Probability Propagation and Related Algorithms

Lecture 4 Saint Flour Summerschool, July 8, 2006 Steffen L. Lauritzen, University of Oxford

Overview of lectures

- 1. Conditional independence and Markov properties
- 2. More on Markov properties
- 3. Graph decompositions and junction trees
- 4. Probability propagation and related algorithms
- 5. Log-linear and Gaussian graphical models
- 6. Conjugate prior families for graphical models
- 7. Hyper Markov laws
- 8. Structure learning and Bayes factors
- 9. More on structure learning.

Markov properties for undirected graphs

- (P) pairwise Markov: $\alpha \not\sim \beta \implies \alpha \perp \beta \mid V \setminus \{\alpha, \beta\};$
- (L) local Markov: $\alpha \perp U \setminus cl(\alpha) \mid bd(\alpha);$
- (G) global Markov: $A \perp_{\mathcal{G}} B \mid S \implies A \perp\!\!\perp B \mid S;$
- (F) Factorization: $f(x) = \prod_{a \in \mathcal{A}} \psi_a(x)$, \mathcal{A} being complete subsets of V.

It then holds that

 $(\mathsf{F}) \implies (\mathsf{G}) \implies (\mathsf{L}) \implies (\mathsf{P}).$ If f(x) > 0 even $(\mathsf{F}) \iff (\mathsf{G}) \iff (\mathsf{L}) \iff (\mathsf{P}).$

Markov properties for directed acyclic graphs

(O) ordered Markov: α ⊥⊥ {pr(α) \ pa(α)} | pa(α);
(L) local Markov: α ⊥⊥ {nd(α) \ pa(α)} | pa(α);
(G) global Markov: A ⊥_D B | S ⇒ A ⊥⊥ B | S.
(F) Factorization: f(x) = ∏_{v∈V} f(x_v | x_{pa(v)}).

It then *always* holds that

 $(\mathsf{F})\iff (\mathsf{G})\iff (\mathsf{L})\iff (\mathsf{O}).$

Relation between different graphs

P directed Markov w.r.t. \mathcal{D} implies *P* factorizes w.r.t. \mathcal{D}^m .

 \mathcal{D} is perfect if skeleton $\mathcal{G} = \sigma(\mathcal{D}) = \mathcal{D}^m$, implying that directed and undirected separation properties are identical, i.e. $A \perp_{\mathcal{G}} B \mid S \iff A \perp_{\mathcal{D}} B \mid S$.

 $\mathcal{G} = \sigma(\mathcal{D})$ for some DAG \mathcal{D} if and only if \mathcal{G} is chordal.

Two DAGs \mathcal{D} and \mathcal{D}' are *Markov equivalent*, i.e. $A \perp_{\mathcal{D}} B \mid S \iff A \perp_{\mathcal{D}'} B \mid S$, if and only if $\sigma(\mathcal{D}) = \sigma(\mathcal{D}')$ and \mathcal{D} and \mathcal{D}' have same unmarried parents.

Graph decomposition

Consider an *undirected* graph $\mathcal{G} = (V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a *decomposition* of \mathcal{G} if both of the following holds:

- (i) $A \perp_{\mathcal{G}} B \mid S$;
- (ii) S is complete.
- The decomposition is *proper* if $A \neq \emptyset$ and $B \neq \emptyset$.

The *components* of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A\cup S}$ and $\mathcal{G}_{B\cup S}$.

A graph is *prime* if no proper decomposition exists.

The graph to the left is prime

Decomposition with $A = \{1, 3\}, B = \{4, 6, 7\}$ and $S = \{2, 5\}$

Decomposability

Any graph can be recursively decomposed into its uniquely defined *prime components*:

A graph is *decomposable* (or rather fully decomposable) if it is complete or admits a proper decomposition into *decomposable* subgraphs.

Definition is recursive. Alternatively this means that *all* prime components are cliques.

Decomposition of Markov properties

Let (A, B, S) be a decomposition of \mathcal{G} . Then *P* factorizes w.r.t. \mathcal{G} if and only if both of the following hold:

(i) $P_{A\cup S}$ and $P_{B\cup S}$ factorize w.r.t. $\mathcal{G}_{A\cup S}$ and $\mathcal{G}_{B\cup S}$; (ii) $f(x)f_S(x_S) = f_{A\cup S}(x_{A\cup S})f_{B\cup S}(x_{B\cup S})$.

