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1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and similar algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.

2Conditional independence

The notion of conditional independence is fundamental for
graphical models.

For three random variables X, Y and Z we denote this as
X ⊥⊥Y |Z and graphically as

u u u
X Z Y

If the random variables have density w.r.t. a product
measure µ, the conditional independence is reflected in the
relation

f(x, y, z)f(z) = f(x, z)f(y, z),

where f is a generic symbol for the densities involved.

3Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C if C
separates A from B.
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A directed graphical model

Directed model showing relations between risk factors,
diseases, and symptoms.

5A pedigree

Graphical model for a pedigree from study of Werner’s
syndrome. Each node is itself a graphical model.

6A highly complex pedigree
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Family relationship of 1641 members of Greenland Eskimo
population.

7Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z (or X ⊥⊥P Y |Z)

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Factorisation of densities w.r.t. product measure:

X ⊥⊥Y |Z ⇐⇒ f(x, y, z)f(z) = f(x, z)f(y, z)
⇐⇒ ∃a, b : f(x, y, z) = a(x, z)b(y, z).
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Fundamental properties

For random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y,W ) |Z;

If density w.r.t. product measure f(x, y, z) > 0 also

(C5) if X ⊥⊥Y |Z and X ⊥⊥Z |Y then X ⊥⊥ (Y, Z).

9Additional note on (C5)

f(x, y, z) > 0 is not necessary for (C5). Enough e.g. that
f(y, z) > 0 for all (y, z) or f(x, z) > 0 for all .

In discrete and finite case it is even enough that the
bipartite graphs G+ = (Y ∪ Z, E+) defined by

y ∼+ z ⇐⇒ f(y, z) > 0,

are all connected.

Alternatively it is sufficient if the same condition is satisfied
with X replacing Y .

Is there a simple necessary and sufficient condition?

10Graphoid axioms

Ternary relation ⊥σ among subsets of a finite set V is
graphoid if for all disjoint subsets A, B, C, and D of V :

(S1) if A⊥σ B |C then B⊥σ A |C;

(S2) if A⊥σ B |C and D ⊆ B, then A⊥σ D |C;

(S3) if A⊥σ B |C and D ⊆ B, then A⊥σ B | (C ∪D);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C), then
A⊥σ (B ∪D) |C;

(S5) if A⊥σ B | (C ∪D) and A⊥σ C | (B ∪D) then
A⊥σ (B ∪ C) |D.

Semigraphoid if only (S1)–(S4) holds.

11Irrelevance

Conditional independence can be seen as encoding
irrelevance in a fundamental way. With the interpretation:
Knowing C, A is irrelevant for learning B, (S1)–(S4)
translate to:

(I1) If, knowing C, learning A is irrelevant for learning B,
then B is irrelevant for learning A;

(I2) If, knowing C, learning A is irrelevant for learning B,
then A is irrelevant for learning any part D of B;

(I3) If, knowing C, learning A is irrelevant for learning B,
it remains irrelevant having learnt any part D of B;

12

(I4) If, knowing C, learning A is irrelevant for learning B
and, having also learnt A, D remains irrelevant for
learning B, then both of A and D are irrelevant for
learning B.

The property (S5) is slightly more subtle and not generally
obvious.

Also the symmetry (C1) is a special property of
probabilistic conditional independence, rather than of
general irrelevance, where (I1) could appear dubious.

13Probabilistic semigraphoids

V finite set, X = (Xv, v ∈ V ) random variables.

For A ⊆ V , let XA = (Xv, v ∈ A).

Let Xv denote state space of Xv.

Similarly xA = (xv, v ∈ A) ∈ XA = ×v∈AXv.

Abbreviate: A⊥⊥B |S ⇐⇒ XA⊥⊥XB |XS .

Then basic properties of conditional independence imply:

The relation ⊥⊥ on subsets of V is a semigraphoid.

If f(x) > 0 for all x, ⊥⊥ is also a graphoid.

Not all (semi)graphoids are probabilistically representable.

14Second order conditional independence

Sets of random variables A and B are partially uncorrelated
for fixed C if their residuals after linear regression on XC

are uncorrelated:

Cov{XA −E∗(XA |XC), XB −E∗(XB |XC)} = 0,

in other words, if the partial correlations are zero

ρAB·C = 0.

We then write A⊥2B |C.

Also ⊥2 satisfies the semigraphoid axioms (S1) -(S4) and
the graphoid axioms if there is no non-trivial linear relation
between the variables in V .

15Separation in undirected graphs

Let G = (V,E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B, S of V , let A⊥G B |S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S.

Fact: The relation ⊥G on subsets of V is a graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such separation relations.
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Geometric Orthogonality

As another fundamental example, consider geometric
orthogonality in Euclidean vector spaces or Hilbert spaces.
Let L, M , and N be linear subspaces of a Hilbert space H
and define

L ⊥M |N ⇐⇒ (L	N) ⊥ (M 	N),

where L	N = L ∩N⊥. Then L and M are said to meet
orthogonally in N . This has properties

(O1) If L ⊥M |N then M ⊥ L |N ;

(O2) If L ⊥M |N and U is a linear subspace of L, then
U ⊥M |N ;

17(O3) If L ⊥M |N and U is a linear subspace of M , then
L ⊥M | (N + U);

(O4) If L ⊥M |N and L ⊥ R | (M +N), then
L ⊥ (M +R) |N .

The analogue of (C5) does not hold in general; for example
if M = N we may have

L ⊥M | N and L ⊥ N |M,

but if L and M are not orthogonal then it is false that
L ⊥ (M +N).

18Variation independence

Let U ⊆ X = ×v∈V Xv and define for S ⊆ V the S-section
Uu∗S of U as

Uu∗S = {uV \S : uS = u∗S , u ∈ U}.

Define further the conditional independence relation ‡U as

A ‡U B |C ⇐⇒ ∀u∗C : Uu∗C = {Uu∗C}A × {Uu∗C}B

i.e. if and only if the C-sections all have the form of a
product space.

The relation ‡U satisfies the semigraphoid axioms. In
particular ‡U holds if U is the support of a probability
measure satisfying the similar conditional independence
restriction.

19Markov properties for semigraphoids

G = (V,E) simple undirected graph; ⊥σ (semi)graphoid
relation. Say ⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B |S =⇒ A⊥σ B |S.

20

Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1⊥⊥ 5 | {2, 3, 4, 6, 7} and 4⊥⊥ 6 | {1, 2, 3, 5, 7}.

21Local Markov property
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Every variable is conditionally independent of the
remaining, given its neighbours.

For example, 5⊥⊥{1, 4} | {2, 3, 6, 7} and
7⊥⊥{1, 2, 3} | {4, 5, 6}.

22Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥⊥ 7 | {2, 5, 6} and
2⊥⊥ 6 | {3, 4, 5}.

23Structural relations among Markov properties

For any semigraphoid it holds that

(G) =⇒ (L) =⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) =⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f(x) > 0.

24



(G) =⇒ (L) =⇒ (P)

(G) implies (L) because bd(α) separates α from V \ cl(α).

Assume (L). Then β ∈ V \ cl(α) because α 6∼ β. Thus

bd(α) ∪ ((V \ cl(α)) \ {β}) = V \ {α, β},

Hence by (L) and (S3) we get that

α⊥σ (V \ cl(α)) |V \ {α, β}.

(S2) then gives α⊥σ β |V \ {α, β} which is (P).

25(P) =⇒ (G) for graphoids

Asuume (P) and A⊥G B |S. We must show A⊥σ B |S.

Wlog assume A and B non-empty. Proof is reverse
induction on n = |S|.

If n = |V | − 2 then A and B are singletons and (P) yields
A⊥σ B |S directly.

Assume |S| = n < |V | − 2 and conclusion established for
|S| > n.

First assume V = A ∪B ∪ S. Then either A or B has at
least two elements, say A.

If α ∈ A then B⊥G (A \ {α}) | (S ∪ {α}) and also
α⊥G B | (S ∪A \ {α}) (as ⊥G is a semi-graphoid).

26Thus by the induction hypothesis

(A \ {α})⊥σ B | (S ∪ {α}) and {α}⊥σ B | (S ∪A \ {α}).

Now (S5) gives A⊥σ B | S.

For A ∪B ∪ S ⊂ V we choose α ∈ V \ (A ∪B ∪ S). Then
A⊥G B | (S ∪ {α}) and hence the induction hypothesis
yields A⊥σ B | (S ∪ {α}).

Further, either A ∪ S separates B from {α} or B ∪ S
separates A from {α}. Assuming the former gives
α⊥σ B |A ∪ S.

Using (S5) we get (A ∪ {α})⊥σ B |S and from (S2) we
derive that A⊥σ B | S.

The latter case is similar.

27Factorisation and Markov properties

For a ⊆ V , ψa(x) is a function depending on xa only, i.e.

xa = ya =⇒ ψa(x) = ψa(y).

We can then write ψa(x) = ψa(xa) without ambiguity.

The distribution of X factorizes w.r.t. G or satisfies (F) if
its density f w.r.t. product measure on X has the form

f(x) =
∏
a∈A

ψa(x),

where A are complete subsets of G or, equivalently, if

f(x) =
∏
c∈C

ψ̃c(x),

where C are the cliques of G.

28

Factorization example
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The cliques of this graph are the maximal complete subsets
{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 5, 6}, {4, 7}, and {5, 6, 7}.
A complete set is any subset of these sets.

The graph above corresponds to a factorization as

f(x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)
× ψ356(x3, x5, x6)ψ47(x4, x7)ψ567(x5, x6, x7).

29Factorisation of the multivariate Gaussian

Consider a multivariate Gaussian random vector
X = NV (ξ,Σ) with Σ regular so it has density

f(x | ξ,Σ) = (2π)−|V |/2(detK)1/2e−(x−ξ)>K(x−ξ)/2,

where K = Σ−1 is the concentration matrix of the
distribution.

Thus the Gaussian density factorizes w.r.t. G if and only if

α 6∼ β =⇒ kαβ = 0

i.e. if the concentration matrix has zero entries for
non-adjacent vertices.

30Factorization theorem

Consider a distribution with density f w.r.t. a product
measure and let (G), (L) and (P) denote Markov properties
w.r.t. the semigraphoid relation ⊥⊥ .

It then holds that
(F) =⇒ (G)

and further:

If f(x) > 0 for all x: (P) =⇒ (F).

Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).
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More on Markov Properties

Lecture 2
Saint Flour Summerschool, July 5, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and similar algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.

2Conditional Independence

For random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y,W ) |Z;

If density w.r.t. product measure f(x, y, z) > 0 also

(C5) if X ⊥⊥Y |Z and X ⊥⊥Z |Y then X ⊥⊥ (Y, Z).

3Graphoid axioms

Ternary relation ⊥σ among subsets of a finite set V is
graphoid if for all disjoint subsets A, B, C, and D of V :

(S1) if A⊥σ B |C then B⊥σ A |C;

(S2) if A⊥σ B |C and D ⊆ B, then A⊥σ D |C;

(S3) if A⊥σ B |C and D ⊆ B, then A⊥σ B | (C ∪D);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C), then
A⊥σ (B ∪D) |C;

(S5) if A⊥σ B | (C ∪D) and A⊥σ C | (B ∪D) then
A⊥σ (B ∪ C) |D.

Semigraphoid if only (S1)–(S4) holds.

4

Semigraphoid examples

• Graph separation ⊥G in undirected graph G forms a
graphoid;

• Variation independence of projections for a subset U
of a product space ‡U forms a semigraphoid;

• Uncorrelatedness ⊥2 of residuals after linear
regression (second order conditional independence)
forms a semigraphoid;

• Orthogonal meet ⊥ of closed subspaces of a Hilbert
space yields a semigraphoid;

• Probabilistic conditional independence.

5Probabilistic semigraphoids

V finite set, X = (Xv, v ∈ V ) random variables.

For A ⊆ V , let XA = (Xv, v ∈ A).

Let Xv denote state space of Xv.

Similarly xA = (xv, v ∈ A) ∈ XA = ×v∈AXv.

Abbreviate: A⊥⊥B |S ⇐⇒ XA⊥⊥XB |XS .

Then basic properties of conditional independence imply:

The relation ⊥⊥ on subsets of V is a semigraphoid.

If f(x) > 0 for all x, ⊥⊥ is also a graphoid.

Not all (semi)graphoids are probabilistically representable.

6Markov properties for semigraphoids

G = (V,E) simple undirected graph; ⊥σ (semi)graphoid
relation. Say ⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B |S =⇒ A⊥σ B |S.

7Structural relations among Markov properties

For any semigraphoid it holds that

(G) =⇒ (L) =⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) =⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f(x) > 0.

8



Factorisation and Markov properties

The distribution of X factorizes w.r.t. G or satisfies (F) if

f(x) =
∏
a∈A

ψa(x) =
∏
c∈C

ψ̃c(x)

A are complete subsets and C are the cliques of G.

It then holds that
(F) =⇒ (G)

and further:

If f(x) > 0 for all x: (P) =⇒ (F).

Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).

9Pairwise Markov but not local Markov

X Y Z

s ss
Let X = Y = Z with P{X = 1} = P{X = 0} = 1/2.

This satisfies (P) but not (L).

(P): X ⊥⊥Y |Z and X ⊥⊥Z |Y .

(L): bd(X) = ∅ so (L) would imply X ⊥⊥ (Y, Z) which is
false.

