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A pedigree

Graphical model for a pedigree from study of Werner's
syndrome. Each node is itself a graphical model.

Conditional independence

The notion of conditional independence is fundamental for
graphical models.

For three random variables X, Y and Z we denote this as
X 1LY | Z and graphically as
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If the random variables have density w.r.t. a product
measure p, the conditional independence is reflected in the
relation

f@y,2)f(2) = f(2,2) [y, 2),

where f is a generic symbol for the densities involved.

Family relationship of 1641 members of Greenland Eskimo
population.

Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C' if ('
separates A from B.

Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if
LX|Y,Z)=L(X|Z).

We then write X 1l Y

Z(or X UpY|Z)
Intuitively:

Knowing Z renders Y irrelevant for predicting X .
Factorisation of densities w.r.t. product measure:

XUY|Z <= f(&,y,2)f(2) = f(z,2)f(y,2)
<«  da,b: f(z,y,2) = alz, 2)b(y, 2).




Fundamental properties

For random variables X, Y, Z, and W it holds

(C1) if X 1LY | Z then Y 1L X | Z;

(C2) if X LY |Zand U = g(V), then X 1L U | Z;
(C3) if X LY |Z and U = g(Y), then X 1LY |(Z,U);
(C4) if X 1LY | Z and X LW | (Y, Z), then

X1 (Y, W) Z;
If density w.r.t. product measure f(x,y,z) > 0 also

(C5) if X LLY | Z and X 1L Z|Y then X I (Y, Z).

(I4) If, knowing C' learning A is irrelevant for learning B
and, having also learnt A, D remains irrelevant for
learning B, then both of A and D are irrelevant for
learning B.

The property (S5) is slightly more subtle and not generally
obvious.

Also the symmetry (C1) is a special property of
probabilistic conditional independence, rather than of
general irrelevance, where (I11) could appear dubious.

Additional note on (C5)

f(z,y,2) > 0 is not necessary for (C5). Enough e.g. that
f(y,z) >0 forall (y,z) or f(z,z) >0 for all .

In discrete and finite case it is even enough that the
bipartite graphs G4 = (Y U Z, E.) defined by

Yy~ z = f(y,2) >0,

are all connected.

Alternatively it is sufficient if the same condition is satisfied
with X replacing Y.

Is there a simple necessary and sufficient condition?

Probabilistic semigraphoids

V finite set, X = (X,,v € V) random variables.

For ACV, let X4 = (X,,v € A).

Let X, denote state space of X,.

Similarly 4 = (xy,v € A) € X4 = XpeaXy.
Abbreviate: AL B|S <= X, 1 Xp|Xs.

Then basic properties of conditional independence imply:
The relation 1L on subsets of V is a semigraphoid.

If f(z) >0 for all z, 1L is also a graphoid.

Not all (semi)graphoids are probabilistically representable.

Graphoid axioms

Ternary relation L, among subsets of a finite set V' is
graphoid if for all disjoint subsets A, B, C, and D of V:

(S1) if AL, B|C then BL, A|C;

(S2) if AL, B|Cand D C B, then AL, D|C;

(S3) if AL, B|C and D C B, then A1, B|(CUD);
(

S4) f AL, B|Cand AL, D|(BUC), then
Al,(BUD)|C;

(S5) if AL, B|(CUD)and ALl,C|(BUD) then
Al,(BUC)|D.

Semigraphoid if only (S1)-(S4) holds.

Second order conditional independence

Sets of random variables A and B are partially uncorrelated
for fixed C'if their residuals after /inear regression on X¢
are uncorrelated:

Cov{X4s —E"(Xa|Xc),Xp —E*(Xp|Xc)} =0,
in other words, if the partial correlations are zero
pap.c = 0.
We then write A 1, B |C.

Also L, satisfies the semigraphoid axioms (51) -(54) and
the graphoid axioms if there is no non-trivial linear relation
between the variables in V.

Irrelevance

Conditional independence can be seen as encoding
irrelevance in a fundamental way. With the interpretation:
Knowing C, A is irrelevant for learning B, (S1)—(54)
translate to:

(I1) If, knowing C', learning A is irrelevant for learning B,
then B is irrelevant for learning A;

(I2) If, knowing C', learning A is irrelevant for learning B,
then A is irrelevant for learning any part D of B;

(I3) If, knowing C', learning A is irrelevant for learning B,
it remains irrelevant having learnt any part D of B;

Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A, B, S of V, let A Lg B|S denote that
separates A from B in G, i.e. that all paths from A to B
intersect S.

Fact: The relation Lg on subsets of V' is a graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such separation relations.




Geometric Orthogonality

As another fundamental example, consider geometric
orthogonality in Euclidean vector spaces or Hilbert spaces.
Let L, M, and N be linear subspaces of a Hilbert space H
and define

L1IM|N < (L&N)L(MOSN),
where L& N = LN N*. Then L and M are said to meet
orthogonally in N. This has properties
(O1) If L L M|N then M L L|N;

(02) If L L M|N and U is a linear subspace of L, then
ULMIN;

Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1 1L.5[{2,3,4,6,7} and 4 1. 6|{1,2,3,5,7}.

(03) If L L M|N and U is a linear subspace of M, then
LLM|(N+U);

(04) If L L M|N and L L R|(M + N), then
LL(M+R)|N.
The analogue of (C5) does not hold in general; for example
if M = N we may have
L1M|Nand L LN|M,

but if L and M are not orthogonal then it is false that
L1 (M+N).

Local Markov property
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Every variable is conditionally independent of the
remaining, given its neighbours.

For example, 511 {1,4}|{2,3,6,7} and
710 {1,2,3}|{4,5,6}.

Variation independence
Let U C X = Xyey X, and define for S C V' the S-section
Us of U as

Uss = {uy\s : us = ug,u € U}.

Define further the conditional independence relation Iz, as

AfuB|C = Vul :U"e = {U"e}a x {U"} 5
i.e. if and only if the C-sections all have the form of a
product space.

The relation 1y, satisfies the semigraphoid axioms. In
particular 7 holds if U is the support of a probability
measure satisfying the similar conditional independence
restriction.

Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4,5,6}, or {2,5,6}

For example, it follows that 1 1L 7|{2,5,6} and
2116|{3.,4,5}.

Markov properties for semigraphoids

G = (V, E) simple undirected graph; L, (semi)graphoid
relation. Say 1, satisfies

(P) the pairwise Markov property if
atf = al,B|V\{a,B8}
(L) the local Markov property if
VaeV:aly,V\cl(a)| bd(a);
(G) the global Markov property if
AlgB|S = Al,B|S.

Structural relations among Markov properties

For any semigraphoid it holds that
(G) = (L) = (P)
If L, satisfies graphoid axioms it further holds that
(P) = (G)
so that in the graphoid case
(6) = (L) = (P)

The latter holds in particular for 1L, when f(z) > 0.




(6) = (1) = (P)

(G) implies (L) because bd(c) separates a from V' \ cl(«).
Assume (L). Then 8 € V' \ cl(«) because a ¢ 8. Thus

bd(a) U ((V \ el(@)\ {8}) = V' \{e, 8},
Hence by (L) and (S3) we get that
alo (VA\c(a) [V {a, B}
(S2) then gives o L, 8|V \ {or, B} which is (P).

Factorization example

The cliques of this graph are the maximal complete subsets
{12}, {1,3}, {2,4}, {2,5}, {3,5,6}, {4,7}, and {5,6,7}.
A complete set is any subset of these sets.

The graph above corresponds to a factorization as

flx) = thia(@r, w2)h13(w1, £3)Pos(22, T4)h25 (22, 5)
X th3s56(23, T5, T6)Par (T4, 27 )s67 (25, T6, T7)-

(P) = (G) for graphoids

Asuume (P) and A Lg B|S. We must show A L, B|S.

Wilog assume A and B non-empty. Proof is reverse
induction on n = |S|.

If n=|V| —2then A and B are singletons and (P) yields
AL, B|S directly.

Assume |S| =n < |V| — 2 and conclusion established for
[S| > n.
First assume V.= AU BUS. Then either A or B has at

least two elements, say A.

If a € Athen B Lg(A\{a})|(SU{a}) and also
algB|(SUA\{a}) (as Lg is a semi-graphoid).

Factorisation of the multivariate Gaussian

Consider a multivariate Gaussian random vector
X = Ny (&%) with ¥ regular so it has density

F(@]&,%) = @)~ VV2(det K)/ 2= (=8 TK@=6)/2,

where K = X~ is the concentration matrix of the
distribution.

Thus the Gaussian density factorizes w.r.t. G if and only if
aff = kas=0

i.e. if the concentration matrix has zero entries for
non-adjacent vertices.

Thus by the induction hypothesis
(A\{a}) Lo B|(SU{a}) and {a} L, B|(SU A\ {a}).
Now (S5) gives AL, B | S.

For AUBUS C V we choose a € V\ (AUBUS). Then
AlgB|(SU{a}) and hence the induction hypothesis
yields A L, B|(SU{a}).

Further, either AU S separates B from {a} or BU S
separates A from {a}. Assuming the former gives
al,B|AUS.

Using (S5) we get (AU {a}) L, B|S and from (52) we
derive that AL, B | S.

The latter case is similar.

Factorization theorem

Consider a distribution with density f w.r.t. a product
measure and let (G), (L) and (P) denote Markov properties
w.r.t. the semigraphoid relation L.

It then holds that
(F) = (G)

and further:
If f(z) >0 for all z: (P) = (F).

Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) = (6) = (L) < (P).

Factorisation and Markov properties

For a C V, 1,(x) is a function depending on z, only, i.e.
Ta =Ya = wa(z) = /l/)a(y)‘
We can then write ¥, (z) = ¥, (z,) without ambiguity.

The distribution of X factorizes w.r.t. G or satisfies (F) if
its density f w.r.t. product measure on X has the form

f@) =] vala),
acA
where A are complete subsets of G or, equivalently, if
f@) =] ¢ela),
ceC
where C are the cliques of G.




More on Markov Properties
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Semigraphoid examples

e Graph separation Lg in undirected graph G forms a
graphoid;

Variation independence of projections for a subset U
of a product space f;; forms a semigraphoid;

Uncorrelatedness 1o of residuals after linear
regression (second order conditional independence)
forms a semigraphoid;

Orthogonal meet L of closed subspaces of a Hilbert
space yields a semigraphoid;

e Probabilistic conditional independence.

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and similar algorithms

. Log-linear and Gaussian graphical models

. Conjugate prior families for graphical models

. Hyper Markov laws

. Structure learning and Bayes factors

. More on structure learning.

Probabilistic semigraphoids

V finite set, X = (X,,v € V) random variables.

For ACV, let X4 = (X,,v € A).

Let X, denote state space of X,.

Similarly 4 = (xy,v € A) € X4 = XpeaXy.
Abbreviate: AL B|S <= X, 1 Xp|Xs.

Then basic properties of conditional independence imply:
The relation 1L on subsets of V is a semigraphoid.

If f(z) >0 for all z, 1L is also a graphoid.

Not all (semi)graphoids are probabilistically representable.

Conditional Independence

For random variables X, Y, Z, and W it holds

if XUY|ZthenY ILX|Z;
if X 1Y |Zand U =g(Y), then X LU | Z;

if X 1LY |Z and X ILW | (Y, Z), then
X 1L(Y,W)| Z;
If density w.r.t. product measure f(z,y,z) > 0 also

(C5) if X LY |Zand X 1L Z|Y then X UL (V, Z).

(€1)
(C2)
(C3) f X ULY|Z and U = g(Y), then X 1LY | (Z,U);
(C4)

Markov properties for semigraphoids

G = (V, E) simple undirected graph; L, (semi)graphoid
relation. Say 1, satisfies

(P) the pairwise Markov property if
atf = alsB|V\{e, B}
(L) the local Markov property if
VaeV:al,V\cla)| bd(a);
(G) the global Markov property if
AlgB|S = ALl,B|S.

Graphoid axioms

Ternary relation L, among subsets of a finite set V' is

graphoid if for all disjoint subsets A, B, C, and D of V:

(S1) if AL, B|C then B1, A|C;

(82) if AL, B|C and D C B, then AL, D|C;

(83) if AL, B|C and D C B, then AL, B|(C'UD);
(54

S4) if Al,B|Cand AL, D|(BUC), then
Al,(BUD)|C;

(S5) if AL, B|(CUD)and ALl,C|(BUD) then
Al,(BUC)|D.

Semigraphoid if only (S1)-(S4) holds.

Structural relations among Markov properties

For any semigraphoid it holds that
@ = L) = (P
If L, satisfies graphoid axioms it further holds that
(P) = (6)
so that in the graphoid case
(G) <= (L) = (P)

The latter holds in particular for 1L, when f(z) > 0.




