Conditional Independence and Markov Properties Lecture 1 Saint Flour Summerschool, July 5, 2006 Steffen L. Lauritzen, University of Oxford	A directed graphical model Directed model showing relations between risk factors, diseases, and symptoms.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and similar algorithms 5. Log-linear and Gaussian graphical models 6. Conjugate prior families for graphical models 7. Hyper Markov laws 8. Structure learning and Bayes factors 9. More on structure learning.	A pedigree Graphical model for a pedigree from study of Werner's syndrome. Each node is itself a graphical model.
Conditional independence The notion of conditional independence is fundamental for graphical models. For three random variables X, Y and Z we denote this as $X \Perp Y \mid Z$ and graphically as If the random variables have density w.r.t. a product measure μ, the conditional independence is reflected in the relation $f(x, y, z) f(z)=f(x, z) f(y, z)$ where f is a generic symbol for the densities involved.	A highly complex pedigree Family relationship of 1641 members of Greenland Eskimo population.
Graphical models For several variables, complex systems of conditional independence can be described by undirected graphs. Then a set of variables A is conditionally independent of set B, given the values of a set of variables C if C separates A from B.	Conditional independence Random variables X and Y are conditionally independent given the random variable Z if $\mathcal{L}(X \mid Y, Z)=\mathcal{L}(X \mid Z)$ We then write $X \Perp Y \mid Z$ (or $X \Perp_{P} Y \mid Z$) Intuitively: Knowing Z renders Y irrelevant for predicting X. Factorisation of densities w.r.t. product measure: $\begin{aligned} X \Perp Y \mid Z & \Longleftrightarrow f(x, y, z) f(z)=f(x, z) f(y, z) \\ & \Longleftrightarrow \exists a, b: f(x, y, z)=a(x, z) b(y, z) . \end{aligned}$

Fundamental properties

For random variables X, Y, Z, and W it holds
(C1) if $X \Perp Y \mid Z$ then $Y \Perp X \mid Z$;
(C2) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp U \mid Z$;
(C3) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp Y \mid(Z, U)$;
(C4) if $X \Perp Y \mid Z$ and $X \Perp W \mid(Y, Z)$, then $X \Perp(Y, W) \mid Z ;$

If density w.r.t. product measure $f(x, y, z)>0$ also
(C5) if $X \Perp Y \mid Z$ and $X \Perp Z \mid Y$ then $X \Perp(Y, Z)$.

Additional note on (C5)

$f(x, y, z)>0$ is not necessary for (C5). Enough e.g. that $f(y, z)>0$ for all (y, z) or $f(x, z)>0$ for all.
In discrete and finite case it is even enough that the bipartite graphs $\mathcal{G}_{+}=\left(\mathcal{Y} \cup \mathcal{Z}, E_{+}\right)$defined by

$$
y \sim_{+} z \Longleftrightarrow f(y, z)>0
$$

are all connected.
Alternatively it is sufficient if the same condition is satisfied with X replacing Y.

Is there a simple necessary and sufficient condition?

Graphoid axioms

Ternary relation \perp_{σ} among subsets of a finite set V is graphoid if for all disjoint subsets A, B, C, and D of V :
(S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$;
(S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$;
(S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid(C \cup D)$;
(S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid(B \cup C)$, then $A \perp_{\sigma}(B \cup D) \mid C ;$
(S5) if $A \perp_{\sigma} B \mid(C \cup D)$ and $A \perp_{\sigma} C \mid(B \cup D)$ then $A \perp_{\sigma}(B \cup C) \mid D$.

Semigraphoid if only (S1)-(S4) holds.

Irrelevance

Conditional independence can be seen as encoding irrelevance in a fundamental way. With the interpretation: Knowing C, A is irrelevant for learning B, (S1)-(S4) translate to:
(I1) If, knowing C, learning A is irrelevant for learning B, then B is irrelevant for learning A;
(I2) If, knowing C, learning A is irrelevant for learning B, then A is irrelevant for learning any part D of B;
(I3) If, knowing C, learning A is irrelevant for learning B, it remains irrelevant having learnt any part D of B;
(I4) If, knowing C, learning A is irrelevant for learning B and, having also learnt A, D remains irrelevant for learning B, then both of A and D are irrelevant for learning B.

The property (S5) is slightly more subtle and not generally obvious.

Also the symmetry (C1) is a special property of probabilistic conditional independence, rather than of general irrelevance, where (I1) could appear dubious.

Probabilistic semigraphoids

V finite set, $X=\left(X_{v}, v \in V\right)$ random variables.
For $A \subseteq V$, let $X_{A}=\left(X_{v}, v \in A\right)$.
Let \mathcal{X}_{v} denote state space of X_{v}.
Similarly $x_{A}=\left(x_{v}, v \in A\right) \in \mathcal{X}_{A}=\times_{v \in A} \mathcal{X}_{v}$.
Abbreviate: $A \Perp B\left|S \Longleftrightarrow X_{A} \Perp X_{B}\right| X_{S}$.
Then basic properties of conditional independence imply:
The relation \Perp on subsets of V is a semigraphoid.
If $f(x)>0$ for all x, \Perp is also a graphoid.
Not all (semi)graphoids are probabilistically representable.

Second order conditional independence

Sets of random variables A and B are partially uncorrelated for fixed C if their residuals after linear regression on X_{C} are uncorrelated:

$$
\operatorname{Cov}\left\{X_{A}-\mathbf{E}^{*}\left(X_{A} \mid X_{C}\right), X_{B}-\mathbf{E}^{*}\left(X_{B} \mid X_{C}\right)\right\}=0
$$

in other words, if the partial correlations are zero

$$
\rho_{A B \cdot C}=0 .
$$

We then write $A \perp_{2} B \mid C$.
Also \perp_{2} satisfies the semigraphoid axioms (S1) -(S4) and the graphoid axioms if there is no non-trivial linear relation between the variables in V.

Separation in undirected graphs

Let $\mathcal{G}=(V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).
For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G}, i.e. that all paths from A to B intersect S.
Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.
This fact is the reason for choosing the name 'graphoid' for such separation relations.

Geometric Orthogonality

As another fundamental example, consider geometric orthogonality in Euclidean vector spaces or Hilbert spaces. Let L, M, and N be linear subspaces of a Hilbert space H and define

$$
L \perp M \mid N \Longleftrightarrow(L \ominus N) \perp(M \ominus N)
$$

where $L \ominus N=L \cap N^{\perp}$. Then L and M are said to meet orthogonally in N. This has properties
(O1) If $L \perp M \mid N$ then $M \perp L \mid N$;
(O2) If $L \perp M \mid N$ and U is a linear subspace of L, then $U \perp M \mid N ;$
(O3) If $L \perp M \mid N$ and U is a linear subspace of M, then $L \perp M \mid(N+U) ;$
(O4) If $L \perp M \mid N$ and $L \perp R \mid(M+N)$, then $L \perp(M+R) \mid N$.

The analogue of (C5) does not hold in general; for example if $M=N$ we may have

$$
L \perp M \mid N \text { and } L \perp N \mid M
$$

but if L and M are not orthogonal then it is false that $L \perp(M+N)$.
$L \perp(M+N)$.
Variation independence
Let $\mathcal{U} \subseteq \mathcal{X}=x_{v \in V} \mathcal{X}_{v}$ and define for $S \subseteq V$ the S-section
$\mathcal{U}^{u_{S}^{*}}$ of \mathcal{U} as
$\mathcal{U}^{u_{S}^{*}}=\left\{u_{V \backslash S}: u_{S}=u_{S}^{*}, u \in \mathcal{U}\right\}$.

Define further the conditional independence relation $\ddagger \mathcal{U}$ as

$$
A \ddagger \mathcal{U} B \mid C \Longleftrightarrow \forall u_{C}^{*}: \mathcal{U}^{u_{C}^{*}}=\left\{\mathcal{U}^{u_{C}^{*}}\right\}_{A} \times\left\{\mathcal{U}^{u_{C}^{*}}\right\}_{B}
$$ i.e. if and only if the C-sections all have the form of a product space.

The relation $\ddagger \mathfrak{U}$ satisfies the semigraphoid axioms. In particular $\ddagger \mathcal{U}$ holds if \mathcal{U} is the support of a probability measure satisfying the similar conditional independence restriction.

Markov properties for semigraphoids

$\mathcal{G}=(V, E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation. Say \perp_{σ} satisfies
(P) the pairwise Markov property if

$$
\alpha \nsim \beta \Longrightarrow \alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\}
$$

(L) the local Markov property if

$$
\forall \alpha \in V: \alpha \perp_{\sigma} V \backslash \operatorname{cl}(\alpha) \mid \operatorname{bd}(\alpha) ;
$$

(G) the global Markov property if

$$
A \perp_{\mathcal{G}} B\left|S \Longrightarrow A \perp_{\sigma} B\right| S
$$

Pairwise Markov property

Any non-adjacent pair of random variables are conditionally independent given the remaning.

For example, $1 \Perp 5 \mid\{2,3,4,6,7\}$ and $4 \Perp 6 \mid\{1,2,3,5,7\}$.

Local Markov property

Every variable is conditionally independent of the remaining, given its neighbours.
For example, $5 \Perp\{1,4\} \mid\{2,3,6,7\}$ and $7 \Perp\{1,2,3\} \mid\{4,5,6\}$.

Global Markov property

To find conditional independence relations, one should look for separating sets, such as $\{2,3\},\{4,5,6\}$, or $\{2,5,6\}$

For example, it follows that $1 \Perp 7 \mid\{2,5,6\}$ and $2 \Perp 6 \mid\{3,4,5\}$.

Structural relations among Markov properties
For any semigraphoid it holds that

$$
(\mathrm{G}) \Longrightarrow(\mathrm{L}) \Longrightarrow(\mathrm{P})
$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$
(\mathrm{P}) \Longrightarrow(\mathrm{G})
$$

so that in the graphoid case

$$
(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

The latter holds in particular for \Perp, when $f(x)>0$.

$$
(\mathrm{G}) \Longrightarrow(\mathrm{L}) \Longrightarrow(\mathrm{P})
$$

(G) implies (L) because $\operatorname{bd}(\alpha)$ separates α from $V \backslash \operatorname{cl}(\alpha)$.
Assume (L). Then $\beta \in V \backslash \operatorname{cl}(\alpha)$ because $\alpha \nsim \beta$. Thus

$$
\operatorname{bd}(\alpha) \cup((V \backslash \operatorname{cl}(\alpha)) \backslash\{\beta\})=V \backslash\{\alpha, \beta\}
$$

Hence by (L) and (S3) we get that

$$
\alpha \perp_{\sigma}(V \backslash \operatorname{cl}(\alpha)) \mid V \backslash\{\alpha, \beta\}
$$

(S2) then gives $\alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\}$ which is (P).

$$
(P) \Longrightarrow(G) \text { for graphoids }
$$

Asuume (P) and $A \perp_{\mathcal{G}} B \mid S$. We must show $A \perp_{\sigma} B \mid S$.
Wlog assume A and B non-empty. Proof is reverse induction on $n=|S|$.
If $n=|V|-2$ then A and B are singletons and (P) yields $A \perp_{\sigma} B \mid S$ directly.
Assume $|S|=n<|V|-2$ and conclusion established for $|S|>n$.
First assume $V=A \cup B \cup S$. Then either A or B has at least two elements, say A.
If $\alpha \in A$ then $B \perp_{\mathcal{G}}(A \backslash\{\alpha\}) \mid(S \cup\{\alpha\})$ and also $\alpha \perp_{\mathcal{G}} B \mid(S \cup A \backslash\{\alpha\})\left(\right.$ as $\perp_{\mathcal{G}}$ is a semi-graphoid)

Factorization example

The cliques of this graph are the maximal complete subsets $\{1,2\},\{1,3\},\{2,4\},\{2,5\},\{3,5,6\},\{4,7\}$, and $\{5,6,7\}$. A complete set is any subset of these sets.
The graph above corresponds to a factorization as

$$
\begin{aligned}
f(x) & =\psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{25}\left(x_{2}, x_{5}\right) \\
& \times \psi_{356}\left(x_{3}, x_{5}, x_{6}\right) \psi_{47}\left(x_{4}, x_{7}\right) \psi_{567}\left(x_{5}, x_{6}, x_{7}\right)
\end{aligned}
$$

Factorisation of the multivariate Gaussian

Consider a multivariate Gaussian random vector $X=\mathcal{N}_{V}(\xi, \Sigma)$ with Σ regular so it has density

$$
f(x \mid \xi, \Sigma)=(2 \pi)^{-|V| / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2}
$$

where $K=\Sigma^{-1}$ is the concentration matrix of the distribution.
Thus the Gaussian density factorizes w.r.t. \mathcal{G} if and only if

$$
\alpha \nsim \beta \Longrightarrow k_{\alpha \beta}=0
$$

i.e. if the concentration matrix has zero entries for non-adjacent vertices.

Thus by the induction hypothesis

$(A \backslash\{\alpha\}) \perp_{\sigma} B \mid(S \cup\{\alpha\})$ and $\{\alpha\} \perp_{\sigma} B \mid(S \cup A \backslash\{\alpha\})$.
Now (S5) gives $A \perp_{\sigma} B \mid S$.
For $A \cup B \cup S \subset V$ we choose $\alpha \in V \backslash(A \cup B \cup S)$. Then $A \perp_{\mathcal{G}} B \mid(S \cup\{\alpha\})$ and hence the induction hypothesis yields $A \perp_{\sigma} B \mid(S \cup\{\alpha\})$.
Further, either $A \cup S$ separates B from $\{\alpha\}$ or $B \cup S$ separates A from $\{\alpha\}$. Assuming the former gives $\alpha \perp_{\sigma} B \mid A \cup S$.
Using (S5) we get $(A \cup\{\alpha\}) \perp_{\sigma} B \mid S$ and from (S2) we derive that $A \perp_{\sigma} B \mid S$.
The latter case is similar.

Factorization theorem

Consider a distribution with density f w.r.t. a product measure and let (G), (L) and (P) denote Markov properties w.r.t. the semigraphoid relation \Perp.

It then holds that

$$
(F) \Longrightarrow(G)
$$

and further:
If $f(x)>0$ for all $x:(\mathrm{P}) \Longrightarrow(\mathrm{F})$.
Thus in the case of positive density (but typically only then), all the properties coincide:

$$
(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

Factorisation and Markov properties

For $a \subseteq V, \psi_{a}(x)$ is a function depending on x_{a} only, i.e.

$$
x_{a}=y_{a} \Longrightarrow \psi_{a}(x)=\psi_{a}(y)
$$

We can then write $\psi_{a}(x)=\psi_{a}\left(x_{a}\right)$ without ambiguity.
The distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if its density f w.r.t. product measure on \mathcal{X} has the form

$$
f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x)
$$

where \mathcal{A} are complete subsets of \mathcal{G} or, equivalently, if

$$
f(x)=\prod_{c \in \mathcal{C}} \tilde{\psi}_{c}(x)
$$

where \mathcal{C} are the cliques of \mathcal{G}.

More on Markov Properties Lecture 2 Saint Flour Summerschool, July 5, 2006 Steffen L. Lauritzen, University of Oxford	Semigraphoid examples - Graph separation $\perp_{\mathcal{G}}$ in undirected graph \mathcal{G} forms a graphoid; - Variation independence of projections for a subset U of a product space $\ddagger u$ forms a semigraphoid; - Uncorrelatedness \perp_{2} of residuals after linear regression (second order conditional independence) forms a semigraphoid; - Orthogonal meet \perp of closed subspaces of a Hilbert space yields a semigraphoid; - Probabilistic conditional independence.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and similar algorithms 5. Log-linear and Gaussian graphical models 6. Conjugate prior families for graphical models 7. Hyper Markov laws 8. Structure learning and Bayes factors 9. More on structure learning.	Probabilistic semigraphoids V finite set, $X=\left(X_{v}, v \in V\right)$ random variables. For $A \subseteq V$, let $X_{A}=\left(X_{v}, v \in A\right)$. Let \mathcal{X}_{v} denote state space of X_{v}. Similarly $x_{A}=\left(x_{v}, v \in A\right) \in \mathcal{X}_{A}=\times_{v \in A} \mathcal{X}_{v}$. Abbreviate: $A \Perp B\left\|S \Longleftrightarrow X_{A} \Perp X_{B}\right\| X_{S}$. Then basic properties of conditional independence imply: The relation \Perp on subsets of V is a semigraphoid. If $f(x)>0$ for all x, \Perp is also a graphoid. Not all (semi)graphoids are probabilistically representable.
Conditional Independence For random variables X, Y, Z, and W it holds (C1) if $X \Perp Y \mid Z$ then $Y \Perp X \mid Z$; (C2) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp U \mid Z$; (C3) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp Y \mid(Z, U)$; (C4) if $X \Perp Y \mid Z$ and $X \Perp W \mid(Y, Z)$, then $X \Perp(Y, W) \mid Z ;$ If density w.r.t. product measure $f(x, y, z)>0$ also (C5) if $X \Perp Y \mid Z$ and $X \Perp Z \mid Y$ then $X \Perp(Y, Z)$.	Markov properties for semigraphoids $\mathcal{G}=(V, E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation. Say \perp_{σ} satisfies (P) the pairwise Markov property if $\alpha \nsim \beta \Longrightarrow \alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\} ;$ (L) the local Markov property if $\forall \alpha \in V: \alpha \perp_{\sigma} V \backslash \operatorname{cl}(\alpha) \mid \operatorname{bd}(\alpha) ;$ (G) the global Markov property if $A \perp_{\mathcal{G}} B\left\|S \Longrightarrow A \perp_{\sigma} B\right\| S \text {. }$
Graphoid axioms Ternary relation \perp_{σ} among subsets of a finite set V is graphoid if for all disjoint subsets A, B, C, and D of V : (S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$; (S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$; (S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid(C \cup D)$; (S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid(B \cup C)$, then $A \perp_{\sigma}(B \cup D) \mid C ;$ (S5) if $A \perp_{\sigma} B \mid(C \cup D)$ and $A \perp_{\sigma} C \mid(B \cup D)$ then $A \perp_{\sigma}(B \cup C) \mid D$. Semigraphoid if only (S1)-(S4) holds.	Structural relations among Markov properties For any semigraphoid it holds that $(\mathrm{G}) \Longrightarrow(\mathrm{L}) \Longrightarrow(\mathrm{P})$ If \perp_{σ} satisfies graphoid axioms it further holds that $(P) \Longrightarrow(G)$ so that in the graphoid case $(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})$ The latter holds in particular for \Perp, when $f(x)>0$.

Factorisation and Markov properties

The distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

$$
f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x)=\prod_{c \in \mathcal{C}} \tilde{\psi}_{c}(x)
$$

\mathcal{A} are complete subsets and \mathcal{C} are the cliques of \mathcal{G}.
It then holds that

$$
(F) \Longrightarrow(G)
$$

and further:
If $f(x)>0$ for all $x:(\mathrm{P}) \Longrightarrow(\mathrm{F})$.
Thus in the case of positive density (but typically only then), all the properties coincide:

$$
(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P}) .
$$

Pairwise Markov but not local Markov

$$
\begin{array}{lll}
\bullet & \bullet \\
X & \bullet \\
\hline
\end{array}
$$

Let $X=Y=Z$ with $P\{X=1\}=P\{X=0\}=1 / 2$.
This satisfies (P) but not (L).
(P): $X \Perp Y \mid Z$ and $X \Perp Z \mid Y$.
$(\mathrm{L}): \operatorname{bd}(X)=\emptyset$ so (L) would imply $X \Perp(Y, Z)$ which is false.
$(\mathrm{L}) \Longleftrightarrow(\mathrm{P})$ if and only if \mathscr{G} has no induced subgraph $\mathcal{G}_{A}=\left(A, \bar{E}_{A}\right)$ with $|A|=3$ and $\left|\check{E}_{A}\right| \in\{2,3\}$ (Matúš 1992).