(L) ⇐⇒ (P) if and only if Ǧ has no induced subgraph
ǦA = (A, ĚA) with |A| = 3 and |ĚA| ∈ {2, 3} (Matúš
1992).

Dual graph: α∼̌β if and only if α 6∼ β

10Local Markov but not global Markov

U W X Y Z

s s ss s
Let U and Z be independent with

P (U = 1) = P (Z = 1) = P (U = 0) = P (Z = 0) = 1/2,

W = U , Y = Z, and X = WY .

This satisfies (L) but not (G).

(L): Variables depend deterministically on their neighbours.

(G): False that W ⊥⊥Y |X, for example when X = 0.

(G) ⇐⇒ (L) if and only if the dual graph Ǧ does not have
the 4-cycle as an induced subgraph (Matúš 1992).

11Global but not factorizing
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Uniform on these 8 configurations is (G) w.r.t. the 4-cycle.
Conditioning on opposite corners renders one corner
deterministic. Yet, (F) is not satisfied (Moussouris 1974).

12

To see the latter, assume the density factorizes. Then e.g.

0 6= 1/8 = f(0, 0, 0, 0) = ψ12(0, 0)ψ23(0, 0)ψ34(0, 0)ψ41(0, 0)

so these factors are all positive.

Continuing for all possible 8 configurations yields that all
factors ψa(x) are strictly positive, since all four possible
configurations are possible for every clique.

But this contradicts the fact that only 8 out of 16 possible
configurations have positive probability.

In fact, (F) ⇐⇒ (G) if and only if G is chordal , i.e. does
not have an n-cycle with n ≥ 4 as an induced subgraph.

To be shown later.

13Instability under limits

Consider a sequence Pn, n = 1, 2, . . . of probability
measures on X and assume that A⊥⊥Pn B |C.

If Pn → P (weakly, say) it does not hold in general that
A⊥⊥P B |C.

A simple counterexample is as follows: Consider
X = (X1, X2, X3) ∼ N3(0,Σn) with

Σn =

 1 1√
n

1
2

1√
n

2
n

1√
n

1
2

1√
n

1

 →

 1 0 1
2

0 0 0
1
2 0 1


so in the limit it is not true that 1⊥⊥P 3 | 2. The

14concentration matrix Kn is

Kn = Σ−1
n =

 2 −
√
n 0

−
√
n 3n

2 −
√
n

0 −
√
n 2


so for all n it holds that 1⊥⊥Pn

3 | 2.

The critical feature seems to be that Kn does not
converge, hence the densities do not converge.

What is a reasonable general additional condition for
ensuring closure under limits?

The answer seems to be convergence in total variation (A.
Klenke, St Flour 2006).

15Stability under limits

If X is discrete and finite and Pn → P pointwise,
conditional independence is preserved:

This follows from the fact that

X ⊥⊥Pn
Y |Z ⇐⇒ fn(x, y, z)fn(z) = fn(x, z)fn(y, z)

and this relation is clearly stable under pointwise limits.

Hence (G), (L) and (P) are closed under pointwise limits in
the discrete case.

16



Instability under limits

Even in the discrete case, (F) is not in general closed under
pointwise limits.

Consider four binary variables X1, X2, X3, X4 with joint
distribution

fn(x1, x2, x3, x4) =
nx1x2+x2x3+x3x4−x1x4−x2−x3+1

8 + 8n
.

This factorizes w.r.t. the graph

s ss s
1 4

2 3

17and fn(x) = n/(8 + 8n) for each of the configurations
below

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)
(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1),

whereas fn(x) = 1/(8 + 8n) for the remaining 8
configurations.

When n→∞, the density converges to f(x) = 1/8 for
each of the configurations above and f(x) = 0 otherwise,
i.e. the Moussouris example, which is globally Markov but
does not factorize.

18Markov faithfulness

A distribution P is said to be Markov faithful to a graph G
if it holds that

A⊥G B |S ⇐⇒ A⊥⊥P B |S.

It can be shown by a dimensional argument that if |Xv| ≥ 2
for all v ∈ V , then there is a distribution P which is
Markov faithful to G.

In fact, in the discrete and finite case, the set of Markov
distributions which are not faithful to a given graph is a
Lebesgue null-set in the set of Markov distributions.

For a Markov faithful P , the graphoids ⊥G and ⊥⊥P are
isomorphic.

19Directed acyclic graphs

A directed acyclic graph D over a finite set V is a simple
graph with all edges directed and no directed cycles.

Absence of directed cycles means that, following arrows in
the graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental
and useful in a wealth of interesting applications, including
expert systems, genetics, complex biomedical statistics,
causal analysis, and machine learning.

20

Example of a directed graphical model

21Local directed Markov property

A semigraphoid relation ⊥σ satisfies the local Markov
property (L) w.r.t. a directed acyclic graph D if

∀α ∈ V : α⊥σ {nd(α) \ pa(α)} | pa(α).

Here nd(α) are the non-descendants of α.

A well-known example is a Markov chain:

X1 X2 X3 X4 X5

s s ss s- - - - - s
Xn

with Xi+1⊥⊥ (X1, . . . , Xi−1) |Xi for i = 3, . . . , n.

22Local directed Markov property
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For example, the local Markov property says

4⊥σ {1, 3, 5, 6} | 2,

5⊥σ {1, 4} | {2, 3}

3⊥σ {2, 4} | 1.

23Ordered Markov property

Suppose the vertices V of a DAG D are well-ordered in the
sense that they are linearly ordered in a way which is
compatible with D, i.e. so that

α ∈ pa(β) =⇒ α < β.

We then say semigraphoid relation ⊥σ satisfies the ordered
Markov property (O) w.r.t. a well-ordered DAG D if

∀α ∈ V : α⊥σ {pr(α) \ pa(α)} | pa(α).

Here pr(α) are the predecessors of α, i.e. those which are
before α in the well-ordering..
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Ordered Markov property
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The numbering corresponds to a well-ordering. The ordered
Markov property says for example

4⊥σ {1, 3} | 2,

5⊥σ {1, 4} | {2, 3}

3⊥σ {2} | 1.

25Separation in DAGs

A trail τ from vertex α to vertex β in a DAG D is blocked
by S if it contains a vertex γ ∈ τ such that

• either γ ∈ S and edges of τ do not meet
head-to-head at γ, or

• γ and all its descendants are not in S, and edges of τ
meet head-to-head at γ.

A trail that is not blocked is active. Two subsets A and B
of vertices are d-separated by S if all trails from A to B are
blocked by S. We write A⊥D B |S.

26Separation by example
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For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the
trails (4, 2, 5, 6) and (4, 7, 6) are blocked.

For S = {3, 5}, they are all blocked.

27Returning to example
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Hence 4⊥D 6 | 3, 5, but it is not true that 4⊥D 6 | 5 nor
that 4⊥D 6.

28

Equivalence of Markov properties

A semigraphoid relation ⊥σ satisfies the global Markov
property (G) w.r.t. D if

A⊥D B |S =⇒ A⊥σ B |S.

It holds for any DAG D and any semigraphoid relation ⊥σ

that all directed Markov properties are equivalent:

(G) ⇐⇒ (L) ⇐⇒ (O).

There is also a pairwise property (P), but it is less natural
than in the undirected case and it is weaker than the others.

29Factorisation with respect to a DAG

A probability distribution P over X = XV factorizes over a
DAG D if its density f w.r.t. some product measure µ has
the form

(F) : f(x) =
∏
v∈V

kv(xv |xpa(v))

where kv ≥ 0 and
∫
Xv
kv(xv |xpa(v))µv(dxv) = 1.

(F) is equivalent to (F∗), where

(F∗) : f(x) =
∏
v∈V

f(xv |xpa(v)),

i.e. it follows from (F) that kv in fact are conditional
densities. Proof by induction!

30Example of DAG factorization
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The above graph corresponds to the factorization

f(x) = f(x1)f(x2 |x1)f(x3 |x1)f(x4 |x2)
× f(x5 |x2, x3)f(x6 |x3, x5)f(x7 |x4, x5, x6).

31Markov properties and factorization

Assume that the probability distribution P has a density
w.r.t. some product measure on X .

It is then always true that (F) holds if and only if ⊥⊥P

satisfies (G),

so all directed Markov properties are equivalent to the
factorization property!

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (O).
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Moralization

The moral graph Dm of a DAG D is obtained by adding
undirected edges between unmarried parents and
subsequently dropping directions, as in the example below:
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33Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised
graph Dm.

This is seen directly from the factorization:

f(x) =
∏
v∈V

f(xv |xpa(v)) =
∏
v∈V

ψ{v}∪pa(v)(x),

since {v} ∪ pa(v) are all complete in Dm.

Hence if P satisfies any of the directed Markov properties
w.r.t. D, it satisfies all Markov properties for Dm.

34Perfect DAGs

A DAG D is perfect if all parents are married.

For a perfect DAG D:

P satisfies (F) w.r.t D if and and only if it satisfies (F)
w.r.t. its skeleton σ(D).

The skeleton is the undirected graph obtained from D by
ignoring directions.

For a perfect DAG D we always have σ(D) = Dm.

A rooted tree with arrows pointing away from the root is a
perfect DAG.

In particular, any Markov chain is also a Markov field.

35Alternative equivalent separation

To resolve query involving three sets A, B, S:

1. Reduce to subgraph induced by ancestral set
DAn(A∪B∪S) of A ∪B ∪ S;

2. Moralize to form (DAn(A∪B∪S))m ;

3. Say that S m-separates A from B and write
A⊥mB | S if and only if S separates A from B in
this undirected graph.

It then holds that A⊥mB | S if and only if A⊥D B | S.

Proof in Lauritzen (1996) needs to allow self-intersecting
paths to be correct.

36

Forming ancestral set
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The subgraph induced by all ancestors of nodes involved in
the query 4⊥m 6 | 3, 5?

37Adding links between unmarried parents
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Adding an undirected edge between 2 and 3 with common
child 5 in the subgraph induced by all ancestors of nodes
involved in the query 4⊥m 6 | 3, 5?

38Dropping directions
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Since {3, 5} separates 4 from 6 in this graph, we can
conclude that 4⊥m 6 | 3, 5

39Properties of d-separation

It holds for any DAG D that ⊥D satisfies graphoid axioms.

Clearly, this is then also true for ⊥m .

To show this is true, it is sometimes easy to use ⊥m ,
sometimes ⊥D .

For example, (S2) is trivial for ⊥D , whereas (S5) is trivial
for ⊥m .

So, equivalence of ⊥D and ⊥m is useful.
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Ancestral marginals

Consider a DAG D and an ancestral subset A ⊆ V , i.e. one
where

α ∈ A =⇒ pa(α) ∈ A.

If P factorizes w.r.t. D, it factorizes w.r.t. DA.

Proof by induction, using that if A is ancestral and A 6= V ,
there is a terminal vertex α0 with α0 6∈ A

It thus follows, that if P factorizes w.r.t. D:

A⊥mB |S =⇒ A⊥⊥B |S.

Because then P factorizes w.r.t. Dm
An(A∪B∪S) and hence

satisfies (G) for this graph.

41Faithfulness

As in the undirected case, a distribution P is said to be
Markov faithful for a DAG D if it holds that

A⊥D B |S ⇐⇒ A⊥⊥P B |S.

It can be also here be shown that if |Xv| ≥ 2 for all v ∈ V ,
then there is a distribution P which is Markov faithful for
D, and the set of directed Markov distributions which are
not faithful is a Lebesgue null-set in the set of directed
Markov distributions.

For a Markov faithful P , the graphoids ⊥D and ⊥⊥P are
isomorphic.

Hence d-separation is indeed the strongest possible.

42Markov equivalence

Two DAGS D and D′ are Markov equivalent if the
separation relations ⊥D and ⊥D′ are identical.

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so

r - rr@@R? r ≡ r - r rr
?@
@I r - r -

r
@
@R? r 6≡ r - r - rr

6@
@R

43

Markov equivalence of directed and
undirected graphs

A DAG D is Markov equivalent to an undirected G if the
separation relations ⊥D and ⊥G are identical.

This happens if and only if D is perfect and G = σ(D). So,
these are all equivalent

q q q q q q- - q q q� - q q q� �

but not equivalent to

q q q-�
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Graph Decompositions
and Junction Trees

Lecture 3
Saint Flour Summerschool, July 6, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and similar algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.

2Some motivation

• Perfect DAGs are simple, because their directions can
be ignored as they are Markov equivalent to their
skeleton;

• Undirected graphs which can occur as skeletons of
perfect DAGs are therefore particularly simple;

• An n-cycle with n ≥ 4 cannot be oriented to form a
perfect DAG:

s ss s
• The important simplifying idea is that of graph

decomposition and decomposability .

3Graph decomposition

Consider an undirected graph G = (V,E). A partitioning of
V into a triple (A,B, S) of subsets of V forms a
decomposition of G if

A⊥G B |S and S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.

The components of G are the induced subgraphs GA∪S and
GB∪S .

A graph is prime if no proper decomposition exists.

4

Examples
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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5Decomposition of Markov properties

Suppose P satisfies (F) w.r.t. G and (A,B, S) is a
decomposition. Then

(i) PA∪S and PB∪S satisfy (F) w.r.t. GA∪S and GB∪S

respectively;

(ii)
f(x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

The first part of the statement is true when (F) is replaced
by (G).