Factorisation and Markov properties

The distribution of X factorizes w.r.t. G or satisfies (F) if
£@) = [T val@) = [] dele)
acA ceC
A are complete subsets and C are the cliques of G.

It then holds that
(F) = (G)
and further:
If f(x) >0 for all z: (P) = (F).
Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) = (6) & (L) & (P).

To see the latter, assume the density factorizes. Then e.g.

0# 1/8 = £(0,0,0,0) = 112(0,0)123(0, 0)1b34(0, 0)241 (0, 0)
so these factors are all positive.

Continuing for all possible 8 configurations yields that all
factors ¢, () are strictly positive, since all four possible
configurations are possible for every clique.

But this contradicts the fact that only 8 out of 16 possible
configurations have positive probability.

In fact, (F) <= (G) if and only if G is chordal, i.e. does
not have an n-cycle with n > 4 as an induced subgraph.

To be shown later.

Pairwise Markov but not local Markov

L) *—o

X Y Z
Let X =Y = Z with P{X =1} = P{X =0} = 1/2.
This satisfies (P) but not (L).
(P): XY |Zand X L Z|Y.

(L): bd(X) =0 so (L) would imply X 1L (Y, Z) which is
false.

(L) <= (P) ifand only if G has no induced subgraph
Ga = (A, Ey) with |A| = 3 and |E4| € {2,3} (Matd¥
1992).

Dual graph: a~f if and only if a ¢ 3

Instability under limits

Consider a sequence P,,n =1,2,... of probability
measures on X’ and assume that A 1Lp, B|C.

If P, — P (weakly, say) it does not hold in general that
AlpBI|C.

A simple counterexample is as follows: Consider
X = (X],XQ,XQ,) ~ N3(07 En) with

11
L7 2 10
Sh=| = 2 s |—-|l000
1 1 0 1
2 U 2

so in the limit it is not true that 1 1L p3|2. The

Local Markov but not global Markov

*r——o—0o—0—0

U w X Y Z

Let U and Z be independent with
PU=1)=PZ=1)=PU=0)=P(Z=0)=1/2,

W=U,Y=2Z and X =WY.

This satisfies (L) but not (G).

(L): Variables depend deterministically on their neighbours.

(G): False that W LLY | X, for example when X = 0.

(G) <= (L) ifand only if the dual graph G does not have
the 4-cycle as an induced subgraph (Matus 1992).

concentration matrix K, is

2 a0
K, = Eﬁl = _\/ﬁ % _\/ﬁ
0 n 2

so for all n it holds that 1 1Lp, 3|2.

The critical feature seems to be that K,, does not
converge, hence the densities do not converge.

What is a reasonable general additional condition for
ensuring closure under limits?

The answer seems to be convergence in total variation (A.
Klenke, St Flour 2006).

Global but not factorizing
1 1
L
T U

o 0 0 0
1 I:I 0 0 I:I 1
0 0
L.
Uniform on these 8 configurations is (G) w.r.t. the 4-cycle.

Conditioning on opposite corners renders one corner
deterministic. Yet, (F) is not satisfied (Moussouris 1974).

Stability under limits
If X is discrete and finite and P,, — P pointwise,

conditional independence is preserved:

This follows from the fact that
XUp, Y|Z = fo(2,y,2)fn(2) = fu(z,2)fuly, 2)

and this relation is clearly stable under pointwise limits.

Hence (G), (L) and (P) are closed under pointwise limits in
the discrete case.




Instability under limits

Even in the discrete case, (F) is not in general closed under
pointwise limits.

Consider four binary variables X1, X5, X3, X4 with joint
distribution

n1ee ety +rsrs —r1Ta— 2 —r3+1

8+ 8n

fn($17x27$3’$4) =

This factorizes w.r.t. the graph

QI:IS
1 4

Example of a directed graphical model
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Positive X-ray?

and f,,(xz) = n/(8 4+ 8n) for each of the configurations
below

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
(0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1,1,1),

whereas f,,(x) = 1/(8 4 8n) for the remaining 8
configurations.

When n — oo, the density converges to f(z) = 1/8 for
each of the configurations above and f(z) = 0 otherwise,
i.e. the Moussouris example, which is globally Markov but
does not factorize.

Local directed Markov property

A semigraphoid relation L, satisfies the local Markov
property (L) w.r.t. a directed acyclic graph D if

Va eV :aly{nd(a)\pa(a)}| pa(a).
Here nd(«) are the non-descendants of a.

A well-known example is a Markov chain:

o000 --->0
X1 X2 X3 Xy X5 X,

with Xi+1J.L(X1,...,Xi71)|Xi fori=3,...,n.

Markov faithfulness

A distribution P is said to be Markov faithful to a graph G
if it holds that

AlgB|S < AlpB|S.

It can be shown by a dimensional argument that if |X,| > 2
for all v € V', then there is a distribution P which is
Markov faithful to G.

In fact, in the discrete and finite case, the set of Markov
distributions which are not faithful to a given graph is a
Lebesgue null-set in the set of Markov distributions.

For a Markov faithful P, the graphoids Lg and 1Lp are
isomorphic.

Local directed Markov property
2 4

For example, the local Markov property says
41,{1,3,5,6}|2,

51,{1,4}|{2,3}

31, {2,4}|1.

Directed acyclic graphs

A directed acyclic graph D over a finite set V' is a simple
graph with all edges directed and no directed cycles.

Absence of directed cycles means that, following arrows in
the graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental
and useful in a wealth of interesting applications, including
expert systems, genetics, complex biomedical statistics,
causal analysis, and machine learning.

Ordered Markov property

Suppose the vertices V' of a DAG D are well-ordered in the
sense that they are linearly ordered in a way which is
compatible with D, i.e. so that

a€pa(f) = a<p.

We then say semigraphoid relation L, satisfies the ordered
Markov property (O) w.r.t. a well-ordered DAG D if

Va €V :aly{pr(a)\pa(a)}| pa(a).

Here pr(«) are the predecessors of «, i.e. those which are
before « in the well-ordering..




Ordered Markov property
2 4
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The numbering corresponds to a well-ordering. The ordered
Markov property says for example
41,{1,3}2,
51,{1,4}|{2,3}
31, {2}|1.

Equivalence of Markov properties

A semigraphoid relation L, satisfies the global Markov
property (G) w.r.t. D if
AlpB|S = Al,B|S.
It holds for any DAG D and any semigraphoid relation 1,
that all directed Markov properties are equivalent:
(G) <= (L) <= (0).

There is also a pairwise property (P), but it is less natural
than in the undirected case and it is weaker than the others.

Separation in DAGs

A trail T from vertex « to vertex (3 in a DAG D is blocked
by S if it contains a vertex y € 7 such that

e either v € S and edges of 7 do not meet
head-to-head at +, or

e 7 and all its descendants are not in S, and edges of 7
meet head-to-head at 7.

A trail that is not blocked is active. Two subsets A and B
of vertices are d-separated by S if all trails from A to B are
blocked by S. We write A Lp B|S.

Factorisation with respect to a DAG

A probability distribution P over X = Xy factorizes over a
DAG D if its density f w.r.t. some product measure y has
the form

(F): f@) =[] k(oo 2paw)
veV
where &, > 0 and [, ku(zo | Zpaw)) po(day) = 1.
(F) is equivalent to (F*), where
GOERNIGES | FCHESE)
veV

i.e. it follows from (F) that k, in fact are conditional
densities. Proof by induction!

Separation by example

For S = {5}, the trail (4,2,5,3,6) is active, whereas the
trails (4,2,5,6) and (4,7, 6) are blocked.

For S = {3,5}, they are all blocked.

Example of DAG factorization
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The above graph corresponds to the factorization

f(@) = flz)f(ez|z)f(za] ) f(za|z2)

X flzs|ze, 3) f(6 | 23, 25) f (27| 24, 25, T6)-

Returning to example

=
~

Hence 4 1 63,5, but it is not true that 4 Lp 6|5 nor
that 4 L5 6.

Markov properties and factorization

Assume that the probability distribution P has a density
w.r.t. some product measure on X.

It is then always true that (F) holds if and only if 1L p
satisfies (G),

so all directed Markov properties are equivalent to the
factorization property!

(F) = (6) — (L) < (0).




Moralization

The moral graph D™ of a DAG D is obtained by adding
undirected edges between unmarried parents and
subsequently dropping directions, as in the example below:

Forming ancestral set

The subgraph induced by all ancestors of nodes involved in
the query 4 1,,, 63,57

Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised
graph D™.

This is seen directly from the factorization:
f@) =TT £ 2pa) = [T Ytpac @),
veV veV
since {v} U pa(v) are all complete in D™.

Hence if P satisfies any of the directed Markov properties
w.r.t. D, it satisfies all Markov properties for D™.

Adding links between unmarried parents

—_
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Adding an undirected edge between 2 and 3 with common
child 5 in the subgraph induced by all ancestors of nodes
involved in the query 4 L,, 63,57

Perfect DAGs

A DAG D is perfect if all parents are married.
For a perfect DAG D:

P satisfies (F) w.r.t D if and and only if it satisfies (F)
w.r.t. its skeleton o(D).

The skeleton is the undirected graph obtained from D by
ignoring directions.

For a perfect DAG D we always have (D) = D™.

A rooted tree with arrows pointing away from the root is a
perfect DAG.

In particular, any Markov chain is also a Markov field.

Dropping directions

—_
(&,

Since {3,5} separates 4 from 6 in this graph, we can
conclude that 4 1,,63,5

Alternative equivalent separation
To resolve query involving three sets A, B, S:

1. Reduce to subgraph induced by ancestral set
Dancausus) of AUBUS;
2. Moralize to form (Dan(aunus))™ ;

3. Say that S m-separates A from B and write
AL, B| S if and only if S separates A from B in
this undirected graph.

It then holds that A L,, B | S ifand only if A Lp B | S.

Proof in Lauritzen (1996) needs to allow self-intersecting
paths to be correct.

Properties of d-separation

It holds for any DAG D that Lp satisfies graphoid axioms.
Clearly, this is then also true for L,, .

To show this is true, it is sometimes easy to use L,,,
sometimes Lp.

For example, (S2) is trivial for Lp, whereas (S5) is trivial
for L, .

So, equivalence of Lp and L, is useful.




Ancestral marginals

Consider a DAG D and an ancestral subset A C 'V, i.e. one
where

a€ A = pa(a) € A
If P factorizes w.r.t. D, it factorizes w.r.t. D .

Proof by induction, using that if A is ancestral and A # V,
there is a terminal vertex ag with ap & A

It thus follows, that if P factorizes w.r.t. D:
Al,B|S = ALB|S.

Because then P factorizes w.r.t. DK}.(AUBUS) and hence
satisfies (G) for this graph.

Markov equivalence of directed and
undirected graphs

A DAG D is Markov equivalent to an undirected G if the
separation relations Lp and g are identical.

This happens if and only if D is perfect and G = (D). So,
these are all equivalent

but not equivalent to

Faithfulness

As in the undirected case, a distribution P is said to be
Markov faithful for a DAG D if it holds that

It can be also here be shown that if | X,| > 2 forallv eV,
then there is a distribution P which is Markov faithful for
D, and the set of directed Markov distributions which are
not faithful is a Lebesgue null-set in the set of directed
Markov distributions.

For a Markov faithful P, the graphoids Lp and 1Lp are
isomorphic.

Hence d-separation is indeed the strongest possible.
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Markov equivalence

Two DAGS D and D’ are Markov equivalent if the
separation relations 1 p and Lp. are identical.

D and D' are equivalent if and only if:

1. D and D’ have same skeleton (ignoring directions)

2. D and D’ have same unmarried parents

NN NN




Graph Decompositions
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Examples

The graph to the left is prime

3 6
Decomposition with A = {1,3}, B = {4,6,7} and S = {2,5}

2 4 2 2 4
3 6 3 6

Overview of lectures

Decomposition of Markov properties

1. Conditional independence and Markov properties Suppose P satisfies (F) w.r.t. G and (A, B,S) is a
2. More on Markov properties decomposition. Then
3. Graph decompositions and junction trees . . , ,
P P / (i) Paus and Ppyg satisfy (F) w.r.t. Gaus and Gpus
4. Probability propagation and similar algorithms respectively;
5. Log-linear and Gaussian graphical models (ii)
6. Conjugate prior families for graphical models f(@)fs(xs) = faus(zavs)fpus(zpus)-
7. Hyper Markov laws The first part of the statement is true when (F) is replaced
8. Structure learning and Bayes factors by (G).
9. More on structure learning. The second is also true for (G) if the relevant densities exist.
Some motivation Markov combination
o Perfect DAGs are simple, because their directions can Let @ and R be distributions on X'4us and Xpug resp. and

be ignored as they are Markov equivalent to their
skeleton;

Undirected graphs which can occur as skeletons of
perfect DAGs are therefore particularly simple;

e An n-cycle with n > 4 cannot be oriented to form a

perfect DAG:

e The important simplifying idea is that of graph
decomposition and decomposability .

assume Q and R are consistent, i.e. Qs = Rg.
Then there is a unique distribution P = @ * R so that
(i) Paus =Q and Ppus = R;
(i) AlLpB|S.
Q@ * R is the Markov combination of @ and R. If Q and R
have densities ¢ and r, so has P and
p(z)gs(zs) = p()rs(vs) = g(xavs)r(vpus)-

The Markov combination maximizes entropy among
measures satisfying (i).

