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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on Hyper Markov Laws

8. Structure estimation and Bayes factors

9. More on structure estimation.
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Laws and distributions

A statistical model involves a family P of distributions,
often parametrized as

P = {Pθ, θ ∈ Θ}.

We typically identify Θ with P when the parametrization

θ → Pθ

is one-to-one and onto.

In a Gaussian graphical model, θ = K ∈ S+(G) is uniquely
identifying any regular Gaussian distribution NV (0,Σ),
where K = Σ−1, satisfying the Markov properties of G.
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The case when P = PA is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence with a suitable parameter Θ.

A probability measure on P (or on Θ) represents a random
element of P.

We refer to a probability measure on P or Θ as a law ,
whereas a distribution is a probability measure on X .

Thus we shall e.g. speak of the Wishart law as we think of
W specifying a (random) distribution of X as NV (0 |W ).
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Hyper Markov Laws

We identify θ ∈ Θ and Pθ ∈ P, so e.g. θA for A ⊆ V
denotes the marginal distribution of XA under Pθ and θA |B
the family of conditional distributions of XA given XB , etc.

For a law L on Θ we write

A⊥⊥L B |S ⇐⇒ θA∪S ⊥⊥L θB∪S | θS .

A law L on Θ is hyper Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥⊥L B |S whenever S is complete and A⊥G B |S.
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Hyper Markov property
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If θ follows a hyper Markov law for this graph, it holds for
example that

θ1235⊥⊥ θ24567 | θ25.

We shall later see that this is indeed true for θ̂ = p̂ or Σ̂ in
the graphical model with this graph, i.e.

Σ̂1235⊥⊥ Σ̂24567 | Σ̂25.
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Consequences of the hyper Markov property

We have
A⊥⊥L B |S =⇒ θA⊥⊥L θB | θS ,

but the converse is false!

It generally holds that

A⊥⊥L B |S ⇐⇒ θA |S ⊥⊥L θB |S | θS .

If G is chordal and L is hyper Markov on G, it holds that

A⊥G B |S =⇒ A⊥⊥L B |S.

In general, if we form G by completing all prime
components of G, then if L is hyper Markov on G

A⊥G B |S =⇒ A⊥⊥L B |S.
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Directed hyper Markov property

L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ is
directed Markov on D for all θ ∈ Θ and

θv∪pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently

θv | pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently for a well-ordering of D

θv∪pa(v)⊥⊥L θpr(v) | θpa(v).

If D is perfect, L is directed hyper Markov w.r.t. D if and
only if L is hyper Markov w.r.t. G = σ(D) = Dm.
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Meta independence

In the following we shall for A,B ⊆ V identify

θA∪B = (θB |A, θA) = (θA |B , θB),

i.e. any joint distribution of XA∪B is identified with a pair
of further marginal and conditional distributions.

Define for S ⊆ V the S-section Θθ∗S of Θ as

Θθ∗S = {θ ∈ Θ : θS = θ∗S , θ ∈ Θ}.

The meta independence relation ‡P is defined as

A ‡P B |S ⇐⇒ ∀θ∗S ∈ ΘS : Θθ∗S = Θθ∗S
A |S ×Θθ∗S

B |S ,
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In words, A and B are meta independent w.r.t. P given S,
if the pair of conditional distributions (θA |S , θB |S) vary in
a product space when θS is fixed.

Equivalently, fixing the values of θB |S and θS places the
same restriction on θA |S as just fixing θS .

The relation ‡P satisfies the semigraphoid axioms as it is a
special instance of variation independence.

Note also that for any triple (A,B, S) and any law L on Θ
it holds that

A⊥⊥L B |S =⇒ A‡PB |S

for if θA |S ⊥⊥L θB |S | θS it must in particular be true that
(θA |S , θB |S) vary in a product space for every fixed value
of θS .
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Meta Markov models

The family P, or Θ, is said to be meta Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥G B |S =⇒ A‡PB |S whenever S is complete.