The second is also true for (G) if the relevant densities exist.

6Markov combination

Let Q and R be distributions on XA∪S and XB∪S resp. and
assume Q and R are consistent, i.e. QS = RS .

Then there is a unique distribution P = Q ∗R so that

(i) PA∪S = Q and PB∪S = R;

(ii) A⊥⊥P B |S.

Q ∗R is the Markov combination of Q and R. If Q and R
have densities q and r, so has P and

p(x)qS(xS) = p(x)rS(xS) = q(xA∪S)r(xB∪S).

The Markov combination maximizes entropy among
measures satisfying (i).

7Decomposability

Any graph can be recursively decomposed into its maximal
prime subgraphs:
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A graph is decomposable (or rather fully decomposable) if
it is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
maximal prime subgraphs are cliques.
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Factorization of Markov distributions

Recursive decomposition of a decomposable graph into
cliques yields the formula:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏
C∈C

fC(xC).

Here S is the set of minimal complete separators occurring
in the decomposition process and ν(S) the number of times
such a separator appears in this process.

9Combinatorial consequences

Note that if we let Xv = {0, 1} and f be uniform, this yields

2−|V |
∏
S∈S

2−|S|ν(S) =
∏
C∈C

2−|C|

and hence we must have∑
C∈C

|C| −
∑
S∈S

|S|ν(S) = |V |.

It also holds that ∑
S∈S

ν(S) = |V | − 1.

10Properties associated with decomposability

A numbering V = {1, . . . , |V |} of the vertices of an
undirected graph is perfect if the induced oriented graph is
a perfect DAG or, equivalently, if

∀j = 2, . . . , |V | : bd(j) ∩ {1, . . . , j − 1} is complete in G.

An undirected graph G is chordal if it has no chordless
n-cycles with n ≥ 4.

These graphs are also known as rigid circuit graphs or
triangulated graphs.

A set S is an (α, β)-separator if α⊥G β |S,

11Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

12

Identifying chordal graphs

Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v∗ with bd(v∗) complete. If no
such vertex exists, the graph is not chordal.

2. Form the subgraph GV \v∗ and let v∗ = |V |;

3. Repeat the process under 1;

4. If the algorithm continues until only one vertex is left,
the graph is chordal and the numbering is perfect.

The complexity of this algorithm is O(|V |2).

13Greedy algorithm
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Is this graph chordal?

14Greedy algorithm
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Is this graph chordal?

15Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?

17Greedy algorithm
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This graph is not chordal, as there is no candidate for
number 4.

18Greedy algorithm
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Is this graph chordal?
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?

21Greedy algorithm
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Is this graph chordal?

22Greedy algorithm

4 7

6

5

u u
u u u

u u
�

��

@
@@

�
��

@
@@

@
@@

@
@@

�
��

Is this graph chordal?

23Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?

25Greedy algorithm
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This graph is chordal!

26Maximum cardinality search

This simple algorithm has complexity O(|V |+ |E|):

1. Choose v0 ∈ V arbitrary and let v0 = 1;

2. When vertices {1, 2, . . . , j} have been identified,
choose v = j + 1 among V \ {1, 2, . . . , j} with
highest cardinality of its numbered neighbours;

3. If bd(j + 1) ∩ {1, 2, . . . , j} is not complete, G is not
chordal;

4. Repeat from 2;

5. If the algorithm continues until only one vertex is left,
the graph is chordal and the numbering is perfect.

27Maximum Cardinality Search
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Is this graph chordal?
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Maximum Cardinality Search
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Is this graph chordal?
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Is this graph chordal?
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Is this graph chordal?
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Is this graph chordal?
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Maximum Cardinality Search
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Is this graph chordal?

33Maximum Cardinality Search
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Is this graph chordal?

34Maximum Cardinality Search
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The graph is not chordal! because 7 does not have a
complete boundary.

35Maximum Cardinality Search
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MCS numbering for the chordal graph. Algorithm runs
essentially as before.

36

Finding the cliques of a chordal graph

From an MCS numbering V = {1, . . . , |V |}, let

Sλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Sλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1 and let Λ be the set of ladder vertices.
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πλ: 0,1,2,2,2,1,1. The cliques are Cλ = {λ} ∪ Sλ, λ ∈ Λ.

37Junction tree

Let A be a collection of finite subsets of a set V . A
junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩B ⊂ C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cλ, λ ∈ Λ.

38A chordal graph
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This graph is chordal, but it might not be that easy to
see. . .Maximum Cardinality Search is handy!

39Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for
all cliques D on path between C1 and C2.
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Probability Propagation
and Related Algorithms

Lecture 4
Saint Flour Summerschool, July 8, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.

2Markov properties for undirected graphs

(P) pairwise Markov: α 6∼ β =⇒ α⊥⊥β |V \ {α, β};

(L) local Markov: α⊥⊥V \ cl(α) | bd(α);

(G) global Markov: A⊥G B |S =⇒ A⊥⊥B |S;

(F) Factorization: f(x) =
∏

a∈A ψa(x), A being
complete subsets of V .

It then holds that

(F) =⇒ (G) =⇒ (L) =⇒ (P).

If f(x) > 0 even

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).

3Markov properties for directed acyclic graphs

(O) ordered Markov: α⊥⊥{pr(α) \ pa(α)} | pa(α);

(L) local Markov: α⊥⊥{nd(α) \ pa(α)} | pa(α);

(G) global Markov: A⊥D B |S =⇒ A⊥⊥B |S.

(F) Factorization: f(x) =
∏

v∈V f(xv |xpa(v)).

It then always holds that

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (O).

4

Relation between different graphs

P directed Markov w.r.t. D implies P factorizes w.r.t. Dm.

D is perfect if skeleton G = σ(D) = Dm, implying that
directed and undirected separation properties are identical,
i.e. A⊥G B |S ⇐⇒ A⊥D B |S.

G = σ(D) for some DAG D if and only if G is chordal.

Two DAGs D and D′ are Markov equivalent, i.e.
A⊥D B |S ⇐⇒ A⊥D′ B |S, if and only if σ(D) = σ(D′)
and D and D′ have same unmarried parents.

5Graph decomposition

Consider an undirected graph G = (V,E). A partitioning of
V into a triple (A,B, S) of subsets of V forms a
decomposition of G if both of the following holds:

(i) A⊥G B |S;

(ii) S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.

The components of G are the induced subgraphs GA∪S and
GB∪S .

A graph is prime if no proper decomposition exists.

6Examples
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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7Decomposability

Any graph can be recursively decomposed into its uniquely
defined prime components:
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A graph is decomposable (or rather fully decomposable) if
it is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
prime components are cliques.
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Decomposition of Markov properties

Let (A,B, S) be a decomposition of G. Then P factorizes
w.r.t. G if and only if both of the following hold:

(i) PA∪S and PB∪S factorize w.r.t. GA∪S and GB∪S ;

(ii) f(x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

Recursive decomposition of a decomposable graph yields:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏
C∈C

fC(xC).

Here S is the set of complete separators occurring in the
decomposition process and ν(S) the number of times a
given S appears.

9More generally if Q denotes the prime components of G:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏

Q∈Q
fQ(xQ).

10Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

11Algorithms associated with chordality

Maximum Cardinality Search (MCS) Tarjan and Yannakakis
(1984) identifies whether a graph is chordal or not.

If a graph G is chordal, MCS yields a perfect numbering of
the vertices. In addition it finds the cliques of G:

From an MCS numbering V = {1, . . . , |V |}, let

Sλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Sλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1 and let Λ be the set of ladder vertices.

The cliques are Cλ = {λ} ∪ Sλ, λ ∈ Λ.

The numbers ν(S) in the decomposition formula are
ν(S) = |{λ ∈ Λ : Sλ = S}|.

12

Junction tree

Let A be a collection of finite subsets of a set V . A
junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩B ⊂ C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cλ, λ ∈ Λ.

13A chordal graph
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This graph is chordal, but it might not be that easy to
see. . .Maximum Cardinality Search is handy!

14Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for
all cliques D on path between C1 and C2.

15Junction trees of prime components

In general, the prime components of any undirected graph
can be arranged in a junction tree in a similar way, using an
algorithm of Tarjan (1985), see also Leimer (1993).

Then every pair of neighbours (C,D) in the junction tree
represents a decomposition of G into GC̃ and GD̃, where C̃
is the set of vertices in cliques connected to C but
separated from D in the junction tree, and similarly with D̃.

Tarjan’s algorithm is based on a slightly more sophisticated
algorithm (Rose et al. 1976) known as Lexicographic
Search (LEX) which runs in O(|V |2) time.

16



Markov properties of junction tree

Let Q ∈ Q be the prime components of a graph G,
arranged in a junction tree T .

Using that any graph decomposition also yields a
decomposition of the Markov properties now gives that

The distribution of X = (Xv, v ∈ V ) factorizes w.r.t. G if
and only if XQ, Q ∈ Q factorizes w.r.t. T and each of XQ

factorizes w.r.t. GQ.

In particular, if G is decomposable, X = (Xv, v ∈ V )
factorizes w.r.t. G if and only if XC , C ∈ C factorizes w.r.t.
T , i.e. the Markov property has essentially been transferred
to that of a tree of cliques.

17Local computation

Local computation algorithms similar to probability
propagation have been developed independently in a
number of areas with a variety of purposes. For example:

• Kalman filter and smoother (Thiele 1880;
Kalman and Bucy 1961);

• Solving sparse linear equations (Parter 1961);

• Decoding digital signals (Viterbi 1967;
Bahl et al. 1974);

• Estimation in hidden Markov models (Baum 1972);

• Peeling in pedigrees (Elston and Stewart 1971;
Cannings et al. 1976);

18• Belief function evaluation (Kong 1986;
Shenoy and Shafer 1986);

• Probability propagation (Pearl 1986;
Lauritzen and Spiegelhalter 1988;
Jensen et al. 1990);

• Abstract framework (Shenoy and Shafer 1990;
Lauritzen and Jensen 1997).

Also dynamic programming, linear programming, optimizing
decisions, calculating Nash equilibria in cooperative games,
and many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a graph
decomposition and a junction tree or similar to make the
computations.

19An abstract perspective

V is large finite set and C collection of small subsets of V .

φC , C ∈ C are valuations with domain C.

Combination: φA ⊗ φB has domain A ∪B.

⊗ is assumed commutative and associative.

For A ⊂ V φ↓A denotes the A-marginal of φ. φ↓A has
domain A.

Assume consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and distributivity: (φ⊗ φC)↓B =

(
φ↓B

)
⊗ φC , if C ⊆ B.

20

Computational challenge

Calculate marginals ψA = φ↓A of joint valuation

φ = ⊗C∈CφC

with domain V = ∪C∈CC.

Direct computation of φ↓A is impossible if V is large.

Challenge: calculate φ↓A using only local operations, i.e.
operating on factors ψB with domain B ⊆ C for some
C ∈ C.

Typically also a second purpose of calculation.

21A probability perspective

Factorizing density on X = ×v∈V Xv with V and Xv finite:

p(x) =
∏
C∈C

φC(x).

The potentials φC(x) depend on xC = (xv, v ∈ C) only.

Basic task to calculate marginal (likelihood)

p↓E(x∗E) =
∑
yV \E

p(x∗E , yV \E)

for E ⊆ V and fixed x∗E , but sum has too many terms.

A second purpose is to get the prediction
p(xv |x∗E) = p(xv, x

∗
E)/p(x∗E) for v ∈ V .

22Sparse linear equations

• Valuations φC are equation systems involving
variables with labels C;

• φA ⊗ φB concatenates equation systems;

• φ↓AB eliminates variables in B \A;

• Marginal φ↓A of joint valuation reduces the system of
equation to a smaller one;

• Second computation finds a solution of the equation
system by substitution.

23Constraint satisfaction

• φC represent constraints involving variables in C;

• φA ⊗ φB represents jointly feasible configurations;

• φ↓AB finds implied constraints;

• Marginal φ↓A finds extendible configurations;

• Second computation identifies jointly feasible
configurations.

If represented by indicator functions, ⊗ is ordinary product
and φ↓E(x∗E) = ⊕yV \E

φ(x∗E , yV \E), where
1⊕ 1 = 1⊕ 0 = 0⊕ 1 = 1 and 0⊕ 0 = 0.

24



Computational structure

Algorithms all (implicitly or explicitly) arrange the
collection of sets C in a junction tree T .

Hence, this works only if C are cliques of chordal graph G.

If this is not so from the outset, a triangulation is used to
construct chordal graph G′ with E ⊆ E′.

Clearly, in a probabilistic perspective, if P factorizes w.r.t.
G it factorizes w.r.t. G′.

Henceforth we assume this has been done and G is chordal.

Computations are executed by message passing .

25Setting up the structure

In many applications P is initially factorizing over a
directed acyclic graph D. The computational structure is
then set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P
factorizes on D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G
with Dm ⊆ G. This step is non-trivial (NP-complete)
to optimize;

3. Constructing junction tree:

4. Initialization: Assigning potential functions φC to
cliques.

26Basic computation

This involves following steps

1. Incorporating observations: If XE = x∗E is observed,
we modify potentials as

φC(xC)← φC(x)
∏

e∈E∩C

δ(x∗e, xe),

with δ(u, v) = 1 if u = v and else δ(u, v) = 0. Then:

p(x |XE = x∗E) =
∏

C∈C φC(xC)
p(x∗E)

.