Recursive decomposition of a *decomposable graph* yields:

$$f(x)\prod_{S\in\mathcal{S}}f_S(x_S)^{\nu(S)}=\prod_{C\in\mathcal{C}}f_C(x_C).$$

Here S is the set of *complete separators* occurring in the decomposition process and $\nu(S)$ the number of times a given S appears.

More generally if Q denotes the prime components of G:

$$f(x)\prod_{S\in\mathcal{S}}f_S(x_S)^{\nu(S)}=\prod_{Q\in\mathcal{Q}}f_Q(x_Q).$$

Characterizing chordal graphs

The following are equivalent for any undirected graph \mathcal{G} .

- (i) \mathcal{G} is chordal;
- (ii) \mathcal{G} is decomposable;
- (iii) All prime components of *G* are cliques;
- (iv) G admits a perfect numbering;
- (v) Every minimal (α, β) -separator are complete.

Trees are chordal graphs and thus decomposable.

Algorithms associated with chordality

Maximum Cardinality Search (MCS) Tarjan and Yannakakis (1984) *identifies whether a graph is chordal or not.*

If a graph G is chordal, MCS yields a perfect numbering of the vertices. In addition it finds the cliques of G:

From an MCS numbering $V = \{1, \ldots, |V|\}$, let

 $S_{\lambda} = \mathrm{bd}(\lambda) \cap \overline{\{1, \dots, \lambda - 1\}}$

and $\pi_{\lambda} = |S_{\lambda}|$. Call λ a *ladder vertex* if $\lambda = |V|$ or if $\pi_{\lambda+1} < \pi_{\lambda} + 1$ and let Λ be the set of ladder vertices.

The cliques are $C_{\lambda} = \{\lambda\} \cup S_{\lambda}, \lambda \in \Lambda$.

The numbers $\nu(S)$ in the decomposition formula are $\nu(S) = |\{\lambda \in \Lambda : S_{\lambda} = S\}|.$

Junction tree

Let \mathcal{A} be a collection of finite subsets of a set V. A *junction tree* \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the *junction tree property:*

If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.

If the sets in A are pairwise incomparable, they can be arranged in a junction tree if and only if A = C where C are the cliques of a chordal graph.

The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$.

A chordal graph

This graph is chordal, but it might not be that easy to see...Maximum Cardinality Search is handy!

Junction tree

Cliques of graph arranged into a tree with $C_1 \cap C_2 \subseteq D$ for all cliques D on path between C_1 and C_2 .

Junction trees of prime components

In general, the *prime components* of any undirected graph can be arranged in a junction tree in a similar way, using an algorithm of Tarjan (1985), see also Leimer (1993).

Then every pair of neighbours (C, D) in the junction tree represents a decomposition of \mathcal{G} into $\mathcal{G}_{\tilde{C}}$ and $\mathcal{G}_{\tilde{D}}$, where \tilde{C} is the set of vertices in cliques connected to C but separated from D in the junction tree, and similarly with \tilde{D} .

Tarjan's algorithm is based on a slightly more sophisticated algorithm (Rose *et al.* 1976) known as *Lexicographic Search* (LEX) which runs in $O(|V|^2)$ time.

Markov properties of junction tree

Let $Q \in \mathcal{Q}$ be the prime components of a graph \mathcal{G} , arranged in a junction tree \mathcal{T} .

Using that any graph decomposition also yields a decomposition of the Markov properties now gives that

The distribution of $X = (X_v, v \in V)$ factorizes w.r.t. \mathcal{G} if and only if $X_Q, Q \in \mathcal{Q}$ factorizes w.r.t. \mathcal{T} and each of X_Q factorizes w.r.t. \mathcal{G}_Q .

In particular, if \mathcal{G} is decomposable, $X = (X_v, v \in V)$ factorizes w.r.t. \mathcal{G} if and only if $X_C, C \in \mathcal{C}$ factorizes w.r.t. \mathcal{T} , i.e. the Markov property has essentially been transferred to that of a tree of cliques.

Local computation

Local computation algorithms similar to probability propagation have been developed independently in a number of areas with a variety of purposes. For example:

- Kalman filter and smoother (Thiele 1880; Kalman and Bucy 1961);
- Solving sparse linear equations (Parter 1961);
- Decoding digital signals (Viterbi 1967; Bahl *et al.* 1974);
- Estimation in hidden Markov models (Baum 1972);
- Peeling in pedigrees (Elston and Stewart 1971; Cannings *et al.* 1976);

- Belief function evaluation (Kong 1986; Shenoy and Shafer 1986);
- Probability propagation (Pearl 1986; Lauritzen and Spiegelhalter 1988; Jensen *et al.* 1990)
- Abstract framework (Shenoy and Shafer 1990; Lauritzen and Jensen 1997).