Graph decomposition

Consider an undirected graph G = (V, E)). A partitioning of
V into a triple (A, B, S) of subsets of V forms a
decomposition of G if

AlgB|S and S is complete.

The decomposition is proper if A # () and B # ().

The components of G are the induced subgraphs G5 and
GBus-

A graph is prime if no proper decomposition exists.

Decomposability

Any graph can be recursively decomposed into its maximal
prime subgraphs:
2 4 2

3 6 3 :

A graph is decomposable (or rather fully decomposable) if
it is complete or admits a proper decomposition into
decomposable subgraphs.

2 4

Definition is recursive. Alternatively this means that all
maximal prime subgraphs are cliques.




Factorization of Markov distributions

Recursive decomposition of a decomposable graph into
cliques yields the formula:

F@) [ fs@s)’® = 11 fe(we).
Ses cec
Here S is the set of minimal complete separators occurring
in the decomposition process and v(S) the number of times
such a separator appears in this process.

Identifying chordal graphs
Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v* with bd(v*) complete. /f no
such vertex exists, the graph is not chordal.

2. Form the subgraph Gy, and let v* = |[V];

3. Repeat the process under 1;

4. If the algorithm continues until only one vertex is left,

the graph is chordal and the numbering is perfect.

The complexity of this algorithm is O(|V|?).

Combinatorial consequences

Note that if we let X, = {0,1} and f be uniform, this yields
oIV [ 2715 = [ 21!
ses cec

and hence we must have

Do101= I8I(S) = VI

cecC ses

It also holds that

S us) = V|- L.

ses

Greedy algorithm

Is this graph chordal?

Properties associated with decomposability

A numbering V = {1,...,|V|} of the vertices of an
undirected graph is perfect if the induced oriented graph is
a perfect DAG or, equivalently, if

Vj=2,...,|V|:bd(j) Nn{1,...,5 — 1} is complete in G.
An undirected graph G is chordal if it has no chordless
n-cycles with n > 4.

These graphs are also known as rigid circuit graphs or
triangulated graphs.

A set Sis an («, 8)-separator if a Lg 8|S,

Greedy algorithm

Is this graph chordal?

Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(i) All maximal prime subgraphs of G are cliques;
(iv) G admits a perfect numbering;

(v) Every minimal («, [3)-separator are complete.

Trees are chordal graphs and thus decomposable.

Greedy algorithm

(=)}

Is this graph chordal?




Greedy algorithm

o
b

Is this graph chordal?

Greedy algorithm

Is this graph chordal?

Greedy algorithm

()]

This graph is not chordal, as there is no candidate for
number 4.

Greedy algorithm

(=)}

Is this graph chordal?

Greedy algorithm

3
-

Is this graph chordal?

Greedy algorithm

Is this graph chordal?

Greedy algorithm

3

Is this graph chordal?

Greedy algorithm

w

~

~ (3]
o

Is this graph chordal?




Greedy algorithm

5

w
()]

Is this graph chordal?

Maximum Cardinality Search

*
—_
*

Is this graph chordal?

Greedy algorithm

1 5

w
()]

This graph is chordal!

Maximum Cardinality Search

*
N
—_
*

Is this graph chordal?

Maximum cardinality search
This simple algorithm has complexity O(|V| + |E|):

1. Choose vy € V arbitrary and let vy = 1;

2. When vertices {1,2,...,5} have been identified,
choose v =j +1 among V' \ {1,2,...,j} with
highest cardinality of its numbered neighbours;

3. Ifbd(j+1)Nn{1,2,..., J} is not complete, G is not
chordal;

4. Repeat from 2;

5. If the algorithm continues until only one vertex is left,

the graph is chordal and the numbering is perfect.

Maximum Cardinality Search

2 1
* *

Is this graph chordal?

Maximum Cardinality Search

Is this graph chordal?

Maximum Cardinality Search

2

Is this graph chordal?




Maximum Cardinality Search

2 1
*: :.: :4
* 5

Is this graph chordal?

Finding the cliques of a chordal graph

From an MCS numbering V' = {1,...,|V]}, let
Sy =bd(N)N{1,....,.x -1}

and 7y = |S\|. Call X a ladder vertex if A\ = |V] or if
Ta+1 < 7x + 1 and let A be the set of ladder vertices.

2 1

o
IS

ma: 0,1,2,2,2,1,1.  The cliques are Cy = {\} U Sy, A € A.

Maximum Cardinality Search

2

*% 5

Is this graph chordal?

Junction tree

Let A be a collection of finite subsets of a set V. A
Junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B € A and C is on the unique path in 7 between A
and B it holds that AN B C C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A= C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cx, X € A.

Maximum Cardinality Search

2 1
6: :.: :4
7 5

The graph is not chordal! because 7 does not have a
complete boundary.

A chordal graph

This graph is chordal, but it might not be that easy to
see. .. Maximum Cardinality Search is handy!

Maximum Cardinality Search

2 1
6: \.: :4
7 5

MCS numbering for the chordal graph. Algorithm runs
essentially as before.

Junction tree

Cliques of graph arranged into a tree with C; N Cy C D for
all cliques D on path between C and Cs.
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Relation between different graphs

P directed Markov w.r.t. D implies P factorizes w.r.t. D™.

D is perfect if skeleton G = o(D) = D™, implying that
directed and undirected separation properties are identical,
iee. AlgB|S < AlpB|S.

G = (D) for some DAG D if and only if G is chordal.

Two DAGs D and D’ are Markov equivalent, i.e.
AlpB|S < Alp B|S, ifand only if 5(D) = o(D’)
and D and D' have same unmarried parents.

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Conjugate prior families for graphical models

. Hyper Markov laws

. Structure learning and Bayes factors

. More on structure learning.

Graph decomposition

Consider an undirected graph G = (V, E). A partitioning of
V into a triple (4, B, S) of subsets of V forms a
decomposition of G if both of the following holds:

(iy ALgB|S;

(i) S is complete.

The decomposition is proper if A # () and B # ().

The components of G are the induced subgraphs G4us and
GBus-

A graph is prime if no proper decomposition exists.

Markov properties for undirected graphs

(P) pairwise Markov: a ot f = a L8|V \{, B}
(L) flocal Markov: oo LLV \ cl(e) | bd(e);
(G) global Markov: AlgB|S = Al B|S;

(F) Factorization: f(z) = [],ea ¥a(x), A being
complete subsets of V.

It then holds that

(F) = (6) = (L) = (P).
If f(xz) > 0 even

(F) <= (G) <= (L) <= (P).

Examples

The graph to the left is prime

3 6
Decomposition with A = {1,3}, B = {4,6,7} and S = {2,5}

2 4 2 2 4
3 6 3 6

Markov properties for directed acyclic graphs

(O) ordered Markov: o 1L {pr(a) \ pa(a)} | pa(a);
(L) flocal Markov: o 1L {nd(c) \ pa()} | pa(c);
(G) global Markov: ALlpB|S = A1LB]|S.

(F) Factorization: f(z) = [l ey f (v | Tpaw))-

It then always holds that

(F) = (6) = (1) < (0)

Decomposability

Any graph can be recursively decomposed into its uniquely
defined prime components:

2 4
2 4 2
NN
1 7 1 5
3 6 3 ;
6
A graph is decomposable (or rather fully decomposable) if

it is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
prime components are cliques.




Decomposition of Markov properties

Let (A, B, S) be a decomposition of G. Then P factorizes
w.r.t. G if and only if both of the following hold:

(i) Paus and Ppyg factorize w.r.t. Gaus and Gpus;
(i) f(2)fs(zs) = faus(zaus)fpus(zpus).
Recursive decomposition of a decomposable graph yields:
f@) [T fs(@s)”® = 1T fe(ee).
ses cec

Here S is the set of complete separators occurring in the
decomposition process and v(.S) the number of times a
given S appears.

Junction tree

Let A be a collection of finite subsets of a set V. A
Junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B € A and C is on the unique path in 7 between A
and B it holds that AN B C C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cx, X € A.

More generally if Q denotes the prime components of G:

F@) ] fs(9)"® = I folzq)-

SeSs QeEQ

A chordal graph

This graph is chordal, but it might not be that easy to
see. .. Maximum Cardinality Search is handy!

Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;
(iv) G admits a perfect numbering;

(v) Every minimal («, 3)-separator are complete.

Trees are chordal graphs and thus decomposable.

Junction tree

Cliques of graph arranged into a tree with C, N Cy C D for
all cliques D on path between C; and Cs.

Algorithms associated with chordality

Maximum Cardinality Search (MCS) Tarjan and Yannakakis
(1984) identifies whether a graph is chordal or not.

If a graph G is chordal, MCS yields a perfect numbering of
the vertices. In addition it finds the cliques of G:

From an MCS numbering V = {1,...,|V|}, let
Sx=bd(N) N{L,...,A =1}

and 7y = [Sx|. Call A a ladder vertex if A = |V or if

ma4+1 < mx + 1 and let A be the set of ladder vertices.

The cliques are Cy = {A\} U S\, A € A.

N

The numbers v(S) in the decomposition formula are
v(S)=[{reA:S\=S}|.

Junction trees of prime components

In general, the prime components of any undirected graph
can be arranged in a junction tree in a similar way, using an
algorithm of Tarjan (1985), see also Leimer (1993).

Then every pair of neighbours (C, D) in the junction tree
represents a decomposition of G into G and G, where C
is the set of vertices in cliques connected to C' but

separated from D in the junction tree, and similarly with D.

Tarjan's algorithm is based on a slightly more sophisticated
algorithm (Rose et al. 1976) known as Lexicographic
Search (LEX) which runs in O(|V|?) time.




Markov properties of junction tree

Let @ € Q be the prime components of a graph G,
arranged in a junction tree 7.

Using that any graph decomposition also yields a
decomposition of the Markov properties now gives that

The distribution of X = (X,,v € V) factorizes w.r.t. G if
and only if Xq,@Q € Q factorizes w.r.t. T and each of X
factorizes w.r.t. Gq.

In particular, if G is decomposable, X = (X,,v € V)
factorizes w.r.t. G if and only if X¢,C € C factorizes w.r.t.
T, i.e. the Markov property has essentially been transferred
to that of a tree of cliques.

Computational challenge

Calculate marginals ¢4 = ¢4 of joint valuation

¢ =®cecodc
with domain V' = UgecC.
Direct computation of ¢+ is impossible if V is large.

Challenge: calculate ¢+ using only local operations, i.e.
operating on factors ¥ with domain B C C' for some
CecC.

Typically also a second purpose of calculation.

Local computation

Local computation algorithms similar to probability
propagation have been developed independently in a
number of areas with a variety of purposes. For example:

e Kalman filter and smoother (Thiele 1880;
Kalman and Bucy 1961);

Solving sparse linear equations (Parter 1961);

Decoding digital signals (Viterbi 1967;
Bahl et al. 1974);

e Estimation in hidden Markov models (Baum 1972);

Peeling in pedigrees (Elston and Stewart 1971;
Cannings et al. 1976);

A probability perspective

Factorizing density on X = X,y X, with V and X, finite:
(@) = ] écl@).

cec
The potentials ¢ () depend on x¢ = (z,,v € C) only.
Basic task to calculate marginal (likelihood)

Pap) = Y Pk yvie)

Yv\E

for E C V and fixed x7;, but sum has too many terms.

A second purpose is to get the prediction
p(xy | 23) = play, 23)/p(z)) forv e V.

Belief function evaluation (Kong 1986;
Shenoy and Shafer 1986);

Probability propagation (Pearl 1986;
Lauritzen and Spiegelhalter 1988;
Jensen et al. 1990);

Abstract framework (Shenoy and Shafer 1990;
Lauritzen and Jensen 1997).

Also dynamic programming, linear programming, optimizing
decisions, calculating Nash equilibria in cooperative games,
and many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a graph
decomposition and a junction tree or similar to make the
computations.

Sparse linear equations

Valuations ¢¢ are equation systems involving
variables with labels C;

® ¢4 ® ¢p concatenates equation systems;

. gbgA eliminates variables in B\ A;

Marginal ¢!4 of joint valuation reduces the system of
equation to a smaller one;

e Second computation finds a solution of the equation
system by substitution.

An abstract perspective

V is large finite set and C collection of small subsets of V.
¢c,C € C are valuations with domain C'.

