst and Thoai, 1999; An and Tao, 2005).

The idea of concave-convex decompositions have also been explored in the approximate inference

context by Yuille and Rangarajan (2003), which can be seen as a special case of DC programming.

We believe that concave-convex decompositions of functions are natural in other problems as well

and exploiting such structure can lead to efficient solutions for such problems.

7 SUPPLEMENTAL MATERIALS

MATLAB code for CCARS algorithm: MATLAB code to generate samples from a distri-

bution given the concave-convex decomposition of its log density and to fit bounds to the

function for approximating its integral. (tar file)
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