2. Marginals p(x∗E) and p(xC |x∗E) are then calculated
by a local message passing algorithm.

27Separators

Between any two cliques C and D which are neighbours in
the junction tree we introduce their intersection
S = C ∩D. In fact, S are the minimal separators
appearing in the decomposition sequence.

We also assign potentials to separators, initially φS ≡ 1 for
all S ∈ S, where S is the set of separators.

We also let

κ(x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

, (1)

and now it holds that p(x |x∗E) = κ(x)/p(x∗E).

The expression (1) will be invariant under the message
passing.

28

Marginalization

The A-marginal of a potential φB for A ⊆ B is

φ↓AB (x) =
∑

yB :yA=xA

φB(y)

If φB depends on x through xB only and B ⊆ V is ‘small’,
marginal can be computed easily.

Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC)↓B =
(
φ↓B

)
φC .

29Messages

When C sends message to D, the following happens:

Before�
�

�
�

�
�

�
�φC φS φD

-�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓S
C

φS

After

Computation is local , involving only variables within cliques.

30The expression

κ(x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓S

C

φS

φ↓SC

=
φCφD

φS
.

After the message has been sent, D contains the
D-marginal of φCφD/φS .

To see this, calculate(
φCφD

φS

)↓D
=
φD

φS
φ↓DC =

φD

φS
φ↓SC .

31Second message

If D returns message to C, the following happens:

First message

�
�

�
�

�
�

�
�φC

φ↓S
D

φS
φ↓S φD

φ↓S
C

φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓S
C

φS

Second message

Now all sets contain the relevant marginal of
φ = φCφD/φS :
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The separator contains

φ↓S =
(
φCφD

φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC

φS

)↓S
=
φ↓SC φ↓SD

φS
.

C contains

φC
φ↓S

φ↓SC

=
φC

φS
φ↓SD = φ↓C

since, as before(
φCφD

φS

)↓C
=
φD

φS
φ↓DC =

φC

φS
φ↓SD .

Further messages between C and D are neutral! Nothing
will change if a message is repeated.

33Message passing

Two phases:

• CollInfo: messages are sent from leaves towards
arbitrarily chosen root R.

After CollInfo, the root potential satisfies
φR(xR) = p(xR, x

∗
E).

• DistInfo: messages are sent from root R towards
leaves. After CollInfo and subsequent DistInfo,
it holds for all B ∈ C ∪ S that φB(xB) = p(xB , x

∗
E).

Hence p(x∗E) =
∑

xS
φS(xS) for any S ∈ S and p(xv |x∗E)

can readily be computed from any φS with v ∈ S.

34CollInfo

 

 

Root

� � � �

� � � �

� � � �

� � � �

� � � �

� �

� �

� �

� � � �
� �

� �

� �

� �

� �

� �

� �

	 � 	 �
 �


 �


 �


 �


 �


 �

� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �� � �

� � �� � �

� � � � � �

� � �
� � �� � �

� � �
� � �

� � �

� � �

� � � � � � � � � � � �� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

� � �

� � �

� � �� � �

� � �

� � �

� � �

� � �

� � �

� � �
� 
 
� � �

Messages are sent from leaves towards root.

35DistInfo
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After CollInfo, messages are sent from root towards
leaves.
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Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already
received message from all other neighbours. Such messages
are live.

Using this protocol, there will be one clique who first
receives messages from all its neighbours. This is effectively
the root R in CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency
issues) as κ is invariant under message passing.

Exactly two live messages along every branch is needed.

37Maximization

Replace sum-marginal with A–maxmarginal:

φ↓AB (x) = max
yB :yA=xA

φB(y)

Satisfies consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and

distributivity: (φφC)↓B =
(
φ↓B

)
φC , if φC depends on xC

only and C ⊆ B.

CollInfo yields maximal value of density f .

DistInfo yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.

Since (1) remains invariant, one can switch freely between
max- and sum-propagation.

38Random propagation

After CollInfo, the root potential is φR(x) ∝ p(xR |xE)

Modify DistInfo as follows:

1. Pick random configuration x̌R from φR.

2. Send message to neighbours C as x̌R∩C = x̌S where
S = C ∩R is the separator.

3. Continue by picking x̌C according to φC(xC\S , x̌S)
and send message further away from root.

When the sampling stops at leaves of junction tree, a
configuration x̌ has been generated from p(x |x∗E).
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Log-Linear and
Gaussian Graphical Models

Lecture 5
Saint Flour Summerschool, July 10, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.

2Log–linear models

A denotes a set of (pairwise incomparable) subsets of V .

A density f (or function) factorizes w.r.t. A if there exist
functions ψa(x) which depend on xa only and

f(x) =
∏
a∈A

ψa(x).

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by A.

A is the generating class of the log–linear model.

No specific need to demand sets in A to be incomparable.
Only to avoid redundancy.

3Traditional notation

Traditionally used for contingency tables, where e.g. mijk

denotes the mean of the counts Nijk in the cell (i, j, k)
which has then been expanded as e.g.

logmijk = αi + βj + γk (1)

or
logmijk = αij + βjk (2)

or
logmijk = αij + βjk + γik, (3)

or (with redundancy)

logmijk = γ + δi + φj + ηk + αij + βjk + γik, (4)

etc.

4

Connecting to tradition

This largely a matter of different notation.

Assume data X1 = x1, . . . , Xn = xn and V = {I, J,K}.

Write i = 1, . . . , |I| for the possible values of XI etc. and

Nijk = |{ν : xν = (i, j, k)}|,

etc. Then mijk = nf(x) and if f(x) > 0 and factorizes
w.r.t. A = {{I, J}, {J,K}}

log f(x) = logψIJ(xI , xJ) + logψJK(xJ , xK).

Thus if we let

αij = log n+ logψIJ(xI , xJ), βjk = logψJK(xJ , xK)

5we have
logmijk = αij + βjk.

The only difference is the assumption of positivity which is
not necessary when using the multiplicative definition.

It is typically an advantage to relax the restriction of
positivity although it also creates technical difficulties.

The logarithm of the factors φa = logψa are known as
interaction terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.

We also refer to the factors themselves using the same
terms.

6Dependence graph

Any joint probability distribution P of X = (Xv, v ∈ V )
has a dependence graph G = G(P ) = (V,E(P )).

This is defined by letting α 6∼ β in G(P ) exactly when

α⊥⊥P β |V \ {α, β}.

X will then satisfy the pairwise Markov w.r.t. G(P ) and
G(P ) is smallest with this property, i.e. P is pairwise
Markov w.r.t. G iff

G(P ) ⊆ G.
The dependence graph G(P) for a family P is the smallest
graph G so that all P ∈ P are pairwise Markov w.r.t. G:

α⊥⊥P β |V \ {α, β} for all P ∈ P.

7Dependence graph of log–linear model

For any generating class A we construct the dependence
graph G(A) = G(PA) of the log–linear model PA.

This is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Sets in A are clearly complete in G(A) and therefore
distributions in PA factorize according to G(A).

They are thus also global, local, and pairwise Markov w.r.t.
G(A).
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Independence

The log–linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph

J

I K

t
t t

Thus it corresponds to complete independence.

9Conditional independence

The log–linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I, J}, {J,K}} and
dependence graph

J

I K

t
t t
@

@ �
�

Thus it corresponds to the conditional independence
I ⊥⊥K | J .

10No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class
A = {{I, J}, {J,K}, {I,K}} and its dependence graph

J

I K

t
t t
@

@ �
�

is the complete graph. Thus it has no conditional
independence interpretation.

11Conformal log-linear models

As a generating class defines a dependence graph G(A),
the reverse is also true.

The set C(G) of cliques of G is a generating class for the
log–linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A = C(G(A)), A is
conformal .

The generating classes for the models given by (1) and (2)
are conformal, whereas this is not the case for (3).

12

Factor graphs

φIJ φJK

φIK

�
�

�
�
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I K
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The factor graph of A is the bipartite graph with vertices
V ∪ A and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph even non-conformal log–linear models
admit a simple visual representation.

13Separation in factor graphs

If F = F (A) is the factor graph for A and G = G(A) the
corresponding dependence graph, it is not difficult to see
that for A, B, S being subsets of V

A⊥G B |S ⇐⇒ A⊥F B |S

and hence conditional independence properties can be read
directly off the factor graph also.

In that sense, the factor graph is more informative than the
dependence graph.

14Data in list form

Consider a sample X1 = x1, . . . , Xn = xn from a
distribution with probability mass function p. We refer to
such data as being in list form, e.g. as

case Admitted Sex
1 Yes Male
2 Yes Female
3 No Male
4 Yes Male
...

...
...

15Contingency Table

Data often presented in the form of a contingency table or
cross-classification, obtained from the list by sorting
according to category:

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

The numerical entries are cell counts

n(x) = |{ν : xν = x}|

and the total number of observations is n =
∑

x∈X n(x).
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Likelihood function

Assume now p ∈ PA but otherwise unknown. The
likelihood function can be expressed as

L(p) =
n∏

ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant
factor.

17Properties of the likelihood function

The likelihood function

L(p) =
∏
x∈X

p(x)n(x),

is continuous as a function of the (|X |-dimensional vector)
unknown probability distribution p.

Since the closure PA is compact (bounded and closed), L
attains its maximum on PA (not necessarily on PA itself).

Indeed, it is also true that L has a unique maximum over
PA, essentially because the likelihood function is
log-concave.

18Uniqueness of the MLE

For simplicity, we only establish uniqueness within PA. The
proof is indirect.

Assume p1, p2 ∈ PA with p1 6= p2 and

L(p1) = L(p2) = sup
p∈PA

L(p). (5)

Define
p12(x) = c

√
p1(x)p2(x),

where c−1 = {
∑

x

√
p1(x)p2(x)} is a normalizing constant.

19Then p12 ∈ PA because

p12(x) = c
√
p1(x)p2(x)

= c
∏
a∈A

√
ψ1

a(x)ψ2
a(x) =

∏
a∈A

ψ12
a (x),

where e.g. ψ12
a = c1/|A|

√
ψ1

a(x)ψ2
a(x).

The Cauchy–Schwarz inequality yields

c−1 =
∑

x

√
p1(x)p2(x) <

√∑
x

p1(x)
√∑

x

p2(x) = 1.

20

Hence

L(p12) =
∏
x

p12(x)n(x)

=
∏
x

{
c{

√
p1(x)p2(x)

}n(x)

= cn
∏
x

√
p1(x)

n(x) ∏
x

√
p2(x)

n(x)

= cn
√
L(p1)L(p2)

>
√
L(p1)L(p2) = L(p1) = L(p2),

which contradicts (5). Hence we conclude p1 = p2.

The extension to PA is almost identical. It just needs a
limit argument to establish p1, p2 ∈ PA =⇒ p12 ∈ PA.

21Likelihood equations

The maximum likelihood estimate p̂ of p is the unique
element of PA which satisfies the system of equations

np̂(xa) = n(xa),∀a ∈ A, xa ∈ Xa. (6)

Here g(xa) =
∑

y:ya=xa
g(y) is the a-marginal of the

function g.

The system of equations (6) expresses the fitting of the
marginals in A.

This is also an instance of the familiar result that in an
exponential family (log-linear ∼ exponential), the MLE is
found by equating the sufficient statistics (marginal counts)
to their expectation.

22Proportional scaling

To show that the equations (6) indeed have a solution, we
simply describe a convergent algorithm which solves it.
This cycles (repeatedly) through all the a-marginals in A
and fit them one by one.

For a ∈ A define the following scaling operation on p:

(Tap)(x)← p(x)
n(xa)
np(xa)

, x ∈ X

where 0/0 = 0 and b/0 is undefined if b 6= 0.

23Fitting the marginals

The operation Ta fits the a-marginal if p(xa) > 0 when
n(xa) > 0:

n(Tap)(xa) = n
∑

y:ya=xa

p(y)
n(ya)
np(ya)

= n
n(xa)
np(xa)

∑
y:ya=xa

p(y)

= n
n(xa)
np(xa)

p(xa) = n(xa).
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Iterative Proportional Scaling

Make an ordering of the generators A = {a1, . . . , ak}.
Define S by a full cycle of scalings

Sp = Tak
· · ·Ta2Ta1 .

Define the iteration

p0(x)← 1/|X |, pn = Spn−1, n = 1, . . . .

It then holds that
lim

n→∞
pn = p̂

where p̂ is the unique maximum likelihood estimate of
p ∈ PA, i.e. the solution of the equation system (6).

25Iterative Proportional Fitting

Known as the IPS-algorithm or IPF -algorithm, or as a
variety of other names. Implemented e.g. (inefficiently) in
R in loglin with front end loglm in MASS.

Key elements in proof:

1. If p ∈ PA, so is Tap;

2. Ta is continuous at any point p of PA with p(xa) 6= 0
whenever n(xa) = 0;

3. L(Tap) ≥ L(p) so likelihood always increases;

4. p̂ is the unique fixpoint for T (and S);

5. PA is compact.

26A simple example

Admitted
Sex Yes No S-marginal
Male 1198 1493 2691
Female 557 1278 1835
A-marginal 1755 2771 4526

Admissions data from Berkeley. Consider A⊥⊥S,
corresponding to A = {{A}, {S}}.