Combination: ¢4 ® ¢p has domain AU B.

® is assumed commutative and associative.

For A C V ¢4 denotes the A-marginal of ¢. ¢'* has
domain A.

A
Assume consonance: ¢pHANE) = (¢13)1

and distributivity: (¢ ® ¢c)*® = (¢'8) @ ¢, if C C B.

Constraint satisfaction

¢c represent constraints involving variables in C;
e ¢4 @ ¢p represents jointly feasible configurations;

. iBA finds implied constraints;

Marginal ¢'4 finds extendible configurations;

e Second computation identifies jointly feasible
configurations.

If represented by indicator functions, ® is ordinary product
and ¢1E(z};) = By, (¢, yv\p), Where
1p1=1®0=0d1=1and0p0=0.




Computational structure

Algorithms all (implicitly or explicitly) arrange the
collection of sets C in a junction tree T.

Hence, this works only if C are cliques of chordal graph G.

If this is not so from the outset, a triangulation is used to
construct chordal graph G’ with E C E’.

Clearly, in a probabilistic perspective, if P factorizes w.r.t.
G it factorizes w.r.t. G'.

Henceforth we assume this has been done and G is chordal.

Computations are executed by message passing.

Marginalization

The A-marginal of a potential ¢ for A C B is
S5 @)=Y W)
YBIYA=TA

If ¢ depends on x through x5 only and B C V' is ‘small’,
marginal can be computed easily.

Marginalization satisfies

Consonance For subsets A and B: ¢-(ANB) = ((blB)lA

Distributivit)‘g If ¢ depends on z¢ only and C C B:
(¢6c)"” = (¢7) dc.

Setting up the structure

In many applications P is initially factorizing over a
directed acyclic graph D. The computational structure is
then set up in several steps:

1. Moralisation: Constructing D™, exploiting that if P
factorizes on D, it factorizes over D™.

N

. Triangulation: Adding edges to find chordal graph G
with D™ C G. This step is non-trivial (NP-complete)
to optimize;

w

. Constructing junction tree:

4. Initialization: Assigning potential functions ¢¢ to
cliques.

Messages

When C' sends message to D, the following happens:
Before

(6] @s (935)

After

Computation is /ocal, involving only variables within cliques.

Basic computation

This involves following steps

—_

. Incorporating observations: If Xg = w7}, is observed,
we modify potentials as

dc(re) — do(x) ] ol ae),

e€c ENC
with §(u,v) =1 if u = v and else §(u,v) = 0. Then:
oy _ Heec dclzc)
plx|Xp=12p)= """
( | E E) P(IE)

N

. Marginals p(z73;) and p(z¢ | x7;) are then calculated
by a local message passing algorithm.

The expression

r@(r) _ Hcec ¢C(1’C)
[Ises ¢s(s)

is invariant under the message passing since ¢cdp/ds is:

s
b0 dp 2= _ dcép
oy bs

After the message has been sent, D contains the
D-marginal of pcdp/ds.

To see this, calculate

<¢C¢D>LD _ @¢1D %D
- -

[T
?s b5 bs oc

Separators

Between any two cliques C' and D which are neighbours in
the junction tree we introduce their intersection

S =CnND. Infact, S are the minimal separators
appearing in the decomposition sequence.

We also assign potentials to separators, initially ¢g = 1 for
all S € S, where S is the set of separators.

We also let
_ [lcec ¢c(@c)

- lses @s(es)’
and now it holds that p(z | z};) = k(x)/p(z}).

K(z)

1)

The expression (1) will be invariant under the message
passing.

Second message

If D returns message to C, the following happens:

First message

Second message

Now all sets contain the relevant marginal of
b= pcdp/ds:




The separator contains

1S As\ Y s s
oS = (¢C¢D) _ (¢1D)LS _ (ODL> _ Pe Pp )

Ps o] os

C' contains .
¢ ¢ _de 5 = !¢
C1s = 4.9D T ¢
o5 s

since, as before

<¢C¢D>lc _ @¢1D _ ¢£¢ls
os ds ¢ o5 P

Further messages between C and D are neutral! Nothing
will change if a message is repeated.

Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already
received message from all other neighbours. Such messages
are live.

Using this protocol, there will be one clique who first
receives messages from all its neighbours. This is effectively
the root R in COLLINFO and DISTINFO.

Additional messages never do any harm (ignoring efficiency
issues) as k is invariant under message passing.

Exactly two live messages along every branch is needed.

Message passing
Two phases:

e COLLINFO: messages are sent from leaves towards
arbitrarily chosen root R.

After COLLINFO, the root potential satisfies
or(zRr) = p(zR, p).
e DISTINFO: messages are sent from root R towards

leaves. After COLLINFO and subsequent DISTINFO,
it holds for all B € CUS that ¢pp(xp) = p(zp,zy).

Hence p(2j) = >_,_ ¢s(ws) forany S € S and p(z, |2F)
can readily be computed from any ¢g with v € S.

Maximization

Replace sum-marginal with A—maxmarginal:

A
H2)= max ¢p(y)
YBYA=TA

Satisfies consonance: ¢p+HANB) = (d)iB)lA and
distributivity: (¢pc)*? = (6'2) ¢c, if ¢ depends on zc
only and C C B.

COLLINFO yields maximal value of density f.
DiSTINFO yields configuration with maximum probability.
Viterbi decoding for HMM s is special case.

Since (1) remains invariant, one can switch freely between
max- and sum-propagation.

COLLINFO

Messages are sent from leaves towards root.

Random propagation

After COLLINFO, the root potential is ¢r(x) o p(zg |zE)

Modify DISTINFO as follows:

1. Pick random configuration & from ¢p.

2. Send message to neighbours C' as &rnc = @s where
S = CNR is the separator.

3. Continue by picking &¢ according to o (zc\s, Zs)
and send message further away from root.

When the sampling stops at leaves of junction tree, a
configuration & has been generated from p(x | z7%;).

DisTINFO

After COLLINFO, messages are sent from root towards
leaves.
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Log-Linear and
Gaussian Graphical Models

Lecture 5
Saint Flour Summerschool, July 10, 2006

Steffen L. Lauritzen, University of Oxford

Connecting to tradition

This largely a matter of different notation.

Assume data X' =zl ... X" =2"and V = {I,J, K}.

Write ¢ = 1,...,|I| for the possible values of X etc. and
Nigre = {v - ¥ = (6,5, k)},

etc. Then myjr =nf(x) and if f(x) > 0 and factorizes
wrt. A= {17}, {J, K}}

logf(x) = logw”(xz,xj) + longK(mJ,xK).

Thus if we let

aij =logn +logvrs(xr,zy), Bir =log¥yk(xs, k)

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Conjugate prior families for graphical models

. Hyper Markov laws

. Structure learning and Bayes factors

. More on structure learning.

we have
log mijr = aij + Bk

The only difference is the assumption of positivity which is
not necessary when using the multiplicative definition.

It is typically an advantage to relax the restriction of
positivity although it also creates technical difficulties.

The logarithm of the factors ¢, = log ), are known as
interaction terms of order |a| — 1 or |a|-factor interactions.

Interaction terms of Oth order are called main effects.

We also refer to the factors themselves using the same
terms.

Log—linear models

A denotes a set of (pairwise incomparable) subsets of V.

A density f (or function) factorizes w.r.t. A if there exist
functions 1, () which depend on z, only and

f@) = [T tula).

acA
The set of distributions P4 which factorize w.r.t. A is the
hierarchical log—linear model generated by A.
A is the generating class of the log—linear model.

No specific need to demand sets in A to be incomparable.
Only to avoid redundancy.

Dependence graph

Any joint probability distribution P of X = (X,,v € V)
has a dependence graph G = G(P) = (V, E(P)).

This is defined by letting a £ 3 in G(P) exactly when

allp 8|V \{a, 8}
X will then satisfy the pairwise Markov w.r.t. G(P) and
G(P) is smallest with this property, i.e. P is pairwise
Markov w.r.t. G iff
G(P)Cg.
The dependence graph G(P) for a family P is the smallest
graph G so that all P € P are pairwise Markov w.r.t. G:

allp 3|V \{a,p} forall P eP.

Traditional notation

Traditionally used for contingency tables, where e.g. m;;x
denotes the mean of the counts Njjj, in the cell (7,7, k)
which has then been expanded as e.g.

logmijk =aq; + ﬁj + Yk (1)

or
log Mijk = iy + ﬁjk (2)

or
logmijk = aij + Bjk + Vik, (3)

or (with redundancy)
log myji = v + 0; + @5 + Mk + @i + Bk + vik,  (4)

etc.

Dependence graph of log—linear model

For any generating class A we construct the dependence
graph G(A) = G(Pa) of the log-linear model P 4.

This is determined by the relation

a~f << JacA:a,f€a.

Sets in A are clearly complete in G(A) and therefore
distributions in P 4 factorize according to G(A).

They are thus also global, local, and pairwise Markov w.r.t.
G(A).




Independence

The log-linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A= {{I},{J},{K}}. It has dependence graph

I K
L] [ ]

[}
J

Thus it corresponds to complete independence.

Factor graphs
OIK

% J bIK

The factor graph of A is the bipartite graph with vertices
V' U A and edges define by

a~a < aeEa.

Using this graph even non-conformal log—linear models
admit a simple visual representation.

Conditional independence

The log-linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I,J},{J,K}} and
dependence graph

ivf

J

Thus it corresponds to the conditional independence
TN K|J.

Separation in factor graphs

If F = F(A) is the factor graph for A and G = G(A) the
corresponding dependence graph, it is not difficult to see
that for A, B, S being subsets of V'

AlgBlS — AL]:B‘S

and hence conditional independence properties can be read
directly off the factor graph also.

In that sense, the factor graph is more informative than the
dependence graph.

No interaction of second order

The log-linear model specified by (3) has no second-order
interaction. It has generating class
A={{I,J},{J,K},{I,K}} and its dependence graph

I K

L

J

is the complete graph. Thus it has no conditional
independence interpretation.

Data in list form

Consider a sample X' =z!,..., X" = 2" from a
distribution with probability mass function p. We refer to
such data as being in list form, e.g. as

case Admitted Sex

1 Yes Male
2 Yes Female
3 No Male
4

Yes Male

Conformal log-linear models

As a generating class defines a dependence graph G(A),
the reverse is also true.

The set C(G) of cliques of G is a generating class for the
log-linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A =C(G(A)), Ais

conformal.

The generating classes for the models given by (1) and (2)
are conformal, whereas this is not the case for (3).

Contingency Table

Data often presented in the form of a contingency table or
cross-classification, obtained from the list by sorting
according to category:

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

The numerical entries are cell counts
n(z) = [{v:a" =z}
and the total number of observations is n =3

zEX TL(CE)




Likelihood function

Assume now p € P4 but otherwise unknown. The
likelihood function can be expressed as

L) = [T e = T] o).
v=1 TEX

In contingency table form the data follow a multinomial
distribution

P{N(z) =n(z),z € X} = ﬁ'n(x)' H )@
xre . zEX

but this only affects the likelihood function by a constant
factor.

Hence

L(p12) = HPU(@MI)

x

- T{etvn@m@}"

x

o H /p1 (I) v(x) H /p2 (I) ()
= "V L(p1)L(p)

> L(p1)L(p2) = L(p1) = L(p2),

which contradicts (5). Hence we conclude p; = ps.

The extension to P4 is almost identical. It just needs a
limit argument to establish p;,ps € P4 = p12 € P4.

Properties of the likelihood function

The likelihood function

L(p) = [] p=)",

TEX

is continuous as a function of the (|X|-dimensional vector)
unknown probability distribution p.

Since the closure P 4 is compact (bounded and closed), L
attains its maximum on P4 (not necessarily on P 4 itself).

Indeed, it is also true that L. has a unique maximum over
P 4, essentially because the likelihood function is
log-concave.

Likelihood equations

The maximum likelihood estimate p of p is the unique
element of P4 which satisfies the system of equations

np(zq) = n(z,.),Va € A, z, € Xy, (6)

Here g(za) =3, _. 9(y) is the a-marginal of the
function g.

The system of equations (6) expresses the fitting of the
marginals in A.

This is also an instance of the familiar result that in an
exponential family (log-linear ~ exponential), the MLE is
found by equating the sufficient statistics (marginal counts)
to their expectation.

Uniqueness of the MLE

For simplicity, we only establish uniqueness within P 4. The
proof is indirect.

Assume p1,p2 € P4 with p; # py and

L(p1) = L(p2) = sup L(p). (5)

Define

pra(x) = cv/p1(x)pa(x),
where ¢! = {3"_\/p1(2)p2(2)} is a normalizing constant.

Proportional scaling

To show that the equations (6) indeed have a solution, we
simply describe a convergent algorithm which solves it.
This cycles (repeatedly) through all the a-marginals in A
and fit them one by one.

