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Overview of lectures

Conditional independence and Markov properties
More on Markov properties

Graph decompositions and junction trees
Probability propagation and related algorithms
Log-linear and Gaussian graphical models

Hyper Markov laws

More on Hyper Markov Laws

Structure estimation and Bayes factors

More on structure estimation.



Hyper Markov Laws

Identify # € © and Py € P, so e.g. 84 denotes the marginal
distribution of X 4 under P and 64| g the family of
conditional distributions of X 4 given Xp, etc.

For a law £ on © we write
AJ_LLB|S <~ QA‘SJ_L[;QB‘S|95.
A law L on O is hyper Markov w.r.t. G if

(i) All 8 € © are globally Markov w.r.t. G;
(i) AL, B|S whenever S is complete and A Lg B|S.



Hyper Markov property

The hyper Markov property has a simple formulation in
terms of junction trees:

Arrange the prime components Q of G in a junction tree 7
with complete separators S and consider the extended
junction tree T which is the (bipartite) tree with QU S as
vertices and edges from separators to prime components so
that C ~ S ~ D inT ifand only if C ~ D in T.

Next, associate 04 to A for each A € QU S. It then holds
that

L is hyper Markov on G if and only if {04, A € QU S} is
globally Markov w.r.t. the extended junction tree 7 .



Directed hyper Markov property

L = L(0) is directed hyper Markov w.r.t. a DAG D if 6 is
directed Markov on D for all 8 € © and

e'u | pa(v) J-LE end(u) | 0pa(v)~

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = (D) = D™.



Meta Markov models

For A, B C V identify

OauB = (0B|a,04) = (04|B,0B)-

A and B are meta independent w.r.t. P given S, denoted
A tp B| S, if the pair of conditional distributions
(0a)s,0p|s) vary in a product space when 0 is fixed.

The family P, or ©, is meta Markov w.r.t. G if

(i) All 8 € © are globally Markov w.r.t. G;
(i) ALgB|S = AfpB|S whenever S is complete.



Hyper Markov laws and meta Markov models

Hyper Markov laws live on meta Markov models.

A Gaussian graphical model with graph G is meta Markov
ongG.

A log-linear model P4 is meta Markov on its dependence
graph G(A) if and only if S € A for any minimal complete
separator S of G(A).

In particular, if A is conformal, P4 is meta Markov.



Maximum likelihood in meta Markov models

If the following conditions are satisfied:

(i) © is meta Markov w.r.t. G;
(ii) For any prime component @ of G, ©¢ is a full and
regular exponential family,
the MLE 6 of the unknown distribution 6 will follow a hyper
Markov law over © under Py.

In particular, this holds for any Gaussian graphical model
and any meta Markov log-linear model.



Strong hyper and meta Markov properties

A meta Markov model is strongly meta Markov if
04| sipls for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
0a|s ALz O for all complete separators S.

A directed hyper Markov model is strongly directed hyper
Markov if 0, pa(v) L Opacw) for all v e V.

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.



Conjugacy of hyper Markov properties
If £ is a prior law over © and X = z is an observation from
0, L* = L(6| X = x) denotes the posterior law over ©.
If L is hyper Markov w.r.t. G so is L*.
If L is strongly hyper Markov w.r.t. G so is L*.

In the latter case, the update of L is local to prime
components, i.e.

L*(0q) = L(0q) = Lo(bg | Xq = zq)

and the marginal distribution p of X is globally Markov

w.r.t. G, where

p(@) = /@ P(X = 2 |0)L(d0).



Conjugate exponential families

For a k-dimensional exponential family
plz]6) = b(a)e! )0

the standard conjugate family is given as

w(0|a, k) o efla—r1h(6)

for (a,k) € A C R* x R, where A is determined so that
the normalisation constant is finite.

Posterior updating from (z1,...,x,) with t =", t(x;) is
then made as (a*,k*) = (a + ¢,k + n).



Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

(K | ®,0) o (det K)%/2e~ "(E®) K ¢ S*(G).

These laws are termed hyper inverse Wishart laws as %
follows an inverse Wishart law for complete graphs. For
chordal graphs, each marginal law L¢,C of Y. is inverse
Wishart.

The standard conjugate prior law for log-linear meta
Markov models are termed hyper Dirichlet laws. If G is
chordal, each induced marginal law Lo, C € C is a standard
Dirichlet law .



Conjugate prior laws are strong hyper Markov

If © is meta Markov and ©¢ are full and regular exponential
families for all prime components (), the standard
conjugate prior law is strongly hyper Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws
and the hyper Dirichlet laws.

Thus, for the hyper inverse and hyper Dirichlet laws we
have simple local updating based on conjugate priors for
Bayesian inference.



Estimation of structure

Previous lectures have considered the graph G defining the
model as known and inference was concerning an unknown
Py with 6 € ©.

The last two lectures are concerned with inference
concerning the graph G, specifying only a family I' of
possible graphs.

Methods must scale well with data size, as many structures
and huge collections of data are to be considered.

Structure estimation is also known as model selection
(mainstream statistics) system identification (engineering),
structural learning (Al or machine learning.)



Examples of structural assumptions

Different situations occur depending on the type of
assumptions concerning I'.