A Markov model is meta Markov if and only if

A⊥G B |S =⇒ A‡PB |S,

where G is obtained from G by completing all prime
components,

If G is chordal, G = G and hence for any meta Markov
model P

A⊥G B |S =⇒ A‡PB |S.
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Hyper Markov laws and meta Markov models

Since it for any law L on Θ holds that

A⊥⊥L B |S =⇒ A‡PB |S,

hyper Markov laws live on meta Markov models: If a law L
on Θ is hyper Markov w.r.t. G , Θ is meta Markov w.r.t. G.

In particular, if a Markov model is not meta Markov, it
cannot carry a hyper Markov law without further restricting
to Θ0 ⊂ Θ.

A Gaussian graphical model with graph G is meta Markov
on G.

This follows for example from results of collapsibility of
Gaussian graphical models (Frydenberg 1990).
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Log-linear meta Markov models

Using results on collapsibility of log-linear models
(Asmussen and Edwards 1983) that

A log-linear model PA is meta Markov on its dependence
graph G(A) if and only if S ∈ A for any minimal complete
separator S of G(A).

In particular, if A is conformal, PA is meta Markov.

For example, the log-linear model with generating class

A = {ab, ac, ad, bc, bd, be, cd, ce, de}

has dependence graph with cliques C = {abcd, bcde}. Since
the complete separator bcd is not in A, this model is not
meta Markov.
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The model with generating class

A′ = {ab, ac, ad, bcd, be, ce, de}

has the same dependence graph G(A′) = G(A) but even
though A′ is not conformal, PA′ is meta Markov on G(A′).

But also the model with generating class

A′′ = {ab, ac, bc, bd, cd, ce, de}

has a different dependence graph G(A′′). The separator bcd
is not in A′′, but PA′′ is meta Markov on G(A′′), as both
minimal separators bc and cd are in A′′.
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Dependence graph of A and A′
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Factor graph of A
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Factor graph of A′
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Factor graph of A′′
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Meta Markov properties on supergraphs

Clearly, if θ is globally Markov w.r.t. the graph G, it is also
Markov w.r.t. any super graph G′ = (V,E′) with E ⊆ E′.

The similar fact is not true for meta Markov models. For
example, the Gaussian graphical model for the 4-cycle G
with adjacencies 1 ∼ 2 ∼ 3 ∼ 4 ∼ 1, is meta Markov on G,
because it has no complete separators.

But the same model is not meta Markov w.r.t. the larger
graph G′ with cliques {124, 234}, since for any K ∈ S+(G),

σ24 =
σ12σ14

σ11
+

σ13σ34

σ33
.

So fixing the value of σ24 restricts the remaining
parameters in a complex way.
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Maximum likelihood in meta Markov models

Under certain conditions, the MLE θ̂ of the unknown
distribution θ will follow a hyper Markov law over Θ under
Pθ. These are

(i) Θ is meta Markov w.r.t. G;

(ii) For any prime component Q of G, the MLE θ̂Q for θQ

based on X
(n)
Q is sufficient for ΘQ and boundedly

complete.

A sufficient condition for (ii) is that ΘQ is a full and regular
exponential family in the sense of Barndorff-Nielsen (1978).

In particular, these conditions are satisfied for any Gaussian
graphical model and any meta Markov log-linear model.
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Canonical construction of hyper Markov laws

The distributions of maximum likelihood estimators are
important examples of hyper Markov laws. But for chordal
graphs there is a canonical construction of such laws.

Let C be the cliques of a chordal graph G and let
LC , C ∈ C be a family of laws over ΘC ⊆ P(XC).

The family of laws are hyperconsistent if for any C and D
with C ∩D = S 6= ∅, LC and LD induce the same law for
θS .

If LC , C ∈ C are hyperconsistent, there is a unique hyper
Markov law L over G with L(θC) = LC , C ∈ C.
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Strong hyper and meta Markov properties

In some cases it is of interest to consider a stronger version
of the hyper and meta Markov properties.

A meta Markov model is strongly meta Markov if
θA |S‡PθS for all complete separators S.