Dual graph: $\alpha \approx \beta$ if and only if $\alpha \nsim \beta$

Local Markov but not global Markov

$$
\stackrel{\bullet}{U} \quad \stackrel{\bullet}{W} \quad \stackrel{\bullet}{X} \quad \stackrel{\bullet}{Y} \quad \stackrel{\bullet}{Z}
$$

Let U and Z be independent with

$$
P(U=1)=P(Z=1)=P(U=0)=P(Z=0)=1 / 2
$$

$W=U, Y=Z$, and $X=W Y$.
This satisfies (L) but not (G).
(L): Variables depend deterministically on their neighbours.
(G): False that $W \Perp Y \mid X$, for example when $X=0$.
$(\mathrm{G}) \Longleftrightarrow(\mathrm{L})$ if and only if the dual graph $\check{\mathcal{G}}$ does not have the 4-cycle as an induced subgraph (Matúš 1992).

To see the latter, assume the density factorizes. Then e.g.
$0 \neq 1 / 8=f(0,0,0,0)=\psi_{12}(0,0) \psi_{23}(0,0) \psi_{34}(0,0) \psi_{41}(0,0)$
so these factors are all positive.
Continuing for all possible 8 configurations yields that all factors $\psi_{a}(x)$ are strictly positive, since all four possible configurations are possible for every clique.
But this contradicts the fact that only 8 out of 16 possible configurations have positive probability.
In fact, $(\mathrm{F}) \Longleftrightarrow(\mathrm{G})$ if and only if \mathcal{G} is chordal, i.e. does not have an n-cycle with $n \geq 4$ as an induced subgraph.

To be shown later.

Instability under limits

Consider a sequence $P_{n}, n=1,2, \ldots$ of probability measures on \mathcal{X} and assume that $A \Perp_{P_{n}} B \mid C$.
If $P_{n} \rightarrow P$ (weakly, say) it does not hold in general that $A \Perp_{P} B \mid C$.
A simple counterexample is as follows: Consider $X=\left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}_{3}\left(0, \Sigma_{n}\right)$ with

$$
\Sigma_{n}=\left(\begin{array}{ccc}
1 & \frac{1}{\sqrt{n}} & \frac{1}{2} \\
\frac{1}{\sqrt{n}} & \frac{2}{n} & \frac{1}{\sqrt{n}} \\
\frac{1}{2} & \frac{1}{\sqrt{n}} & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
\frac{1}{2} & 0 & 1
\end{array}\right)
$$

so in the limit it is not true that $1 \Perp_{P} 3 \mid 2$. The
concentration matrix K_{n} is

$$
K_{n}=\Sigma_{n}^{-1}=\left(\begin{array}{ccc}
2 & -\sqrt{n} & 0 \\
-\sqrt{n} & \frac{3 n}{2} & -\sqrt{n} \\
0 & -\sqrt{n} & 2
\end{array}\right)
$$

so for all n it holds that $1 \Perp_{P_{n}} 3 \mid 2$.
The critical feature seems to be that K_{n} does not converge, hence the densities do not converge.
What is a reasonable general additional condition for ensuring closure under limits?
The answer seems to be convergence in total variation (A. Klenke, St Flour 2006).

Stability under limits

If \mathcal{X} is discrete and finite and $P_{n} \rightarrow P$ pointwise, conditional independence is preserved:
This follows from the fact that

$$
X \Perp_{P_{n}} Y \mid Z \Longleftrightarrow f_{n}(x, y, z) f_{n}(z)=f_{n}(x, z) f_{n}(y, z)
$$

and this relation is clearly stable under pointwise limits.
Hence (G), (L) and (P) are closed under pointwise limits in the discrete case.

Uniform on these 8 configurations is (G) w.r.t. the 4-cycle. Conditioning on opposite corners renders one corner deterministic. Yet, (F) is not satisfied (Moussouris 1974).

Instability under limits

Even in the discrete case, (F) is not in general closed under pointwise limits.

Consider four binary variables $X_{1}, X_{2}, X_{3}, X_{4}$ with joint distribution

$$
f_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{n^{x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}-x_{1} x_{4}-x_{2}-x_{3}+1}}{8+8 n}
$$

This factorizes w.r.t. the graph
and $f_{n}(x)=n /(8+8 n)$ for each of the configurations
below

$(0,0,0,0)$	$(1,0,0,0)$	$(1,1,0,0)$	$(1,1,1,0)$
$(0,0,0,1)$	$(0,0,1,1)$	$(0,1,1,1)$	$(1,1,1,1)$,

whereas $f_{n}(x)=1 /(8+8 n)$ for the remaining 8 configurations.

When $n \rightarrow \infty$, the density converges to $f(x)=1 / 8$ for each of the configurations above and $f(x)=0$ otherwise, i.e. the Moussouris example, which is globally Markov but does not factorize.

Example of a directed graphical model

Local directed Markov property

A semigraphoid relation \perp_{σ} satisfies the local Markov property (L) w.r.t. a directed acyclic graph \mathcal{D} if

$$
\forall \alpha \in V: \alpha \perp_{\sigma}\{\operatorname{nd}(\alpha) \backslash \mathrm{pa}(\alpha)\} \mid \mathrm{pa}(\alpha) .
$$

Here $\operatorname{nd}(\alpha)$ are the non-descendants of α.
A well-known example is a Markov chain:

with $X_{i+1} \Perp\left(X_{1}, \ldots, X_{i-1}\right) \mid X_{i}$ for $i=3, \ldots, n$.

Local directed Markov property

for all $v \in V$, then there is a distribution P which is Markov faithful to \mathcal{G}.

In fact, in the discrete and finite case, the set of Markov distributions which are not faithful to a given graph is a Lebesgue null-set in the set of Markov distributions.

For a Markov faithful P, the graphoids $\perp_{\mathcal{G}}$ and \Perp_{P} are isomorphic.

Directed acyclic graphs

A directed acyclic graph \mathcal{D} over a finite set V is a simple graph with all edges directed and no directed cycles.
Absence of directed cycles means that, following arrows in the graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental and useful in a wealth of interesting applications, including expert systems, genetics, complex biomedical statistics, causal analysis, and machine learning.

Ordered Markov property

Suppose the vertices V of a DAG \mathcal{D} are well-ordered in the sense that they are linearly ordered in a way which is compatible with \mathcal{D}, i.e. so that

$$
\alpha \in \operatorname{pa}(\beta) \Longrightarrow \alpha<\beta
$$

We then say semigraphoid relation \perp_{σ} satisfies the ordered Markov property (O) w.r.t. a well-ordered DAG \mathcal{D} if

$$
\forall \alpha \in V: \alpha \perp_{\sigma}\{\operatorname{pr}(\alpha) \backslash \operatorname{pa}(\alpha)\} \mid \operatorname{pa}(\alpha)
$$

Here $\operatorname{pr}(\alpha)$ are the predecessors of α, i.e. those which are before α in the well-ordering..

Ordered Markov property

The numbering corresponds to a well-ordering. The ordered Markov property says for example
$4 \perp_{\sigma}\{1,3\} \mid 2$,
$5 \perp_{\sigma}\{1,4\} \mid\{2,3\}$
$3 \perp_{\sigma}\{2\} \mid 1$.

Equivalence of Markov properties

A semigraphoid relation \perp_{σ} satisfies the global Markov property (G) w.r.t. \mathcal{D} if

$$
A \perp_{\mathcal{D}} B\left|S \Longrightarrow A \perp_{\sigma} B\right| S
$$

It holds for any DAG \mathcal{D} and any semigraphoid relation \perp_{σ} that all directed Markov properties are equivalent:

$$
(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{O})
$$

There is also a pairwise property (P), but it is less natural than in the undirected case and it is weaker than the others.

Factorisation with respect to a DAG

A probability distribution P over $\mathcal{X}=\mathcal{X}_{V}$ factorizes over a DAG \mathcal{D} if its density f w.r.t. some product measure μ has the form

$$
\text { (F): } \quad f(x)=\prod_{v \in V} k_{v}\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

where $k_{v} \geq 0$ and $\int_{\mathcal{X}_{v}} k_{v}\left(x_{v} \mid x_{\mathrm{pa}(v)}\right) \mu_{v}\left(d x_{v}\right)=1$.
(F) is equivalent to $\left(\mathrm{F}^{*}\right)$, where

$$
\left(\mathrm{F}^{*}\right): \quad f(x)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

i.e. it follows from (F) that k_{v} in fact are conditional densities. Proof by induction!

Example of DAG factorization

The above graph corresponds to the factorization

$$
\begin{aligned}
f(x) & =f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{1}\right) f\left(x_{4} \mid x_{2}\right) \\
& \times f\left(x_{5} \mid x_{2}, x_{3}\right) f\left(x_{6} \mid x_{3}, x_{5}\right) f\left(x_{7} \mid x_{4}, x_{5}, x_{6}\right)
\end{aligned}
$$

For $S=\{5\}$, the trail $(4,2,5,3,6)$ is active, whereas the trails $(4,2,5,6)$ and $(4,7,6)$ are blocked.

For $S=\{3,5\}$, they are all blocked.

Markov properties and factorization
Assume that the probability distribution P has a density w.r.t. some product measure on \mathcal{X}.

It is then always true that (F) holds if and only if \Perp_{P} satisfies (G),
so all directed Markov properties are equivalent to the factorization property!
$(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{O})$.

Hence $4 \perp_{\mathcal{D}} 6 \mid 3,5$, but it is not true that $4 \perp_{\mathcal{D}} 6 \mid 5$ nor that $4 \perp_{\mathcal{D}} 6$.

Moralization The moral graph \mathcal{D}^{m} of a DAG \mathcal{D} is obtained by adding undirected edges between unmarried parents and subsequently dropping directions, as in the example below:	Forming ancestral set The subgraph induced by all ancestors of nodes involved in the query $4 \perp_{m} 6 \mid 3,5$?
Undirected factorizations If P factorizes w.r.t. \mathcal{D}, it factorizes w.r.t. the moralised graph \mathcal{D}^{m}. This is seen directly from the factorization: $f(x)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)=\prod_{v \in V} \psi_{\{v\} \cup \mathrm{pa}(v)}(x),$ since $\{v\} \cup \mathrm{pa}(v)$ are all complete in \mathcal{D}^{m}. Hence if P satisfies any of the directed Markov properties w.r.t. \mathcal{D}, it satisfies all Markov properties for \mathcal{D}^{m}.	Adding links between unmarried parents Adding an undirected edge between 2 and 3 with common child 5 in the subgraph induced by all ancestors of nodes involved in the query $4 \perp_{m} 6 \mid 3,5$?
Perfect DAGs A DAG \mathcal{D} is perfect if all parents are married. For a perfect DAG \mathcal{D} : P satisfies (F) w.r.t \mathcal{D} if and and only if it satisfies (F) w.r.t. its skeleton $\sigma(\mathcal{D})$. The skeleton is the undirected graph obtained from \mathcal{D} by ignoring directions. For a perfect DAG \mathcal{D} we always have $\sigma(\mathcal{D})=\mathcal{D}^{m}$. A rooted tree with arrows pointing away from the root is a perfect DAG. In particular, any Markov chain is also a Markov field.	Dropping directions Since $\{3,5\}$ separates 4 from 6 in this graph, we can conclude that $4 \perp_{m} 6 \mid 3,5$
Alternative equivalent separation To resolve query involving three sets A, B, S : 1. Reduce to subgraph induced by ancestral set $\mathcal{D}_{\mathrm{An}(A \cup B \cup S)}$ of $A \cup B \cup S$; 2. Moralize to form $\left(\mathcal{D}_{\operatorname{An}(A \cup B \cup S)}\right)^{m}$; 3. Say that S m-separates A from B and write $A \perp_{m} B \mid S$ if and only if S separates A from B in this undirected graph. It then holds that $A \perp_{m} B \mid S$ if and only if $A \perp_{\mathcal{D}} B \mid S$. Proof in Lauritzen (1996) needs to allow self-intersecting paths to be correct.	Properties of d-separation It holds for any DAG \mathcal{D} that $\perp_{\mathcal{D}}$ satisfies graphoid axioms. Clearly, this is then also true for \perp_{m}. To show this is true, it is sometimes easy to use \perp_{m}, sometimes $\perp_{\mathcal{D}}$. For example, (S2) is trivial for $\perp_{\mathcal{D}}$, whereas (S5) is trivial for \perp_{m}. So, equivalence of $\perp_{\mathcal{D}}$ and \perp_{m} is useful.

$$
\begin{array}{c|c}
\text { Ancestral marginals } & \begin{array}{c}
\text { Markov equivalence of directed and } \\
\text { undirected graphs }
\end{array}
\end{array}
$$

Consider a DAG \mathcal{D} and an ancestral subset $A \subseteq V$, i.e. one where

$$
\alpha \in A \Longrightarrow \operatorname{pa}(\alpha) \in A
$$

If P factorizes w.r.t. \mathcal{D}, it factorizes w.r.t. \mathcal{D}_{A}.
Proof by induction, using that if A is ancestral and $A \neq V$, there is a terminal vertex α_{0} with $\alpha_{0} \notin A$
It thus follows, that if P factorizes w.r.t. \mathcal{D} :

$$
A \perp_{m} B|S \Longrightarrow A \Perp B| S
$$

Because then P factorizes w.r.t. $\mathcal{D}_{\operatorname{An}(A \cup B \cup S)}^{m}$ and hence satisfies (G) for this graph.

Faithfulness

As in the undirected case, a distribution P is said to be Markov faithful for a DAG \mathcal{D} if it holds that

$$
A \perp_{\mathcal{D}} B\left|S \Longleftrightarrow A \Perp_{P} B\right| S
$$

It can be also here be shown that if $\left|\mathcal{X}_{v}\right| \geq 2$ for all $v \in V$, then there is a distribution P which is Markov faithful for \mathcal{D}, and the set of directed Markov distributions which are not faithful is a Lebesgue null-set in the set of directed Markov distributions.

For a Markov faithful P, the graphoids $\perp_{\mathcal{D}}$ and \Perp_{P} are isomorphic.

Hence d-separation is indeed the strongest possible.

Markov equivalence

Two DAGS \mathcal{D} and \mathcal{D}^{\prime} are Markov equivalent if the separation relations $\perp_{\mathcal{D}}$ and $\perp_{\mathcal{D}^{\prime}}$ are identical.
\mathcal{D} and \mathcal{D}^{\prime} are equivalent if and only if:

1. \mathcal{D} and \mathcal{D}^{\prime} have same skeleton (ignoring directions)
2. \mathcal{D} and \mathcal{D}^{\prime} have same unmarried parents
so

A DAG \mathcal{D} is Markov equivalent to an undirected \mathcal{G} if the separation relations $\perp_{\mathcal{D}}$ and $\perp_{\mathcal{G}}$ are identical.

This happens if and only if \mathcal{D} is perfect and $\mathcal{G}=\sigma(\mathcal{D})$. So, these are all equivalent
\qquad
but not equivalent to

References

Matúš, F. (1992). On equivalence of Markov properties over undirected graphs. Journal of Applied Probability, 29, 745-9.
Moussouris, J. (1974). Gibbs and Markov random systems with constraints. Journal of Statistical Physics, 10, 11-33.

Graph Decompositions and Junction Trees Lecture 3 Saint Flour Summerschool, July 6, 2006 Steffen L. Lauritzen, University of Oxford	Examples The graph to the left is prime Decomposition with $A=\{1,3\}, B=\{4,6,7\}$ and $S=\{2,5\}$
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and similar algorithms 5. Log-linear and Gaussian graphical models 6. Conjugate prior families for graphical models 7. Hyper Markov laws 8. Structure learning and Bayes factors 9. More on structure learning.	Decomposition of Markov properties Suppose P satisfies (F) w.r.t. \mathcal{G} and (A, B, S) is a decomposition. Then (i) $P_{A \cup S}$ and $P_{B \cup S}$ satisfy (F) w.r.t. $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ respectively; (ii) $f(x) f_{S}\left(x_{S}\right)=f_{A \cup S}\left(x_{A \cup S}\right) f_{B \cup S}\left(x_{B \cup S}\right) .$ The first part of the statement is true when (F) is replaced by (G). The second is also true for (G) if the relevant densities exist.
Some motivation - Perfect DAGs are simple, because their directions can be ignored as they are Markov equivalent to their skeleton; - Undirected graphs which can occur as skeletons of perfect DAGs are therefore particularly simple; - An n-cycle with $n \geq 4$ cannot be oriented to form a perfect DAG: - The important simplifying idea is that of graph decomposition and decomposability.	Markov combination Let Q and R be distributions on $\mathcal{X}_{A \cup S}$ and $\mathcal{X}_{B \cup S}$ resp. and assume Q and R are consistent, i.e. $Q_{S}=R_{S}$. Then there is a unique distribution $P=Q * R$ so that (i) $P_{A \cup S}=Q$ and $P_{B \cup S}=R$; (ii) $A \Perp_{P} B \mid S$. $Q * R$ is the Markov combination of Q and R. If Q and R have densities q and r, so has P and $p(x) q_{S}\left(x_{S}\right)=p(x) r_{S}\left(x_{S}\right)=q\left(x_{A \cup S}\right) r\left(x_{B \cup S}\right) .$ The Markov combination maximizes entropy among measures satisfying (i).
Graph decomposition Consider an undirected graph $\mathcal{G}=(V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a decomposition of \mathcal{G} if $A \perp_{\mathcal{G}} B \mid S$ and S is complete. The decomposition is proper if $A \neq \emptyset$ and $B \neq \emptyset$. The components of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$. A graph is prime if no proper decomposition exists.	Decomposability Any graph can be recursively decomposed into its maximal prime subgraphs: A graph is decomposable (or rather fully decomposable) if it is complete or admits a proper decomposition into decomposable subgraphs. Definition is recursive. Alternatively this means that all maximal prime subgraphs are cliques.

Factorization of Markov distributions

Recursive decomposition of a decomposable graph into cliques yields the formula

$$
f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{C \in \mathcal{C}} f_{C}\left(x_{C}\right) .
$$

Here \mathcal{S} is the set of minimal complete separators occurring in the decomposition process and $\nu(S)$ the number of times such a separator appears in this process.
Combinatorial consequenc
Note that if we let $\mathcal{X}_{v}=\{0,1\}$ and f be unifo

$$
2^{-|V|} \prod_{S \in \mathcal{S}} 2^{-|S| \nu(S)}=\prod_{C \in \mathcal{C}} 2^{-|C|}
$$

and hence we must have

$$
\sum_{C \in \mathcal{C}}|C|-\sum_{S \in \mathcal{S}}|S| \nu(S)=|V|
$$

It also holds that

$$
\sum_{S \in \mathcal{S}} \nu(S)=|V|-1
$$

$\sum_{S \in \mathcal{S}} \nu(S)=|V|-1$.

A numbering $V=\{1, \ldots,|V|\}$ of the vertices of an undirected graph is perfect if the induced oriented graph is a perfect DAG or, equivalently, if

$$
\forall j=2, \ldots,|V|: \operatorname{bd}(j) \cap\{1, \ldots, j-1\} \text { is complete in } \mathcal{G}
$$

An undirected graph \mathcal{G} is chordal if it has no chordless n-cycles with $n \geq 4$.

These graphs are also known as rigid circuit graphs or triangulated graphs.
A set S is an (α, β)-separator if $\alpha \perp_{\mathcal{G}} \beta \mid S$,

Characterizing chordal graphs

The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All maximal prime subgraphs of \mathcal{G} are cliques;
(iv) \mathcal{G} admits a perfect numbering;
(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

Identifying chordal graphs

Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v^{*} with $\operatorname{bd}\left(v^{*}\right)$ complete. If no such vertex exists, the graph is not chordal.
2. Form the subgraph $\mathcal{G}_{V \backslash v^{*}}$ and let $v^{*}=|V|$;
3. Repeat the process under 1 ;
4. If the algorithm continues until only one vertex is left, the graph is chordal and the numbering is perfect.

The complexity of this algorithm is $O\left(|V|^{2}\right)$.

Is this graph chordal?
lap

> Greedy algorithm

Is this graph chordal?

Greedy algorithm

Is this graph chordal?
Is this graph chordal?
Is this graph chordal?
3. If bd $(j+1) \cap\{1,2, \ldots, j\}$ is not complete, \mathcal{G} is not
chordal;
4. Repeat from 2 ;
5. If the algorithm continues until only one vertex is left,
the graph is chordal and the numbering is perfect.
Inaph is chordal!