For a € A define the following scaling operation on p:

n(xa)

, ex
np(z,)’ v

(Tap)(z) < p(z)

where 0/0 = 0 and b/0 is undefined if b # 0.

Then p15 € P4 because

piz(z) = cvpi(z)p2(x)
= c[] Vei@ei(@) = [] vi(),
acA acA
where e.g. 112 = /1Al /p1(z)h2(z).

The Cauchy—Schwarz inequality yields

=Y Vn@p(e) < ,/Zm(z), [> pala) = 1.

Fitting the marginals

The operation T, fits the a-marginal if p(xz,) > 0 when
n(zq) > 0:

n(Tap)(Ta) = n Z () n(Ya)

YYa=%Ta

" e, 32,0
= n;;((z:;f)p(za)=n(za).




Iterative Proportional Scaling

Make an ordering of the generators A = {as,...,ax}.
Define S by a full cycle of scalings

Sp="Tg, - To,Ta,-

Define the iteration

po(x) = 1/IX], pn=Spn-1,n=1,....

It then holds that

lim p, =p
n—oo

Fitting S-marginal

Admitted
Sex Yes No S-marginal
Male 13455 13455 2691
Female 9175 9175 1835
A-marginal 1755 2771 4526
For example
2691

1= —
1345.5 = 1315 e e 1315

) ) ) o ) and so on.
where p is the unique maximum likelihood estimate of
p € P4, i.e. the solution of the equation system (6).
Iterative Proportional Fitting Fitting A-marginal
Known as the /PS-algorithm or /PF-algorithm, or as a Admitted
variety of other names. Implemented e.g. (inefficiently) in Sex TYes  No  S-marginal
R in loglin with front end loglm in MASS. Male 1043.46 164754 2691
Key elements in proof: Female 711.54 1123.46 1835
e A-marginal 1755 2771 4526
1. If pe Py, sois Typ;
2. T, is continuous at any point p of P4 with p(z,) # 0 For example
whenever n(z,) = 0;
1755
711.54 =917.5

3. L(Tup) > L(p) so likelihood always increases;
4. p is the unique fixpoint for T' (and S);

5. P4 is compact.

917.5 + 1345.5
and so on.

Algorithm has converged, as both marginals now fit!

A simple example

Admitted
Sex Yes No  S-marginal
Male 1198 1493 2691
Female 557 1278 1835
A-marginal 1755 2771 4526

Admissions data from Berkeley. Consider A 1L S,
corresponding to A = {{A}, {S}}.

We should fit A-marginal and S-marginal iteratively.

Normalised to probabilities

Admitted
Sex Yes No  S-marginal
Male 0.231 0.364 0.595
Female 0.157 0.248 0.405
A-marginal  0.388 0.612 1

Dividing everything by 4526 yields p.

It is overkill to use the IPS algorithm as there is an explicit
formula in this case.

Initial values

Admitted
Sex Yes No  S-marginal
Male 1131.5 11315 2691
Female 11315 11315 1835
A-marginal 1755 2771 4526

Entries all equal to 4526/4. Gives initial values of npy.

IPS by probability propagation

The IPS-algorithm performs the scaling operations T,:

n(z,)
wp(wa)’

p(z) < p(z) TeX. (M

This moves through all possible values of = € X, which in
general can be huge, hence impossible.

Jirousek and Preutil (1995) realized that the algorithm
could be implemented using probability propagation:

A chordal graph G with cliques C so that for all a € A, a
are complete subsets of G is a chordal cover of A.

1. Find chordal cover G of A ;




2. Arrange cliques C of G in a junction tree;
3. Represent p implicitly as

. HCec wc(av)_
plo) = HSES Ys(z)’

4. Replace the step (7) with

n(zq)
np(z,)’

Yo (zo) — Yo(ze) rc € Xo,

where a C C and p(z,) is calculated by probability
propagation.

Marginal and conditional distributions
Partition X into X; and X5, where X; € R" and X, € R®
with r + s = d.

Partition mean vector, concentration and covariance matrix
accordingly as

& K Kiz Y11 Y12
— , K= , U=
¢ ( & Ko Koo Y91 Yoo
so that ¥y is 7 x 7 and so on. Then, if X ~ Ny(&, %)

X5 ~ Ny(&2,822)

)

Since the scaling only involves X, this is possible just if and
maxcec |Xc/| is of a reasonable size. Xy | Xy =1y ~ ./\f,v(&‘g,E]‘g),
Closed form maximum likelihood where

In some cases the IPS algorithm converges after a finite
number of cycles.

An explicit formula is then available for the MLE of p € P4.

A generating class A is called decomposable if A= C (i.e.
A is conformal) and C are the cliques of a chordal graph G.

The IPS-algorithm converges after a finite number of cycles
(at most two) if and only if A is decomposable.

A= {{1,2},{2,3},{1, 3}} is the smallest non-conformal
generating class, demanding proper iteration.

&g = &1+ 81280, (22—&) and Xy = ¥ —X19%5, 5.

35, is an arbitrary generalized inverse to Xos.
In the regular case it also holds that
Ki' =31 — 21285, 5oy (9)

and
K 'Ky = 212557, (10)

so then,
bip =6 — K'Kiz(z2 — &) and S0 = Kt

In particular, if X5 = 0, X and X, are independent.

Explicit formula for MLE

Let S be the set of minimal separators of the chordal graph
G. The MLE for p under the log-linear model with
generating class A = C(G) is

HCeC n(zc)
n[Iges n(zs)")
where v(S) is the number of times S appears as an

intersection a N b of neighbours in a junction tree 7 with A
as vertex set.

px) =

Contrast this with the factorization of the probability
function itself:
p(z) = Hcec p(zc)
[Tses plzs)S)

Gaussian likelihoods

Consider £ =0 and a sample X! = 2! ... X" = 2"
N4(0,%) with X regular.

Using (8), we get the likelihood function

LK) = (27T)7"d/2(detK)"/Qefszzl(r”)TKz”/z
o (det K2~ tH{K Tl 0" (@)71/2
— (det K)n/Ze— tr(KW)/Q. (11)
where

W = i$u(xu)7
v=1

is the matrix of sums of squares and products.

Density of multivariate Gaussian

If ¥ is positive definite, i.e. if AT\ > 0 for A # 0, the
distribution has density w.r.t. Lebesgue measure on R¢

(@] €D) = (2m)~2(det K)o (0T K02 (g)

where K = 271 is the concentration matrix of the
distribution. We then also say that X is regular.

Wishart distribution

The Wishart distribution is the sampling distribution of the
matrix of sums of squares and products. More precisely:
A random d X d matrix S has a d-dimensional Wishart
distribution with parameter ¥ and n degrees of freedom if

n

w 2 ZXV(XV)T

i=1

where XV ~ N;(0,%). We then write
W~ Wd(n, E)

The Wishart is the multivariate analogue to the x?2:
Wi(n,0%) = 0% (n).




If W ~ Wy(n,X) its mean is E(W) = nX.
If Wy and W; are independent with W; ~ Wy(n;, X), then

Wi+ Wy ~ Wd(’ﬂ] + TLQ,E).
If Ais an r x d matrix and W ~ Wy(n, X), then
AWAT ~ W, (n, AXAT).
For 7 = 1 we get that when W ~ W;(n,X) and X € R?,
ATWA ~ a2x%(n),

where 0 = AT,

Likelihood function

The likelihood function based on a sample of size n is
L(K) o (det K)*/2e™ t1(EW)/2)

where W is the Wishart matrix of sums of squares and
products, W ~ W,y|(n, ) with 7! = K € §F(G).

For any matrix A we let A(G) = {a(G)ap} where

fa=pFBora~{
otherwise.

a‘(G)u@ = { a(())ﬁ

Then, as K € §(G)
tr(KW) = tt{ KW (G)}.

Wishart density

If W ~ Wy(n,X), where ¥ is regular, then
W is regular with probability one if and only if n. > d.
When n > d the Wishart distribution has density
fa(w|n, %)
= ¢(d,n)" (det £) "2 (det w) =41/ 2e= tr(E T w)/2

w.r.t. Lebesgue measure on the set of positive definite
matrices.

The Wishart constant ¢(d,n) is

d
e(d,m) = 2/2(2m) VAT T {(n +1 - 0)/2).

i=1

Hence we can identify the family as a (regular and
canonical) exponential family with elements of W(G) as
canonical sufficient statistics and the likelihood equations

E{W(G)} = nX(G) = w(G)ops-
Alternatively we can write the equations as
NOyy = Wyy, NOap = Wag, vE V,{a,B}€E,
with the model restriction £~! € S*(G).

This ‘fits variances and covariances along nodes and edges
in G’ so we can write the equations as

NS = wee for all cliques ¢ € C(G),

hence making the equations analogous to the discrete case.

Conditional independence
Consider X = (X1,...,Xv) ~ Njy(0,X) with ¥ regular
and K = 7L,

The concentration matrix of the conditional distribution of
(Xa, Xp) given Xy\(q.5} is

kaa kaﬁ )
Ko = .
{8} ( ksa kss

Hence
all BIV\{a, B} <= kag=0.

Thus the dependence graph G(K) of a regular Gaussian
distribution is given by

atf << kog=0.

Iterative Proportional Scaling

For K € §7(G) and ¢ € C, define the operation of
‘adjusting the c-marginal’ as follows. Let a =V '\ ¢ and

_ n(wcc)_l + Kca(Kaa)_lKac Kca
LK = ( K, K, ) (1%

This operation is clearly well defined if w,. is positive
definite.

Exploiting that it holds in general that
(Kﬁl)cc = Ecc = {ch - Kca(Kaa)ilKac}_l 5

we find the covariance f]cg corresponding to the adjusted

Graphical models
S(G) denotes the symmetric matrices A with aq3 =0
unless a ~ 3 and ST(G) their positive definite elements.

A Gaussian graphical model for X specifies X as
multivariate normal with K € S*(G) and otherwise
unknown.

Note that the density then factorizes as
1
log f(x) = constant — 3 Z koo — Z kaBTals,
agV {a,B}cE
hence no interaction terms involve more than pairs..

This is different from the discrete case and generally makes
things easier.

concentration matrix becomes

Yee = {(TCK)il}cu
= {n(wee) " + Kea(Kaa) " Kae = Kea(Kaa) " Kac} ™
= Wee/n,

hence T.K does indeed adjust the marginals.

From (12) it is seen that the pattern of zeros in K is
preserved under the operation 7, and it can also be seen to
stay positive definite.

In fact, 7. scales proportionally in the sense that

f(wrr |wm/”)
floe|Xee) '

This clearly demonstrates the analogy to the discrete case.

Ha [(TK)™'} = fa| K1)




Next we choose any ordering (ci, ..., ci) of the cliques in
G. Choose further Ky = I and define for r = 0,1, ...

KT+1 = (Tc1 o 'Tcxc,)KT'

Then we have: Consider a sample from a covariance
selection model with graph G. Then

K = lim K,,

r—oo
provided the maximum likelihood estimate K of K exists.
The general problem of existence of the MLE is non-trivial:
If n < sup,c 4 |a| the MLE does not exist.

Ifn > supgee |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

Maximum likelihood estimates

For a |d| x |e| matrix A = {a~, }yed,uce We let [A]Y denote
the matrix obtained from A by filling up with zero entries
to obtain full dimension |V| x V], i.e.

v _Joa, ifyedpce
([A] )w B { 0 otherwise.

The maximum likelihood estimates exists if and only if
n > C for all C € C. Then the following simple formula
holds for the maximum likelihood estimate of K:

K=n {Z [we) ] = S us) [(ws)*]v} .

cec Ses

For n between these values the general situation is unclear.

The determinant of the MLE is

) . o v(S)
For the k-cycle it holds (Buhl 1993) that for n = 2, det(K) = [Tsesidet(ws)} AVl
2 [Teec det(we)
P{MLE exists | ¥ =T} =1— ——,
k-1
whereas for n = 1 the MLE does not exist and for n > 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.
Chordal graphs References

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps, as in the discrete case.

We also have the familiar factorization of densities

[leee flzc|Ec)
o) = [ st 09

where v(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.

Buhl, S. L. (1993). On the existence of maximum likeli-
hood estimators for graphical Gaussian models. Scan-
dinavian Journal of Statistics, 20, 263-70.

Jirousek, R. and Preucil, R. (1995). On the effective im-
plementation of the iterative proportional fitting pro-
cedure. Computational Statistics and Data Analysis,
19, 177-89.