Similarly, a hyper Markov model is strongly hyper Markov if
θA |S ⊥⊥L θS for all complete separators S.

A directed hyper Markov model is strongly directed hyper
Markov if θv | pa(v)⊥⊥L θpa(v) for all v ∈ V .

Gaussian graphical models and log-linear meta Markov
models are strong meta Markov models.
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Bayesian inference

Parameter θ ∈ Θ, data X = x, likelihood

L(θ |x) ∝ p(x | θ) =
dPθ(x)
dµ(x)

.

Express knowledge about θ through a prior law π on θ. Use
also π to denote density of the prior law w.r.t. some
measure ν on Θ.

Inference about θ from x is then represented through
posterior law π∗(θ) = p(θ |x). Then, from Bayes’ formula

π∗(θ) = p(x | θ)π(θ)/p(x) ∝ L(θ |x)π(θ)

so the likelihood function is equal to the density of the
posterior w.r.t. the prior modulo a constant.
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Bernoulli experiments

Data X1 = x1, . . . , Xn = xn independent and Bernoulli
distributed with parameter θ, i.e.

P (Xi = 1 | θ) = 1− P (Xi = 0) = θ.

Use a beta prior:

π(θ | a, b) ∝ θa−1(1− θ)b−1.

If we let x =
∑

xi, we get the posterior:

π∗(θ) ∝ θx(1− θ)n−xθa−1(1− θ)b−1

= θx+a−1(1− θ)n−x+b−1

So the posterior is also beta with parameters
(a + x, b + n− x).
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Conjugate families

A family P of laws on Θ is said to be conjugate under
sampling from x if

π ∈ P =⇒ π∗ ∈ P.

The family of beta laws is conjugate under Bernoulli
sampling.

If the family of priors is parametrised:

P = {Pα, α ∈ A}

we sometimes say that α is a hyperparameter. Then,
Bayesian inference can be made by just updating
hyperparameters. Terminology of hyperparameter breaks
down in more complex models.
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Conjugacy of hyper Markov properties

If L is a prior law over Θ and X = x is an observation from
θ, L∗ = L(θ |X = x) denotes the posterior law over Θ.

If L is hyper Markov w.r.t. G so is L∗.

If L is strongly hyper Markov w.r.t. G so is L∗.

In the latter case, the update of L is local to prime
components, i.e.

L∗(θQ) = L∗Q(θQ) = LQ(θQ |XQ = xQ)

and the marginal distribution p of X is globally Markov
w.r.t. G, where

p(x) =
∫

Θ

P (X = x | θ)L(dθ).
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Conjugate exponential families

For a k-dimensional exponential family

p(x | θ) = b(x)eθ
>t(x)−ψ(θ)

the standard conjugate family is given as

π(θ | a, κ) ∝ eθ
>a−κψ(θ)

for (a, κ) ∈ A ⊆ Rk ×R+, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1, . . . , xn) with t =
∑
i t(xi) is

then made as (a∗, κ∗) = (a + t, κ + n).

The family of Beta laws is an example of a standard
conjugate family.
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Hyper inverse Wishart and Dirichlet laws

Gaussian graphical models are canonical exponential
families. The standard family of conjugate priors have
densities

π(K |Φ, δ) ∝ (detK)δ/2e− tr(KΦ),K ∈ S+(G).

These laws are termed hyper inverse Wishart laws as Σ
follows an inverse Wishart law for complete graphs.

For chordal graphs, each marginal law LC of ΣC is inverse
Wishart.

For any meta Markov model where Θ and ΘQ are full and
regular exponential families for all prime components Q, it
follows directly from Barndorff-Nielsen (1978), page 149,
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that the standard conjugate prior law is strongly hyper
Markov w.r.t. G.

This is in particular true for the hyper inverse Wishart laws.

The analogous prior distribution for log-linear meta Markov
models are likewise termed hyper Dirichlet laws.

They are also strongly hyper Markov and if G is chordal,
each induced marginal law LC is a standard Dirichlet law .
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