1. Choose $v_{0} \in V$ arbitrary and let $v_{0}=1 ;$

Maximum Cardinality Search Is this graph chordal?	Finding the cliques of a chordal graph From an MCS numbering $V=\{1, \ldots,\|V\|\}$, let $S_{\lambda}=\operatorname{bd}(\lambda) \cap\{1, \ldots, \lambda-1\}$ and $\pi_{\lambda}=\left\|S_{\lambda}\right\|$. Call λ a ladder vertex if $\lambda=\|V\|$ or if $\pi_{\lambda+1}<\pi_{\lambda}+1$ and let Λ be the set of ladder vertices. $\pi_{\lambda}: 0,1,2,2,2,1,1 . \quad$ The cliques are $C_{\lambda}=\{\lambda\} \cup S_{\lambda}, \lambda \in \Lambda$.
Maximum Cardinality Search Is this graph chordal?	Junction tree Let \mathcal{A} be a collection of finite subsets of a set V. A junction tree \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the junction tree property: If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$. If the sets in \mathcal{A} are pairwise incomparable, they can be arranged in a junction tree if and only if $\mathcal{A}=\mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph. The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$.
Maximum Cardinality Search The graph is not chordal! because 7 does not have a complete boundary.	A chordal graph This graph is chordal, but it might not be that easy to see. . . Maximum Cardinality Search is handy!
Maximum Cardinality Search MCS numbering for the chordal graph. Algorithm runs essentially as before.	Junction tree Cliques of graph arranged into a tree with $C_{1} \cap C_{2} \subseteq D$ for all cliques D on path between C_{1} and C_{2}.

Probability Propagation and Related Algorithms Lecture 4 Saint Flour Summerschool, July 8, 2006 Steffen L. Lauritzen, University of Oxford	Relation between different graphs P directed Markov w.r.t. \mathcal{D} implies P factorizes w.r.t. \mathcal{D}^{m}. \mathcal{D} is perfect if skeleton $\mathcal{G}=\sigma(\mathcal{D})=\mathcal{D}^{m}$, implying that directed and undirected separation properties are identical, i.e. $A \perp_{\mathcal{G}} B\left\|S \Longleftrightarrow A \perp_{\mathcal{D}} B\right\| S$. $\mathcal{G}=\sigma(\mathcal{D})$ for some $D A G \mathcal{D}$ if and only if \mathcal{G} is chordal. Two DAGs \mathcal{D} and \mathcal{D}^{\prime} are Markov equivalent, i.e. $A \perp_{\mathcal{D}} B\left\|S \Longleftrightarrow A \perp_{\mathcal{D}^{\prime}} B\right\| S$, if and only if $\sigma(\mathcal{D})=\sigma\left(\mathcal{D}^{\prime}\right)$ and \mathcal{D} and \mathcal{D}^{\prime} have same unmarried parents.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Conjugate prior families for graphical models 7. Hyper Markov laws 8. Structure learning and Bayes factors 9. More on structure learning.	Graph decomposition Consider an undirected graph $\mathcal{G}=(V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a decomposition of \mathcal{G} if both of the following holds: (i) $A \perp_{\mathcal{G}} B \mid S$; (ii) S is complete. The decomposition is proper if $A \neq \emptyset$ and $B \neq \emptyset$. The components of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$. A graph is prime if no proper decomposition exists.
Markov properties for undirected graphs (P) pairwise Markov: $\alpha \nsim \beta \Longrightarrow \alpha \Perp \beta \mid V \backslash\{\alpha, \beta\}$; (L) local Markov: $\alpha \Perp V \backslash \mathrm{cl}(\alpha) \mid \mathrm{bd}(\alpha)$; (G) global Markov: $A \perp_{\mathcal{G}} B\|S \Longrightarrow A \Perp B\| S$; (F) Factorization: $f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x), \mathcal{A}$ being complete subsets of V. It then holds that $(F) \Longrightarrow(G) \Longrightarrow(L) \Longrightarrow(P)$ If $f(x)>0$ even $(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})$	Examples The graph to the left is prime Decomposition with $A=\{1,3\}, B=\{4,6,7\}$ and $S=\{2,5\}$
Markov properties for directed acyclic graphs (O) ordered Markov: $\alpha \Perp\{\operatorname{pr}(\alpha) \backslash \operatorname{pa}(\alpha)\} \mid \operatorname{pa}(\alpha)$; (L) local Markov: $\alpha \Perp\{\operatorname{nd}(\alpha) \backslash \operatorname{pa}(\alpha)\} \mid \operatorname{pa}(\alpha)$; (G) global Markov: $A \perp_{\mathcal{D}} B\|S \Longrightarrow A \Perp B\| S$. (F) Factorization: $f(x)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)$. It then always holds that $(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{O})$	Decomposability Any graph can be recursively decomposed into its uniquely defined prime components: A graph is decomposable (or rather fully decomposable) if it is complete or admits a proper decomposition into decomposable subgraphs. Definition is recursive. Alternatively this means that all prime components are cliques.

Decomposition of Markov properties
Let (A, B, S) be a decomposition of \mathcal{G}. Then P factorizes w.r.t. \mathcal{G} if and only if both of the following hold:
(i) $P_{A \cup S}$ and $P_{B \cup S}$ factorize w.r.t. $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$;
(ii) $f(x) f_{S}\left(x_{S}\right)=f_{A \cup S}\left(x_{A \cup S}\right) f_{B \cup S}\left(x_{B \cup S}\right)$.

Recursive decomposition of a decomposable graph yields:

$$
f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{C \in \mathcal{C}} f_{C}\left(x_{C}\right)
$$

Here \mathcal{S} is the set of complete separators occurring in the decomposition process and $\nu(S)$ the number of times a given S appears.
More generally if \mathcal{Q} denotes the prime components of \mathcal{G} :

$$
f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{Q \in \mathcal{Q}} f_{Q}\left(x_{Q}\right)
$$

$f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{Q \in \mathcal{Q}} f_{Q}\left(x_{Q}\right)$.

The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All prime components of \mathcal{G} are cliques;
(iv) \mathcal{G} admits a perfect numbering;
(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

Algorithms associated with chordality

Maximum Cardinality Search (MCS) Tarjan and Yannakakis
(1984) identifies whether a graph is chordal or not.

If a graph \mathcal{G} is chordal, MCS yields a perfect numbering of the vertices. In addition it finds the cliques of \mathcal{G} :
From an MCS numbering $V=\{1, \ldots,|V|\}$, let

$$
S_{\lambda}=\operatorname{bd}(\lambda) \cap\{1, \ldots, \lambda-1\}
$$

and $\pi_{\lambda}=\left|S_{\lambda}\right|$. Call λ a ladder vertex if $\lambda=|V|$ or if $\pi_{\lambda+1}<\pi_{\lambda}+1$ and let Λ be the set of ladder vertices. The cliques are $C_{\lambda}=\{\lambda\} \cup S_{\lambda}, \lambda \in \Lambda$.
The numbers $\nu(S)$ in the decomposition formula are $\nu(S)=\left|\left\{\lambda \in \Lambda: S_{\lambda}=S\right\}\right|$.

Junction tree

Let \mathcal{A} be a collection of finite subsets of a set V. A junction tree \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the junction tree property:
If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.
If the sets in \mathcal{A} are pairwise incomparable, they can be arranged in a junction tree if and only if $\mathcal{A}=\mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph.
The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$.

A chordal graph

This graph is chordal, but it might not be that easy to see. . . Maximum Cardinality Search is handy!
\square

Markov properties of junction tree

Let $Q \in \mathcal{Q}$ be the prime components of a graph \mathcal{G}, arranged in a junction tree \mathcal{T}.

Using that any graph decomposition also yields a decomposition of the Markov properties now gives that

The distribution of $X=\left(X_{v}, v \in V\right)$ factorizes w.r.t. \mathcal{G} if and only if $X_{Q}, Q \in \mathcal{Q}$ factorizes w.r.t. \mathcal{T} and each of X_{Q} factorizes w.r.t. \mathcal{G}_{Q}.

In particular, if \mathcal{G} is decomposable, $X=\left(X_{v}, v \in V\right)$
factorizes w.r.t. \mathcal{G} if and only if $X_{C}, C \in \mathcal{C}$ factorizes w.r.t.
\mathcal{T}, i.e. the Markov property has essentially been transferred to that of a tree of cliques.

Computational challenge

Calculate marginals $\psi_{A}=\phi^{\downarrow A}$ of joint valuation

$$
\phi=\otimes_{C \in \mathcal{C}} \phi_{C}
$$

with domain $V=\cup_{C \in \mathcal{C}} C$.
Direct computation of $\phi^{\downarrow A}$ is impossible if V is large.
Challenge: calculate $\phi^{\downarrow A}$ using only local operations, i.e. operating on factors ψ_{B} with domain $B \subseteq C$ for some $C \in \mathcal{C}$.

Typically also a second purpose of calculation

Local computation

Local computation algorithms similar to probability propagation have been developed independently in a number of areas with a variety of purposes. For example:

- Kalman filter and smoother (Thiele 1880; Kalman and Bucy 1961);
- Solving sparse linear equations (Parter 1961);
- Decoding digital signals (Viterbi 1967; Bahl et al. 1974);
- Estimation in hidden Markov models (Baum 1972);
- Peeling in pedigrees (Elston and Stewart 1971; Cannings et al. 1976);
- Belief function evaluation (Kong 1986; Shenoy and Shafer 1986);
- Probability propagation (Pearl 1986; Lauritzen and Spiegelhalter 1988; Jensen et al. 1990);
- Abstract framework (Shenoy and Shafer 1990; Lauritzen and Jensen 1997).

Also dynamic programming, linear programming, optimizing decisions, calculating Nash equilibria in cooperative games, and many others. List is far from exhaustive!
All algorithms are using, explicitly or implicitly, a graph decomposition and a junction tree or similar to make the computations.

A probability perspective
Factorizing density on $\mathcal{X}=\times_{v \in V} \mathcal{X}_{v}$ with V and \mathcal{X}_{v} finite:

$$
p(x)=\prod_{C \in \mathcal{C}} \phi_{C}(x)
$$

The potentials $\phi_{C}(x)$ depend on $x_{C}=\left(x_{v}, v \in C\right)$ only.
Basic task to calculate marginal (likelihood)

$$
p^{\downarrow E}\left(x_{E}^{*}\right)=\sum_{y_{V \backslash E}} p\left(x_{E}^{*}, y_{V \backslash E}\right)
$$

for $E \subseteq V$ and fixed x_{E}^{*}, but sum has too many terms.
A second purpose is to get the prediction $p\left(x_{v} \mid x_{E}^{*}\right)=p\left(x_{v}, x_{E}^{*}\right) / p\left(x_{E}^{*}\right)$ for $v \in V$.

Sparse linear equations

- Valuations ϕ_{C} are equation systems involving variables with labels C;
- $\phi_{A} \otimes \phi_{B}$ concatenates equation systems;
- $\phi_{B}^{\downarrow A}$ eliminates variables in $B \backslash A$;
- Marginal $\phi^{\downarrow A}$ of joint valuation reduces the system of equation to a smaller one;
- Second computation finds a solution of the equation system by substitution.

An abstract perspective

V is large finite set and \mathcal{C} collection of small subsets of V.
$\phi_{C}, C \in \mathcal{C}$ are valuations with domain C.
Combination: $\phi_{A} \otimes \phi_{B}$ has domain $A \cup B$.
\otimes is assumed commutative and associative.
For $A \subset V \phi^{\downarrow A}$ denotes the A-marginal of $\phi . \phi^{\downarrow A}$ has domain A.
Assume consonance: $\phi^{\downarrow(A \cap B)}=\left(\phi^{\downarrow B}\right)^{\downarrow A}$
and distributivity: $\left(\phi \otimes \phi_{C}\right)^{\downarrow B}=\left(\phi^{\downarrow B}\right) \otimes \phi_{C}$, if $C \subseteq B$.

Constraint satisfaction

- ϕ_{C} represent constraints involving variables in C;
- $\phi_{A} \otimes \phi_{B}$ represents jointly feasible configurations;
- $\phi_{B}^{\downarrow A}$ finds implied constraints;
- Marginal $\phi^{\downarrow A}$ finds extendible configurations;
- Second computation identifies jointly feasible configurations.

If represented by indicator functions, \otimes is ordinary product and $\phi^{\downarrow E}\left(x_{E}^{*}\right)=\oplus_{y_{V \backslash E}} \phi\left(x_{E}^{*}, y_{V \backslash E}\right)$, where
$1 \oplus 1=1 \oplus 0=0 \oplus 1=1$ and $0 \oplus 0=0$.

Computational structure

Algorithms all (implicitly or explicitly) arrange the collection of sets \mathcal{C} in a junction tree \mathcal{T}.

Hence, this works only if \mathcal{C} are cliques of chordal graph \mathcal{G}.
If this is not so from the outset, a triangulation is used to construct chordal graph \mathcal{G}^{\prime} with $E \subseteq E^{\prime}$.

Clearly, in a probabilistic perspective, if P factorizes w.r.t. \mathcal{G} it factorizes w.r.t. \mathcal{G}^{\prime}.
Henceforth we assume this has been done and \mathcal{G} is chordal.
Computations are executed by message passing.

Setting up the structure

In many applications P is initially factorizing over a directed acyclic graph \mathcal{D}. The computational structure is then set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes on \mathcal{D}, it factorizes over \mathcal{D}^{m}.
2. Triangulation: Adding edges to find chordal graph \mathcal{G} with $\mathcal{D}^{m} \subseteq \mathcal{G}$. This step is non-trivial (NP-complete) to optimize;
3. Constructing junction tree:
4. Initialization: Assigning potential functions ϕ_{C} to cliques.

Basic computation	The expression

2. Marginals $p\left(x_{E}^{*}\right)$ and $p\left(x_{C} \mid x_{E}^{*}\right)$ are then calculated by a local message passing algorithm.

Marginalization

The A-marginal of a potential ϕ_{B} for $A \subseteq B$ is

$$
\phi_{B}^{\downarrow A}(x)=\sum_{y_{B}: y_{A}=x_{A}} \phi_{B}(y)
$$

If ϕ_{B} depends on x through x_{B} only and $B \subseteq V$ is 'small', marginal can be computed easily.

Marginalization satisfies

Consonance For subsets A and $B: \phi^{\downarrow(A \cap B)}=\left(\phi^{\downarrow B}\right)^{\downarrow A}$
Distributivity If ϕ_{C} depends on x_{C} only and $C \subseteq B$:

$$
\left(\phi \phi_{C}\right)^{\downarrow B}=\left(\phi^{\downarrow B}\right) \phi_{C}
$$

This involves following steps

1. Incorporating observations: If $X_{E}=x_{E}^{*}$ is observed, we modify potentials as

$$
\phi_{C}\left(x_{C}\right) \leftarrow \phi_{C}(x) \prod_{e \in E \cap C} \delta\left(x_{e}^{*}, x_{e}\right)
$$

with $\delta(u, v)=1$ if $u=v$ and else $\delta(u, v)=0$. Then:

$$
p\left(x \mid X_{E}=x_{E}^{*}\right)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{p\left(x_{E}^{*}\right)}
$$

Separators

Between any two cliques C and D which are neighbours in the junction tree we introduce their intersection $S=C \cap D$. In fact, S are the minimal separators appearing in the decomposition sequence.
We also assign potentials to separators, initially $\phi_{S} \equiv 1$ for all $S \in \mathcal{S}$, where \mathcal{S} is the set of separators.
We also let

$$
\begin{equation*}
\kappa(x)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} \phi_{S}\left(x_{S}\right)} \tag{1}
\end{equation*}
$$

and now it holds that $p\left(x \mid x_{E}^{*}\right)=\kappa(x) / p\left(x_{E}^{*}\right)$.
The expression (1) will be invariant under the message passing.

$$
\kappa(x)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} \phi_{S}\left(x_{S}\right)}
$$

is invariant under the message passing since $\phi_{C} \phi_{D} / \phi_{S}$ is:

$$
\frac{\phi_{C} \phi_{D} \frac{\phi_{C}^{\downarrow S}}{\phi_{S}}}{\phi_{C}^{\downarrow S}}=\frac{\phi_{C} \phi_{D}}{\phi_{S}}
$$

After the message has been sent, D contains the D-marginal of $\phi_{C} \phi_{D} / \phi_{S}$.
To see this, calculate
Computation is local, involving only variables within cliques.

Messages

When C sends message to D, the following happens:

$$
\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow D}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow D}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow S}
$$

Second message

If D returns message to C, the following happens:

Now all sets contain the relevant marginal of $\phi=\phi_{C} \phi_{D} / \phi_{S}:$

The separator contains

$$
\phi^{\downarrow S}=\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow S}=\left(\phi^{\downarrow D}\right)^{\downarrow S}=\left(\phi_{D} \frac{\phi_{C}^{\downarrow S}}{\phi_{S}}\right)^{\downarrow S}=\frac{\phi_{C}^{\downarrow S} \phi_{D}^{\downarrow S}}{\phi_{S}}
$$

C contains

$$
\phi_{C} \frac{\phi^{\downarrow S}}{\phi_{C}^{\downarrow S}}=\frac{\phi_{C}}{\phi_{S}} \phi_{D}^{\downarrow S}=\phi^{\downarrow C}
$$

since, as before

$$
\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow C}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow D}=\frac{\phi_{C}}{\phi_{S}} \phi_{D}^{\downarrow S}
$$

Further messages between C and D are neutral! Nothing will change if a message is repeated.

Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already received message from all other neighbours. Such messages are live.

Using this protocol, there will be one clique who first receives messages from all its neighbours. This is effectively the root R in Collinfo and DistInfo.

Additional messages never do any harm (ignoring efficiency issues) as κ is invariant under message passing.
Exactly two live messages along every branch is needed.
Message passing
Two phases:

- ColLInFO: messages are sent from leaves towards
arbitrarily chosen root R.
After CollInfo, the root potential satisfies
$\phi_{R}\left(x_{R}\right)=p\left(x_{R}, x_{E}^{*}\right)$.
- DistInfo: messages are sent from root R towards
leaves. After ColLInFO and subsequent DistInFO,
it holds for all $B \in \mathcal{C} \cup \mathcal{S}$ that $\phi_{B}\left(x_{B}\right)=p\left(x_{B}, x_{E}^{*}\right)$.

Hence $p\left(x_{E}^{*}\right)=\sum_{x_{S}} \phi_{S}\left(x_{S}\right)$ for any $S \in \mathcal{S}$ and $p\left(x_{v} \mid x_{E}^{*}\right)$ can readily be computed from any ϕ_{S} with $v \in S$.

Maximization

Replace sum-marginal with A-maxmarginal:

$$
\phi_{B}^{\downarrow A}(x)=\max _{y_{B}: y_{A}=x_{A}} \phi_{B}(y)
$$

Satisfies consonance: $\phi^{\downarrow(A \cap B)}=\left(\phi^{\downarrow B}\right)^{\downarrow A}$ and
distributivity: $\left(\phi \phi_{C}\right)^{\downarrow B}=\left(\phi^{\downarrow B}\right) \phi_{C}$, if ϕ_{C} depends on x_{C} only and $C \subseteq B$.
CollInfo yields maximal value of density f.
DIstInFo yields configuration with maximum probability.
Viterbi decoding for HMMs is special case.
Since (1) remains invariant, one can switch freely between max- and sum-propagation.
Random propagation
After ColLINFO, the root potential is $\phi_{R}(x) \propto p\left(x_{R} \mid x_{E}\right)$
Modify DistInFo as follows:
the genetic analysis of pedigree data. Human Heredity, 21, 523-42.
Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990). Bayesian updating in causal probabilistic networks by local computation. Computational Statistics Quarterly, 4, 269-82.
Kalman, R. E. and Bucy, R. (1961). New results in linear filtering and prediction. Journal of Basic Engineering, 83 D, 95-108.
Kong, A. (1986). Multivariate belief functions and graphical models. Ph.D. Thesis, Department of Statistics, Harvard University, Massachusetts.
Lauritzen, S. L. and Jensen, F. V. (1997). Local computation with valuations from a commutative semigroup.