We should fit A-marginal and S-marginal iteratively.

27Initial values

Admitted
Sex Yes No S-marginal
Male 1131.5 1131.5 2691
Female 1131.5 1131.5 1835
A-marginal 1755 2771 4526

Entries all equal to 4526/4. Gives initial values of np0.

28

Fitting S-marginal

Admitted
Sex Yes No S-marginal
Male 1345.5 1345.5 2691
Female 917.5 917.5 1835
A-marginal 1755 2771 4526

For example

1345.5 = 1131.5
2691

1131.5 + 1131.5

and so on.

29Fitting A-marginal

Admitted
Sex Yes No S-marginal
Male 1043.46 1647.54 2691
Female 711.54 1123.46 1835
A-marginal 1755 2771 4526

For example

711.54 = 917.5
1755

917.5 + 1345.5

and so on.

Algorithm has converged, as both marginals now fit!

30Normalised to probabilities

Admitted
Sex Yes No S-marginal
Male 0.231 0.364 0.595
Female 0.157 0.248 0.405
A-marginal 0.388 0.612 1

Dividing everything by 4526 yields p̂.

It is overkill to use the IPS algorithm as there is an explicit
formula in this case.

31IPS by probability propagation

The IPS-algorithm performs the scaling operations Ta:

p(x)← p(x)
n(xa)
np(xa)

, x ∈ X . (7)

This moves through all possible values of x ∈ X , which in
general can be huge, hence impossible.

Jiroušek and Přeučil (1995) realized that the algorithm
could be implemented using probability propagation:

A chordal graph G with cliques C so that for all a ∈ A, a
are complete subsets of G is a chordal cover of A.

1. Find chordal cover G of A ;

32



2. Arrange cliques C of G in a junction tree;

3. Represent p implicitly as

p(x) =
∏

C∈C ψC(x)∏
S∈S ψS(x)

;

4. Replace the step (7) with

ψC(xC)← ψC(xC)
n(xa)
np(xa)

, xC ∈ XC ,

where a ⊆ C and p(xa) is calculated by probability
propagation.

Since the scaling only involves XC , this is possible just if
maxC∈C |XC | is of a reasonable size.

33Closed form maximum likelihood

In some cases the IPS algorithm converges after a finite
number of cycles.

An explicit formula is then available for the MLE of p ∈ PA.

A generating class A is called decomposable if A = C (i.e.
A is conformal) and C are the cliques of a chordal graph G.

The IPS-algorithm converges after a finite number of cycles
(at most two) if and only if A is decomposable.

A = {{1, 2}, {2, 3}, {1, 3}} is the smallest non-conformal
generating class, demanding proper iteration.

34Explicit formula for MLE

Let S be the set of minimal separators of the chordal graph
G. The MLE for p under the log-linear model with
generating class A = C(G) is

p̂(x) =
∏

C∈C n(xC)
n

∏
S∈S n(xS)ν(S)

where ν(S) is the number of times S appears as an
intersection a ∩ b of neighbours in a junction tree T with A
as vertex set.

Contrast this with the factorization of the probability
function itself:

p(x) =
∏

C∈C p(xC)∏
S∈S p(xS)ν(S)

.

35Density of multivariate Gaussian

If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the
distribution has density w.r.t. Lebesgue measure on Rd

f(x | ξ,Σ) = (2π)−d/2(detK)1/2e−(x−ξ)>K(x−ξ)/2, (8)

where K = Σ−1 is the concentration matrix of the
distribution. We then also say that Σ is regular .

36

Marginal and conditional distributions

Partition X into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs

with r + s = d.

Partition mean vector, concentration and covariance matrix
accordingly as

ξ =
(
ξ1
ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
so that Σ11 is r × r and so on. Then, if X ∼ Nd(ξ,Σ)

X2 ∼ Ns(ξ2,Σ22)

and
X1 |X2 = x2 ∼ Nr(ξ1|2,Σ1|2),

37where

ξ1|2 = ξ1+Σ12Σ−22(x2−ξ2) and Σ1|2 = Σ11−Σ12Σ−22Σ21.

Σ−22 is an arbitrary generalized inverse to Σ22.

In the regular case it also holds that

K−1
11 = Σ11 − Σ12Σ−1

22 Σ21 (9)

and
K−1

11 K12 = −Σ12Σ−1
22 , (10)

so then,

ξ1|2 = ξ1 −K−1
11 K12(x2 − ξ2) and Σ1|2 = K−1

11 .

In particular, if Σ12 = 0, X1 and X2 are independent.

38Gaussian likelihoods

Consider ξ = 0 and a sample X1 = x1, . . . , Xn = xn

Nd(0,Σ) with Σ regular.

Using (8), we get the likelihood function

L(K) = (2π)−nd/2(detK)n/2e−
∑n

ν=1(x
ν)>Kxν/2

∝ (detK)n/2e− tr{K
∑n

ν=1 xν(xν)>}/2

= (detK)n/2e− tr(KW )/2. (11)

where

W =
n∑

ν=1

xν(xν)>

is the matrix of sums of squares and products.

39Wishart distribution

The Wishart distribution is the sampling distribution of the
matrix of sums of squares and products. More precisely:

A random d× d matrix S has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D=

n∑
i=1

Xν(Xν)>

where Xν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

40



If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.

If W1 and W2 are independent with Wi ∼ Wd(ni,Σ), then

W1 +W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr(n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd,

λ>Wλ ∼ σ2
λχ

2(n),

where σ2
λ = λ>Σλ.

41Wishart density

If W ∼ Wd(n,Σ), where Σ is regular, then

W is regular with probability one if and only if n ≥ d.

When n ≥ d the Wishart distribution has density

fd(w |n,Σ)

= c(d, n)−1(detΣ)−n/2(detw)(n−d−1)/2e− tr(Σ−1w)/2

w.r.t. Lebesgue measure on the set of positive definite
matrices.

The Wishart constant c(d, n) is

c(d, n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n+ 1− i)/2}.

42Conditional independence

Consider X = (X1, . . . , XV ) ∼ N|V |(0,Σ) with Σ regular
and K = Σ−1.

The concentration matrix of the conditional distribution of
(Xα, Xβ) given XV \{α,β} is

K{α,β} =
(
kαα kαβ

kβα kββ

)
.

Hence
α⊥⊥β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus the dependence graph G(K) of a regular Gaussian
distribution is given by

α 6∼ β ⇐⇒ kαβ = 0.

43Graphical models

S(G) denotes the symmetric matrices A with aαβ = 0
unless α ∼ β and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as
multivariate normal with K ∈ S+(G) and otherwise
unknown.

Note that the density then factorizes as

log f(x) = constant− 1
2

∑
α∈V

kααx
2
α −

∑
{α,β}∈E

kαβxαxβ ,

hence no interaction terms involve more than pairs..

This is different from the discrete case and generally makes
things easier.

44

Likelihood function

The likelihood function based on a sample of size n is

L(K) ∝ (detK)n/2e− tr(KW )/2,

where W is the Wishart matrix of sums of squares and
products, W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G).

For any matrix A we let A(G) = {a(G)αβ} where

a(G)αβ =
{
aαβ if α = β or α ∼ β
0 otherwise.

Then, as K ∈ S(G)

tr(KW ) = tr{KW (G)}.

45Hence we can identify the family as a (regular and
canonical) exponential family with elements of W (G) as
canonical sufficient statistics and the likelihood equations

E{W (G)} = nΣ(G) = w(G)obs.

Alternatively we can write the equations as

nσ̂vv = wvv, nσ̂αβ = wαβ , v ∈ V, {α, β} ∈ E,

with the model restriction Σ−1 ∈ S+(G).

This ‘fits variances and covariances along nodes and edges
in G’ so we can write the equations as

nΣ̂cc = wcc for all cliques c ∈ C(G),

hence making the equations analogous to the discrete case.

46Iterative Proportional Scaling

For K ∈ S+(G) and c ∈ C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V \ c and

TcK =
(
n(wcc)−1 +Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (12)

This operation is clearly well defined if wcc is positive
definite.

Exploiting that it holds in general that

(K−1)cc = Σcc =
{
Kcc −Kca(Kaa)−1Kac

}−1
,

we find the covariance Σ̃cc corresponding to the adjusted

47concentration matrix becomes

Σ̃cc = {(TcK)−1}cc

=
{
n(wcc)−1 +Kca(Kaa)−1Kac −Kca(Kaa)−1Kac

}−1

= wcc/n,

hence TcK does indeed adjust the marginals.

From (12) it is seen that the pattern of zeros in K is
preserved under the operation Tc, and it can also be seen to
stay positive definite.

In fact, Tc scales proportionally in the sense that

f{x | (TcK)−1} = f(x |K−1)
f(xc |wcc/n)
f(xc |Σcc)

.

This clearly demonstrates the analogy to the discrete case.
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Next we choose any ordering (c1, . . . , ck) of the cliques in
G. Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr.

Then we have: Consider a sample from a covariance
selection model with graph G. Then

K̂ = lim
r→∞

Kr,

provided the maximum likelihood estimate K̂ of K exists.

The general problem of existence of the MLE is non-trivial:

If n < supa∈A |a| the MLE does not exist.

If n ≥ supC∈C |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

49For n between these values the general situation is unclear.

For the k-cycle it holds (Buhl 1993) that for n = 2,

P{MLE exists |Σ = I} = 1− 2
k − 1!

,

whereas for n = 1 the MLE does not exist and for n ≥ 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.

50Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps, as in the discrete case.

We also have the familiar factorization of densities

f(x |Σ) =
∏

C∈C f(xC |ΣC)∏
S∈S f(xS |ΣS)ν(S)

(13)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.

51Relations for trace and determinant

Using the factorization (13) we can match the expressions
for the trace and determinant to obtain

tr(KW ) =
∑
C∈C

tr(KCWC)−
∑
S∈S

ν(S) tr(KSWS)

and further

detΣ = {det(K)}−1 =
∏

C∈C det{(K−1)C}∏
S∈S [det{(K−1)S}]ν(S)

=
∏

C∈C det{ΣC}∏
S∈S{det(ΣS)}ν(S)

52

Maximum likelihood estimates

For a |d| × |e| matrix A = {aγµ}γ∈d,µ∈e we let [A]V denote
the matrix obtained from A by filling up with zero entries
to obtain full dimension |V | × |V |, i.e.

(
[A]V

)
γµ

=
{
aγµ if γ ∈ d, µ ∈ e
0 otherwise.

The maximum likelihood estimates exists if and only if
n ≥ C for all C ∈ C. Then the following simple formula
holds for the maximum likelihood estimate of K:

K̂ = n

{∑
C∈C

[
(wC)−1

]V

−
∑
S∈S

ν(S)
[
(wS)−1

]V
}
.

53The determinant of the MLE is

det(K̂) =
∏

S∈S{det(wS)}ν(S)∏
C∈C det(wC)

n|V |.
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Hyper Markov Laws

Lecture 6
Saint Flour Summerschool, July 13, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on hyper Markov laws

8. Structure estimation and Bayes factors

9. More on structure estimation.

2Log–linear models

A denotes a set of (pairwise incomparable) subsets of V .

A density f factorizes w.r.t. A

f(x) =
∏
a∈A

ψa(x).

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by the A.

A is the generating class of the log-linear model.

3Dependence graph

The dependence graph G(P) for a family of distributions P
is the smallest graph G so that

α⊥⊥P β |V \ {α, β} for all P ∈ P.

The dependence graph of a log-linear model PA is then
determined by

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Sets in A are complete in G(A) and therefore distributions
in PA factorize according to G(A).

They are also global, local, and pairwise Markov w.r.t.
G(A).

4

Conformal log-linear model

The set C(G) of cliques of G is a generating class for the
log–linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A = C(G(A)), A is
conformal .

Conformal log-linear models can be completely described in
terms of conditional independence.

For more general log-linear models factor graphs are needed
to yield a faithful representation of the factorization. MIM
(software by David Edwards www.hypergraph.dk), uses
the term interaction graph.

5Likelihood equations

For any generating class A it holds that the maximum
likelihood estimate p̂ of p is the unique element of PA
which satisfies the system of equations

np̂(xa) = n(xa),∀a ∈ A, xa ∈ Xa. (1)

The system of equations (1) expresses the fitting of the
marginals in A.

In general, the equations cannot be solved explicitly, but
iterative methods are needed.

6Iterative Proportional Scaling

For a ∈ A define the scaling operation on p:

(Tap)(x)← p(x)
n(xa)
np(xa)

, x ∈ X . (2)

The operation Ta fits the a-marginal. Now, make any
ordering of the generators A = {a1, . . . , ak}. Define S by

Sp = Tak
· · ·Ta2Ta1p.

Let p0(x)← 1/|X |, pn = Spn−1, n = 1, . . . .

It then holds that limn→∞ pn = p̂ where p̂ is the unique
maximum likelihood estimate of p ∈ PA.

It is easy to show that p̂(x) > 0 for all x ∈ X if and only if
p̂ ∈ PA.

7IPS by probability propagation

A chordal cover of A is a chordal graph G so that for all
a ∈ A, a are complete subsets of G.