Also dynamic programming, linear programming, optimizing decisions, calculating Nash equilibria in cooperative games, and many others. *List is far from exhaustive!*

All algorithms are using, explicitly or implicitly, a *graph decomposition* and *a junction tree* or similar to make the computations.

An abstract perspective

V is large finite set and C collection of small subsets of V. $\phi_C, C \in \mathcal{C}$ are valuations with domain C. *Combination:* $\phi_A \otimes \phi_B$ has domain $A \cup B$. \otimes is assumed *commutative* and *associative*. For $A \subset V \phi^{\downarrow A}$ denotes the *A*-marginal of ϕ . $\phi^{\downarrow A}$ has domain A. Assume consonance: $\phi^{\downarrow(A\cap B)} = (\phi^{\downarrow B})^{\downarrow A}$ and distributivity: $(\phi \otimes \phi_C)^{\downarrow B} = (\phi^{\downarrow B}) \otimes \underline{\phi_C}$, if $C \subseteq B$.

Computational challenge

Calculate marginals $\psi_A = \phi^{\downarrow A}$ of joint valuation

 $\phi = \otimes_{C \in \mathcal{C}} \phi_C$

with domain $V = \bigcup_{C \in \mathcal{C}} C$.

Direct computation of $\phi^{\downarrow A}$ is impossible if V is large.

Challenge: calculate $\phi^{\downarrow A}$ using only *local* operations, i.e. operating on factors ψ_B with domain $B \subseteq C$ for some $C \in C$.

Typically also a *second purpose* of calculation.

A probability perspective

Factorizing density on $\mathcal{X} = \times_{v \in V} \mathcal{X}_v$ with V and \mathcal{X}_v finite:

$$p(x) = \prod_{C \in \mathcal{C}} \phi_C(x).$$

The *potentials* $\phi_C(x)$ depend on $x_C = (x_v, v \in C)$ only. Basic task to calculate *marginal* (likelihood)

$$p^{\downarrow E}(x_E^*) = \sum_{y_{V \setminus E}} p(x_E^*, y_{V \setminus E})$$

for $E \subseteq V$ and fixed x_E^* , but sum has too many terms. A second purpose is to get the prediction $p(x_v | x_E^*) = p(x_v, x_E^*)/p(x_E^*)$ for $v \in V$.

Sparse linear equations

- Valuations \(\phi_C\) are equation systems involving variables with labels C;
- $\phi_A \otimes \phi_B$ concatenates equation systems;
- $\phi_B^{\downarrow A}$ eliminates variables in $B \setminus A$;
- Marginal φ^{↓A} of joint valuation *reduces* the system of equation to a smaller one;
- Second computation finds a *solution* of the equation system by substitution.

Constraint satisfaction

- ϕ_C represent *constraints* involving variables in C;
- $\phi_A \otimes \phi_B$ represents *jointly feasible* configurations;
- $\phi_B^{\downarrow A}$ finds implied constraints;
- Marginal $\phi^{\downarrow A}$ finds *extendible* configurations;
- Second computation *identifies* jointly feasible configurations.

If represented by indicator functions, \otimes is ordinary product and $\phi^{\downarrow E}(x_E^*) = \bigoplus_{y_{V\setminus E}} \phi(x_E^*, y_{V\setminus E})$, where $1 \oplus 1 = 1 \oplus 0 = 0 \oplus 1 = 1$ and $0 \oplus 0 = 0$.

Computational structure

Algorithms all (implicitly or explicitly) arrange the collection of sets C in a *junction tree* T.

Hence, this works only if C are cliques of chordal graph G.

If this is not so from the outset, a *triangulation* is used to construct chordal graph \mathcal{G}' with $E \subseteq E'$.

Clearly, in a probabilistic perspective, if P factorizes w.r.t. G it factorizes w.r.t. G'.

Henceforth we assume this has been done and G is chordal.

Computations are executed by message passing.

Setting up the structure

In many applications P is initially factorizing over a *directed acyclic graph* D. The computational structure is then set up in several steps:

- Moralisation: Constructing D^m, exploiting that if P factorizes on D, it factorizes over D^m.
- Triangulation: Adding edges to find chordal graph G with D^m ⊆ G. This step is non-trivial (NP-complete) to optimize;
- 3. Constructing junction tree:
- 4. *Initialization:* Assigning potential functions ϕ_C to cliques.