Annals of Mathematics and Artificial Intelligence, 21, 51-69.
Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society, Series B, 50, 157-224.
Leimer, H.-G. (1993). Optimal decomposition by clique separators. Discrete Mathematics, 113, 99-123.
Parter, S. (1961). The use of linear graphs in Gauss elimination. SIAM Review, 3, 119-30.
Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29, 241-88.
Rose, D. J., Tarjan, R. E., and Lueker, G. S. (1976). Algo-
rithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5, 266-83.
Shenoy, P. P. and Shafer, G. (1986). Propagating belief functions using local propagation. IEEE Expert, 1, 43-52.
Shenoy, P. P. and Shafer, G. (1990). Axioms for probability and belief-function propagation. In Uncertainty in artificial intelligence 4, (ed. R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer), pp. 169-98. North-Holland, Amsterdam, The Netherlands.
Tarjan, R. E. (1985). Decomposition by clique separators. Discrete Mathematics, 55, 221-32.
Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 13, 566-79.
Thiele, T. N. (1880). Om Anvendelse af mindste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfældige Fejlkilder giver Fejlene en 'systematisk' Karakter. Vidensk. Selsk. Skr. 5. Rk., naturvid. og mat. Afd., 12, 381408. French version: Sur la Compensation de quelques Erreurs quasi-systématiques par la Méthode des moindres Carrés. Reitzel, København, 1880.
Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13, 2609.

Log-Linear and Gaussian Graphical Models Lecture 5 Saint Flour Summerschool, July 10, 2006 Steffen L. Lauritzen, University of Oxford	Connecting to tradition This largely a matter of different notation. Assume data $X^{1}=x^{1}, \ldots, X^{n}=x^{n}$ and $V=\{I, J, K\}$. Write $i=1, \ldots,\|I\|$ for the possible values of X_{I} etc. and $N_{i j k}=\left\|\left\{\nu: x^{\nu}=(i, j, k)\right\}\right\|,$ etc. Then $m_{i j k}=n f(x)$ and if $f(x)>0$ and factorizes w.r.t. $\mathcal{A}=\{\{I, J\},\{J, K\}\}$ $\log f(x)=\log \psi_{I J}\left(x_{I}, x_{J}\right)+\log \psi_{J K}\left(x_{J}, x_{K}\right)$ Thus if we let $\alpha_{i j}=\log n+\log \psi_{I J}\left(x_{I}, x_{J}\right), \quad \beta_{j k}=\log \psi_{J K}\left(x_{J}, x_{K}\right)$
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Conjugate prior families for graphical models 7. Hyper Markov laws 8. Structure learning and Bayes factors 9. More on structure learning.	we have $\log m_{i j k}=\alpha_{i j}+\beta_{j k}$ The only difference is the assumption of positivity which is not necessary when using the multiplicative definition. It is typically an advantage to relax the restriction of positivity although it also creates technical difficulties. The logarithm of the factors $\phi_{a}=\log \psi_{a}$ are known as interaction terms of order $\|a\|-1$ or $\|a\|$-factor interactions. Interaction terms of 0th order are called main effects. We also refer to the factors themselves using the same terms.
Log-linear models \mathcal{A} denotes a set of (pairwise incomparable) subsets of V. A density f (or function) factorizes w.r.t. \mathcal{A} if there exist functions $\psi_{a}(x)$ which depend on x_{a} only and $f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x)$ The set of distributions $\mathcal{P}_{\mathcal{A}}$ which factorize w.r.t. \mathcal{A} is the hierarchical log-linear model generated by \mathcal{A}. \mathcal{A} is the generating class of the log-linear model. No specific need to demand sets in \mathcal{A} to be incomparable. Only to avoid redundancy.	Dependence graph Any joint probability distribution P of $X=\left(X_{v}, v \in V\right)$ has a dependence graph $G=G(P)=(V, E(P))$. This is defined by letting $\alpha \nsim \beta$ in $G(P)$ exactly when $\alpha \Perp_{P} \beta \mid V \backslash\{\alpha, \beta\}$ X will then satisfy the pairwise Markov w.r.t. $G(P)$ and $G(P)$ is smallest with this property, i.e. P is pairwise Markov w.r.t. \mathcal{G} iff $G(P) \subseteq \mathcal{G}$ The dependence graph $G(\mathcal{P})$ for a family \mathcal{P} is the smallest graph \mathcal{G} so that all $P \in \mathcal{P}$ are pairwise Markov w.r.t. \mathcal{G} : $\alpha \Perp_{P} \beta \mid V \backslash\{\alpha, \beta\} \text { for all } P \in \mathcal{P} .$
Traditional notation Traditionally used for contingency tables, where e.g. $m_{i j k}$ denotes the mean of the counts $N_{i j k}$ in the cell (i, j, k) which has then been expanded as e.g. $\begin{equation*} \log m_{i j k}=\alpha_{i}+\beta_{j}+\gamma_{k} \tag{1} \end{equation*}$ or $\begin{equation*} \log m_{i j k}=\alpha_{i j}+\beta_{j k} \tag{2} \end{equation*}$ or $\begin{equation*} \log m_{i j k}=\alpha_{i j}+\beta_{j k}+\gamma_{i k} \tag{3} \end{equation*}$ or (with redundancy) $\begin{equation*} \log m_{i j k}=\gamma+\delta_{i}+\phi_{j}+\eta_{k}+\alpha_{i j}+\beta_{j k}+\gamma_{i k} \tag{4} \end{equation*}$ etc.	Dependence graph of log-linear model For any generating class \mathcal{A} we construct the dependence graph $G(\mathcal{A})=G\left(\mathcal{P}_{\mathcal{A}}\right)$ of the log-linear model $\mathcal{P}_{\mathcal{A}}$. This is determined by the relation $\alpha \sim \beta \Longleftrightarrow \exists a \in \mathcal{A}: \alpha, \beta \in a$ Sets in \mathcal{A} are clearly complete in $G(\mathcal{A})$ and therefore distributions in $\mathcal{P}_{\mathcal{A}}$ factorize according to $G(\mathcal{A})$. They are thus also global, local, and pairwise Markov w.r.t. $G(\mathcal{A})$.

Independence

The log-linear model specified by (1) is known as the main effects model.

It has generating class consisting of singletons only $\mathcal{A}=\{\{I\},\{J\},\{K\}\}$. It has dependence graph

Thus it corresponds to complete independence.

Conditional independence

The log-linear model specified by (2) has no interaction between I and K.

It has generating class $\mathcal{A}=\{\{I, J\},\{J, K\}\}$ and dependence graph

Thus it corresponds to the conditional independence $I \Perp K \mid J$.

No interaction of second order

The log-linear model specified by (3) has no second-order interaction. It has generating class
$\mathcal{A}=\{\{I, J\},\{J, K\},\{I, K\}\}$ and its dependence graph

is the complete graph. Thus it has no conditional independence interpretation.

Factor graphs

The factor graph of \mathcal{A} is the bipartite graph with vertices $V \cup \mathcal{A}$ and edges define by

$$
\alpha \sim a \Longleftrightarrow \alpha \in a
$$

Using this graph even non-conformal log-linear models admit a simple visual representation.

Separation in factor graphs

If $\mathcal{F}=F(\mathcal{A})$ is the factor graph for \mathcal{A} and $\mathcal{G}=G(\mathcal{A})$ the corresponding dependence graph, it is not difficult to see that for A, B, S being subsets of V

$$
A \perp_{\mathcal{G}} B\left|S \Longleftrightarrow A \perp_{\mathcal{F}} B\right| S
$$

and hence conditional independence properties can be read directly off the factor graph also.
In that sense, the factor graph is more informative than the dependence graph.

Data in list form

Consider a sample $X^{1}=x^{1}, \ldots, X^{n}=x^{n}$ from a distribution with probability mass function p. We refer to such data as being in list form, e.g. as

case	Admitted	Sex
1	Yes	Male
2	Yes	Female
3	No	Male
4	Yes	Male
\vdots	\vdots	\vdots

Conformal log-linear models

As a generating class defines a dependence graph $G(\mathcal{A})$, the reverse is also true.

The set $\mathcal{C}(\mathcal{G})$ of cliques of \mathcal{G} is a generating class for the log-linear model of distributions which factorize w.r.t. \mathcal{G}.

If the dependence graph completely summarizes the restrictions imposed by \mathcal{A}, i.e. if $\mathcal{A}=\mathcal{C}(G(\mathcal{A})), \mathcal{A}$ is conformal.

The generating classes for the models given by (1) and (2) are conformal, whereas this is not the case for (3).

Contingency Table

Data often presented in the form of a contingency table or cross-classification, obtained from the list by sorting according to category:

	Sex	
Admitted	Male	Female
Yes	1198	557
No	1493	1278

The numerical entries are cell counts

$$
n(x)=\left|\left\{\nu: x^{\nu}=x\right\}\right|
$$

and the total number of observations is $\left.n=\sum_{x \in \mathcal{X}} n_{(} x\right)$.

Likelihood function

Assume now $p \in \mathcal{P}_{\mathcal{A}}$ but otherwise unknown. The likelihood function can be expressed as

$$
L(p)=\prod_{\nu=1}^{n} p\left(x^{\nu}\right)=\prod_{x \in \mathcal{X}} p(x)^{n(x)}
$$

In contingency table form the data follow a multinomial distribution

$$
P\{N(x)=n(x), x \in \mathcal{X}\}=\frac{n!}{\prod_{x \in X} n(x)!} \prod_{x \in \mathcal{X}} p(x)^{n(x)}
$$

but this only affects the likelihood function by a constant factor.

Properties of the likelihood function

The likelihood function

$$
\begin{equation*}
L(p)=\prod_{x \in \mathcal{X}} p(x)^{n(x)}, \tag{6}
\end{equation*}
$$

is continuous as a function of the $(|\mathcal{X}|$-dimensional vector) unknown probability distribution p.
Since the closure $\overline{\mathcal{P}_{\mathcal{A}}}$ is compact (bounded and closed), L attains its maximum on $\overline{\mathcal{P}_{\mathcal{A}}}$ (not necessarily on $\mathcal{P}_{\mathcal{A}}$ itself).
Indeed, it is also true that L has a unique maximum over $\overline{\mathcal{P}_{\mathcal{A}}}$, essentially because the likelihood function is log-concave.

Hence

$$
\begin{aligned}
L\left(p_{12}\right) & =\prod_{x} p_{12}(x)^{n(x)} \\
& =\prod_{x}\left\{c\left\{\sqrt{p_{1}(x) p_{2}(x)}\right\}^{n(x)}\right. \\
& =c^{n} \prod_{x}{\sqrt{p_{1}(x)}}^{n(x)} \prod_{x}{\sqrt{p_{2}(x)}}^{n(x)} \\
& =c^{n} \sqrt{L\left(p_{1}\right) L\left(p_{2}\right)} \\
& >\sqrt{L\left(p_{1}\right) L\left(p_{2}\right)}=L\left(p_{1}\right)=L\left(p_{2}\right)
\end{aligned}
$$

which contradicts (5). Hence we conclude $p_{1}=p_{2}$.
The extension to $\overline{\mathcal{P}_{\mathcal{A}}}$ is almost identical. It just needs a limit argument to establish $p_{1}, p_{2} \in \overline{\mathcal{P}_{\mathcal{A}}} \Longrightarrow p_{12} \in \overline{\mathcal{P}_{\mathcal{A}}}$.

Likelihood equations

The maximum likelihood estimate \hat{p} of p is the unique element of $\overline{\mathcal{P}_{\mathcal{A}}}$ which satisfies the system of equations

$$
n \hat{p}\left(x_{a}\right)=n\left(x_{a}\right), \forall a \in \mathcal{A}, x_{a} \in \mathcal{X}_{a} .
$$

Here $g\left(x_{a}\right)=\sum_{y: y_{a}=x_{a}} g(y)$ is the a-marginal of the function g.

The system of equations (6) expresses the fitting of the marginals in \mathcal{A}.
This is also an instance of the familiar result that in an exponential family (log-linear ~ exponential), the MLE is found by equating the sufficient statistics (marginal counts) to their expectation.

> Proportional scaling

To show that the equations (6) indeed have a solution, we simply describe a convergent algorithm which solves it. This cycles (repeatedly) through all the a-marginals in \mathcal{A} and fit them one by one.

For $a \in \mathcal{A}$ define the following scaling operation on p :

$$
\left(T_{a} p\right)(x) \leftarrow p(x) \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)}, \quad x \in \mathcal{X}
$$

where $0 / 0=0$ and $b / 0$ is undefined if $b \neq 0$.
where $c^{-1}=\left\{\sum_{x} \sqrt{p_{1}(x) p_{2}(x)}\right\}$ is a normalizing constant.

Then $p_{12} \in \mathcal{P}_{\mathcal{A}}$ because

$$
\begin{aligned}
p_{12}(x) & =c \sqrt{p_{1}(x) p_{2}(x)} \\
& =c \prod_{a \in \mathcal{A}} \sqrt{\psi_{a}^{1}(x) \psi_{a}^{2}(x)}=\prod_{a \in \mathcal{A}} \psi_{a}^{12}(x)
\end{aligned}
$$

where e.g. $\psi_{a}^{12}=c^{1 /|\mathcal{A}|} \sqrt{\psi_{a}^{1}(x) \psi_{a}^{2}(x)}$.
The Cauchy-Schwarz inequality yields

$$
c^{-1}=\sum_{x} \sqrt{p_{1}(x) p_{2}(x)}<\sqrt{\sum_{x} p_{1}(x)} \sqrt{\sum_{x} p_{2}(x)}=1 .
$$

Fitting the marginals

The operation T_{a} fits the a-marginal if $p\left(x_{a}\right)>0$ when $n\left(x_{a}\right)>0$:

$$
\begin{aligned}
n\left(T_{a} p\right)\left(x_{a}\right) & =n \sum_{y: y_{a}=x_{a}} p(y) \frac{n\left(y_{a}\right)}{n p\left(y_{a}\right)} \\
& =n \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)} \sum_{y: y_{a}=x_{a}} p(y) \\
& =n \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)} p\left(x_{a}\right)=n\left(x_{a}\right) .
\end{aligned}
$$

Iterative Proportional Scaling

Make an ordering of the generators $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$. Define S by a full cycle of scalings

$$
S p=T_{a_{k}} \cdots T_{a_{2}} T_{a_{1}}
$$

Define the iteration

$$
p_{0}(x) \leftarrow 1 /|\mathcal{X}|, \quad p_{n}=S p_{n-1}, n=1, \ldots
$$

It then holds that

$$
\lim _{n \rightarrow \infty} p_{n}=\hat{p}
$$

where \hat{p} is the unique maximum likelihood estimate of $p \in \overline{\mathcal{P}_{\mathcal{A}}}$, i.e. the solution of the equation system (6).

Iterative Proportional Fitting

Known as the IPS-algorithm or IPF-algorithm, or as a variety of other names. Implemented e.g. (inefficiently) in R in loglin with front end loglm in MASS.
Key elements in proof:

1. If $p \in \overline{\mathcal{P}_{\mathcal{A}}}$, so is $T_{a} p$;
2. T_{a} is continuous at any point p of $\overline{\mathcal{P}_{\mathcal{A}}}$ with $p\left(x_{a}\right) \neq 0$ whenever $n\left(x_{a}\right)=0$;
3. $L\left(T_{a} p\right) \geq L(p)$ so likelihood always increases;
4. \hat{p} is the unique fixpoint for T (and S);
5. $\overline{\mathcal{P}_{\mathcal{A}}}$ is compact.

A simple example

	Admitted		
Sex	Yes	No	S-marginal
Male	1198	1493	2691
Female	557	1278	1835
A-marginal	1755	2771	4526

Admissions data from Berkeley. Consider $A \Perp S$, corresponding to $\mathcal{A}=\{\{A\},\{S\}\}$.
We should fit A-marginal and S-marginal iteratively.

Initial values

Initial values			
Sex	Adm	tted	S-marginal
	Yes	No	
Male	1131.5	1131.5	2691
Female	1131.5	1131.5	1835
A-marginal	1755	2771	4526

Entries all equal to $4526 / 4$. Gives initial values of $n p_{0}$.

Fitting S-marginal

	Admitted		
Sex	Yes	No	S-marginal
Male	1345.5	1345.5	2691
Female	917.5	917.5	1835
A-marginal	1755	2771	4526

For example

$$
1345.5=1131.5 \frac{2691}{1131.5+1131.5}
$$

and so on.

Fitting A-marginal

	Admitted		
Sex	Yes	No	S-marginal
Male	1043.46	1647.54	2691
Female	711.54	1123.46	1835
A-marginal	1755	2771	4526

For example

$$
711.54=917.5 \frac{1755}{917.5+1345.5}
$$

and so on.
Algorithm has converged, as both marginals now fit!

Normalised to probabilities

	Admitted		
Sex	Yes	No	S-marginal
Male	0.231	0.364	0.595
Female	0.157	0.248	0.405
A-marginal	0.388	0.612	1

Dividing everything by 4526 yields \hat{p}.
It is overkill to use the IPS algorithm as there is an explicit formula in this case.

IPS by probability propagation

The IPS-algorithm performs the scaling operations T_{a} :

$$
\begin{equation*}
p(x) \leftarrow p(x) \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)}, \quad x \in \mathcal{X} . \tag{7}
\end{equation*}
$$

This moves through all possible values of $x \in \mathcal{X}$, which in general can be huge, hence impossible.
Jiroušek and Přeučil (1995) realized that the algorithm could be implemented using probability propagation:
A chordal graph \mathcal{G} with cliques \mathcal{C} so that for all $a \in \mathcal{A}, a$ are complete subsets of \mathcal{G} is a chordal cover of \mathcal{A}.

1. Find chordal cover \mathcal{G} of \mathcal{A};
2. Arrange cliques \mathcal{C} of \mathcal{G} in a junction tree;
3. Represent p implicitly as

$$
p(x)=\frac{\prod_{C \in \mathcal{C}} \psi_{C}(x)}{\prod_{S \in \mathcal{S}} \psi_{S}(x)}
$$

4. Replace the step (7) with

$$
\psi_{C}\left(x_{C}\right) \leftarrow \psi_{C}\left(x_{C}\right) \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)}, \quad x_{C} \in \mathcal{X}_{C}
$$

where $a \subseteq C$ and $p\left(x_{a}\right)$ is calculated by probability propagation.

Since the scaling only involves \mathcal{X}_{C}, this is possible just if $\max _{C \in \mathcal{C}}\left|\mathcal{X}_{C}\right|$ is of a reasonable size.

Marginal and conditional distributions

Partition X into X_{1} and X_{2}, where $X_{1} \in \mathcal{R}^{r}$ and $X_{2} \in \mathcal{R}^{s}$ with $r+s=d$.

Partition mean vector, concentration and covariance matrix accordingly as
$\xi=\binom{\xi_{1}}{\xi_{2}}, \quad K=\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$ so that Σ_{11} is $r \times r$ and so on. Then, if $X \sim \mathcal{N}_{d}(\xi, \Sigma)$

$$
X_{2} \sim \mathcal{N}_{s}\left(\xi_{2}, \Sigma_{22}\right)
$$

and

$$
X_{1} \mid X_{2}=x_{2} \sim \mathcal{N}_{r}\left(\xi_{1 \mid 2}, \Sigma_{1 \mid 2}\right)
$$

where
$\xi_{1 \mid 2}=\xi_{1}+\Sigma_{12} \Sigma_{22}^{-}\left(x_{2}-\xi_{2}\right) \quad$ and $\quad \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-} \Sigma_{21}$.
Σ_{22}^{-}is an arbitrary generalized inverse to Σ_{22}.
In the regular case it also holds that

$$
\begin{equation*}
K_{11}^{-1}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{11}^{-1} K_{12}=-\Sigma_{12} \Sigma_{22}^{-1} \tag{10}
\end{equation*}
$$

so then,

$$
\xi_{1 \mid 2}=\xi_{1}-K_{11}^{-1} K_{12}\left(x_{2}-\xi_{2}\right) \quad \text { and } \quad \Sigma_{1 \mid 2}=K_{11}^{-1}
$$

In particular, if $\Sigma_{12}=0, X_{1}$ and X_{2} are independent.