Relations for trace and determinant

Using the factorization (13) we can match the expressions
for the trace and determinant to obtain

tr(KW) =Y tr(KeWe) = Y v(S) tr(KsWs)
cec ses
and further
o Heeedet{(K~")c}
detX = {det(K)}™" = Hsez[get{(Kfl)s}]u(s)

[oee det{Ec}
[Tscs{det(Es)




Hyper Markov Laws

Lecture 6
Saint Flour Summerschool, July 13, 2006

Steffen L. Lauritzen, University of Oxford

Conformal log-linear model

The set C(G) of cliques of G is a generating class for the
log—linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A =C(G(A)), Ais

conformal.

Conformal log-linear models can be completely described in
terms of conditional independence.

For more general log-linear models factor graphs are needed
to yield a faithful representation of the factorization. MIM
(software by David Edwards www.hypergraph.dk), uses
the term interaction graph.

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Hyper Markov laws

. More on hyper Markov laws

. Structure estimation and Bayes factors

. More on structure estimation.

Likelihood equations

For any generating class A it holds that the maximum
likelihood estimate p of p is the unique element of P 4
which satisfies the system of equations

np(zq) = n(z,),Va € Az, € X,. (1)
The system of equations (1) expresses the fitting of the
marginals in A.

In general, the equations cannot be solved explicitly, but
iterative methods are needed.

Log—linear models

A denotes a set of (pairwise incomparable) subsets of V.
A density f factorizes w.r.t. A

f@) =] vala).

acA

The set of distributions P4 which factorize w.r.t. A is the
hierarchical log—linear model generated by the A.

A is the generating class of the log-linear model.

Iterative Proportional Scaling

For a € A define the scaling operation on p:
n(z,)
np(za)’

The operation Ty, fits the a-marginal. Now, make any
ordering of the generators A = {ay,...,a;}. Define S by

Sp =Tay,++ TayTa, -
Let po(z) < 1/|X], pn = Spp—1,n=1,....

(Tap)(z) < p(z)

rEX. (2)

It then holds that lim,, oo pp, = P Wfﬂe P is the unique
maximum likelihood estimate of p € P 4.

It is easy to show that p(z) > 0 for all z € X if and only if
pEPa.

Dependence graph
The dependence graph G(P) for a family of distributions P
is the smallest graph G so that
allp |V \{a,p} forall P eP.

The dependence graph of a log-linear model P 4 is then
determined by

a~f <<= JacA:q,f€ca.
Sets in A are complete in G(A) and therefore distributions
in P4 factorize according to G(A).

They are also global, local, and pairwise Markov w.r.t.

G(A).

IPS by probability propagation

A chordal cover of A is a chordal graph G so that for all
a € A, a are complete subsets of G.

1. Find chordal cover G of A and arrange cliques C of G
in a junction tree;

2. Represent p implicitly as p(x) = %
. ;

3. Replace (2) with

n(zq)
Xe,
Yo(ze) « wc(wc)np(%), Tc € X,
where a C C' and p(z,) is calculated by probability

propagation.




Closed form maximum likelihood

A is decomposable if A= C where C are the cliques of a
chordal graph.

The IPS-algorithm converges after at a finite number of
cycles (at most two) if and only if A is decomposable.

The MLE for p under the log-linear model A = C(G) is
#z) = [gec n(zc)
nllses n(as)")’
where v(S) is the usual multiplicity of a separator.

In fact, with a suitably chosen ordering (e.g. MCS) of the
cliques, the IPS-algorithm converges in a single cycle.

Existence of the MLE

The general problem of existence of the MLE is non-trivial:
If n < sup,c 4 |a| the MLE does not exist.

If n > supcee |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

For n between these values the general situation is unclear.
For the k-cycle it holds (Buhl 1993) that for n = 2,

2
(k—1)0

whereas for n = 1 the MLE does not exist and for n > 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.

P{MLE exists | X =T} =1—

Gaussian likelihood function

The likelihood function based on a sample of size n is
L(K) o« (det K)"/2e= "(EW)/2,

where W is the Wishart matrix of sums of squares and
products, W ~ Wy(n,X) with 1 = K € §*(G), where
S1(G) are the positive definite matrices with

[0} 7(4 ﬂ - kag =0.

The MLE of K is the unique element of S*(G) satisfying

N3ee = Wee for all cliques ¢ € C(9).

Special Wishart distributions

The formula
-1
5= n{z [wer ] = S us) [(wS)’l]v}
cec ses

specifies ¥ as a random matrix.

The distribution of this random Wishart-type matrix is
partly reflecting Markov properties of the graph G.

This is also true for the distribution of 3 for a non-chordal
graph G but not to the same degree.

Before we delve further into this, we shall need some more
terminology.

Iterative Proportional Scaling

For K € ST(G) and ¢ € C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V' \ ¢ and

o n(Wee) T+ Kea(Kaa) ' Kae Koo
TK = ( Ko K ) ©®

Next we choose any ordering (ci, ..., cx) of the cliques in
G. Choose further Ky = I and define for r = 0,1, ...

KT+1 = (Tm o 'TCk)KT'

It then holds that [;i: lim, ., K, provided the maximum
likelihood estimate K of K exists.

Laws and distributions

Families of distributions may not always be simply
parameterized, or we may want to describe the families
without specific reference to a parametrization.

Generally we think of
P = {Pg,a € @}

and sometimes identify © with P which is justified when
the parametrization

0 — Py
is one-to-one and onto.

In a Gaussian graphical model § = K € ST(G) is uniquely
identifying any regular Gaussian distribution satisfying the
Markov properties w.r.t. G.

Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in at most two
cycles, as in the discrete case.

The maximum likelihood estimates exists if and only if
n > |C| for all C € C. Then

K=n {Z [we) ] = 3 ws) [fws) ] V} |

ceC Ses

the symbol [A]Y denotes for A = {a+,}yed uce the matrix
obtained from A by filling up with zero entries to obtain
full dimension.

The case when P = P4 is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence.

In any case, any probability measure on P (or on ©)
represents a random element of P, i.e. a random
distribution. The sampling distribution of the MLE p is an
example of such a measure.

To keep heads straight we refer to a probability measure on
‘P as a law, whereas a distribution is a probability measure
on X.

Thus we shall e.g. speak of the Wishart law as we think of
it specifying a distribution of f(-|).




Hyper Markov Laws

We identify § € © and Py € P, soe.g. 04 for ACV
denotes the distribution of X4 under Py and 04| the
family of conditional distributions of X 4 given Xp, etc.

For a law £ on © we write
Al B|S < Oausllc0pus|bs.
A law £ on O is hyper Markov w.r.t. G if

(i) All 6 € © are globally Markov w.r.t. G;
(i) AL, B|S whenever S is complete and A Lg B|S.

Note the conditional independence is only required to hold
for graph decompositions.

Clearly, it holds that p is Markov on G and

{Nij} LN} [ {7
But since e.g.

n N iy! ni;
P({Nys = ngy {X"D) = [T o T )
; [T mage!

we have (

{Nij+} LX)} [ { N4}
and hence

{Nij } AN} [{N4j+ 3

which yields the hyper Markov property.

Hyper Markov property
2 4

If 6 follows a hyper Markov law for this graph, it holds for
example that

01235 AL 024567 | O25.
We shall later show that this is indeed true for § = j or 5
in the graphical model with this graph, i.e.

Y1235 AL Yogs67 | Las-

Chordal graphs

If G is chordal and 0 is hyper Markov on G, it holds that
ALgB‘S - AJLLBIS

i.e. it is not necessary to specify that .S is a complete
separator to obtain the relevant conditional independence.

This follows essentially because for a chordal graph it holds
that

AlgB|S = 35" CS:AlgB|S* with S* complete.

If G is not chordal, we can form G by completing all prime
components of G.

Consequences of the hyper Markov property

Clearly, if A 1L, B|.S, we have for example also (using
property (C2) of conditional independence)

0alls0p]0s

since 04 and O are functions of 645 and fp_s
respectively.

But the converse is false! 04 1L, 0p |60s does not imply
0aus Lz Opus|Bs, since 4y is not a function of

(04,0s). In contrast, X 4up is indeed a (one-to-one)
function of (X4, Xp).

However it generally holds that
AJ.LLB‘S <~ 9A|SLL03\S‘95-

Then if 6 is hyper Markov on G, it is also hyper Markov on
G, and thus

AlgB|S = Al B|S.

But the similar result would be false for an arbitrary chordal
cover of G.

Simple example

Consider the conditional independence model with graph

*r——o——o

1 J K

Here the MLE based on data X(™ = (X' ..., X™) is

. Nij Noji
pijk:T
NiN4j+
and
e = Nt 5 Nk 5 N
i+ n +ik n +i+ n

Directed hyper Markov property

We have similar notions and results in the directed case.

Say L = L(0) is directed hyper Markov w.r.t. a DAG D if 6
is directed Markov on D for all § € © and

tg'uupa(v) A, and('u) ‘ apa(v)v
or equivalently 0, | pa(v) Lz Ond(v) | Opacw), OF equivalently
for a well-ordering

Ovupa(v) Loz Opr(v) | Opa(v)-

In general there is no similar statement corresponding to
the global property and d-separation.

However, if D is perfect, L is directed hyper Markov w.r.t.
D if and only if L is hyper Markov w.r.t. G = o(D) = D™.
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Hyper Markov Laws

We identify § € © and Py € P,soe.g. 04 for ACV
denotes the marginal distribution of X 4 under P and 045
the family of conditional distributions of X4 given X, etc.

For a law £ on © we write
AJL[;BlS < eAus J.LL eBusles.
A law L on © is hyper Markov w.r.t. G if

(i) All 6 € © are globally Markov w.r.t. G;
(i) AL, B|S whenever S is complete and A Lg B|S.

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Hyper Markov laws

. More on Hyper Markov Laws

. Structure estimation and Bayes factors

. More on structure estimation.

Hyper Markov property
2 4

If 0 follows a hyper Markov law for this graph, it holds for
example that
01235 L 024567 | O25.

We shall later see that this is indeed true for 6 = p or 3 in
the graphical model with this graph, i.e.

Y1235 AL Yogs67 | Xos.

Laws and distributions
A statistical model involves a family P of distributions,
often parametrized as
P ={Py,0c O}
We typically identify © with P when the parametrization
60— Py
is one-to-one and onto.

In a Gaussian graphical model, § = K € S*(G) is uniquely
identifying any regular Gaussian distribution Ny (0,X),
where K = X171, satisfying the Markov properties of G.

Consequences of the hyper Markov property
We have
AJJ_LB|S - GAJJ_[;@B‘H&
but the converse is false!
It generally holds that
AL£B|S — GA‘SJ.L£93|S|95.

If G is chordal and L is hyper Markov on G, it holds that
AJ.gBlS - AJ.LLB‘S

In general, if we form G by completing all prime
components of G, then if L is hyper Markov on G

AlgB|S = Al.B|S.

The case when P = P 4 is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence with a suitable parameter ©.

A probability measure on P (or on ©) represents a random
element of P.

We refer to a probability measure on P or © as a law,
whereas a distribution is a probability measure on X

Thus we shall e.g. speak of the Wishart law as we think of
W specifying a (random) distribution of X as Ny (0| W).

Directed hyper Markov property

L = L(0) is directed hyper Markov w.r.t. a DAG D if 0 is
directed Markov on D for all § € © and

Ouupa(v) Lz Ondw) | Opaw),
or equivalently

6“\ pa(v) e end(v) | 6pa(v)7
or equivalently for a well-ordering of D

Ovupa(w) 1 Opr(w) | Opa(e)-

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = o(D) = D™.




Meta independence

In the following we shall for A, B C V' identify
Oaus = (0B 4,04) = (04B,9B),

i.e. any joint distribution of X 45 is identified with a pair
of further marginal and conditional distributions.

Define for S C V the S-section ©% of © as

0% ={0ecO:0s=050c0}.

The meta independence relation {p is defined as

AtpB|S <= V05 €05 : 0% = 0 s x 0% ¢,

Log-linear meta Markov models
Using results on collapsibility of log-linear models
(Asmussen and Edwards 1983) that

A log-linear model P 4 is meta Markov on its dependence
graph G(A) if and only if S € A for any minimal complete
separator S of G(A).

In particular, if A is conformal, P 4 is meta Markov.
For example, the log-linear model with generating class
A = {ab, ac,ad, be,bd, be, cd, ce, de}

has dependence graph with cliques C = {abed, bede}. Since
the complete separator bed is not in A, this model is not
meta Markov.

In words, A and B are meta independent w.r.t. P given S,
if the pair of conditional distributions (64,605 g) vary in
a product space when 0g is fixed.

Equivalently, fixing the values of 05| 5 and s places the
same restriction on 04 5 as just fixing 0s.

The relation {p satisfies the semigraphoid axioms as it is a
special instance of variation independence.

Note also that for any triple (A, B, S) and any law L on ©
it holds that

AJJ_[;B|S - AipB‘S

forif 04| s L 0p|s|0s it must in particular be true that
(0a)s,0B) ) vary in a product space for every fixed value
of 05.