Basic computation

This involves following steps

1. Incorporating observations: If $X_E = x_E^*$ is observed, we modify potentials as

$$\phi_C(x_C) \leftarrow \phi_C(x) \prod_{e \in E \cap C} \delta(x_e^*, x_e),$$

with $\delta(u, v) = 1$ if u = v and else $\delta(u, v) = 0$. Then:

$$p(x \mid X_E = x_E^*) = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_C)}{p(x_E^*)}$$

2. Marginals $p(x_E^*)$ and $p(x_C | x_E^*)$ are then calculated by a local *message passing* algorithm.

Separators

Between any two cliques C and D which are neighbours in the junction tree we introduce their intersection $S = C \cap D$. In fact, S are the *minimal separators* appearing in the decomposition sequence.

We also assign potentials to separators, initially $\phi_S \equiv 1$ for all $S \in S$, where S is the set of separators.

We also let

$$\kappa(x) = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_C)}{\prod_{S \in \mathcal{S}} \phi_S(x_S)},\tag{1}$$

and now it holds that $p(x \mid x_E^*) = \kappa(x)/p(x_E^*)$.

The expression (1) will be *invariant* under the message passing.

Marginalization

The A-marginal of a potential ϕ_B for $A \subseteq B$ is

$$\phi_B^{\downarrow A}(x) = \sum_{y_B: y_A = x_A} \phi_B(y)$$

If ϕ_B depends on x through x_B only and $B \subseteq V$ is 'small', marginal can be computed easily.

Marginalization satisfies

Consonance For subsets A and B: $\phi^{\downarrow(A \cap B)} = (\phi^{\downarrow B})^{\downarrow A}$ **Distributivity** If ϕ_C depends on x_C only and $C \subseteq B$: $(\phi\phi_C)^{\downarrow B} = (\phi^{\downarrow B}) \phi_C.$

When C sends message to D, the following happens:

Computation is *local*, involving only variables within cliques.

The expression

$$\kappa(x) = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_C)}{\prod_{S \in \mathcal{S}} \phi_S(x_S)}$$

is invariant under the message passing since $\phi_C \phi_D / \phi_S$ is:

$$\frac{\phi_C \phi_D \frac{\phi_C^{\downarrow S}}{\phi_S}}{\phi_C^{\downarrow S}} = \frac{\phi_C \phi_D}{\phi_S}.$$

After the message has been sent, D contains the D-marginal of $\phi_C \phi_D / \phi_S$.

To see this, calculate

$$\left(\frac{\phi_C \phi_D}{\phi_S}\right)^{\downarrow D} = \frac{\phi_D}{\phi_S} \phi_C^{\downarrow D} = \frac{\phi_D}{\phi_S} \phi_C^{\downarrow S}.$$

Second message

If D returns message to C, the following happens:

Now all sets contain the relevant marginal of $\phi = \phi_C \phi_D / \phi_S$:

The separator contains

$$\phi^{\downarrow S} = \left(\frac{\phi_C \phi_D}{\phi_S}\right)^{\downarrow S} = (\phi^{\downarrow D})^{\downarrow S} = \left(\phi_D \frac{\phi_C^{\downarrow S}}{\phi_S}\right)^{\downarrow S} = \frac{\phi_C^{\downarrow S} \phi_D^{\downarrow S}}{\phi_S}.$$

C contains

$$\phi_C \frac{\phi^{\downarrow S}}{\phi_C^{\downarrow S}} = \frac{\phi_C}{\phi_S} \phi_D^{\downarrow S} = \phi^{\downarrow C}$$

since, as before

$$\left(\frac{\phi_C\phi_D}{\phi_S}\right)^{\downarrow C} = \frac{\phi_D}{\phi_S}\phi_C^{\downarrow D} = \frac{\phi_C}{\phi_S}\phi_D^{\downarrow S}$$

Further messages between C and D are neutral! Nothing will change if a message is repeated.

Message passing

Two phases:

• **COLLINFO**: messages are sent from leaves towards arbitrarily chosen root *R*.

After COLLINFO, the root potential satisfies $\phi_R(x_R) = p(x_R, x_E^*).$

• **DISTINFO:** messages are sent from root R towards leaves. After COLLINFO and subsequent DISTINFO, it holds for all $B \in C \cup S$ that $\phi_B(x_B) = p(x_B, x_E^*)$.