Explicit formula for MLE

Let \mathcal{S} be the set of minimal separators of the chordal graph \mathcal{G}. The MLE for p under the log-linear model with generating class $\mathcal{A}=\mathcal{C}(\mathcal{G})$ is

$$
\hat{p}(x)=\frac{\prod_{C \in \mathcal{C}} n\left(x_{C}\right)}{n \prod_{S \in \mathcal{S}} n\left(x_{S}\right)^{\nu(S)}}
$$

where $\nu(S)$ is the number of times S appears as an intersection $a \cap b$ of neighbours in a junction tree \mathcal{T} with \mathcal{A} as vertex set.
Contrast this with the factorization of the probability function itself:

$$
p(x)=\frac{\prod_{C \in \mathcal{C}} p\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} p\left(x_{S}\right)^{\nu(S)}}
$$

Density of multivariate Gaussian

If Σ is positive definite, i.e. if $\lambda^{\top} \Sigma \lambda>0$ for $\lambda \neq 0$, the distribution has density w.r.t. Lebesgue measure on \mathcal{R}^{d}

$$
\begin{equation*}
f(x \mid \xi, \Sigma)=(2 \pi)^{-d / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2} \tag{8}
\end{equation*}
$$

where $K=\Sigma^{-1}$ is the concentration matrix of the distribution. We then also say that Σ is regular.

Wishart distribution

The Wishart distribution is the sampling distribution of the matrix of sums of squares and products. More precisely:
A random $d \times d$ matrix S has a d-dimensional Wishart distribution with parameter Σ and n degrees of freedom if

$$
W \stackrel{\mathcal{D}}{=} \sum_{i=1}^{n} X^{\nu}\left(X^{\nu}\right)^{\top}
$$

where $X^{\nu} \sim \mathcal{N}_{d}(0, \Sigma)$. We then write

$$
W \sim \mathcal{W}_{d}(n, \Sigma)
$$

The Wishart is the multivariate analogue to the χ^{2} :

$$
\mathcal{W}_{1}\left(n, \sigma^{2}\right)=\sigma^{2} \chi^{2}(n)
$$

If $W \sim \mathcal{W}_{d}(n, \Sigma)$ its mean is $\mathbf{E}(W)=n \Sigma$.
If W_{1} and W_{2} are independent with $W_{i} \sim \mathcal{W}_{d}\left(n_{i}, \Sigma\right)$, then

$$
W_{1}+W_{2} \sim \mathcal{W}_{d}\left(n_{1}+n_{2}, \Sigma\right)
$$

If A is an $r \times d$ matrix and $W \sim \mathcal{W}_{d}(n, \Sigma)$, then

$$
A W A^{\top} \sim \mathcal{W}_{r}\left(n, A \Sigma A^{\top}\right)
$$

For $r=1$ we get that when $W \sim \mathcal{W}_{d}(n, \Sigma)$ and $\lambda \in R^{d}$,

$$
\lambda^{\top} W \lambda \sim \sigma_{\lambda}^{2} \chi^{2}(n)
$$

where $\sigma_{\lambda}^{2}=\lambda^{\top} \Sigma \lambda$.

Wishart density

If $W \sim \mathcal{W}_{d}(n, \Sigma)$, where Σ is regular, then
W is regular with probability one if and only if $n \geq d$.
When $n \geq d$ the Wishart distribution has density
$f_{d}(w \mid n, \Sigma)$
$=c(d, n)^{-1}(\operatorname{det} \Sigma)^{-n / 2}(\operatorname{det} w)^{(n-d-1) / 2} e^{-\operatorname{tr}\left(\Sigma^{-1} w\right) / 2}$
w.r.t. Lebesgue measure on the set of positive definite matrices.
The Wishart constant $c(d, n)$ is
$c(d, n)=2^{n d / 2}(2 \pi)^{d(d-1) / 4} \prod_{i=1}^{d} \Gamma\{(n+1-i) / 2\}$.

Conditional independence

Consider $X=\left(X_{1}, \ldots, X_{V}\right) \sim \mathcal{N}_{|V|}(0, \Sigma)$ with Σ regular and $K=\Sigma^{-1}$.
The concentration matrix of the conditional distribution of $\left(X_{\alpha}, X_{\beta}\right)$ given $X_{V \backslash\{\alpha, \beta\}}$ is

$$
K_{\{\alpha, \beta\}}=\left(\begin{array}{cc}
k_{\alpha \alpha} & k_{\alpha \beta} \\
k_{\beta \alpha} & k_{\beta \beta}
\end{array}\right)
$$

Hence

$$
\alpha \Perp \beta \mid V \backslash\{\alpha, \beta\} \Longleftrightarrow k_{\alpha \beta}=0
$$

Thus the dependence graph $\mathcal{G}(K)$ of a regular Gaussian distribution is given by

$$
\alpha \nsim \beta \Longleftrightarrow k_{\alpha \beta}=0
$$

Graphical models

$\mathcal{S}(\mathcal{G})$ denotes the symmetric matrices A with $a_{\alpha \beta}=0$ unless $\alpha \sim \beta$ and $\mathcal{S}^{+}(\mathcal{G})$ their positive definite elements.
A Gaussian graphical model for X specifies X as multivariate normal with $K \in \mathcal{S}^{+}(\mathcal{G})$ and otherwise unknown.
Note that the density then factorizes as

$$
\log f(x)=\text { constant }-\frac{1}{2} \sum_{\alpha \in V} k_{\alpha \alpha} x_{\alpha}^{2}-\sum_{\{\alpha, \beta\} \in E} k_{\alpha \beta} x_{\alpha} x_{\beta}
$$

hence no interaction terms involve more than pairs..
This is different from the discrete case and generally makes things easier.

Likelihood function

The likelihood function based on a sample of size n is

$$
L(K) \propto(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K W) / 2}
$$

where W is the Wishart matrix of sums of squares and products, $W \sim \mathcal{W}_{|V|}(n, \Sigma)$ with $\Sigma^{-1}=K \in \mathcal{S}^{+}(\mathcal{G})$.
For any matrix A we let $A(\mathcal{G})=\left\{a(\mathcal{G})_{\alpha \beta}\right\}$ where

$$
a(\mathcal{G})_{\alpha \beta}=\left\{\begin{array}{cc}
a_{\alpha \beta} & \text { if } \alpha=\beta \text { or } \alpha \sim \beta \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, as $K \in \mathcal{S}(\mathcal{G})$

$$
\operatorname{tr}(K W)=\operatorname{tr}\{K W(\mathcal{G})\}
$$

Hence we can identify the family as a (regular and canonical) exponential family with elements of $W(\mathcal{G})$ as canonical sufficient statistics and the likelihood equations

$$
\mathbf{E}\{W(\mathcal{G})\}=n \Sigma(\mathcal{G})=w(\mathcal{G})_{\text {obs }}
$$

Alternatively we can write the equations as

$$
n \hat{\sigma}_{v v}=w_{v v}, \quad n \hat{\sigma}_{\alpha \beta}=w_{\alpha \beta}, \quad v \in V,\{\alpha, \beta\} \in E
$$

with the model restriction $\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$.
This 'fits variances and covariances along nodes and edges in \mathcal{G}^{\prime} so we can write the equations as

$$
n \hat{\Sigma}_{c c}=w_{c c} \text { for all cliques } c \in \mathcal{C}(\mathcal{G})
$$

hence making the equations analogous to the discrete case.

Iterative Proportional Scaling

For $K \in \mathcal{S}^{+}(\mathcal{G})$ and $c \in \mathcal{C}$, define the operation of 'adjusting the c-marginal' as follows. Let $a=V \backslash c$ and

$$
T_{c} K=\left(\begin{array}{cc}
n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c} & K_{c a} \tag{12}\\
K_{a c} & K_{a a}
\end{array}\right)
$$

This operation is clearly well defined if $w_{c c}$ is positive definite.
Exploiting that it holds in general that

$$
\left(K^{-1}\right)_{c c}=\Sigma_{c c}=\left\{K_{c c}-K_{c a}\left(K_{a a}\right)^{-1} K_{a c}\right\}^{-1}
$$

we find the covariance $\tilde{\Sigma}_{c c}$ corresponding to the adjusted

$$
\begin{aligned}
& \text { concentration matrix becomes } \\
& \begin{aligned}
\tilde{\Sigma}_{c c} & =\left\{\left(T_{c} K\right)^{-1}\right\}_{c c} \\
& =\left\{n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c}-K_{c a}\left(K_{a a}\right)^{-1} K_{a c}\right\}^{-1} \\
& =w_{c c} / n
\end{aligned}
\end{aligned}
$$

hence $T_{c} K$ does indeed adjust the marginals.
From (12) it is seen that the pattern of zeros in K is preserved under the operation T_{c}, and it can also be seen to stay positive definite.
In fact, T_{c} scales proportionally in the sense that

$$
f\left\{x \mid\left(T_{c} K\right)^{-1}\right\}=f\left(x \mid K^{-1}\right) \frac{f\left(x_{c} \mid w_{c c} / n\right)}{f\left(x_{c} \mid \Sigma_{c c}\right)}
$$

This clearly demonstrates the analogy to the discrete case.

Next we choose any ordering $\left(c_{1}, \ldots, c_{k}\right)$ of the cliques in \mathcal{G}. Choose further $K_{0}=I$ and define for $r=0,1, \ldots$

$$
K_{r+1}=\left(T_{c_{1}} \cdots T_{c_{k}}\right) K_{r}
$$

Then we have: Consider a sample from a covariance selection model with graph \mathcal{G}. Then

$$
\hat{K}=\lim _{r \rightarrow \infty} K_{r}
$$

provided the maximum likelihood estimate \hat{K} of K exists.
The general problem of existence of the MLE is non-trivial: If $n<\sup _{a \in \mathcal{A}}|a|$ the MLE does not exist.

If $n \geq \sup _{C \in \mathcal{C}}|C|$, where \mathcal{C} are the cliques of a chordal cover of \mathcal{A} the MLE exists with probability one.

For n between these values the general situation is unclear.
For the k-cycle it holds (Buhl 1993) that for $n=2$,

$$
P\{\text { MLE exists } \mid \Sigma=I\}=1-\frac{2}{k-1!}
$$

whereas for $n=1$ the MLE does not exist and for $n \geq 3$ the MLE exists with probability one, as a k-cycle has a chordal cover with maximal clique size 3.

Chordal graphs

If the graph \mathcal{G} is chordal, we say that the graphical model is decomposable.

In this case, the IPS-algorithm converges in a finite number of steps, as in the discrete case.
We also have the familiar factorization of densities

$$
\begin{equation*}
f(x \mid \Sigma)=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \Sigma_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \Sigma_{S}\right)^{\nu(S)}} \tag{13}
\end{equation*}
$$

where $\nu(S)$ is the number of times S appear as intersection between neighbouring cliques of a junction tree for \mathcal{C}.

Maximum likelihood estimates

For a $|d| \times|e|$ matrix $A=\left\{a_{\gamma \mu}\right\}_{\gamma \in d, \mu \in e}$ we let $[A]^{V}$ denote the matrix obtained from A by filling up with zero entries to obtain full dimension $|V| \times|V|$, i.e.

$$
\left([A]^{V}\right)_{\gamma \mu}= \begin{cases}a_{\gamma \mu} & \text { if } \gamma \in d, \mu \in e \\ 0 & \text { otherwise }\end{cases}
$$

The maximum likelihood estimates exists if and only if $n \geq C$ for all $C \in \mathcal{C}$. Then the following simple formula holds for the maximum likelihood estimate of K :

$$
\hat{K}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(w_{C}\right)^{-1}\right]^{V}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(w_{S}\right)^{-1}\right]^{V}\right\} .
$$

The determinant of the MLE is

$$
\operatorname{det}(\hat{K})=\frac{\prod_{S \in \mathcal{S}}\left\{\operatorname{det}\left(w_{S}\right)\right\}^{\nu(S)}}{\prod_{C \in \mathcal{C}} \operatorname{det}\left(w_{C}\right)} n^{|V|}
$$

References

Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scandinavian Journal of Statistics, 20, 263-70.
Jiroušek, R. and Přeučil, R. (1995). On the effective implementation of the iterative proportional fitting procedure. Computational Statistics and Data Analysis, 19, 177-89.

Relations for trace and determinant

Using the factorization (13) we can match the expressions for the trace and determinant to obtain

$$
\operatorname{tr}(K W)=\sum_{C \in \mathcal{C}} \operatorname{tr}\left(K_{C} W_{C}\right)-\sum_{S \in \mathcal{S}} \nu(S) \operatorname{tr}\left(K_{S} W_{S}\right)
$$

and further

$$
\begin{aligned}
\operatorname{det} \Sigma & =\{\operatorname{det}(K)\}^{-1}=\frac{\left.\prod_{C \in \mathcal{C}} \operatorname{det}\left\{\left(K^{-1}\right)\right)_{C}\right\}}{\left.\prod_{S \in S} \operatorname{det}\left\{\left(K^{-1}\right) s\right\}\right\}^{(S)}} \\
& =\frac{\prod_{C \in \mathcal{C}} \operatorname{det}\left\{\Sigma_{C}\right\}}{\prod_{S \in S}\left\{\operatorname{det}\left(\Sigma_{S}\right)\right\}^{\nu(S)}}
\end{aligned}
$$

Hyper Markov Laws Lecture 6 Saint Flour Summerschool, July 13, 2006 Steffen L. Lauritzen, University of Oxford	Conformal log-linear model The set $\mathcal{C}(\mathcal{G})$ of cliques of \mathcal{G} is a generating class for the log-linear model of distributions which factorize w.r.t. \mathcal{G}. If the dependence graph completely summarizes the restrictions imposed by \mathcal{A}, i.e. if $\mathcal{A}=\mathcal{C}(\mathcal{G}(\mathcal{A})), \mathcal{A}$ is conformal. Conformal log-linear models can be completely described in terms of conditional independence. For more general log-linear models factor graphs are needed to yield a faithful representation of the factorization. MIM (software by David Edwards www.hypergraph.dk), uses the term interaction graph.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Hyper Markov laws 7. More on hyper Markov laws 8. Structure estimation and Bayes factors 9. More on structure estimation.	Likelihood equations For any generating class \mathcal{A} it holds that the maximum likelihood estimate \hat{p} of p is the unique element of $\overline{\mathcal{P}_{\mathcal{A}}}$ which satisfies the system of equations $\begin{equation*} n \hat{p}\left(x_{a}\right)=n\left(x_{a}\right), \forall a \in \mathcal{A}, x_{a} \in \mathcal{X}_{a} \tag{1} \end{equation*}$ The system of equations (1) expresses the fitting of the marginals in \mathcal{A}. In general, the equations cannot be solved explicitly, but iterative methods are needed.
Log-linear models \mathcal{A} denotes a set of (pairwise incomparable) subsets of V. A density f factorizes w.r.t. \mathcal{A} $f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x) .$ The set of distributions $\mathcal{P}_{\mathcal{A}}$ which factorize w.r.t. \mathcal{A} is the hierarchical log-linear model generated by the \mathcal{A}. \mathcal{A} is the generating class of the log-linear model.	Iterative Proportional Scaling For $a \in \mathcal{A}$ define the scaling operation on p : $\begin{equation*} \left(T_{a} p\right)(x) \leftarrow p(x) \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)}, \quad x \in \mathcal{X} . \tag{2} \end{equation*}$ The operation T_{a} fits the a-marginal. Now, make any ordering of the generators $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$. Define S by $S p=T_{a_{k}} \cdots T_{a_{2}} T_{a_{1}} p$ Let $p_{0}(x) \leftarrow 1 /\|\mathcal{X}\|, \quad p_{n}=S p_{n-1}, n=1, \ldots$. It then holds that $\lim _{n \rightarrow \infty} p_{n}=\hat{p}$ where \hat{p} is the unique maximum likelihood estimate of $p \in \overline{\mathcal{P}_{\mathcal{A}}}$. It is easy to show that $\hat{p}(x)>0$ for all $x \in \mathcal{X}$ if and only if $\hat{p} \in \mathcal{P}_{\mathcal{A}}$.
Dependence graph The dependence graph $\mathcal{G}(\mathcal{P})$ for a family of distributions \mathcal{P} is the smallest graph \mathcal{G} so that $\alpha \Perp_{P} \beta \mid V \backslash\{\alpha, \beta\} \text { for all } P \in \mathcal{P} .$ The dependence graph of a log-linear model $\mathcal{P}_{\mathcal{A}}$ is then determined by $\alpha \sim \beta \Longleftrightarrow \exists a \in \mathcal{A}: \alpha, \beta \in a$ Sets in \mathcal{A} are complete in $\mathcal{G}(\mathcal{A})$ and therefore distributions in $\mathcal{P}_{\mathcal{A}}$ factorize according to $\mathcal{G}(\mathcal{A})$. They are also global, local, and pairwise Markov w.r.t. $\mathcal{G}(\mathcal{A})$.	IPS by probability propagation A chordal cover of \mathcal{A} is a chordal graph \mathcal{G} so that for all $a \in \mathcal{A}, a$ are complete subsets of \mathcal{G}. 1. Find chordal cover \mathcal{G} of \mathcal{A} and arrange cliques \mathcal{C} of \mathcal{G} in a junction tree; 2. Represent p implicitly as $p(x)=\frac{\prod_{C \in \mathcal{C}} \psi_{C}(x)}{\prod_{S \in \mathcal{S}} \psi_{S}(x)}$; 3. Replace (2) with $\psi_{C}\left(x_{C}\right) \leftarrow \psi_{C}\left(x_{C}\right) \frac{n\left(x_{a}\right)}{n p\left(x_{a}\right)}, \quad x_{C} \in \mathcal{X}_{C}$ where $a \subseteq C$ and $p\left(x_{a}\right)$ is calculated by probability propagation.

Closed form maximum likelihood

\mathcal{A} is decomposable if $\mathcal{A}=\mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph.

The IPS-algorithm converges after at a finite number of cycles (at most two) if and only if \mathcal{A} is decomposable.

The MLE for p under the log-linear model $\mathcal{A}=\mathcal{C}(\mathcal{G})$ is

$$
\hat{p}(x)=\frac{\prod_{C \in \mathcal{C}} n\left(x_{C}\right)}{n \prod_{S \in \mathcal{S}} n\left(x_{S}\right)^{\nu(S)}},
$$

where $\nu(S)$ is the usual multiplicity of a separator.
In fact, with a suitably chosen ordering (e.g. MCS) of the cliques, the IPS-algorithm converges in a single cycle.

Existence of the MLE

The general problem of existence of the MLE is non-trivial: If $n<\sup _{a \in \mathcal{A}}|a|$ the MLE does not exist.
If $n \geq \sup _{C \in \mathcal{C}}|C|$, where \mathcal{C} are the cliques of a chordal cover of \mathcal{A} the MLE exists with probability one.

For n between these values the general situation is unclear.
For the k-cycle it holds (Buhl 1993) that for $n=2$,

$$
P\{\text { MLE exists } \mid \Sigma=I\}=1-\frac{2}{(k-1)!},
$$

whereas for $n=1$ the MLE does not exist and for $n \geq 3$ the MLE exists with probability one, as a k-cycle has a chordal cover with maximal clique size 3 .

Special Wishart distributions

The formula

$$
\hat{\Sigma}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(W_{C}\right)^{-1}\right]^{V}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(W_{S}\right)^{-1}\right]^{V}\right\}^{-1}
$$

specifies $\hat{\Sigma}$ as a random matrix.
The distribution of this random Wishart-type matrix is partly reflecting Markov properties of the graph \mathcal{G}.

This is also true for the distribution of $\hat{\Sigma}$ for a non-chordal graph \mathcal{G} but not to the same degree.
Before we delve further into this, we shall need some more terminology.

Iterative Proportional Scaling

For $K \in \mathcal{S}^{+}(\mathcal{G})$ and $c \in \mathcal{C}$, define the operation of 'adjusting the c-marginal' as follows. Let $a=V \backslash c$ and

$$
T_{c} K=\left(\begin{array}{cc}
n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c} & K_{c a} \tag{3}\\
K_{a c} & K_{a a}
\end{array}\right) .
$$

Next we choose any ordering $\left(c_{1}, \ldots, c_{k}\right)$ of the cliques in \mathcal{G}. Choose further $K_{0}=I$ and define for $r=0,1, \ldots$

$$
K_{r+1}=\left(T_{c_{1}} \cdots T_{c_{k}}\right) K_{r}
$$

It then holds that $\hat{K}=\lim _{r \rightarrow \infty} K_{r}$, provided the maximum likelihood estimate \hat{K} of K exists.

Chordal graphs

If the graph \mathcal{G} is chordal, we say that the graphical model is decomposable.