The model with generating class
A" = {ab, ac,ad, bed, be, ce, de}

has the same dependence graph G(A’) = G(A) but even
though A’ is not conformal, P4 is meta Markov on G(A’).

But also the model with generating class
A" = {ab,ac,be,bd, cd, ce, de}

has a different dependence graph G(.A”). The separator bed
is not in A", but P4~ is meta Markov on G(A”), as both
minimal separators bc and cd are in A”.

Meta Markov models
The family P, or ©, is said to be meta Markov w.r.t. G if

(i) All 6 € © are globally Markov w.r.t. G;
(i) ALgB|S = Ai{pB|S whenever S is complete.

A Markov model is meta Markov if and only if
AlgB|S = AipB]|S,

where G is obtained from G by completing all prime

components,

If G is chordal, G = G and hence for any meta Markov
model P
AJ_gB‘S - AipBlS

Dependence graph of A and A’

Hyper Markov laws and meta Markov models

Since it for any law £ on O holds that
All;B|S = AipB]|S,

hyper Markov laws live on meta Markov models: /f a law L
on © is hyper Markov w.r.t. G , © is meta Markov w.r.t. G.

In particular, if a Markov model is not meta Markov, it
cannot carry a hyper Markov law without further restricting
to Oy C O.

A Gaussian graphical model with graph G is meta Markov
onG.

This follows for example from results of collapsibility of
Gaussian graphical models (Frydenberg 1990).

/J’i’Z‘\m
Tl




Factor graph of A’
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Canonical construction of hyper Markov laws

The distributions of maximum likelihood estimators are
important examples of hyper Markov laws. But for chordal
graphs there is a canonical construction of such laws.

Let C be the cliques of a chordal graph G and let
L, C € C be a family of laws over O¢ C P(X¢).

The family of laws are hyperconsistent if for any C' and D
with CND =8 #0, Lo and Lp induce the same law for
Os.

If Lo, C € C are hyperconsistent, there is a unique hyper
Markov law L over G with L(0¢c) = L¢,C € C.

Factor graph of A"

N s
!
L
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Strong hyper and meta Markov properties

In some cases it is of interest to consider a stronger version
of the hyper and meta Markov properties.

A meta Markov model is strongly meta Markov if
04| sipbs for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
045 1Lz s for all complete separators S.

A directed hyper Markov model is strongly directed hyper

Markov if 0U| pa(v) A, Hpa@) forallv e V.

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.

Meta Markov properties on supergraphs

Clearly, if 6 is globally Markov w.r.t. the graph G, it is also
Markov w.r.t. any super graph G’ = (V, E’) with E C E’.

The similar fact is not true for meta Markov models. For
example, the Gaussian graphical model for the 4-cycle G
with adjacencies 1 ~ 2 ~ 3 ~ 4 ~ 1, is meta Markov on G,
because it has no complete separators.

But the same model is not meta Markov w.r.t. the larger
graph G’ with cliques {124,234}, since for any K € S*(G),

012014 013034
= =ty TR

024
J11 033
So fixing the value of ooy restricts the remaining
parameters in a complex way.

Bayesian inference

Parameter 6 € O, data X = z, likelihood

dPy(x)

du(z)

Express knowledge about 6 through a prior law 7 on 6. Use

also 7 to denote density of the prior law w.r.t. some
measure v on O.

LO|z) ocp(x]0) =

Inference about 6 from z is then represented through
posterior law 7*(0) = p(0 | x). Then, from Bayes’ formula

7*(0) = p( | 0)7(6) /p(x) o L(0| 2)(6)

so the likelihood function is equal to the density of the
posterior w.r.t. the prior modulo a constant.

Maximum likelihood in meta Markov models

Under certain conditions, the MLE 6 of the unknown
distribution 0 will follow a hyper Markov law over © under
Py. These are

(i) © is meta Markov w.r.t. G;

(ii) For any prime component @ of G, the MLE éQ for g

based on X((Q") is sufficient for ©¢g and boundedly

complete.
A sufficient condition for (ii) is that O is a full and regular
exponential family in the sense of Barndorff-Nielsen (1978).

In particular, these conditions are satisfied for any Gaussian
graphical model and any meta Markov log-linear model.

Bernoulli experiments
Data X; = x1,...,X,, = x,, independent and Bernoulli
distributed with parameter 6, i.e.
P(X;=1]6)=1—-P(X; =0) =6.
Use a beta prior:
7(0a,b) o< 2711 — 9)>~L.
If we let z =) x;, we get the posterior:

T(0) o 6%(1—0) e (1 — 9)°L
9:1:+a—1(1 _ 0)n—:1:+b—1

So the posterior is also beta with parameters
(a+z,b+n—uz).




Conjugate families
A family P of laws on O is said to be conjugate under
sampling from z if
TeP = 7" €P.
The family of beta laws is conjugate under Bernoulli
sampling.
If the family of priors is parametrised:

P ={P,,a € A}

we sometimes say that « is a hyperparameter. Then,
Bayesian inference can be made by just updating
hyperparameters. Terminology of hyperparameter breaks
down in more complex models.

Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

(K |®,8) o (det K)%/2e WK [ e $T(g).

These laws are termed hyper inverse Wishart laws as %
follows an inverse Wishart law for complete graphs.

For chordal graphs, each marginal law Lo of ¢ is inverse
Wishart.

For any meta Markov model where © and ©¢ are full and
regular exponential families for all prime components @, it
follows directly from Barndorff-Nielsen (1978), page 149,

Conjugacy of hyper Markov properties
If £ is a prior law over © and X = z is an observation from
0, L* = L(0| X = ) denotes the posterior law over ©.
If L is hyper Markov w.r.t. G so is L*.
If L is strongly hyper Markov w.r.t. G so is L*.

In the latter case, the update of L is local to prime
components, i.e.

L(0q) = £5(00) = Lo | Xo = zq)
and the marginal distribution p of X is globally Markov

w.r.t. G, where

Mm:APw:zwawy

that the standard conjugate prior law is strongly hyper
Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws.

The analogous prior distribution for log-linear meta Markov
models are likewise termed hyper Dirichlet laws.

They are also strongly hyper Markov and if G is chordal,
each induced marginal law L¢ is a standard Dirichlet law.

Conjugate exponential families

For a k-dimensional exponential family
p(@|0) = b()e” 1O

the standard conjugate family is given as

0T a—rip(6)

w(0|a, k) x €

for (a,x) € A C R¥ x Ry, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1,...,2,) with t =Y. t(x;) is
then made as (a*,k*) = (a + ¢,k + n).

The family of Beta laws is an example of a standard
conjugate family.
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Directed hyper Markov property

L = L(0) is directed hyper Markov w.r.t. a DAG D if § is
directed Markov on D for all § € © and

Ou1 paco) L Ondw) | Opace)-

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = o(D) = D™.

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Hyper Markov laws

. More on Hyper Markov Laws

. Structure estimation and Bayes factors

. More on structure estimation.

Meta Markov models

For A, B C V identify
0auB = (0514,04) = (04| 5,08B).

A and B are meta independent w.r.t. P given S, denoted
A tp B| S, if the pair of conditional distributions
(045,08 5) vary in a product space when 0 is fixed.

The family P, or ©, is meta Markov w.r.t. G if

(i) All 6 € © are globally Markov w.r.t. G;
(i) ALgB|S = AfpB|S whenever S is complete.

Hyper Markov Laws

Identify 6 € © and Py € P, so e.g. 64 denotes the marginal
distribution of X4 under Py and 04 g the family of
conditional distributions of X 4 given Xp, etc.

For a law £ on © we write
AJ.LLB‘S <~ 9A|SLLHB\S‘9S-
A law £ on O is hyper Markov w.r.t. G if

(i) All 6 € © are globally Markov w.r.t. G;
(i) AL, B|S whenever S is complete and A Lg B|S.

Hyper Markov laws and meta Markov models

Hyper Markov laws live on meta Markov models.

A Gaussian graphical model with graph G is meta Markov
ong.

A log-linear model ‘P 4 is meta Markov on its dependence
graph G(A) if and only if S € A for any minimal complete
separator S of G(A).

In particular, if A is conformal, P 4 is meta Markov.

Hyper Markov property

The hyper Markov property has a simple formulation in
terms of junction trees:

Arrange the prime components Q of G in a junction tree 7
with complete separators S and consider the extended
Jjunction tree T which is the (bipartite) tree with QU S as
vertices and edges from separators to prime components so
that C ~ S~ DinT ifand only if C ~ Din 7.

Next, associate 64 to A for each A € QU S. It then holds
that

L is hyper Markov on G if and only if {#4,A € QUS} is
globally Markov w.r.t. the extended junction tree T .

Maximum likelihood in meta Markov models

If the following conditions are satisfied:

(i) © is meta Markov w.r.t. G;
(i) For any prime component @ of G, O is a full and
regular exponential family,
the MLE 0 of the unknown distribution 6 will follow a hyper
Markov law over © under Py.

In particular, this holds for any Gaussian graphical model
and any meta Markov log-linear model.




Strong hyper and meta Markov properties

A meta Markov model is strongly meta Markov if
04| s1p0s for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
045 1Lz 05 for all complete separators S.

A directed hyper Markov model is strongly directed hyper
Markov if 0| pa(v) Lz Opaw) for all v e V.

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.

Conjugate prior laws are strong hyper Markov

If © is meta Markov and ©¢, are full and regular exponential
families for all prime components @), the standard
conjugate prior law is strongly hyper Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws
and the hyper Dirichlet laws.

Thus, for the hyper inverse and hyper Dirichlet laws we
have simple local updating based on conjugate priors for
Bayesian inference.

Conjugacy of hyper Markov properties
If £ is a prior law over © and X = z is an observation from
0, L* = L(0| X = z) denotes the posterior law over ©.
If L is hyper Markov w.r.t. G so is L*.
If L is strongly hyper Markov w.r.t. G so is L*.

In the latter case, the update of L is local to prime
components, i.e.

L(0q) = Lo(0q) = Lo(Og | Xg = 2q)

and the marginal distribution p of X is globally Markov

w.r.t. G, where

p(z) = /e P(X = x| 0)L(d6).

Estimation of structure

Previous lectures have considered the graph G defining the
model as known and inference was concerning an unknown
Py with 6 € ©.

The last two lectures are concerned with inference
concerning the graph G, specifying only a family I' of
possible graphs.

Methods must scale well with data size, as many structures
and huge collections of data are to be considered.

Structure estimation is also known as model selection
(mainstream statistics) system identification (engineering),
structural learning (Al or machine learning.)

Conjugate exponential families

For a k-dimensional exponential family
p(]6) = bla)e’ =)
the standard conjugate family is given as

(0| a, k) 0" a—r(6)

for (a,x) € A C R* x Ry, where A is determined so that

the normalisation constant is finite.

Posterior updating from (x1,...,z,) with t =", t(x;) is
then made as (a*,k*) = (a + ¢,k +n).

Examples of structural assumptions

Different situations occur depending on the type of
assumptions concerning I'.

1. T is the set of undirected graphs over V;

2. T'is the set of chordal graphs over V;

3. I is the set of forests over V;

4. T is the set of trees over V;

5. T is the set of directed acyclic graphs over V;

6. Other conditional independence structures

Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

7(K | ®,0) o« (det K)/2e"E®) K e §T(G).

These laws are termed hyper inverse Wishart laws as ¥
follows an inverse Wishart law for complete graphs. For
chordal graphs, each marginal law Lc,C of X is inverse
Wishart.

The standard conjugate prior law for log-linear meta
Markov models are termed hyper Dirichlet laws. If G is
chordal, each induced marginal law Lc,C € C is a standard
Dirichlet law.

Why estimation of structure?

Parallel to e.g. density estimation

Obtain quick overview of relations between variables
in complex systems

e Data mining

Gene regulatory networks
e Reconstructing family trees from DNA information

e Methods exist, but need better understanding of their
statistical properties.
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Bayesian GES

More on trees

Fast algorithms (Kruskal Jr. 1956) compute maximal
weight spanning tree (or forest) from weights
W = (wyy,u,v € V).

Chow and Wagner (1978) show a.s. consistency in total
variation of P: If P factorises w.r.t. 7, then

sup |p(x) — p(x)| — 0 for n — oo,

so if T is unique for P, 7 = 1 for alln > N for some N.

If P does not factorize w.r.t. a tree, P converges to closest
tree-approximation P to P (Kullback-Leibler distance).

Types of approach

e Methods for judging adequacy of structure such as
— Tests of significance
— Penalised likelihood scores
I.(G) = log L — x dim(G)

with k =1 for AIC Akaike (1974), or
k= 3log N for BIC (Schwarz 1978).

— Bayesian posterior probabilities.

e Search strategies through space of possible
structures, more or less based on heuristics.