1. Find chordal cover G of A and arrange cliques C of G
in a junction tree;

2. Represent p implicitly as p(x) =
∏

C∈C ψC(x)∏
S∈S ψS(x) ;

3. Replace (2) with

ψC(xC)← ψC(xC)
n(xa)
np(xa)

, xC ∈ XC ,

where a ⊆ C and p(xa) is calculated by probability
propagation.

8



Closed form maximum likelihood

A is decomposable if A = C where C are the cliques of a
chordal graph.

The IPS-algorithm converges after at a finite number of
cycles (at most two) if and only if A is decomposable.

The MLE for p under the log-linear model A = C(G) is

p̂(x) =
∏
C∈C n(xC)

n
∏
S∈S n(xS)ν(S)

,

where ν(S) is the usual multiplicity of a separator.

In fact, with a suitably chosen ordering (e.g. MCS) of the
cliques, the IPS-algorithm converges in a single cycle.

9Gaussian likelihood function

The likelihood function based on a sample of size n is

L(K) ∝ (detK)n/2e− tr(KW )/2,

where W is the Wishart matrix of sums of squares and
products, W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G), where
S+(G) are the positive definite matrices with
α 6∼ β =⇒ kαβ = 0.

The MLE of K̂ is the unique element of S+(G) satisfying

nΣ̂cc = wcc for all cliques c ∈ C(G).

10Iterative Proportional Scaling

For K ∈ S+(G) and c ∈ C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V \ c and

TcK =
(
n(wcc)−1 +Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (3)

Next we choose any ordering (c1, . . . , ck) of the cliques in
G. Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr.

It then holds that K̂ = limr→∞Kr, provided the maximum
likelihood estimate K̂ of K exists.

11Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in at most two
cycles, as in the discrete case.

The maximum likelihood estimates exists if and only if
n ≥ |C| for all C ∈ C. Then

K̂ = n

{∑
C∈C

[
(wC)−1

]V
−
∑
S∈S

ν(S)
[
(wS)−1

]V}
.

the symbol [A]V denotes for A = {aγµ}γ∈d,µ∈e the matrix
obtained from A by filling up with zero entries to obtain
full dimension.

12

Existence of the MLE

The general problem of existence of the MLE is non-trivial:

If n < supa∈A |a| the MLE does not exist.

If n ≥ supC∈C |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

For n between these values the general situation is unclear.

For the k-cycle it holds (Buhl 1993) that for n = 2,

P{MLE exists |Σ = I} = 1− 2
(k − 1)!

,

whereas for n = 1 the MLE does not exist and for n ≥ 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.

13Special Wishart distributions

The formula

Σ̂ = n

{∑
C∈C

[
(WC)−1

]V
−
∑
S∈S

ν(S)
[
(WS)−1

]V}−1

specifies Σ̂ as a random matrix.

The distribution of this random Wishart-type matrix is
partly reflecting Markov properties of the graph G.

This is also true for the distribution of Σ̂ for a non-chordal
graph G but not to the same degree.

Before we delve further into this, we shall need some more
terminology.

14Laws and distributions

Families of distributions may not always be simply
parameterized, or we may want to describe the families
without specific reference to a parametrization.

Generally we think of

P = {Pθ, θ ∈ Θ}

and sometimes identify Θ with P which is justified when
the parametrization

θ → Pθ

is one-to-one and onto.

In a Gaussian graphical model θ = K ∈ S+(G) is uniquely
identifying any regular Gaussian distribution satisfying the
Markov properties w.r.t. G.

15The case when P = PA is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence.

In any case, any probability measure on P (or on Θ)
represents a random element of P, i.e. a random
distribution. The sampling distribution of the MLE p̂ is an
example of such a measure.

To keep heads straight we refer to a probability measure on
P as a law , whereas a distribution is a probability measure
on X .

Thus we shall e.g. speak of the Wishart law as we think of
it specifying a distribution of f(· |Σ).

16



Hyper Markov Laws

We identify θ ∈ Θ and Pθ ∈ P, so e.g. θA for A ⊆ V
denotes the distribution of XA under Pθ and θA |B the
family of conditional distributions of XA given XB , etc.

For a law L on Θ we write

A⊥⊥LB |S ⇐⇒ θA∪S ⊥⊥L θB∪S | θS .

A law L on Θ is hyper Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥⊥LB |S whenever S is complete and A⊥G B |S.

Note the conditional independence is only required to hold
for graph decompositions.

17Hyper Markov property
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If θ follows a hyper Markov law for this graph, it holds for
example that

θ1235⊥⊥ θ24567 | θ25.

We shall later show that this is indeed true for θ̂ = p̂ or Σ̂
in the graphical model with this graph, i.e.

Σ̂1235⊥⊥ Σ̂24567 | Σ̂25.

18Consequences of the hyper Markov property

Clearly, if A⊥⊥LB |S, we have for example also (using
property (C2) of conditional independence)

θA⊥⊥L θB | θS
since θA and θB are functions of θA∪S and θB∪S
respectively.

But the converse is false! θA⊥⊥L θB | θS does not imply
θA∪S ⊥⊥L θB∪S | θS , since θA∪S is not a function of
(θA, θS). In contrast, XA∪B is indeed a (one-to-one)
function of (XA, XB).

However it generally holds that

A⊥⊥LB |S ⇐⇒ θA |S ⊥⊥L θB |S | θS .

19Simple example

Consider the conditional independence model with graph

s s s
I J K

Here the MLE based on data X(n) = (X1, . . . , Xn) is

p̂ijk =
Nij+N+jk

nN+j+

and

p̂ij+ =
Nij+
n

, p̂+jk =
N+jk

n
, p̂+j+ =

N+j+

n
.

20

Clearly, it holds that p̂ is Markov on G and

{Nij+}⊥⊥{N+jk} | {X(n)
j }.

But since e.g.

P ({Nij+ = nij} | {X(n)
j }) =

∏
j

(
n+j+!∏
i nij+!

∏
i

p
nij+
ij+

)
,

we have
{Nij+}⊥⊥{X(n)

j } | {N+j+}

and hence
{Nij+}⊥⊥{N+jk} | {N+j+},

which yields the hyper Markov property.

21Chordal graphs

If G is chordal and θ is hyper Markov on G, it holds that

A⊥G B |S =⇒ A⊥⊥LB |S

i.e. it is not necessary to specify that S is a complete
separator to obtain the relevant conditional independence.

This follows essentially because for a chordal graph it holds
that

A⊥G B |S =⇒ ∃S∗ ⊆ S : A⊥G B |S∗ with S∗ complete.

If G is not chordal, we can form G by completing all prime
components of G.

22Then if θ is hyper Markov on G, it is also hyper Markov on
G, and thus

A⊥G B |S =⇒ A⊥⊥LB |S.

But the similar result would be false for an arbitrary chordal
cover of G.

23Directed hyper Markov property

We have similar notions and results in the directed case.

Say L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ
is directed Markov on D for all θ ∈ Θ and

θv∪pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently θv | pa(v)⊥⊥L θnd(v) | θpa(v), or equivalently
for a well-ordering

θv∪pa(v)⊥⊥L θpr(v) | θpa(v).

In general there is no similar statement corresponding to
the global property and d-separation.

However, if D is perfect, L is directed hyper Markov w.r.t.
D if and only if L is hyper Markov w.r.t. G = σ(D) = Dm.

24
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More on Hyper Markov Laws

Lecture 7
Saint Flour Summerschool, July 13, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on Hyper Markov Laws

8. Structure estimation and Bayes factors

9. More on structure estimation.

2Laws and distributions

A statistical model involves a family P of distributions,
often parametrized as

P = {Pθ, θ ∈ Θ}.

We typically identify Θ with P when the parametrization

θ → Pθ

is one-to-one and onto.

In a Gaussian graphical model, θ = K ∈ S+(G) is uniquely
identifying any regular Gaussian distribution NV (0,Σ),
where K = Σ−1, satisfying the Markov properties of G.

3The case when P = PA is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence with a suitable parameter Θ.

A probability measure on P (or on Θ) represents a random
element of P.

We refer to a probability measure on P or Θ as a law ,
whereas a distribution is a probability measure on X .

Thus we shall e.g. speak of the Wishart law as we think of
W specifying a (random) distribution of X as NV (0 |W ).

4

Hyper Markov Laws

We identify θ ∈ Θ and Pθ ∈ P, so e.g. θA for A ⊆ V
denotes the marginal distribution of XA under Pθ and θA |B
the family of conditional distributions of XA given XB , etc.

For a law L on Θ we write

A⊥⊥L B |S ⇐⇒ θA∪S ⊥⊥L θB∪S | θS .

A law L on Θ is hyper Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥⊥L B |S whenever S is complete and A⊥G B |S.

5Hyper Markov property
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If θ follows a hyper Markov law for this graph, it holds for
example that

θ1235⊥⊥ θ24567 | θ25.

We shall later see that this is indeed true for θ̂ = p̂ or Σ̂ in
the graphical model with this graph, i.e.

Σ̂1235⊥⊥ Σ̂24567 | Σ̂25.

6Consequences of the hyper Markov property

We have
A⊥⊥L B |S =⇒ θA⊥⊥L θB | θS ,

but the converse is false!

It generally holds that

A⊥⊥L B |S ⇐⇒ θA |S ⊥⊥L θB |S | θS .

If G is chordal and L is hyper Markov on G, it holds that

A⊥G B |S =⇒ A⊥⊥L B |S.

In general, if we form G by completing all prime
components of G, then if L is hyper Markov on G

A⊥G B |S =⇒ A⊥⊥L B |S.

7Directed hyper Markov property

L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ is
directed Markov on D for all θ ∈ Θ and

θv∪pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently

θv | pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently for a well-ordering of D

θv∪pa(v)⊥⊥L θpr(v) | θpa(v).

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = σ(D) = Dm.

8



Meta independence

In the following we shall for A,B ⊆ V identify

θA∪B = (θB |A, θA) = (θA |B , θB),

i.e. any joint distribution of XA∪B is identified with a pair
of further marginal and conditional distributions.

Define for S ⊆ V the S-section Θθ∗S of Θ as

Θθ∗S = {θ ∈ Θ : θS = θ∗S , θ ∈ Θ}.

The meta independence relation ‡P is defined as

A ‡P B |S ⇐⇒ ∀θ∗S ∈ ΘS : Θθ∗S = Θθ∗S
A |S ×Θθ∗S

B |S ,

9In words, A and B are meta independent w.r.t. P given S,
if the pair of conditional distributions (θA |S , θB |S) vary in
a product space when θS is fixed.

Equivalently, fixing the values of θB |S and θS places the
same restriction on θA |S as just fixing θS .

The relation ‡P satisfies the semigraphoid axioms as it is a
special instance of variation independence.

Note also that for any triple (A,B, S) and any law L on Θ
it holds that

A⊥⊥L B |S =⇒ A‡PB |S

for if θA |S ⊥⊥L θB |S | θS it must in particular be true that
(θA |S , θB |S) vary in a product space for every fixed value
of θS .

10Meta Markov models

The family P, or Θ, is said to be meta Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥G B |S =⇒ A‡PB |S whenever S is complete.

A Markov model is meta Markov if and only if

A⊥G B |S =⇒ A‡PB |S,

where G is obtained from G by completing all prime
components,

If G is chordal, G = G and hence for any meta Markov
model P

A⊥G B |S =⇒ A‡PB |S.

11Hyper Markov laws and meta Markov models

Since it for any law L on Θ holds that

A⊥⊥L B |S =⇒ A‡PB |S,

hyper Markov laws live on meta Markov models: If a law L
on Θ is hyper Markov w.r.t. G , Θ is meta Markov w.r.t. G.

In particular, if a Markov model is not meta Markov, it
cannot carry a hyper Markov law without further restricting
to Θ0 ⊂ Θ.

A Gaussian graphical model with graph G is meta Markov
on G.

This follows for example from results of collapsibility of
Gaussian graphical models (Frydenberg 1990).

12

Log-linear meta Markov models

Using results on collapsibility of log-linear models
(Asmussen and Edwards 1983) that

A log-linear model PA is meta Markov on its dependence
graph G(A) if and only if S ∈ A for any minimal complete
separator S of G(A).

In particular, if A is conformal, PA is meta Markov.

For example, the log-linear model with generating class

A = {ab, ac, ad, bc, bd, be, cd, ce, de}

has dependence graph with cliques C = {abcd, bcde}. Since
the complete separator bcd is not in A, this model is not
meta Markov.

13The model with generating class

A′ = {ab, ac, ad, bcd, be, ce, de}

has the same dependence graph G(A′) = G(A) but even
though A′ is not conformal, PA′ is meta Markov on G(A′).

But also the model with generating class

A′′ = {ab, ac, bc, bd, cd, ce, de}

has a different dependence graph G(A′′). The separator bcd
is not in A′′, but PA′′ is meta Markov on G(A′′), as both
minimal separators bc and cd are in A′′.

14Dependence graph of A and A′

15Factor graph of A

16



Factor graph of A′

17Factor graph of A′′

18Meta Markov properties on supergraphs

Clearly, if θ is globally Markov w.r.t. the graph G, it is also
Markov w.r.t. any super graph G′ = (V,E′) with E ⊆ E′.

The similar fact is not true for meta Markov models. For
example, the Gaussian graphical model for the 4-cycle G
with adjacencies 1 ∼ 2 ∼ 3 ∼ 4 ∼ 1, is meta Markov on G,
because it has no complete separators.