In this case, the IPS-algorithm converges in at most two cycles, as in the discrete case.
The maximum likelihood estimates exists if and only if $n \geq|C|$ for all $C \in \mathcal{C}$. Then

$$
\hat{K}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(w_{C}\right)^{-1}\right]^{V}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(w_{S}\right)^{-1}\right]^{V}\right\}
$$

the symbol $[A]^{V}$ denotes for $A=\left\{a_{\gamma \mu}\right\}_{\gamma \in d, \mu \in e}$ the matrix obtained from A by filling up with zero entries to obtain full dimension.

Laws and distributions

Families of distributions may not always be simply parameterized, or we may want to describe the families without specific reference to a parametrization.
Generally we think of

$$
\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}
$$

and sometimes identify Θ with \mathcal{P} which is justified when the parametrization

$$
\theta \rightarrow P_{\theta}
$$

is one-to-one and onto.
In a Gaussian graphical model $\theta=K \in \mathcal{S}^{+}(\mathcal{G})$ is uniquely identifying any regular Gaussian distribution satisfying the Markov properties w.r.t. \mathcal{G}.

The case when $\mathcal{P}=\mathcal{P}_{\mathcal{A}}$ is more complex, and a specific parametrization needs to be chosen to make a simple and one-to-one correspondence.
In any case, any probability measure on \mathcal{P} (or on Θ) represents a random element of \mathcal{P}, i.e. a random distribution. The sampling distribution of the MLE \hat{p} is an example of such a measure.

To keep heads straight we refer to a probability measure on \mathcal{P} as a law, whereas a distribution is a probability measure on \mathcal{X}.

Thus we shall e.g. speak of the Wishart law as we think of it specifying a distribution of $f(\cdot \mid \Sigma)$.

Hyper Markov Laws

We identify $\theta \in \Theta$ and $P_{\theta} \in \mathcal{P}$, so e.g. θ_{A} for $A \subseteq V$
denotes the distribution of X_{A} under P_{θ} and $\theta_{A \mid B}$ the family of conditional distributions of X_{A} given X_{B}, etc.

For a law \mathcal{L} on Θ we write

$$
A \Perp_{\mathcal{L}} B\left|S \Longleftrightarrow \theta_{A \cup S} \Perp_{\mathcal{L}} \theta_{B \cup S}\right| \theta_{S} .
$$

A law \mathcal{L} on Θ is hyper Markov w.r.t. \mathcal{G} if
(i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G};
(ii) $A \Perp_{\mathcal{L}} B \mid S$ whenever S is complete and $A \perp_{\mathcal{G}} B \mid S$.

Note the conditional independence is only required to hold for graph decompositions.

Clearly, it holds that \hat{p} is Markov on \mathcal{G} and

$$
\left\{N_{i j+}\right\} \Perp\left\{N_{+j k}\right\} \mid\left\{X_{j}^{(n)}\right\} .
$$

But since e.g.

$$
P\left(\left\{N_{i j+}=n_{i j}\right\} \mid\left\{X_{j}^{(n)}\right\}\right)=\prod_{j}\left(\frac{n_{+j+}!}{\prod_{i} n_{i j+}!} \prod_{i} p_{i j+}^{n_{i j+}}\right)
$$

we have

$$
\left\{N_{i j+}\right\} \Perp\left\{X_{j}^{(n)}\right\} \mid\left\{N_{+j+}\right\}
$$

and hence

$$
\left\{N_{i j+}\right\} \Perp\left\{N_{+j k}\right\} \mid\left\{N_{+j+}\right\}
$$

which yields the hyper Markov property.

Chordal graphs

If \mathcal{G} is chordal and θ is hyper Markov on \mathcal{G}, it holds that

$$
A \perp_{\mathcal{G}} B\left|S \Longrightarrow A \Perp_{\mathcal{L}} B\right| S
$$

i.e. it is not necessary to specify that S is a complete separator to obtain the relevant conditional independence.
If θ follows a hyper Markov law for this graph, it holds for example that

$$
\theta_{1235} \Perp \theta_{24567} \mid \theta_{25}
$$

We shall later show that this is indeed true for $\hat{\theta}=\hat{p}$ or $\hat{\Sigma}$ in the graphical model with this graph, i.e.

$$
\hat{\Sigma}_{1235} \Perp \hat{\Sigma}_{24567} \mid \hat{\Sigma}_{25}
$$

This follows essentially because for a chordal graph it holds that
$A \perp_{\mathcal{G}} B\left|S \Longrightarrow \exists S^{*} \subseteq S: A \perp_{\mathcal{G}} B\right| S^{*}$ with S^{*} complete.
If \mathcal{G} is not chordal, we can form $\overline{\mathcal{G}}$ by completing all prime components of \mathcal{G}.

Then if θ is hyper Markov on \mathcal{G}, it is also hyper Markov on $\overline{\mathcal{G}}$, and thus

$$
A \perp_{\overline{\mathcal{G}}} B\left|S \Longrightarrow A \Perp_{\mathcal{L}} B\right| S
$$

But the similar result would be false for an arbitrary chordal cover of \mathcal{G}.
since θ_{A} and θ_{B} are functions of $\theta_{A \cup S}$ and $\theta_{B \cup S}$ respectively.

But the converse is false! $\theta_{A} \Perp_{\mathcal{L}} \theta_{B} \mid \theta_{S}$ does not imply
$\theta_{A \cup S} \Perp_{\mathcal{L}} \theta_{B \cup S} \mid \theta_{S}$, since $\theta_{A \cup S}$ is not a function of
$\left(\theta_{A}, \theta_{S}\right)$. In contrast, $X_{A \cup B}$ is indeed a (one-to-one) function of $\left(X_{A}, X_{B}\right)$.
However it generally holds that

$$
A \Perp_{\mathcal{L}} B\left|S \Longleftrightarrow \theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{B \mid S}\right| \theta_{S}
$$

Simple example

Consider the conditional independence model with graph

Here the MLE based on data $X^{(n)}=\left(X^{1}, \ldots, X^{n}\right)$ is

$$
\hat{p}_{i j k}=\frac{N_{i j+} N_{+j k}}{n N_{+j+}}
$$

and

$$
\hat{p}_{i j+}=\frac{N_{i j+}}{n}, \quad \hat{p}_{+j k}=\frac{N_{+j k}}{n}, \quad \hat{p}_{+j+}=\frac{N_{+j+}}{n}
$$

Directed hyper Markov property

We have similar notions and results in the directed case.
Say $\mathcal{L}=\mathcal{L}(\theta)$ is directed hyper Markov w.r.t. a DAG \mathcal{D} if θ is directed Markov on \mathcal{D} for all $\theta \in \Theta$ and

$$
\theta_{v \cup \operatorname{pa}(v)} \Perp_{\mathcal{L}} \theta_{\operatorname{nd}(v)} \mid \theta_{\mathrm{pa}(v)}
$$

or equivalently $\theta_{v \mid \operatorname{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{nd}(v)} \mid \theta_{\mathrm{pa}(v)}$, or equivalently for a well-ordering

$$
\theta_{v \cup \operatorname{pa}(v)} \Perp_{\mathcal{L}} \theta_{\operatorname{pr}(v)} \mid \theta_{\operatorname{pa}(v)} .
$$

In general there is no similar statement corresponding to the global property and d-separation.
However, if \mathcal{D} is perfect, \mathcal{L} is directed hyper Markov w.r.t. \mathcal{D} if and only if \mathcal{L} is hyper Markov w.r.t. $\mathcal{G}=\sigma(\mathcal{D})=\mathcal{D}^{m}$.

References

Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scandinavian Journal of Statistics, 20, 263-70.

More on Hyper Markov Laws Lecture 7 Saint Flour Summerschool, July 13, 2006 Steffen L. Lauritzen, University of Oxford	Hyper Markov Laws We identify $\theta \in \Theta$ and $P_{\theta} \in \mathcal{P}$, so e.g. θ_{A} for $A \subseteq V$ denotes the marginal distribution of X_{A} under P_{θ} and $\theta_{A \mid B}$ the family of conditional distributions of X_{A} given X_{B}, etc. For a law \mathcal{L} on Θ we write $A \Perp_{\mathcal{L}} B\left\|S \Longleftrightarrow \theta_{A \cup S} \Perp_{\mathcal{L}} \theta_{B \cup S}\right\| \theta_{S}$ A law \mathcal{L} on Θ is hyper Markov w.r.t. \mathcal{G} if (i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G}; (ii) $A \Perp_{\mathcal{L}} B \mid S$ whenever S is complete and $A \perp_{\mathcal{G}} B \mid S$.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Hyper Markov laws 7. More on Hyper Markov Laws 8. Structure estimation and Bayes factors 9. More on structure estimation.	If θ follows a hyper Markov law for this graph, it holds for example that $\theta_{1235} \Perp \theta_{24567} \mid \theta_{25}$ We shall later see that this is indeed true for $\hat{\theta}=\hat{p}$ or $\hat{\Sigma}$ in the graphical model with this graph, i.e. $\hat{\Sigma}_{1235} \Perp \hat{\Sigma}_{24567} \mid \hat{\Sigma}_{25} .$
Laws and distributions A statistical model involves a family \mathcal{P} of distributions, often parametrized as $\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\} .$ We typically identify Θ with \mathcal{P} when the parametrization $\theta \rightarrow P_{\theta}$ is one-to-one and onto. In a Gaussian graphical model, $\theta=K \in \mathcal{S}^{+}(\mathcal{G})$ is uniquely identifying any regular Gaussian distribution $\mathcal{N}_{V}(0, \Sigma)$, where $K=\Sigma^{-1}$, satisfying the Markov properties of \mathcal{G}.	Consequences of the hyper Markov property We have $A \Perp_{\mathcal{L}} B\left\|S \Longrightarrow \theta_{A} \Perp_{\mathcal{L}} \theta_{B}\right\| \theta_{S}$ but the converse is false! It generally holds that $A \Perp_{\mathcal{L}} B\left\|S \Longleftrightarrow \theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{B \mid S}\right\| \theta_{S}$ If \mathcal{G} is chordal and \mathcal{L} is hyper Markov on \mathcal{G}, it holds that $A \perp_{\mathcal{G}} B\left\|S \Longrightarrow A \Perp_{\mathcal{L}} B\right\| S$ In general, if we form $\overline{\mathcal{G}}$ by completing all prime components of \mathcal{G}, then if \mathcal{L} is hyper Markov on \mathcal{G} $A \perp_{\overline{\mathcal{G}}} B\left\|S \Longrightarrow A \Perp_{\mathcal{L}} B\right\| S .$
The case when $\mathcal{P}=\mathcal{P}_{\mathcal{A}}$ is more complex, and a specific parametrization needs to be chosen to make a simple and one-to-one correspondence with a suitable parameter Θ. A probability measure on \mathcal{P} (or on Θ) represents a random element of \mathcal{P}. We refer to a probability measure on \mathcal{P} or Θ as a law, whereas a distribution is a probability measure on \mathcal{X}. Thus we shall e.g. speak of the Wishart law as we think of W specifying a (random) distribution of X as $\mathcal{N}_{V}(0 \mid W)$.	Directed hyper Markov property $\mathcal{L}=\mathcal{L}(\theta)$ is directed hyper Markov w.r.t. a DAG \mathcal{D} if θ is directed Markov on \mathcal{D} for all $\theta \in \Theta$ and $\theta_{v \cup \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{nd}(v)} \mid \theta_{\mathrm{pa}(v)},$ or equivalently $\theta_{v \mid \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{nd}(v)} \mid \theta_{\mathrm{pa}(v)},$ or equivalently for a well-ordering of \mathcal{D} $\theta_{v \cup \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{pr}(v)} \mid \theta_{\mathrm{pa}(v)} .$ If \mathcal{D} is perfect, \mathcal{L} is directed hyper Markov w.r.t. \mathcal{D} if and only if \mathcal{L} is hyper Markov w.r.t. $\mathcal{G}=\sigma(\mathcal{D})=\mathcal{D}^{m}$.

Meta independence

In the following we shall for $A, B \subseteq V$ identify

$$
\theta_{A \cup B}=\left(\theta_{B \mid A}, \theta_{A}\right)=\left(\theta_{A \mid B}, \theta_{B}\right),
$$

i.e. any joint distribution of $X_{A \cup B}$ is identified with a pair of further marginal and conditional distributions.
Define for $S \subseteq V$ the S-section $\Theta^{\theta_{S}^{*}}$ of Θ as

$$
\Theta^{\theta_{S}^{*}}=\left\{\theta \in \Theta: \theta_{S}=\theta_{S}^{*}, \theta \in \Theta\right\}
$$

The meta independence relation $\ddagger \mathcal{P}$ is defined as

$$
A \ddagger \mathcal{P} B \mid S \Longleftrightarrow \forall \theta_{S}^{*} \in \Theta_{S}: \Theta^{\theta_{S}^{*}}=\Theta_{A \mid S}^{\theta_{S}^{*}} \times \Theta_{B \mid S}^{\theta_{S}^{*}},
$$

In words, A and B are meta independent w.r.t. \mathcal{P} given S, if the pair of conditional distributions $\left(\theta_{A \mid S}, \theta_{B \mid S}\right)$ vary in a product space when θ_{S} is fixed.
Equivalently, fixing the values of $\theta_{B \mid S}$ and θ_{S} places the same restriction on $\theta_{A \mid S}$ as just fixing θ_{S}.

The relation $\ddagger \mathcal{P}$ satisfies the semigraphoid axioms as it is a special instance of variation independence.

Note also that for any triple (A, B, S) and any law \mathcal{L} on Θ it holds that

$$
A \Perp_{\mathcal{L}} B\left|S \Longrightarrow A \ddagger_{\mathcal{P}} B\right| S
$$

for if $\theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{B \mid S} \mid \theta_{S}$ it must in particular be true that $\left(\theta_{A \mid S}, \theta_{B \mid S}\right)$ vary in a product space for every fixed value of θ_{S}.

Log-linear meta Markov models

Using results on collapsibility of log-linear models
(Asmussen and Edwards 1983) that
A log-linear model $\mathcal{P}_{\mathcal{A}}$ is meta Markov on its dependence graph $\mathcal{G}(\mathcal{A})$ if and only if $S \in \mathcal{A}$ for any minimal complete separator S of $\mathcal{G}(\mathcal{A})$.

In particular, if \mathcal{A} is conformal, $\mathcal{P}_{\mathcal{A}}$ is meta Markov.
For example, the log-linear model with generating class

$$
\mathcal{A}=\{a b, a c, a d, b c, b d, b e, c d, c e, d e\}
$$

has dependence graph with cliques $\mathcal{C}=\{a b c d, b c d e\}$. Since the complete separator $b c d$ is not in \mathcal{A}, this model is not meta Markov.

The model with generating class

$$
\mathcal{A}^{\prime}=\{a b, a c, a d, b c d, b e, c e, d e\}
$$

has the same dependence graph $\mathcal{G}\left(\mathcal{A}^{\prime}\right)=\mathcal{G}(\mathcal{A})$ but even though \mathcal{A}^{\prime} is not conformal, $\mathcal{P}_{\mathcal{A}^{\prime}}$ is meta Markov on $\mathcal{G}\left(\mathcal{A}^{\prime}\right)$.
But also the model with generating class

$$
\mathcal{A}^{\prime \prime}=\{a b, a c, b c, b d, c d, c e, d e\}
$$

has a different dependence graph $\mathcal{G}\left(\mathcal{A}^{\prime \prime}\right)$. The separator $b c d$ is not in $\mathcal{A}^{\prime \prime}$, but $\mathcal{P}_{\mathcal{A}^{\prime \prime}}$ is meta Markov on $\mathcal{G}\left(\mathcal{A}^{\prime \prime}\right)$, as both minimal separators $b c$ and $c d$ are in $\mathcal{A}^{\prime \prime}$.
Meta Markov models
The family \mathcal{P}, or Θ, is said to be meta Markov w.r.t. \mathcal{G} if
(i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G};
(ii) $A \perp_{\mathcal{G}} B\left|S \Longrightarrow A \ddagger_{\mathcal{P}} B\right| S$ whenever S is complete.
A Markov model is meta Markov if and only if

$$
A \perp_{\overline{\mathcal{G}}} B\left|S \Longrightarrow A A_{\ddagger} B\right| S \text {, }
$$

where $\overline{\mathcal{G}}$ is obtained from \mathcal{G} by completing all prime
components,
If \mathcal{G} is chordal, $\overline{\mathcal{G}}=\mathcal{G}$ and hence for any meta Markov
model \mathcal{P}
$A \perp_{\mathcal{G}} B|S \Longrightarrow A \ddagger \mathcal{P} B| S$.

Hyper Markov laws and meta Markov models
Since it for any law \mathcal{L} on Θ holds that

$$
A \Perp_{\mathcal{L}} B\left|S \Longrightarrow A \ddagger_{\mathcal{P}} B\right| S
$$

hyper Markov laws live on meta Markov models: If a law \mathcal{L} on Θ is hyper Markov w.r.t. \mathcal{G}, Θ is meta Markov w.r.t. \mathcal{G}.
In particular, if a Markov model is not meta Markov, it cannot carry a hyper Markov law without further restricting to $\Theta_{0} \subset \Theta$.
A Gaussian graphical model with graph \mathcal{G} is meta Markov on \mathcal{G}.

This follows for example from results of collapsibility of Gaussian graphical models (Frydenberg 1990).

Factor graph of \mathcal{A}

Factor graph of \mathcal{A}^{\prime}	Canonical construction of hyper Markov laws The distributions of maximum likelihood estimators are important examples of hyper Markov laws. But for chordal graphs there is a canonical construction of such laws. Let \mathcal{C} be the cliques of a chordal graph \mathcal{G} and let $\mathcal{L}_{C}, C \in \mathcal{C}$ be a family of laws over $\Theta_{C} \subseteq \mathbb{P}\left(\mathcal{X}_{C}\right)$. The family of laws are hyperconsistent if for any C and D with $C \cap D=S \neq \emptyset, \mathcal{L}_{C}$ and \mathcal{L}_{D} induce the same law for θ_{S}. If $\mathcal{L}_{C}, C \in \mathcal{C}$ are hyperconsistent, there is a unique hyper Markov law \mathcal{L} over \mathcal{G} with $\mathcal{L}\left(\theta_{C}\right)=\mathcal{L}_{C}, C \in \mathcal{C}$.
Factor graph of $\mathcal{A}^{\prime \prime}$	Strong hyper and meta Markov properties In some cases it is of interest to consider a stronger version of the hyper and meta Markov properties. A meta Markov model is strongly meta Markov if $\theta_{A \mid S} \ddagger \mathcal{P} \theta_{S}$ for all complete separators S. Similarly, a hyper Markov model is strongly hyper Markov if $\theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{S}$ for all complete separators S. A directed hyper Markov model is strongly directed hyper Markov if $\theta_{v \mid \operatorname{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{pa}(v)}$ for all $v \in V$. Gaussian graphical models and log-linear meta Markov models are strong meta Markov models.
Meta Markov properties on supergraphs Clearly, if θ is globally Markov w.r.t. the graph \mathcal{G}, it is also Markov w.r.t. any super graph $\mathcal{G}^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$. The similar fact is not true for meta Markov models. For example, the Gaussian graphical model for the 4-cycle \mathcal{G} with adjacencies $1 \sim 2 \sim 3 \sim 4 \sim 1$, is meta Markov on \mathcal{G}, because it has no complete separators. But the same model is not meta Markov w.r.t. the larger graph \mathcal{G}^{\prime} with cliques $\{124,234\}$, since for any $K \in \mathcal{S}^{+}(\mathcal{G})$, $\sigma_{24}=\frac{\sigma_{12} \sigma_{14}}{\sigma_{11}}+\frac{\sigma_{13} \sigma_{34}}{\sigma_{33}}$ So fixing the value of σ_{24} restricts the remaining parameters in a complex way.	Bayesian inference Parameter $\theta \in \Theta$, data $X=x$, likelihood $L(\theta \mid x) \propto p(x \mid \theta)=\frac{d P_{\theta}(x)}{d \mu(x)}$ Express knowledge about θ through a prior law π on θ. Use also π to denote density of the prior law w.r.t. some measure ν on Θ. Inference about θ from x is then represented through posterior law $\pi^{*}(\theta)=p(\theta \mid x)$. Then, from Bayes' formula $\pi^{*}(\theta)=p(x \mid \theta) \pi(\theta) / p(x) \propto L(\theta \mid x) \pi(\theta)$ so the likelihood function is equal to the density of the posterior w.r.t. the prior modulo a constant.
Maximum likelihood in meta Markov models Under certain conditions, the MLE $\hat{\theta}$ of the unknown distribution θ will follow a hyper Markov law over Θ under P_{θ}. These are (i) Θ is meta Markov w.r.t. \mathcal{G}; (ii) For any prime component Q of \mathcal{G}, the MLE $\hat{\theta}_{Q}$ for θ_{Q} based on $X_{Q}^{(n)}$ is sufficient for Θ_{Q} and boundedly complete. A sufficient condition for (ii) is that Θ_{Q} is a full and regular exponential family in the sense of Barndorff-Nielsen (1978). In particular, these conditions are satisfied for any Gaussian graphical model and any meta Markov log-linear model.	Bernoulli experiments Data $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ independent and Bernoulli distributed with parameter θ, i.e. $P\left(X_{i}=1 \mid \theta\right)=1-P\left(X_{i}=0\right)=\theta$ Use a beta prior: $\pi(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1}$ If we let $x=\sum x_{i}$, we get the posterior: $\begin{aligned} \pi^{*}(\theta) & \propto \theta^{x}(1-\theta)^{n-x} \theta^{a-1}(1-\theta)^{b-1} \\ & =\theta^{x+a-1}(1-\theta)^{n-x+b-1} \end{aligned}$ So the posterior is also beta with parameters $(a+x, b+n-x)$.