Hence $p(x_E^*) = \sum_{x_S} \phi_S(x_S)$ for any $S \in S$ and $p(x_v | x_E^*)$ can readily be computed from any ϕ_S with $v \in S$.

CollInfo

Messages are sent from leaves towards root.

DISTINFO

After COLLINFO, messages are sent from root towards leaves.

Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already received message from all other neighbours. Such messages are *live*.

Using this protocol, there will be one clique who first receives messages from all its neighbours. This is effectively the root R in COLLINFO and DISTINFO.

Additional messages never do any harm (ignoring efficiency issues) as κ is invariant under message passing.

Exactly two live messages along every branch is needed.

Maximization

Replace sum-marginal with *A*-maxmarginal:

$$\phi_B^{\downarrow A}(x) = \max_{y_B: y_A = x_A} \phi_B(y)$$

Satisfies consonance: $\phi^{\downarrow (A \cap B)} = (\phi^{\downarrow B})^{\downarrow A}$ and distributivity: $(\phi\phi_C)^{\downarrow B} = (\phi^{\downarrow B}) \phi_C$, if ϕ_C depends on x_C only and $C \subseteq B$.

COLLINFO yields maximal value of density f.

DISTINFO yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.

Since (1) remains invariant, one can switch freely between max- and sum-propagation.

Random propagation

After COLLINFO, the root potential is $\phi_R(x) \propto p(x_R | x_E)$ Modify DISTINFO as follows:

1. Pick random configuration \check{x}_R from ϕ_R .

- 2. Send message to neighbours C as $\check{x}_{R\cap C} = \check{x}_S$ where $S = C \cap R$ is the separator.
- 3. Continue by picking \check{x}_C according to $\phi_C(x_{C\setminus S}, \check{x}_S)$ and send message further away from root.

When the sampling stops at leaves of junction tree, a configuration \check{x} has been generated from $p(x | x_E^*)$.

References

Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. (1974). Optimal decoding of linear codes for minimizing symbol error rate. *IEEE Transactions on Information The*ory, **20**, 284–7.

Baum, L. E. (1972). An equality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. *Inequalities*, **3**, 1–8.

Cannings, C., Thompson, E. A., and Skolnick, M. H. (1976). Recursive derivation of likelihoods on pedigrees of arbitrary complexity. Advances in Applied Probability, 8, 622–5.

Elston, R. C. and Stewart, J. (1971). A general model for

the genetic analysis of pedigree data. *Human Heredity*, **21**, 523–42.

- Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990). Bayesian updating in causal probabilistic networks by local computation. *Computational Statistics Quarterly*, 4, 269–82.
- Kalman, R. E. and Bucy, R. (1961). New results in linear filtering and prediction. *Journal of Basic Engineering*, 83 D, 95–108.
- Kong, A. (1986). Multivariate belief functions and graphical models. Ph.D. Thesis, Department of Statistics, Harvard University, Massachusetts.
- Lauritzen, S. L. and Jensen, F. V. (1997). Local computation with valuations from a commutative semigroup.

Annals of Mathematics and Artificial Intelligence, **21**, 51–69.

- Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society, Series B, 50, 157–224.
- Leimer, H.-G. (1993). Optimal decomposition by clique separators. Discrete Mathematics, 113, 99–123.
- Parter, S. (1961). The use of linear graphs in Gauss elimination. SIAM Review, 3, 119–30.
- Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29, 241–88.
- Rose, D. J., Tarjan, R. E., and Lueker, G. S. (1976). Algo-

rithmic aspects of vertex elimination on graphs. *SIAM Journal on Computing*, **5**, 266–83.

- Shenoy, P. P. and Shafer, G. (1986). Propagating belief functions using local propagation. *IEEE Expert*, 1, 43–52.
- Shenoy, P. P. and Shafer, G. (1990). Axioms for probability and belief-function propagation. In Uncertainty in artificial intelligence 4, (ed. R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer), pp. 169–98. North-Holland, Amsterdam, The Netherlands.
- Tarjan, R. E. (1985). Decomposition by clique separators. Discrete Mathematics, 55, 221–32.
- Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM Journal on Computing, 13, 566–79.

- Thiele, T. N. (1880). Om Anvendelse af mindste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfældige Fejlkilder giver Fejlene en 'systematisk' Karakter. Vidensk. Selsk. Skr. 5. Rk., naturvid. og mat. Afd., 12, 381– 408. French version: Sur la Compensation de quelques Erreurs quasi-systématiques par la Méthode des moindres Carrés. Reitzel, København, 1880.
- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE Transactions on Information Theory*, **13**, 260– 9.