But the same model is not meta Markov w.r.t. the larger
graph G′ with cliques {124, 234}, since for any K ∈ S+(G),

σ24 =
σ12σ14

σ11
+

σ13σ34

σ33
.

So fixing the value of σ24 restricts the remaining
parameters in a complex way.

19Maximum likelihood in meta Markov models

Under certain conditions, the MLE θ̂ of the unknown
distribution θ will follow a hyper Markov law over Θ under
Pθ. These are

(i) Θ is meta Markov w.r.t. G;

(ii) For any prime component Q of G, the MLE θ̂Q for θQ

based on X
(n)
Q is sufficient for ΘQ and boundedly

complete.

A sufficient condition for (ii) is that ΘQ is a full and regular
exponential family in the sense of Barndorff-Nielsen (1978).

In particular, these conditions are satisfied for any Gaussian
graphical model and any meta Markov log-linear model.

20

Canonical construction of hyper Markov laws

The distributions of maximum likelihood estimators are
important examples of hyper Markov laws. But for chordal
graphs there is a canonical construction of such laws.

Let C be the cliques of a chordal graph G and let
LC , C ∈ C be a family of laws over ΘC ⊆ P(XC).

The family of laws are hyperconsistent if for any C and D
with C ∩D = S 6= ∅, LC and LD induce the same law for
θS .

If LC , C ∈ C are hyperconsistent, there is a unique hyper
Markov law L over G with L(θC) = LC , C ∈ C.

21Strong hyper and meta Markov properties

In some cases it is of interest to consider a stronger version
of the hyper and meta Markov properties.

A meta Markov model is strongly meta Markov if
θA |S‡PθS for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
θA |S ⊥⊥L θS for all complete separators S.

A directed hyper Markov model is strongly directed hyper
Markov if θv | pa(v)⊥⊥L θpa(v) for all v ∈ V .

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.

22Bayesian inference

Parameter θ ∈ Θ, data X = x, likelihood

L(θ |x) ∝ p(x | θ) =
dPθ(x)
dµ(x)

.

Express knowledge about θ through a prior law π on θ. Use
also π to denote density of the prior law w.r.t. some
measure ν on Θ.

Inference about θ from x is then represented through
posterior law π∗(θ) = p(θ |x). Then, from Bayes’ formula

π∗(θ) = p(x | θ)π(θ)/p(x) ∝ L(θ |x)π(θ)

so the likelihood function is equal to the density of the
posterior w.r.t. the prior modulo a constant.

23Bernoulli experiments

Data X1 = x1, . . . , Xn = xn independent and Bernoulli
distributed with parameter θ, i.e.

P (Xi = 1 | θ) = 1− P (Xi = 0) = θ.

Use a beta prior:

π(θ | a, b) ∝ θa−1(1− θ)b−1.

If we let x =
∑

xi, we get the posterior:

π∗(θ) ∝ θx(1− θ)n−xθa−1(1− θ)b−1

= θx+a−1(1− θ)n−x+b−1

So the posterior is also beta with parameters
(a + x, b + n− x).

24



Conjugate families

A family P of laws on Θ is said to be conjugate under
sampling from x if

π ∈ P =⇒ π∗ ∈ P.

The family of beta laws is conjugate under Bernoulli
sampling.

If the family of priors is parametrised:

P = {Pα, α ∈ A}

we sometimes say that α is a hyperparameter. Then,
Bayesian inference can be made by just updating
hyperparameters. Terminology of hyperparameter breaks
down in more complex models.

25Conjugacy of hyper Markov properties

If L is a prior law over Θ and X = x is an observation from
θ, L∗ = L(θ |X = x) denotes the posterior law over Θ.

If L is hyper Markov w.r.t. G so is L∗.

If L is strongly hyper Markov w.r.t. G so is L∗.

In the latter case, the update of L is local to prime
components, i.e.

L∗(θQ) = L∗Q(θQ) = LQ(θQ |XQ = xQ)

and the marginal distribution p of X is globally Markov
w.r.t. G, where

p(x) =
∫

Θ

P (X = x | θ)L(dθ).

26Conjugate exponential families

For a k-dimensional exponential family

p(x | θ) = b(x)eθ
>t(x)−ψ(θ)

the standard conjugate family is given as

π(θ | a, κ) ∝ eθ
>a−κψ(θ)

for (a, κ) ∈ A ⊆ Rk ×R+, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1, . . . , xn) with t =
∑
i t(xi) is

then made as (a∗, κ∗) = (a + t, κ + n).

The family of Beta laws is an example of a standard
conjugate family.

27

Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

π(K |Φ, δ) ∝ (detK)δ/2e− tr(KΦ),K ∈ S+(G).

These laws are termed hyper inverse Wishart laws as Σ
follows an inverse Wishart law for complete graphs.

For chordal graphs, each marginal law LC of ΣC is inverse
Wishart.

For any meta Markov model where Θ and ΘQ are full and
regular exponential families for all prime components Q, it
follows directly from Barndorff-Nielsen (1978), page 149,

28that the standard conjugate prior law is strongly hyper
Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws.

The analogous prior distribution for log-linear meta Markov
models are likewise termed hyper Dirichlet laws.

They are also strongly hyper Markov and if G is chordal,
each induced marginal law LC is a standard Dirichlet law .
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Structure Estimation
and Bayes Factors

Lecture 8
Saint Flour Summerschool, July 14, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on Hyper Markov Laws

8. Structure estimation and Bayes factors

9. More on structure estimation.

2Hyper Markov Laws

Identify θ ∈ Θ and Pθ ∈ P, so e.g. θA denotes the marginal
distribution of XA under Pθ and θA |B the family of
conditional distributions of XA given XB , etc.

For a law L on Θ we write

A⊥⊥L B |S ⇐⇒ θA |S ⊥⊥L θB |S | θS .

A law L on Θ is hyper Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥⊥L B |S whenever S is complete and A⊥G B |S.

3Hyper Markov property

The hyper Markov property has a simple formulation in
terms of junction trees:

Arrange the prime components Q of G in a junction tree T
with complete separators S and consider the extended
junction tree T which is the (bipartite) tree with Q∪ S as
vertices and edges from separators to prime components so
that C ∼ S ∼ D in T if and only if C ∼ D in T .

Next, associate θA to A for each A ∈ Q ∪ S. It then holds
that

L is hyper Markov on G if and only if {θA, A ∈ Q ∪ S} is
globally Markov w.r.t. the extended junction tree T .

4

Directed hyper Markov property

L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ is
directed Markov on D for all θ ∈ Θ and

θv | pa(v)⊥⊥L θnd(v) | θpa(v).

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = σ(D) = Dm.

5Meta Markov models

For A,B ⊆ V identify

θA∪B = (θB |A, θA) = (θA |B , θB).

A and B are meta independent w.r.t. P given S, denoted
A ‡P B |S, if the pair of conditional distributions
(θA |S , θB |S) vary in a product space when θS is fixed.

The family P, or Θ, is meta Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥G B |S =⇒ A‡PB |S whenever S is complete.

6Hyper Markov laws and meta Markov models

Hyper Markov laws live on meta Markov models.

A Gaussian graphical model with graph G is meta Markov
on G.

A log-linear model PA is meta Markov on its dependence
graph G(A) if and only if S ∈ A for any minimal complete
separator S of G(A).

In particular, if A is conformal, PA is meta Markov.

7Maximum likelihood in meta Markov models

If the following conditions are satisfied:

(i) Θ is meta Markov w.r.t. G;

(ii) For any prime component Q of G, ΘQ is a full and
regular exponential family,

the MLE θ̂ of the unknown distribution θ will follow a hyper
Markov law over Θ under Pθ.

In particular, this holds for any Gaussian graphical model
and any meta Markov log-linear model.
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Strong hyper and meta Markov properties

A meta Markov model is strongly meta Markov if
θA |S‡PθS for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
θA |S ⊥⊥L θS for all complete separators S.

A directed hyper Markov model is strongly directed hyper
Markov if θv | pa(v)⊥⊥L θpa(v) for all v ∈ V .

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.

9Conjugacy of hyper Markov properties

If L is a prior law over Θ and X = x is an observation from
θ, L∗ = L(θ |X = x) denotes the posterior law over Θ.

If L is hyper Markov w.r.t. G so is L∗.

If L is strongly hyper Markov w.r.t. G so is L∗.

In the latter case, the update of L is local to prime
components, i.e.

L∗(θQ) = L∗Q(θQ) = LQ(θQ |XQ = xQ)

and the marginal distribution p of X is globally Markov
w.r.t. G, where

p(x) =
∫

Θ

P (X = x | θ)L(dθ).

10Conjugate exponential families

For a k-dimensional exponential family

p(x | θ) = b(x)eθ
>t(x)−ψ(θ)

the standard conjugate family is given as

π(θ | a, κ) ∝ eθ
>a−κψ(θ)

for (a, κ) ∈ A ⊆ Rk ×R+, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1, . . . , xn) with t =
∑
i t(xi) is

then made as (a∗, κ∗) = (a + t, κ + n).

11Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

π(K |Φ, δ) ∝ (detK)δ/2e− tr(KΦ),K ∈ S+(G).

These laws are termed hyper inverse Wishart laws as Σ
follows an inverse Wishart law for complete graphs. For
chordal graphs, each marginal law LC , C of ΣC is inverse
Wishart.

The standard conjugate prior law for log-linear meta
Markov models are termed hyper Dirichlet laws. If G is
chordal, each induced marginal law LC , C ∈ C is a standard
Dirichlet law .

12

Conjugate prior laws are strong hyper Markov

If Θ is meta Markov and ΘQ are full and regular exponential
families for all prime components Q, the standard
conjugate prior law is strongly hyper Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws
and the hyper Dirichlet laws.

Thus, for the hyper inverse and hyper Dirichlet laws we
have simple local updating based on conjugate priors for
Bayesian inference.

13Estimation of structure

Previous lectures have considered the graph G defining the
model as known and inference was concerning an unknown
Pθ with θ ∈ Θ.

The last two lectures are concerned with inference
concerning the graph G, specifying only a family Γ of
possible graphs.

Methods must scale well with data size, as many structures
and huge collections of data are to be considered.

Structure estimation is also known as model selection
(mainstream statistics) system identification (engineering),
structural learning (AI or machine learning.)

14Examples of structural assumptions

Different situations occur depending on the type of
assumptions concerning Γ.

1. Γ is the set of undirected graphs over V ;

2. Γ is the set of chordal graphs over V ;

3. Γ is the set of forests over V ;

4. Γ is the set of trees over V ;

5. Γ is the set of directed acyclic graphs over V ;

6. Other conditional independence structures

15Why estimation of structure?

• Parallel to e.g. density estimation

• Obtain quick overview of relations between variables
in complex systems

• Data mining

• Gene regulatory networks

• Reconstructing family trees from DNA information

• Methods exist, but need better understanding of their
statistical properties.

16



Markov mesh model

17PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases

18Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases

19Tree model

PC algorithm, 10000 cases, correct reconstruction

20

Bayesian GES on tree

21Chest clinic

22PC algorithm

10000 simulated cases

23NPC algorithm

10000 simulated cases

24



Bayesian GES

25Types of approach

• Methods for judging adequacy of structure such as

– Tests of significance

– Penalised likelihood scores

Iκ(G) = log L̂− κ dim(G)

with κ = 1 for AIC Akaike (1974), or
κ = 1

2 log N for BIC (Schwarz 1978).

– Bayesian posterior probabilities.

• Search strategies through space of possible
structures, more or less based on heuristics.

26Estimating trees

Assume P factorizes w.r.t. an unknown tree τ .

Chow and Liu (1968) showed MLE τ̂ of T has maximal
weight, where the weight of τ is

w(τ) =
∑

e∈E(τ)

wn(e) =
∑

e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u, v}:

Hn(e) =
∑
xu,xv

n(xu, xv)
n

log
n(xu, xv)/n

n(xu)n(xv)/n2
.

27Extensions

Results are easily extended to Gaussian graphical models,
with the weight of a tree determined as

wn(e) = −1
2

log(1− r2
e),

where r2
e is correlation coeffient along edge e = {u, v}.

Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wpen
n (e) = nwn(e)− κndfe,

with κn = 2 for AIC, κn = log n for BIC and dfe the
degrees of freedom for independence along e.

28

More on trees

Fast algorithms (Kruskal Jr. 1956) compute maximal
weight spanning tree (or forest) from weights
W = (wuv, u, v ∈ V ).

Chow and Wagner (1978) show a.s. consistency in total
variation of P̂ : If P factorises w.r.t. τ , then

sup
x
|p(x)− p̂(x)| → 0 for n →∞,

so if τ is unique for P , τ̂ = τ for all n > N for some N .

If P does not factorize w.r.t. a tree, P̂ converges to closest
tree-approximation P̃ to P (Kullback-Leibler distance).

29Bayes factors

For G ∈ Γ, ΘG is associated parameter space so that P
factorizes w.r.t. G if and only if P = Pθ for some θ ∈ ΘG .
LG is prior law on ΘG .

The Bayes factor (likelihood ratio) for discriminating
between G1 and G2 based on observations X(n) = x(n) is

BF(G1 : G2) =
f(x(n) | G1)
f(x(n) | G2)

,

where

f(x(n) | G) =
∫

ΘG

f(x(n) | G, θ)LG(dθ)

is known as the marginal likelihood of G.