Conjugate families

A family \mathcal{P} of laws on Θ is said to be conjugate under sampling from x if

$$
\pi \in \mathcal{P} \Longrightarrow \pi^{*} \in \mathcal{P}
$$

The family of beta laws is conjugate under Bernoulli sampling.
If the family of priors is parametrised:

$$
\mathcal{P}=\left\{P_{\alpha}, \alpha \in \mathcal{A}\right\}
$$

we sometimes say that α is a hyperparameter. Then, Bayesian inference can be made by just updating hyperparameters. Terminology of hyperparameter breaks down in more complex models.

Conjugacy of hyper Markov properties

If \mathcal{L} is a prior law over Θ and $X=x$ is an observation from
$\theta, \mathcal{L}^{*}=\mathcal{L}(\theta \mid X=x)$ denotes the posterior law over Θ.
If \mathcal{L} is hyper Markov w.r.t. \mathcal{G} so is \mathcal{L}^{*}.
If \mathcal{L} is strongly hyper Markov w.r.t. \mathcal{G} so is \mathcal{L}^{*}.
In the latter case, the update of \mathcal{L} is local to prime components, i.e.

$$
\mathcal{L}^{*}\left(\theta_{Q}\right)=\mathcal{L}_{Q}^{*}\left(\theta_{Q}\right)=\mathcal{L}_{Q}\left(\theta_{Q} \mid X_{Q}=x_{Q}\right)
$$

and the marginal distribution p of X is globally Markov w.r.t. $\overline{\mathcal{G}}$, where

$$
p(x)=\int_{\Theta} P(X=x \mid \theta) \mathcal{L}(d \theta)
$$

Conjugate exponential families

For a k-dimensional exponential family

$$
p(x \mid \theta)=b(x) e^{\theta^{\top} t(x)-\psi(\theta)}
$$

the standard conjugate family is given as

$$
\pi(\theta \mid a, \kappa) \propto e^{\theta^{\top} a-\kappa \psi(\theta)}
$$

for $(a, \kappa) \in \mathcal{A} \subseteq \mathcal{R}^{k} \times \mathcal{R}_{+}$, where \mathcal{A} is determined so that the normalisation constant is finite.
Posterior updating from $\left(x_{1}, \ldots, x_{n}\right)$ with $t=\sum_{i} t\left(x_{i}\right)$ is then made as $\left(a^{*}, \kappa^{*}\right)=(a+t, \kappa+n)$.
The family of Beta laws is an example of a standard conjugate family.
\qquad

Hyper inverse Wishart and Dirichlet laws
Gaussian graphical models are canonical exponential families. The standard family of conjugate priors have densities

$$
\pi(K \mid \Phi, \delta) \propto(\operatorname{det} K)^{\delta / 2} e^{-\operatorname{tr}(K \Phi)}, K \in \mathcal{S}^{+}(\mathcal{G})
$$

These laws are termed hyper inverse Wishart laws as Σ follows an inverse Wishart law for complete graphs.
For chordal graphs, each marginal law \mathcal{L}_{C} of Σ_{C} is inverse Wishart.
For any meta Markov model where Θ and Θ_{Q} are full and regular exponential families for all prime components Q, it follows directly from Barndorff-Nielsen (1978), page 149,
that the standard conjugate prior law is strongly hyper Markov w.r.t. \mathcal{G}.

This is in particular true for the hyper inverse Wishart laws.
The analogous prior distribution for log-linear meta Markov models are likewise termed hyper Dirichlet laws.

They are also strongly hyper Markov and if \mathcal{G} is chordal, each induced marginal law \mathcal{L}_{C} is a standard Dirichlet law.

References

Asmussen, S. and Edwards, D. (1983). Collapsibility and response variables in contingency tables. Biometrika, 70, 567-78.
Barndorff-Nielsen, O. E. (1978). Information and exponential families in statistical theory. John Wiley and Sons, New York.
Frydenberg, M. (1990). Marginalization and collapsibility in graphical interaction models. Annals of Statistics, 18, 790-805.

Structure Estimation and Bayes Factors Lecture 8 Saint Flour Summerschool, July 14, 2006 Steffen L. Lauritzen, University of Oxford	Directed hyper Markov property $\mathcal{L}=\mathcal{L}(\theta)$ is directed hyper Markov w.r.t. a DAG \mathcal{D} if θ is directed Markov on \mathcal{D} for all $\theta \in \Theta$ and $\theta_{v \mid \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\operatorname{nd}(v)} \mid \theta_{\mathrm{pa}(v)}$ If \mathcal{D} is perfect, \mathcal{L} is directed hyper Markov w.r.t. \mathcal{D} if and only if \mathcal{L} is hyper Markov w.r.t. $\mathcal{G}=\sigma(\mathcal{D})=\mathcal{D}^{m}$.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Hyper Markov laws 7. More on Hyper Markov Laws 8. Structure estimation and Bayes factors 9. More on structure estimation.	Meta Markov models For $A, B \subseteq V$ identify $\theta_{A \cup B}=\left(\theta_{B \mid A}, \theta_{A}\right)=\left(\theta_{A \mid B}, \theta_{B}\right) .$ A and B are meta independent w.r.t. \mathcal{P} given S, denoted $A \ddagger \mathcal{P} B \mid S$, if the pair of conditional distributions $\left(\theta_{A \mid S}, \theta_{B \mid S}\right)$ vary in a product space when θ_{S} is fixed. The family \mathcal{P}, or Θ, is meta Markov w.r.t. \mathcal{G} if (i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G}; (ii) $A \perp_{\mathcal{G}} B\left\|S \Longrightarrow A \ddagger_{\mathcal{P}} B\right\| S$ whenever S is complete.
Hyper Markov Laws Identify $\theta \in \Theta$ and $P_{\theta} \in \mathcal{P}$, so e.g. θ_{A} denotes the marginal distribution of X_{A} under P_{θ} and $\theta_{A \mid B}$ the family of conditional distributions of X_{A} given X_{B}, etc. For a law \mathcal{L} on Θ we write $A \Perp_{\mathcal{L}} B\left\|S \Longleftrightarrow \theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{B \mid S}\right\| \theta_{S}$ A law \mathcal{L} on Θ is hyper Markov w.r.t. \mathcal{G} if (i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G}; (ii) $A \Perp_{\mathcal{L}} B \mid S$ whenever S is complete and $A \perp_{\mathcal{G}} B \mid S$.	Hyper Markov laws and meta Markov models Hyper Markov laws live on meta Markov models. A Gaussian graphical model with graph \mathcal{G} is meta Markov on \mathcal{G}. A log-linear model $\mathcal{P}_{\mathcal{A}}$ is meta Markov on its dependence graph $\mathcal{G}(\mathcal{A})$ if and only if $S \in \mathcal{A}$ for any minimal complete separator S of $\mathcal{G}(\mathcal{A})$. In particular, if \mathcal{A} is conformal, $\mathcal{P}_{\mathcal{A}}$ is meta Markov.
Hyper Markov property The hyper Markov property has a simple formulation in terms of junction trees: Arrange the prime components \mathcal{Q} of \mathcal{G} in a junction tree \mathcal{T} with complete separators \mathcal{S} and consider the extended junction tree $\overline{\mathcal{T}}$ which is the (bipartite) tree with $\mathcal{Q} \cup \mathcal{S}$ as vertices and edges from separators to prime components so that $C \sim S \sim D$ in $\overline{\mathcal{T}}$ if and only if $C \sim D$ in \mathcal{T}. Next, associate θ_{A} to A for each $A \in \mathcal{Q} \cup \mathcal{S}$. It then holds that \mathcal{L} is hyper Markov on \mathcal{G} if and only if $\left\{\theta_{A}, A \in \mathcal{Q} \cup \mathcal{S}\right\}$ is globally Markov w.r.t. the extended junction tree $\overline{\mathcal{T}}$.	Maximum likelihood in meta Markov models If the following conditions are satisfied: (i) Θ is meta Markov w.r.t. \mathcal{G}; (ii) For any prime component Q of \mathcal{G}, Θ_{Q} is a full and regular exponential family, the MLE $\hat{\theta}$ of the unknown distribution θ will follow a hyper Markov law over Θ under P_{θ}. In particular, this holds for any Gaussian graphical model and any meta Markov log-linear model.

Strong hyper and meta Markov properties
A meta Markov model is strongly meta Markov if $\theta_{A \mid S} \ddagger \mathcal{P} \theta_{S}$ for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if $\theta_{A \mid S} \Perp_{\mathcal{L}} \theta_{S}$ for all complete separators S.

A directed hyper Markov model is strongly directed hyper Markov if $\theta_{v \mid \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{pa}(v)}$ for all $v \in V$.
Gaussian graphical models and log-linear meta Markov models are strong meta Markov models.

Conjugacy of hyper Markov properties
If \mathcal{L} is a prior law over Θ and $X=x$ is an observation from
$\theta, \mathcal{L}^{*}=\mathcal{L}(\theta \mid X=x)$ denotes the posterior law over Θ.
If \mathcal{L} is hyper Markov w.r.t. \mathcal{G} so is \mathcal{L}^{*}.
If \mathcal{L} is strongly hyper Markov w.r.t. \mathcal{G} so is \mathcal{L}^{*}.
In the latter case, the update of \mathcal{L} is local to prime components, i.e.

$$
\mathcal{L}^{*}\left(\theta_{Q}\right)=\mathcal{L}_{Q}^{*}\left(\theta_{Q}\right)=\mathcal{L}_{Q}\left(\theta_{Q} \mid X_{Q}=x_{Q}\right)
$$

and the marginal distribution p of X is globally Markov w.r.t. $\overline{\mathcal{G}}$, where

$$
p(x)=\int_{\Theta} P(X=x \mid \theta) \mathcal{L}(d \theta)
$$

Conjugate exponential families

For a k-dimensional exponential family

$$
p(x \mid \theta)=b(x) e^{\theta^{\top} t(x)-\psi(\theta)}
$$

the standard conjugate family is given as

$$
\pi(\theta \mid a, \kappa) \propto e^{\theta^{\top} a-\kappa \psi(\theta)}
$$

for $(a, \kappa) \in \mathcal{A} \subseteq \mathcal{R}^{k} \times \mathcal{R}_{+}$, where \mathcal{A} is determined so that the normalisation constant is finite.
Posterior updating from $\left(x_{1}, \ldots, x_{n}\right)$ with $t=\sum_{i} t\left(x_{i}\right)$ is then made as $\left(a^{*}, \kappa^{*}\right)=(a+t, \kappa+n)$.

Conjugate prior laws are strong hyper Markov
If Θ is meta Markov and Θ_{Q} are full and regular exponential families for all prime components Q, the standard conjugate prior law is strongly hyper Markov w.r.t. \mathcal{G}.
This is in particular true for the hyper inverse Wishart laws and the hyper Dirichlet laws.
Thus, for the hyper inverse and hyper Dirichlet laws we have simple local updating based on conjugate priors for Bayesian inference.

Estimation of structure

Previous lectures have considered the graph \mathcal{G} defining the model as known and inference was concerning an unknown P_{θ} with $\theta \in \Theta$.

The last two lectures are concerned with inference concerning the graph \mathcal{G}, specifying only a family Γ of possible graphs.

Methods must scale well with data size, as many structures and huge collections of data are to be considered.
Structure estimation is also known as model selection (mainstream statistics) system identification (engineering), structural learning (AI or machine learning.)

Examples of structural assumptions

Different situations occur depending on the type of assumptions concerning Γ.

1. Γ is the set of undirected graphs over V;
2. Γ is the set of chordal graphs over V;
3. Γ is the set of forests over V;
4. Γ is the set of trees over V;
5. Γ is the set of directed acyclic graphs over V;
6. Other conditional independence structures

Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential families. The standard family of conjugate priors have densities

$$
\pi(K \mid \Phi, \delta) \propto(\operatorname{det} K)^{\delta / 2} e^{-\operatorname{tr}(K \Phi)}, K \in \mathcal{S}^{+}(\mathcal{G})
$$

These laws are termed hyper inverse Wishart laws as Σ follows an inverse Wishart law for complete graphs. For chordal graphs, each marginal law $\mathcal{L}_{C}, \mathcal{C}$ of Σ_{C} is inverse Wishart.
The standard conjugate prior law for log-linear meta Markov models are termed hyper Dirichlet laws. If \mathcal{G} is chordal, each induced marginal law $\mathcal{L}_{C}, C \in \mathcal{C}$ is a standard Dirichlet law.

Why estimation of structure?

- Parallel to e.g. density estimation
- Obtain quick overview of relations between variables in complex systems
- Data mining
- Gene regulatory networks
- Reconstructing family trees from DNA information
- Methods exist, but need better understanding of their statistical properties.

Markov mesh model	Bayesian GES on tree
PC algorithm Crudest algorithm (HUGIN), 10000 simulated cases	Chest clinic Scale aspiay of network.
Bayesian GES Crudest algorithm (WinMine), 10000 simulated cases	PC algorithm 10000 simulated cases
Tree model PC algorithm, 10000 cases, correct reconstruction	NPC algorithm 10000 simulated cases

Bayesian GES	More on trees Fast algorithms (Kruskal Jr. 1956) compute maximal weight spanning tree (or forest) from weights $W=\left(w_{u v}, u, v \in V\right)$. Chow and Wagner (1978) show a.s. consistency in total variation of \hat{P} : If P factorises w.r.t. τ, then $\sup _{x}\|p(x)-\hat{p}(x)\| \rightarrow 0 \text { for } n \rightarrow \infty,$ so if τ is unique for $P, \hat{\tau}=\tau$ for all $n>N$ for some N. If P does not factorize w.r.t. a tree, \hat{P} converges to closest tree-approximation \tilde{P} to P (Kullback-Leibler distance).
Types of approach - Methods for judging adequacy of structure such as - Tests of significance - Penalised likelihood scores $I_{\kappa}(\mathcal{G})=\log \hat{L}-\kappa \operatorname{dim}(\mathcal{G})$ with $\kappa=1$ for AIC Akaike (1974), or $\kappa=\frac{1}{2} \log N$ for BIC (Schwarz 1978). - Bayesian posterior probabilities. - Search strategies through space of possible structures, more or less based on heuristics.	Bayes factors For $\mathcal{G} \in \Gamma, \Theta_{\mathcal{G}}$ is associated parameter space so that P factorizes w.r.t. \mathcal{G} if and only if $P=P_{\theta}$ for some $\theta \in \Theta_{\mathcal{G}}$. $\mathcal{L}_{\mathcal{G}}$ is prior law on $\Theta_{\mathcal{G}}$. The Bayes factor (likelihood ratio) for discriminating between \mathcal{G}_{1} and \mathcal{G}_{2} based on observations $X^{(n)}=x^{(n)}$ is $\operatorname{BF}\left(\mathcal{G}_{1}: \mathcal{G}_{2}\right)=\frac{f\left(x^{(n)} \mid \mathcal{G}_{1}\right)}{f\left(x^{(n)} \mid \mathcal{G}_{2}\right)}$ where $f\left(x^{(n)} \mid \mathcal{G}\right)=\int_{\Theta_{\mathcal{G}}} f\left(x^{(n)} \mid \mathcal{G}, \theta\right) \mathcal{L}_{\mathcal{G}}(d \theta)$ is known as the marginal likelihood of \mathcal{G}.
Estimating trees Assume P factorizes w.r.t. an unknown tree τ. Chow and Liu (1968) showed MLE $\hat{\tau}$ of \mathcal{T} has maximal weight, where the weight of τ is $w(\tau)=\sum_{e \in E(\tau)} w_{n}(e)=\sum_{e \in E(\tau)} H_{n}(e)$ and $H_{n}(e)$ is the empirical cross-entropy or mutual information between endpoint variables of the edge $e=\{u, v\}:$ $H_{n}(e)=\sum_{x_{u}, x_{v}} \frac{n\left(x_{u}, x_{v}\right)}{n} \log \frac{n\left(x_{u}, x_{v}\right) / n}{n\left(x_{u}\right) n\left(x_{v}\right) / n^{2}}$	Posterior distribution over graphs If $\pi(\mathcal{G})$ is a prior probability distribution over a given set of graphs Γ, the posterior distribution is determined as $\pi^{*}(\mathcal{G})=\pi\left(\mathcal{G} \mid x^{(n)}\right) \propto f\left(x^{(n)} \mid \mathcal{G}\right) \pi(\mathcal{G})$ or equivalently $\frac{\pi^{*}\left(\mathcal{G}_{1}\right)}{\pi^{*}\left(\mathcal{G}_{2}\right)}=\operatorname{BF}\left(\mathcal{G}_{1}: \mathcal{G}_{2}\right) \frac{\pi\left(\mathcal{G}_{1}\right)}{\pi\left(\mathcal{G}_{2}\right)}$ Bayesian analysis looks for the MAP estimate \mathcal{G}^{*} maximizing $\pi^{*}(\mathcal{G})$ over Γ, or attempts to sample from the posterior using e.g. Monte-Carlo methods.
Extensions Results are easily extended to Gaussian graphical models, with the weight of a tree determined as $\begin{equation*} w_{n}(e)=-\frac{1}{2} \log \left(1-r_{e}^{2}\right) \tag{1} \end{equation*}$ where r_{e}^{2} is correlation coeffient along edge $e=\{u, v\}$. Highest AIC or BIC scoring forest also available as MWSF, with modified weights $w_{n}^{\mathrm{pen}}(e)=n w_{n}(e)-\kappa_{n} \mathrm{df}_{e},$ with $\kappa_{n}=2$ for AIC, $\kappa_{n}=\log n$ for BIC and df e the degrees of freedom for independence along e.	Strong hyper Markov prior laws For strong hyper Markov prior laws, $X^{(n)}$ is itself marginally Markov so $f\left(x^{(n)} \mid \mathcal{G}\right)=\frac{\prod_{Q \in \mathcal{Q}} f\left(x_{Q}^{(n)} \mid \mathcal{G}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S}^{(n)} \mid \mathcal{G}\right)^{\nu_{\mathcal{G}}(S)}}$ where \mathcal{Q} are the prime components and \mathcal{S} the minimal complete separators of \mathcal{G}.

Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse Wishart density as

$$
h(\delta, \Phi ; \mathcal{G})=\int_{\mathcal{S}^{+}(\mathcal{G})}(\operatorname{det} K)^{\delta / 2} e^{-\operatorname{tr}(K \Phi)} d K
$$

i.e. the usual Wishart constant if $Q=C$ is a clique.

Combining with the Gaussian likelihood, it is easily seen that for Gaussian graphical models we have

$$
f\left(x^{(n)} \mid \mathcal{G}\right)=\frac{h\left(\delta+n, \Phi+W^{n} ; \mathcal{G}\right)}{h(\delta, \Phi ; \mathcal{G})}
$$

Comparing with (1) leads to a similar factorization of the
normalising constant

$$
h(\delta, \Phi ; \mathcal{G})=\frac{\prod_{Q \in \mathcal{Q}} h\left(\delta, \Phi_{Q} ; \mathcal{G}_{Q}\right)}{\prod_{S \in \mathcal{S}} h\left(\delta, \Phi_{S} ; S\right)^{\nu_{\mathcal{G}}(S)}}
$$

For chordal graphs all terms in this expression reduce to known Wishart constants, and we can thus calculate the normalization constant explicitly.