1. T is the set of undirected graphs over V;

2. T'is the set of chordal graphs over V;

3. T'is the set of forests over V;

4. T is the set of trees over V;

5. T is the set of directed acyclic graphs over V;

6. Other conditional independence structures



Why estimation of structure?

Parallel to e.g. density estimation

Obtain quick overview of relations between variables
in complex systems

Data mining
Gene regulatory networks
Reconstructing family trees from DNA information

Methods exist, but need better understanding of their
statistical properties.



Markov mesh model




PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases



Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases



Tree model

PC algorithm, 10000 cases, correct reconstruction
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PC algorithm

10000 simulated cases



NPC algorithm

10000 simulated cases



Bayesian GES




Types of approach

e Methods for judging adequacy of structure such as
— Tests of significance
— Penalised likelihood scores
I.(M) =log L — k dim(M)

with k = 1 for AIC Akaike (1974), or
k= log N for BIC (Schwarz 1978).

— Bayesian posterior probabilities.

e Search strategies through space of possible
structures, more or less based on heuristics.



Estimating trees

Assume P factorizes w.r.t. an unknown tree 7.

Chow and Liu (1968) showed MLE 7 of 7 has maximal
weight, where the weight of 7 is

Z wr(e) = Z Hy(e)

e€E(T) e€E(T)

w(r)

and H,(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge

e = {u,v}:
Hn(e) _ Z n(le, xv) lOg nn(xu,qjv)/n

(@u)n(zy)/n?




Extensions

Results are easily extended to Gaussian graphical models,
with the weight of a tree determined as

1
wn(e) = — log(1 — 12),

2

2 is correlation coeffient along edge e = {u,v}.

where r

Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wP(e) = nw(e) — kpdfe.,

with x,, = 2 for AlC, k,, = logn for BIC and df. the
degrees of freedom for independence along e.



More on trees

Fast algorithms (Kruskal Jr. 1956) compute maximal
weight spanning tree (or forest) from weights
W = (wyp,u,v € V).

Chow and Wagner (1978) show a.s. consistency in total
variation of P: If P factorises w.r.t. 7, then

sup |p(z) — p(x)| — 0 for n — oo,

so if T is unique for P, T = 7 for all n > N for some N.

If P does not factori;e w.r.t. a tree, P converges to closest
tree-approximation P to P (Kullback-Leibler distance).



Bayes factors

For G € T', ©g is associated parameter space so that P
factorizes w.r.t. G if and only if P = P, for some 6 € Og.
Lg is prior law on Og.

The Bayes factor (likelihood ratio) for discriminating
between G; and G5 based on observations X (™ = z(") s

fe™16,)

BF(G1 : G2) = @™ G)’

where

f@™)g) = [ f(=™|G,0)Lg(db)

Og

is known as the marginal likelihood of G.



Posterior distribution over graphs

If 7(G) is a prior probability distribution over a given set of
graphs I', the posterior distribution is determined as

m(G) = m(G|2™) o f(=™ | G)m(G)
or equivalently

(1) 7(G1)
(%) 7(Ga)
Bayesian analysis looks for the MAP estimate G*

maximizing 7*(G) over I, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.

= BF(g1 : 92)



Strong hyper Markov prior laws

For strong hyper Markov prior laws, X (™ is itself
marginally Markov so

[oeo f(25)16)
[lses P(l"gsn) |G)ra(S) ,

where Q are the prime components and S the minimal
complete separators of G.

f@™G) = (1)



Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

h(6,®;G) = / (det K)%/2e= r(K®) gf¢.
SH(9)
i.e. the usual Wishart constant if Q = C'is a clique.

Combining with the Gaussian likelihood, it is easily seen
that for Gaussian graphical models we have

h(6 4+ n,®+ W™ G)

f(x(n) 1G) = h(s, ®;G)

Comparing with (1) leads to a similar factorization of the



normalising constant

h(é, @q; G
o, 0;6) = rece N0 0aide)
HSGS h((sv(bSvS) 5(S)

For chordal graphs all terms in this expression reduce to
known Wishart constants, and we can thus calculate the
normalization constant explicitly.

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2002).

The marginal distribution of W (™) is (weak) hyper Markov
w.r.t. G. It was termed the hyper matrix F' law by Dawid
and Lauritzen (1993).



Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
¢ we get

iy i )
ey fla”)de)-1

since all minimal complete separators are singletons and

ve({v}) = dg(v) —
Multiplying the right-hand side with [T f(x(v")) yields

F(@lz™) o

)

[een) p(a?" H Q) HBF

H'UGV f( o d¢,(v) ! veV eco



where BF(e) is the Bayes factor for independence along the
edge e:
f(ai, zi)

(n)) (ﬂ)) ’

BF(e) =
e p(xu p(zo



Bayesian analysis

MAP estimates of forests can thus be computed using an
MWSF algorithm.

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

These work less well for weights occurring with typical
Bayes factors, as most of these are essentially zero, so
methods based on the Matrix Tree Theorem seem currently
more useful.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.



Some challenges for undirected graphs

e Find feasible algorithm for (perfect) simulation from
a distribution over chordal graphs as

~ HCeC w(C)
HSES w(S)Vg(S) ’

where w(A), A C V are a prescribed set of positive
weights.

p(9)

e Find feasible algorithm for obtaining MAP in
decomposable case. This may not be universally
possible as problem most likely is NP-complete.
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