Bayes factors

For G € T, ©g is associated parameter space so that P
factorizes w.r.t. G if and only if P = Py for some 6 € Og.
Lg is prior law on Og.

The Bayes factor (likelihood ratio) for discriminating
between G; and G5 based on observations X (™ = z(") s

f(2™Gr)

BF(G1: G2) = m7

where
@™ |g) = / J(@™1G,0) Lg(db)
Og

is known as the marginal likelihood of G.

Estimating trees

Assume P factorizes w.r.t. an unknown tree 7.

Chow and Liu (1968) showed MLE 7 of T has maximal
weight, where the weight of 7 is

w(r) = Z wy(e) = Z Hn(e)
e€E(T) e€E(T)

and H,(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u,v}:

Hy(e)= " "(Ijl’ )

Ty, Ty

n(Ty, ) /n
n(zu)n(z,)/n?’

Posterior distribution over graphs

If 7(G) is a prior probability distribution over a given set of
graphs T, the posterior distribution is determined as

©(G) =n(G|2™) x f(z |G)m(G)
or equivalently

™ (G1) m(G1)
m*(G2) m(G2)’
Bayesian analysis looks for the MAP estimate G*

maximizing 7*(G) over I, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.

=BF(G1: G2)

Extensions

Results are easily extended to Gaussian graphical models,
with the weight of a tree determined as

wn(e) = —3 log(1~ ),

2

where 77

is correlation coeffient along edge e = {u,v}.

Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wh (e) = nwy(e) — kpdfe,

with ,, = 2 for AIC, k,, = logn for BIC and df. the
degrees of freedom for independence along e.

Strong hyper Markov prior laws

For strong hyper Markov prior laws, X (™) is itself
marginally Markov so

[oco F(25)16)
[lses f(mgn) |g)”9(s>7

where Q are the prime components and S the minimal
complete separators of G.

fa™)6) = M




Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

(6, ®;G) = / (det K)%/2e= *(K®) g¢,
J8H(G)

i.e. the usual Wishart constant if Q@ = C'is a clique.

Combining with the Gaussian likelihood, it is easily seen
that for Gaussian graphical models we have
h(d+n,®+ W™ G)

J@™16) = h(5,3;G)

Comparing with (1) leads to a similar factorization of the

Bayesian analysis

MAP estimates of forests can thus be computed using an
MWSF algorithm, using w(e) = log BF'(e) as weights.

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

These work less well for weights occurring with typical
Bayes factors, as most of these are essentially zero, so
methods based on the Matrix Tree Theorem seem currently
more useful.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.

normalising constant

HQEQ 5 (I’Qv gQ)
[Tses h(3, ®s35)7()
For chordal graphs all terms in this expression reduce to

known Wishart constants, and we can thus calculate the
normalization constant explicitly.

h(6,®;G) =

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2005).

The marginal distribution of W) is (weak) hyper Markov
w.r.t. G. It was termed the hyper matrix F' law by Dawid
and Lauritzen (1993).

Some challenges for undirected graphs

e Find feasible algorithm for (perfect) simulation from
a distribution over chordal graphs as

w(C)
@) o Hcee
[Tges w(S)e
where w(A), A CV are a prescribed set of positive

weights.

e Find feasible algorithm for obtaining MAP in
decomposable case. This may not be universally
possible as problem most likely is NP-complete.

Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
¢ we get

F(]2™) o HeeEw)(f( ("))

ey F(28))de=1

since all minimal complete separators are singletons and
ve({v}) = dy(v) — 1.

Multiplying the right-hand side with [, f( ) yields

H(ew)f = M I e

Hvev f( o veV e€p
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More about Structure Estimation

Lecture 9
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Steffen L. Lauritzen, University of Oxford

Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wgen(g) = NwWn ((-j) — kpdfe,

with r, = 1 for AIC, k,, = 1 logn for BIC and df. the
degrees of freedom for independence along e.

Use maximal weight spanning tree (or forest) algorithm
from weights W = (wyy,u,v € V).

Overview of lectures

. Conditional independence and Markov properties
. More on Markov properties

Graph decompositions and junction trees

. Probability propagation and related algorithms

. Log-linear and Gaussian graphical models

. Hyper Markov laws

. More on Hyper Markov Laws

. Structure estimation and Bayes factors

. More on structure estimation.

Bayes factors

For G € T, ©g is associated parameter space so that P
factorizes w.r.t. G if P = Py for some 6 € Og. Lg is prior
law on Og.

The Bayes factor for discriminating between Gy and G
based on X (™) = (") is

2
BF(G; : Go) = %’

where
F@™|g) = / f(@"1G,0) Lg(do)
Og

is known as the marginal likelihood of G.

Types of approach

Methods for judging adequacy of structure such as
— Tests of significance
— Penalised likelihood scores
1.(G) = log L — x dim(G)

with & = 1 for AIC Akaike (1974), or
k = 3 logn for BIC (Schwarz 1978).

— Bayesian posterior probabilities.

e Search strategies through space of possible
structures, more or less based on heuristics.

Posterior distribution over graphs

If 7(G) is a prior probability distribution over a given set of
graphs T, the posterior distribution is determined as

m(G) = w(G|2™) o f(2™ |G)m(G)
or equivalently

™ (G1) m(G1)

m*(G2) m(G2)
The BIC is an O(1)-approximation to log BF using
Laplace’s method of integrals on the marginal likelihood.

=BF(G1:G2)

Bayesian analysis looks for the MAP estimate G*
maximizing 7*(G) over I, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.

Estimating trees

Assume P factorizes w.r.t. an unknown tree 7. MLE 7 of
T has maximal weight, where the weight of 7 is

’LU(T): Z w"(c): Z Hn(c)

e€E(T) e€E(T)

and H,(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u,v}. For Gaussian trees this becomes

1
wy(e) = 3 log(1 — 7‘3)1

2

where 77

is correlation coeffient along edge e = {u,v}.

Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

(det K)2/2e= rK®) G,

no.:6) - |

S+(9)
The marginal likelihood is then

_h(6+n, 2+ W™G)

R G50

where

Lo [Tgeo (6, 2q; Gq)
h(6,®:6) = [Tses 10, ®s; 5)7o ()’




For chordal graphs all terms reduce to known Wishart
constants.

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2005).

additional parent 0., pa(v) for every vertex V' in D, so then
f(l ‘ 9) = H f("Ew | Tpa(v)s 07}\ pa(’u))~
veV

Exploiting independence and taking expectations over 6
yields that also marginally,

$@iD) = [ @1 £0(0) = T] fa |pnc):

veV

If £ is strongly directed hyper Markov and £* it holds that
also the posterior law L* is is strongly directed hyper
Markov and

L0y paw)) < f(o | Tpag)s Ov | pa)) L0 | pacv))
(Spiegelhalter and Lauritzen 1990).

Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
¢ we get

HcEE((/)) f(If(:n))

T (P) o W
x H BF (e),

e€E(¢)

where BF(e) is the Bayes factor for independence along the
edge e:
fa o)

BF(¢) = ————~——.
© Fa) f(2)

Markov equivalence
D and D' are equivalent if and only if:

1. D and D’ have same skeleton (ignoring directions)

2. D and D’ have same unmarried parents

NG
BN

SO

but

MAP estimates of forests can thus be computed using an
MWSF algorithm, using w(e) = log BF (e) as weights.

When ¢ is restricted to contain a single tree, the
normalization constant can be explicitly obtained via the
Matrix Tree Theorem, see e.g. Bollobds (1998).

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.

Searching equivalence classes

In general, there is no hope of distinguishing Markov
equivalent DAGs, so D can at best be identified up to
Markov equivalence.

The number D,, of unlabelled DAGs with n vertices is given
by the recursion (Robinson 1977)

- i T\ gi(n—i
Dn:Z(_l) +1<i>2( )Dn—i
i=1

which grows superexponentially. For n = 10,
D,, =~ 4.2 x 10'8. The number of equivalence classes is
smaller, but is conjectured still to grow superexponentially.

Directed hyper Markov property

L = L(0) is directed hyper Markov w.r.t. a DAG D if § is
directed Markov on D for all § € © and

Ou pa(v) L2 Ond(w) | Fpaco)-

A law L is directed hyper Markov on D if and only if L4 is
hyper Markov on (D)™ for any ancestral set A C V.

L is strongly directed hyper Markov if in addition

0| pa(v) Lz Opaw) for all v or, equivalently if the
conditional distributions 0| paw),v € V' are mutually
independent.

Graphically, this is most easily displayed by introducing one

Conjugate priors for DAGs

In the discrete case, the obvious conjugate prior is for fixed
v to let

{01/\ pap(v) (‘rv ‘ ‘r;ap(v))?xv S Xv}
be Dirichlet distributed and independent for v € V' and
T (o) € Xpap(v) (Spiegelhalter and Lauritzen 1990).

We can derive these Dirichlet distributions from a fixed
master Dirichlet distribution D(«), where
a=ax),z € X, by letting

{9'11\ ;)A(v)(zv ‘ z;ap(v))} ~ D(a(xmw;ap(v))v

where as usual a(za) =35, _, a(y).




Typically, « is specified by letting a = Apo(z) where py is
an initial guess on the joint distribution, for example
specified through a DAG Dy, and X is the equivalent
sample size for the prior information.

The values a(xv,zl’;av(v)) = /\po(zv,x;av(v)) can then be
calculated by probability propagation.

Common default values is A = 1 and a(z) = |X|~1.

A similar construction is possible in the Gaussian case using
the Wishart distribution (Geiger and Heckerman 1994) and
for mixed discrete Gaussian networks (Bgttcher 2001), the
latter implemented in the R-package DEAL (Bgttcher and
Dethlefsen 2003).

Markov mesh model

Characterization of strong hyper priors

In all cases, it was shown (Geiger and Heckerman 1997,
2002) that prior distributions constructed in this way are
the only distributions which are

1. modular:
pa‘D(U) = pa‘D’(U) = 91}\ pap(v) ™ ev\ paps (v)}

2. score equivalent:

D=D = f(a™|D)=f(=™|D).

Crudest algorithm (WinMine), 10000 simulated cases

Marginal likelihood

Bayes factors derived from these strongly directed hyper
Dirichlet priors have a simple form

f(x(")u)) _ H H St F(Q(Ipap(v)))

Tpap () T UTpap )

UV Tpa(v)

H F(a(IvUpaﬂ(u)) + n(xUUPaD(U)))
T F(O‘(vapaD(v)))
(Cooper and Herskovits 1992;

Heckerman et al. 1995)

Challenge: Find good algorithm for sampling from the full
posterior over DAGs or equivalence classes of DAGs. [ssue:
prior uniform over equivalence classes or over DAGs?

Tree model

Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes with a
single additional edge and go to class with highest
score - until no improvement.

3. Repeatedly search among equivalence classes with a
single edge less and move to one with highest score -
until no improvement.

For BIC or Bayesian posterior score with directed hyper
Dirichlet priors, this algorithm yields consistent estimate of
equivalence class for P. (Chickering 2002)
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SGS and PC algorithms
SGS-algorithm (Spirtes et al. 1993):

Step 1: Identify skeleton using that, for P faithful,
ufv <= IS CV\{u,v}: X, L X, | Xs.

Begin with complete graph, check for S = ) and
remove edges when independence holds. Then
continue for increasing |S|.

PC-algorithm (same reference) exploits that only S
with S C bd(u) \ v or S C bd(v) \ u needs checking
where bd refers to current skeleton.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.

Bayesian GES

Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D’ equivalent
to D.

It uses N independence checks where N is at most
d d+1
V] Vi-1y _ VI
N <2 < —
= ( 2 ; i )= (d-DU
where d is the maximal degree of any vertex in D.

So worst case complexity is exponential, but algorithm fast
for sparse graphs.

Sampling properties are less well understood although
consistency results exist.

Constraint-based search

Another alternative search algorithm is known as constraint
based search.

Essentially, the search methods generate queries of the type
“A 1l B|S?", and the answer to such a query divides I
into those graphs conforming with the query and those that
do not.

These type of methods were originally designed by
computer scientists in the context where P was fully
available, so queries could be answered without error.

The advantage of this type of method is that relatively few
queries are needed to identify a DAG D (or rather its
equivalence class).

PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases

The disadvantage is that there seems to be no coherent
and principled method to answer the query in the presence
of statistical uncertainty, which is computable.

PC algorithm

10000 simulated cases




NPC algorithm

The NPC algorithm (Steck and Tresp 1996) stabilises the
PC algorithm by adding a necessary path condition.

The general idea has these elements:

1. When a query is decided negatively, =(A 1L B|S), it
is taken at face value; When a query is decided
positively, A L B|S, it is recorded with care;

2. If at some later stage, the PC algorithm would
remove an edge so that a negative query
—(A 1L B|S) would conflict with A Lp B|S, the
removal of this edge is suppressed.

This leads to unresolved queries which are then
passed to the user.
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