In general, Monte-Carlo simulation or similar methods must be used (Atay-Kayis and Massam 2005).

The marginal distribution of $W^{(n)}$ is (weak) hyper Markov w.r.t. \mathcal{G}. It was termed the hyper matrix F law by Dawid and Lauritzen (1993).

Bayesian analysis

MAP estimates of forests can thus be computed using an MWSF algorithm, using $w(e)=\log B F(e)$ as weights.

Algorithms exist for generating random spanning trees (Aldous 1990), so full posterior analysis is in principle possible for trees.

These work less well for weights occurring with typical Bayes factors, as most of these are essentially zero, so methods based on the Matrix Tree Theorem seem currently more useful.

Only heuristics available for MAP estimators or maximizing penalized likelihoods such as AIC or BIC, for other than trees.

Some challenges for undirected graphs

- Find feasible algorithm for (perfect) simulation from a distribution over chordal graphs as

$$
p(\mathcal{G}) \propto \frac{\prod_{C \in \mathcal{C}} w(C)}{\prod_{S \in \mathcal{S}} w(S)^{\nu_{\mathcal{G}}(S)}},
$$

where $w(A), A \subseteq V$ are a prescribed set of positive weights.

- Find feasible algorithm for obtaining MAP in decomposable case. This may not be universally possible as problem most likely is NP-complete.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-23.
Aldous, D. (1990). A random walk construction of uniform spanning trees and uniform labelled trees. SIAM Journal on Discrete Mathematics, 3, (4), 450-65.
Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for computing the marginal likelihood in non-decomposable graphical Gaussian models. Biometrika, 92, 317-35.
Bollobás, B. (1998). Modern graph theory. SpringerVerlag, New York.
Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 4627.

Chow, C. K. and Wagner, T. J. (1978). Consistency of an estimate of tree-dependent probability distributions. IEEE Transactions on Information Theory, 19, 36971.

Dawid, A. P. and Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21, 1272-317.
Kruskal Jr., J. B. (1956). On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48-50.
Schwarz, G. (1978). Estimating the dimension of a model.

Annals of Statistics, 6, 461-4.

More about Structure Estimation Lecture 9 Saint Flour Summerschool, July 17, 2006 Steffen L. Lauritzen, University of Oxford	Highest AIC or BIC scoring forest also available as MWSF, with modified weights $w_{n}^{\text {pen }}(e)=n w_{n}(e)-\kappa_{n} \mathrm{df}_{e},$ with $\kappa_{n}=1$ for AIC, $\kappa_{n}=\frac{1}{2} \log n$ for BIC and df_{e} the degrees of freedom for independence along e. Use maximal weight spanning tree (or forest) algorithm from weights $W=\left(w_{u v}, u, v \in V\right)$.
Overview of lectures 1. Conditional independence and Markov properties 2. More on Markov properties 3. Graph decompositions and junction trees 4. Probability propagation and related algorithms 5. Log-linear and Gaussian graphical models 6. Hyper Markov laws 7. More on Hyper Markov Laws 8. Structure estimation and Bayes factors 9. More on structure estimation.	Bayes factors For $\mathcal{G} \in \Gamma, \Theta_{\mathcal{G}}$ is associated parameter space so that P factorizes w.r.t. \mathcal{G} if $P=P_{\theta}$ for some $\theta \in \Theta_{\mathcal{G}}$. $\mathcal{L}_{\mathcal{G}}$ is prior law on $\Theta_{\mathcal{G}}$. The Bayes factor for discriminating between \mathcal{G}_{1} and \mathcal{G}_{2} based on $X^{(n)}=x^{(n)}$ is $\operatorname{BF}\left(\mathcal{G}_{1}: \mathcal{G}_{2}\right)=\frac{f\left(x^{(n)} \mid \mathcal{G}_{1}\right)}{f\left(x^{(n)} \mid \mathcal{G}_{2}\right)}$ where $f\left(x^{(n)} \mid \mathcal{G}\right)=\int_{\Theta_{\mathcal{G}}} f\left(x^{(n)} \mid \mathcal{G}, \theta\right) \mathcal{L}_{\mathcal{G}}(d \theta)$ is known as the marginal likelihood of \mathcal{G}.
Types of approach - Methods for judging adequacy of structure such as - Tests of significance - Penalised likelihood scores $I_{\kappa}(\mathcal{G})=\log \hat{L}-\kappa \operatorname{dim}(\mathcal{G})$ with $\kappa=1$ for AIC Akaike (1974), or $\kappa=\frac{1}{2} \log n$ for BIC (Schwarz 1978). - Bayesian posterior probabilities. - Search strategies through space of possible structures, more or less based on heuristics.	Posterior distribution over graphs If $\pi(\mathcal{G})$ is a prior probability distribution over a given set of graphs Γ, the posterior distribution is determined as $\pi^{*}(\mathcal{G})=\pi\left(\mathcal{G} \mid x^{(n)}\right) \propto f\left(x^{(n)} \mid \mathcal{G}\right) \pi(\mathcal{G})$ or equivalently $\frac{\pi^{*}\left(\mathcal{G}_{1}\right)}{\pi^{*}\left(\mathcal{G}_{2}\right)}=\operatorname{BF}\left(\mathcal{G}_{1}: \mathcal{G}_{2}\right) \frac{\pi\left(\mathcal{G}_{1}\right)}{\pi\left(\mathcal{G}_{2}\right)}$ The BIC is an $O(1)$-approximation to $\log B F$ using Laplace's method of integrals on the marginal likelihood. Bayesian analysis looks for the MAP estimate \mathcal{G}^{*} maximizing $\pi^{*}(\mathcal{G})$ over Γ, or attempts to sample from the posterior using e.g. Monte-Carlo methods.
Estimating trees Assume P factorizes w.r.t. an unknown tree \mathcal{T}. MLE $\hat{\tau}$ of \mathcal{T} has maximal weight, where the weight of τ is $w(\tau)=\sum_{e \in E(\tau)} w_{n}(e)=\sum_{e \in E(\tau)} H_{n}(e)$ and $H_{n}(e)$ is the empirical cross-entropy or mutual information between endpoint variables of the edge $e=\{u, v\}$. For Gaussian trees this becomes $w_{n}(e)=-\frac{1}{2} \log \left(1-r_{e}^{2}\right)$ where r_{e}^{2} is correlation coeffient along edge $e=\{u, v\}$.	Hyper inverse Wishart laws Denote the normalisation constant of the hyper inverse Wishart density as $h(\delta, \Phi ; \mathcal{G})=\int_{\mathcal{S}^{+}(\mathcal{G})}(\operatorname{det} K)^{\delta / 2} e^{-\operatorname{tr}(K \Phi)} d K$ The marginal likelihood is then $f\left(x^{(n)} \mid \mathcal{G}\right)=\frac{h\left(\delta+n, \Phi+W^{n} ; \mathcal{G}\right)}{h(\delta, \Phi ; \mathcal{G})}$ where $h(\delta, \Phi ; \mathcal{G})=\frac{\prod_{Q \in \mathcal{Q}} h\left(\delta, \Phi_{Q} ; \mathcal{G}_{Q}\right)}{\prod_{S \in \mathcal{S}} h\left(\delta, \Phi_{S} ; S\right)^{\nu_{\mathcal{G}}(S)}} .$

For chordal graphs all terms reduce to known Wishart constants. In general, Monte-Carlo simulation or similar methods must be used (Atay-Kayis and Massam 2005).	additional parent $\theta_{v \mid \mathrm{pa}(v)}$ for every vertex V in \mathcal{D}, so then $f(x \mid \theta)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}, \theta_{v \mid \mathrm{pa}(v)}\right)$ Exploiting independence and taking expectations over θ yields that also marginally, $f(x \mid \mathcal{D})=\int_{\Theta_{\mathcal{D}}} f(x \mid \theta) \mathcal{L}_{\mathcal{D}}(\theta)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)$ If \mathcal{L} is strongly directed hyper Markov and \mathcal{L}^{*} it holds that also the posterior law \mathcal{L}^{*} is is strongly directed hyper Markov and $\mathcal{L}^{*}\left(\theta_{v \mid \operatorname{pa}(v)}\right) \propto f\left(x_{v} \mid x_{\mathrm{pa}(v)}, \theta_{v \mid \mathrm{pa}(v)}\right) \mathcal{L}\left(\theta_{v \mid \mathrm{pa}(v)}\right)$ (Spiegelhalter and Lauritzen 1990).
Bayes factors for forests Trees and forests are decomposable graphs, so for a forest ϕ we get $\begin{aligned} \pi^{*}(\phi) & \propto \frac{\prod_{e \in E(\phi)} f\left(x_{e}^{(n)}\right)}{\prod_{v \in V} f\left(x_{v}^{(n)}\right)^{d_{\phi}(v)-1}} \\ & \propto \prod_{e \in E(\phi)} \operatorname{BF}(e), \end{aligned}$ where $\mathrm{BF}(e)$ is the Bayes factor for independence along the edge e : $\mathrm{BF}(e)=\frac{f\left(x_{u}^{(n)}, x_{v}^{(n)}\right)}{f\left(x_{u}^{(n)}\right) f\left(x_{v}^{(n)}\right)}$	Markov equivalence \mathcal{D} and \mathcal{D}^{\prime} are equivalent if and only if: 1. \mathcal{D} and \mathcal{D}^{\prime} have same skeleton (ignoring directions) 2. \mathcal{D} and \mathcal{D}^{\prime} have same unmarried parents so but
MAP estimates of forests can thus be computed using an MWSF algorithm, using $w(e)=\log B F(e)$ as weights. When ϕ is restricted to contain a single tree, the normalization constant can be explicitly obtained via the Matrix Tree Theorem, see e.g. Bollobás (1998). Algorithms exist for generating random spanning trees (Aldous 1990), so full posterior analysis is in principle possible for trees. Only heuristics available for MAP estimators or maximizing penalized likelihoods such as AIC or BIC, for other than trees.	Searching equivalence classes In general, there is no hope of distinguishing Markov equivalent DAGs, so \mathcal{D} can at best be identified up to Markov equivalence. The number D_{n} of unlabelled DAGs with n vertices is given by the recursion (Robinson 1977) $D_{n}=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} 2^{i(n-i)} D_{n-i}$ which grows superexponentially. For $n=10$, $D_{n} \approx 4.2 \times 10^{18}$. The number of equivalence classes is smaller, but is conjectured still to grow superexponentially.
Directed hyper Markov property $\mathcal{L}=\mathcal{L}(\theta)$ is directed hyper Markov w.r.t. a DAG \mathcal{D} if θ is directed Markov on \mathcal{D} for all $\theta \in \Theta$ and $\theta_{v \mid \operatorname{pa}(v)} \Perp_{\mathcal{L}} \theta_{\operatorname{nd}(v)} \mid \theta_{\mathrm{pa}(v)} .$ A law \mathcal{L} is directed hyper Markov on \mathcal{D} if and only if \mathcal{L}_{A} is hyper Markov on $\left(\mathcal{D}_{A}\right)^{m}$ for any ancestral set $A \subseteq V$. \mathcal{L} is strongly directed hyper Markov if in addition $\theta_{v \mid \mathrm{pa}(v)} \Perp_{\mathcal{L}} \theta_{\mathrm{pa}(v)}$ for all v or, equivalently if the conditional distributions $\theta_{v \mid \mathrm{pa}(v)}, v \in V$ are mutually independent. Graphically, this is most easily displayed by introducing one	Conjugate priors for DAGs In the discrete case, the obvious conjugate prior is for fixed v to let $\left\{\theta_{v \mid \mathrm{pa}_{\mathcal{D}}(v)}\left(x_{v} \mid x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*}\right), x_{v} \in \mathcal{X}_{v}\right\}$ be Dirichlet distributed and independent for $v \in V$ and $x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*} \in \mathcal{X}_{\mathrm{pa}_{\mathcal{D}}(v)}$ (Spiegelhalter and Lauritzen 1990). We can derive these Dirichlet distributions from a fixed master Dirichlet distribution $\mathcal{D}(\alpha)$, where $\alpha=\alpha(x), x \in \mathcal{X}$, by letting $\left\{\theta_{v \mid \operatorname{pa}(v)}\left(x_{v} \mid x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*}\right)\right\} \sim \mathcal{D}\left(\alpha\left(x_{v}, x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*}\right),\right.$ where as usual $\alpha\left(x_{a}\right)=\sum_{y: y_{a}=x_{a}} \alpha(y)$.

Typically, α is specified by letting $\alpha=\lambda p_{0}(x)$ where p_{0} is an initial guess on the joint distribution, for example specified through a DAG \mathcal{D}_{0}, and λ is the equivalent sample size for the prior information.
The values $\alpha\left(x_{v}, x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*}\right)=\lambda p_{0}\left(x_{v}, x_{\mathrm{pa}_{\mathcal{D}}(v)}^{*}\right)$ can then be calculated by probability propagation.
Common default values is $\lambda=1$ and $\alpha(x)=|\mathcal{X}|^{-1}$.
A similar construction is possible in the Gaussian case using the Wishart distribution (Geiger and Heckerman 1994) and for mixed discrete Gaussian networks (Bøttcher 2001), the latter implemented in the R-package DEAL (Bøttcher and Dethlefsen 2003).

Markov mesh model

Characterization of strong hyper priors

In all cases, it was shown (Geiger and Heckerman 1997, 2002) that prior distributions constructed in this way are the only distributions which are

1. modular:

$$
\operatorname{pa}_{\mathcal{D}}(v)=\operatorname{pa}_{\mathcal{D}^{\prime}}(v) \Longrightarrow \theta_{v \mid \operatorname{pa}_{\mathcal{D}}(v)} \sim \theta_{v \mid \operatorname{pa}_{\mathcal{D}^{\prime}}(v)}
$$

2. score equivalent:

$$
\mathcal{D} \equiv \mathcal{D}^{\prime} \Longrightarrow f\left(x^{(n)} \mid \mathcal{D}\right)=f\left(x^{(n)} \mid \mathcal{D}^{\prime}\right)
$$

Crudest algorithm (WinMine), 10000 simulated cases
Marginal likelihood

Bayes factors derived from these strongly directed hyper Dirichlet priors have a simple form

$$
\begin{aligned}
f\left(x^{(n)} \mid \mathcal{D}\right)= & \prod_{v} \prod_{x_{\mathrm{pa}(v)}} \frac{\Gamma\left(\alpha\left(x_{\mathrm{pa}_{\mathcal{D}}(v)}\right)\right)}{\Gamma\left(\alpha\left(x_{\mathrm{pa}_{\mathcal{D}}(v)}\right)+n\left(x_{\mathrm{pa}_{\mathcal{D}}(v)}\right)\right)} \\
& \times \prod_{x_{v}} \frac{\Gamma\left(\alpha\left(x_{v \cup p a_{\mathcal{D}}(v)}\right)+n\left(x_{v \cup \mathrm{pa}_{\mathcal{D}}(v)}\right)\right)}{\Gamma\left(\alpha\left(x_{v \cup \mathrm{pa}_{\mathcal{D}}(v)}\right)\right)}
\end{aligned}
$$

(Cooper and Herskovits 1992;
Heckerman et al. 1995)
Challenge: Find good algorithm for sampling from the full posterior over DAGs or equivalence classes of DAGs. Issue: prior uniform over equivalence classes or over DAGs?

Greedy equivalence class search

1. Initialize with empty DAG
2. Repeatedly search among equivalence classes with a single additional edge and go to class with highest score - until no improvement.
3. Repeatedly search among equivalence classes with a single edge less and move to one with highest score until no improvement.

For BIC or Bayesian posterior score with directed hyper Dirichlet priors, this algorithm yields consistent estimate of

Bayesian GES on tree
 equivalence class for P. (Chickering 2002)

Chest clinic	SGS and PC algorithms SGS-algorithm (Spirtes et al. 1993): Step 1: Identify skeleton using that, for P faithful, $u \nsim v \Longleftrightarrow \exists S \subseteq V \backslash\{u, v\}: X_{u} \Perp X_{v} \mid X_{S}$ Begin with complete graph, check for $S=\emptyset$ and remove edges when independence holds. Then continue for increasing $\|S\|$. $P C$-algorithm (same reference) exploits that only S with $S \subseteq \operatorname{bd}(u) \backslash v$ or $S \subseteq \operatorname{bd}(v) \backslash u$ needs checking where bd refers to current skeleton. Step 2: Identify directions to be consistent with independence relations found in Step 1.
Bayesian GES	Exact properties of PC-algorithm If P is faithful to $D A G \mathcal{D}, P C$-algorithm finds \mathcal{D}^{\prime} equivalent to \mathcal{D}. It uses N independence checks where N is at most $N \leq 2\binom{\|V\|}{2} \sum_{i=0}^{d}\binom{\|V\|-1}{i} \leq \frac{\|V\|^{d+1}}{(d-1)!}$ where d is the maximal degree of any vertex in \mathcal{D}. So worst case complexity is exponential, but algorithm fast for sparse graphs. Sampling properties are less well understood although consistency results exist.
Constraint-based search Another alternative search algorithm is known as constraint based search. Essentially, the search methods generate queries of the type " $A \Perp B \mid S$?", and the answer to such a query divides Γ into those graphs conforming with the query and those that do not. These type of methods were originally designed by computer scientists in the context where P was fully available, so queries could be answered without error. The advantage of this type of method is that relatively few queries are needed to identify a DAG \mathcal{D} (or rather its equivalence class).	PC algorithm Crudest algorithm (HUGIN), 10000 simulated cases
The disadvantage is that there seems to be no coherent and principled method to answer the query in the presence of statistical uncertainty, which is computable.	PC algorithm 10000 simulated cases

NPC algorithm

The NPC algorithm (Steck and Tresp 1996) stabilises the PC algorithm by adding a necessary path condition.
The general idea has these elements:

1. When a query is decided negatively, $\neg(A \Perp B \mid S)$, it is taken at face value; When a query is decided positively, $A \Perp B \mid S$, it is recorded with care;
2. If at some later stage, the PC algorithm would remove an edge so that a negative query $\neg(A \Perp B \mid S)$ would conflict with $A \perp_{\mathcal{D}} B \mid S$, the removal of this edge is suppressed.
This leads to unresolved queries which are then passed to the user.
taras and D. Poole), pp. 235-43. Morgan Kaufmann Publishers, San Francisco, CA.
Geiger, D. and Heckerman, D. (1997). A characterization of the Dirichlet distribution through global and local independence. Annals of Statistics, 25, 1344-69.
Geiger, D. and Heckerman, D. (2002). Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Annals of Statistics, 30, 1412-40.
Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
Robinson, R. W. (1977). Counting unlabelled acyclic digraphs. In Lecture notes in mathematics: Combina-
torial mathematics V, (ed. C. H. C. Little). SpringerVerlag, New York.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-4.
Spiegelhalter, D. J. and Lauritzen, S. L. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks, 20, 579-605.
Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, prediction and search. Springer-Verlag, New York. Reprinted by MIT Press.
Steck, H. and Tresp, V. (1996). Bayesian belief networks for data mining. In Proceedings of 2nd workshop on Data Mining und Data Warehousing als Grundlage moderner entscheidungsunterstützender Systeme,

10000 simulated cases
pp. 145-54. Magdeburg, Germany. University of Magdeburg.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-23.
Aldous, D. (1990). A random walk construction of uniform spanning trees and uniform labelled trees. SIAM Journal on Discrete Mathematics, 3, (4), 450-65.
Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for computing the marginal likelihood in non-decomposable graphical Gaussian models. Biometrika, 92, 317-35.
Bollobás, B. (1998). Modern graph theory. SpringerVerlag, New York.
Bøttcher, S. G. (2001). Learning Bayesian networks with mixed variables. In Proceedings of the eighth international workshop in artificial intelligence and statistics, pp. 149-56.
B \varnothing ttcher, S. G. and Dethlefsen, C. (2003). deal: A package for learning Bayesian networks. Journal of Statistical Software, 8, 1-40.
Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507-54.
Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-47.
Geiger, D. and Heckerman, D. (1994). Learning Gaussian networks. In Proceedings of the 10th conference on uncertainty in artificial intelligence, (ed. R. L. de Man-