30Posterior distribution over graphs

If π(G) is a prior probability distribution over a given set of
graphs Γ, the posterior distribution is determined as

π∗(G) = π(G |x(n)) ∝ f(x(n) | G)π(G)

or equivalently

π∗(G1)
π∗(G2)

= BF(G1 : G2)
π(G1)
π(G2)

.

Bayesian analysis looks for the MAP estimate G∗
maximizing π∗(G) over Γ, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.

31Strong hyper Markov prior laws

For strong hyper Markov prior laws, X(n) is itself
marginally Markov so

f(x(n) | G) =

∏
Q∈Q f(x(n)

Q | G)∏
S∈S f(x(n)

S | G)νG(S)
, (1)

where Q are the prime components and S the minimal
complete separators of G.
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Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

h(δ,Φ;G) =
∫
S+(G)

(detK)δ/2e− tr(KΦ) dK,

i.e. the usual Wishart constant if Q = C is a clique.

Combining with the Gaussian likelihood, it is easily seen
that for Gaussian graphical models we have

f(x(n) | G) =
h(δ + n, Φ + Wn;G)

h(δ,Φ;G)
.

Comparing with (1) leads to a similar factorization of the

33normalising constant

h(δ,Φ;G) =

∏
Q∈Q h(δ,ΦQ;GQ)∏

S∈S h(δ,ΦS ;S)νG(S)
.

For chordal graphs all terms in this expression reduce to
known Wishart constants, and we can thus calculate the
normalization constant explicitly.

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2005).

The marginal distribution of W (n) is (weak) hyper Markov
w.r.t. G. It was termed the hyper matrix F law by Dawid
and Lauritzen (1993).

34Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
φ we get

f(φ |x(n)) ∝
∏
e∈E(φ) f(x(n)

e )∏
v∈V f(x(n)

v )dφ(v)−1
,

since all minimal complete separators are singletons and
νφ({v}) = dφ(v)− 1.

Multiplying the right-hand side with
∏
v∈V f(x(n)

v ) yields∏
e∈E(φ) f(x(n)

e )∏
v∈V f(x(n)

v )dφ(v)−1
=

∏
v∈V

f(x(n)
v )

∏
e∈φ

BF(e),

35where BF(e) is the Bayes factor for independence along the
edge e:

BF(e) =
f(x(n)

u , x
(n)
v )

f(x(n)
u )f(x(n)

v )
.

Thus the posterior distribution of φ is

π∗(φ) ∝
∏

e∈E(φ)

BF(e).

In the case where φ is restricted to contain a single tree,
the normalization constant for this distribution can be
explicitly obtained via the Matrix Tree Theorem, see e.g.
Bollobás (1998).

36

Bayesian analysis

MAP estimates of forests can thus be computed using an
MWSF algorithm, using w(e) = log BF (e) as weights.

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

These work less well for weights occurring with typical
Bayes factors, as most of these are essentially zero, so
methods based on the Matrix Tree Theorem seem currently
more useful.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.

37Some challenges for undirected graphs

• Find feasible algorithm for (perfect) simulation from
a distribution over chordal graphs as

p(G) ∝
∏
C∈C w(C)∏

S∈S w(S)νG(S)
,

where w(A), A ⊆ V are a prescribed set of positive
weights.

• Find feasible algorithm for obtaining MAP in
decomposable case. This may not be universally
possible as problem most likely is NP-complete.
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More about Structure Estimation

Lecture 9
Saint Flour Summerschool, July 17, 2006

Steffen L. Lauritzen, University of Oxford

1Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on Hyper Markov Laws

8. Structure estimation and Bayes factors

9. More on structure estimation.

2Types of approach

• Methods for judging adequacy of structure such as

– Tests of significance

– Penalised likelihood scores

Iκ(G) = log L̂− κ dim(G)

with κ = 1 for AIC Akaike (1974), or
κ = 1

2 log n for BIC (Schwarz 1978).

– Bayesian posterior probabilities.

• Search strategies through space of possible
structures, more or less based on heuristics.

3Estimating trees

Assume P factorizes w.r.t. an unknown tree T . MLE τ̂ of
T has maximal weight, where the weight of τ is

w(τ) =
∑

e∈E(τ)

wn(e) =
∑

e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u, v}. For Gaussian trees this becomes

wn(e) = −1
2

log(1− r2
e),

where r2
e is correlation coeffient along edge e = {u, v}.

4

Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wpen
n (e) = nwn(e)− κndfe,

with κn = 1 for AIC, κn = 1
2 log n for BIC and dfe the

degrees of freedom for independence along e.

Use maximal weight spanning tree (or forest) algorithm
from weights W = (wuv, u, v ∈ V ).

5Bayes factors

For G ∈ Γ, ΘG is associated parameter space so that P
factorizes w.r.t. G if P = Pθ for some θ ∈ ΘG . LG is prior
law on ΘG .

The Bayes factor for discriminating between G1 and G2

based on X(n) = x(n) is

BF(G1 : G2) =
f(x(n) | G1)
f(x(n) | G2)

,

where

f(x(n) | G) =
∫

ΘG

f(x(n) | G, θ)LG(dθ)

is known as the marginal likelihood of G.

6Posterior distribution over graphs

If π(G) is a prior probability distribution over a given set of
graphs Γ, the posterior distribution is determined as

π∗(G) = π(G |x(n)) ∝ f(x(n) | G)π(G)

or equivalently

π∗(G1)
π∗(G2)

= BF(G1 : G2)
π(G1)
π(G2)

.

The BIC is an O(1)-approximation to log BF using
Laplace’s method of integrals on the marginal likelihood.

Bayesian analysis looks for the MAP estimate G∗
maximizing π∗(G) over Γ, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.

7Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

h(δ,Φ;G) =
∫
S+(G)

(detK)δ/2e− tr(KΦ) dK,

The marginal likelihood is then

f(x(n) | G) =
h(δ + n, Φ + Wn;G)

h(δ,Φ;G)
.

where

h(δ,Φ;G) =

∏
Q∈Q h(δ,ΦQ;GQ)∏

S∈S h(δ,ΦS ;S)νG(S)
.

8



For chordal graphs all terms reduce to known Wishart
constants.

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2005).

9Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
φ we get

π∗(φ) ∝
∏

e∈E(φ) f(x(n)
e )∏

v∈V f(x(n)
v )dφ(v)−1

∝
∏

e∈E(φ)

BF(e),

where BF(e) is the Bayes factor for independence along the
edge e:

BF(e) =
f(x(n)

u , x
(n)
v )

f(x(n)
u )f(x(n)

v )
.

10MAP estimates of forests can thus be computed using an
MWSF algorithm, using w(e) = log BF (e) as weights.

When φ is restricted to contain a single tree, the
normalization constant can be explicitly obtained via the
Matrix Tree Theorem, see e.g. Bollobás (1998).

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.

11Directed hyper Markov property

L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ is
directed Markov on D for all θ ∈ Θ and

θv | pa(v)⊥⊥L θnd(v) | θpa(v).

A law L is directed hyper Markov on D if and only if LA is
hyper Markov on (DA)m for any ancestral set A ⊆ V .

L is strongly directed hyper Markov if in addition
θv | pa(v)⊥⊥L θpa(v) for all v or, equivalently if the
conditional distributions θv | pa(v), v ∈ V are mutually
independent.

Graphically, this is most easily displayed by introducing one

12

additional parent θv | pa(v) for every vertex V in D, so then

f(x | θ) =
∏
v∈V

f(xv |xpa(v), θv | pa(v)).

Exploiting independence and taking expectations over θ
yields that also marginally ,

f(x | D) =
∫

ΘD

f(x | θ)LD(θ) =
∏
v∈V

f(xv |xpa(v)).

If L is strongly directed hyper Markov and L∗ it holds that
also the posterior law L∗ is is strongly directed hyper
Markov and

L∗(θv | pa(v)) ∝ f(xv |xpa(v), θv | pa(v))L(θv | pa(v))

(Spiegelhalter and Lauritzen 1990).

13Markov equivalence

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so

s - s
s
@

@R? s ≡ s - s s
s
?@
@I

but

s - s -

s
@

@R? s 6≡ s - s - s
s
6@

@R

14Searching equivalence classes

In general, there is no hope of distinguishing Markov
equivalent DAGs, so D can at best be identified up to
Markov equivalence.

The number Dn of unlabelled DAGs with n vertices is given
by the recursion (Robinson 1977)

Dn =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)Dn−i

which grows superexponentially. For n = 10,
Dn ≈ 4.2× 1018. The number of equivalence classes is
smaller, but is conjectured still to grow superexponentially.

15Conjugate priors for DAGs

In the discrete case, the obvious conjugate prior is for fixed
v to let

{θv | paD(v)(xv |x∗paD(v)), xv ∈ Xv}

be Dirichlet distributed and independent for v ∈ V and
x∗paD(v) ∈ XpaD(v) (Spiegelhalter and Lauritzen 1990).

We can derive these Dirichlet distributions from a fixed
master Dirichlet distribution D(α), where
α = α(x), x ∈ X , by letting

{θv | pa(v)(xv |x∗paD(v))} ∼ D(α(xv, x∗paD(v)),

where as usual α(xa) =
∑

y:ya=xa
α(y).

16



Typically, α is specified by letting α = λp0(x) where p0 is
an initial guess on the joint distribution, for example
specified through a DAG D0, and λ is the equivalent
sample size for the prior information.

The values α(xv, x∗paD(v)) = λp0(xv, x∗paD(v)) can then be

calculated by probability propagation.

Common default values is λ = 1 and α(x) = |X |−1.

A similar construction is possible in the Gaussian case using
the Wishart distribution (Geiger and Heckerman 1994) and
for mixed discrete Gaussian networks (Bøttcher 2001), the
latter implemented in the R-package DEAL (Bøttcher and
Dethlefsen 2003).

17Characterization of strong hyper priors

In all cases, it was shown (Geiger and Heckerman 1997,
2002) that prior distributions constructed in this way are
the only distributions which are

1. modular:

paD(v) = paD′(v) =⇒ θv | paD(v) ∼ θv | paD′ (v);

2. score equivalent:

D ≡ D′ =⇒ f(x(n) | D) = f(x(n) | D′).

18Marginal likelihood

Bayes factors derived from these strongly directed hyper
Dirichlet priors have a simple form

f(x(n) | D) =
∏
v

∏
xpa(v)

Γ(α(xpaD(v)))
Γ(α(xpaD(v)) + n(xpaD(v)))

×
∏
xv

Γ(α(xv∪paD(v)) + n(xv∪paD(v)))
Γ(α(xv∪paD(v)))

.

(Cooper and Herskovits 1992;
Heckerman et al. 1995)

Challenge: Find good algorithm for sampling from the full
posterior over DAGs or equivalence classes of DAGs. Issue:
prior uniform over equivalence classes or over DAGs?

19Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes with a
single additional edge and go to class with highest
score - until no improvement.

3. Repeatedly search among equivalence classes with a
single edge less and move to one with highest score -
until no improvement.

For BIC or Bayesian posterior score with directed hyper
Dirichlet priors, this algorithm yields consistent estimate of
equivalence class for P . (Chickering 2002)

20

Markov mesh model

21Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases

22Tree model

23Bayesian GES on tree

24



Chest clinic

25Bayesian GES

26Constraint-based search

Another alternative search algorithm is known as constraint
based search.

Essentially, the search methods generate queries of the type
“A⊥⊥B |S?”, and the answer to such a query divides Γ
into those graphs conforming with the query and those that
do not.

These type of methods were originally designed by
computer scientists in the context where P was fully
available, so queries could be answered without error.

The advantage of this type of method is that relatively few
queries are needed to identify a DAG D (or rather its
equivalence class).

27The disadvantage is that there seems to be no coherent
and principled method to answer the query in the presence
of statistical uncertainty, which is computable.

28

SGS and PC algorithms

SGS-algorithm (Spirtes et al. 1993):

Step 1: Identify skeleton using that, for P faithful,

u 6∼ v ⇐⇒ ∃S ⊆ V \ {u, v} : Xu⊥⊥Xv | XS .

Begin with complete graph, check for S = ∅ and
remove edges when independence holds. Then
continue for increasing |S|.
PC-algorithm (same reference) exploits that only S
with S ⊆ bd(u) \ v or S ⊆ bd(v) \ u needs checking
where bd refers to current skeleton.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.

29Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D′ equivalent
to D.

It uses N independence checks where N is at most

N ≤ 2
(
|V |
2

) d∑
i=0

(
|V | − 1

i

)
≤ |V |d+1

(d− 1)!
,

where d is the maximal degree of any vertex in D.

So worst case complexity is exponential, but algorithm fast
for sparse graphs.

Sampling properties are less well understood although
consistency results exist.

30PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases

31PC algorithm

10000 simulated cases
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NPC algorithm

The NPC algorithm (Steck and Tresp 1996) stabilises the
PC algorithm by adding a necessary path condition.

The general idea has these elements:

1. When a query is decided negatively, ¬(A⊥⊥B |S), it
is taken at face value; When a query is decided
positively, A⊥⊥B |S, it is recorded with care;

2. If at some later stage, the PC algorithm would
remove an edge so that a negative query
¬(A⊥⊥B |S) would conflict with A⊥D B |S, the
removal of this edge is suppressed.

This leads to unresolved queries which are then
passed to the user.

33NPC algorithm

10000 simulated cases
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