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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.
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Markov properties for undirected graphs

(P) pairwise Markov: α 6∼ β =⇒ α⊥⊥β |V \ {α, β};

(L) local Markov: α⊥⊥V \ cl(α) | bd(α);

(G) global Markov: A⊥G B |S =⇒ A⊥⊥B |S;

(F) Factorization: f(x) =
∏

a∈A ψa(x), A being
complete subsets of V .

It then holds that

(F) =⇒ (G) =⇒ (L) =⇒ (P).

If f(x) > 0 even

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).
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Markov properties for directed acyclic graphs

(O) ordered Markov: α⊥⊥{pr(α) \ pa(α)} | pa(α);

(L) local Markov: α⊥⊥{nd(α) \ pa(α)} | pa(α);

(G) global Markov: A⊥D B |S =⇒ A⊥⊥B |S.

(F) Factorization: f(x) =
∏

v∈V f(xv |xpa(v)).

It then always holds that

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (O).
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Relation between different graphs

P directed Markov w.r.t. D implies P factorizes w.r.t. Dm.

D is perfect if skeleton G = σ(D) = Dm, implying that
directed and undirected separation properties are identical,
i.e. A⊥G B |S ⇐⇒ A⊥D B |S.

G = σ(D) for some DAG D if and only if G is chordal.

Two DAGs D and D′ are Markov equivalent, i.e.
A⊥D B |S ⇐⇒ A⊥D′ B |S, if and only if σ(D) = σ(D′)
and D and D′ have same unmarried parents.
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Graph decomposition

Consider an undirected graph G = (V,E). A partitioning of
V into a triple (A,B, S) of subsets of V forms a
decomposition of G if both of the following holds:

(i) A⊥G B |S;

(ii) S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.

The components of G are the induced subgraphs GA∪S and
GB∪S .

A graph is prime if no proper decomposition exists.

6



Examples
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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Decomposability

Any graph can be recursively decomposed into its uniquely
defined prime components:
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A graph is decomposable (or rather fully decomposable) if
it is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
prime components are cliques.
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Decomposition of Markov properties

Let (A,B, S) be a decomposition of G. Then P factorizes
w.r.t. G if and only if both of the following hold:

(i) PA∪S and PB∪S factorize w.r.t. GA∪S and GB∪S ;

(ii) f(x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

Recursive decomposition of a decomposable graph yields:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏
C∈C

fC(xC).

Here S is the set of complete separators occurring in the
decomposition process and ν(S) the number of times a
given S appears.
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More generally if Q denotes the prime components of G:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏

Q∈Q
fQ(xQ).
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Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

11



Algorithms associated with chordality

Maximum Cardinality Search (MCS) Tarjan and Yannakakis
(1984) identifies whether a graph is chordal or not.

If a graph G is chordal, MCS yields a perfect numbering of
the vertices. In addition it finds the cliques of G:

From an MCS numbering V = {1, . . . , |V |}, let

Sλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Sλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1 and let Λ be the set of ladder vertices.

The cliques are Cλ = {λ} ∪ Sλ, λ ∈ Λ.

The numbers ν(S) in the decomposition formula are
ν(S) = |{λ ∈ Λ : Sλ = S}|.
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Junction tree

Let A be a collection of finite subsets of a set V . A
junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩B ⊂ C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cλ, λ ∈ Λ.
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A chordal graph
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This graph is chordal, but it might not be that easy to
see. . .Maximum Cardinality Search is handy!
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Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for
all cliques D on path between C1 and C2.
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Junction trees of prime components

In general, the prime components of any undirected graph
can be arranged in a junction tree in a similar way, using an
algorithm of Tarjan (1985), see also Leimer (1993).

Then every pair of neighbours (C,D) in the junction tree
represents a decomposition of G into GC̃ and GD̃, where C̃
is the set of vertices in cliques connected to C but
separated from D in the junction tree, and similarly with D̃.

Tarjan’s algorithm is based on a slightly more sophisticated
algorithm (Rose et al. 1976) known as Lexicographic
Search (LEX) which runs in O(|V |2) time.
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Markov properties of junction tree

Let Q ∈ Q be the prime components of a graph G,
arranged in a junction tree T .

Using that any graph decomposition also yields a
decomposition of the Markov properties now gives that

The distribution of X = (Xv, v ∈ V ) factorizes w.r.t. G if
and only if XQ, Q ∈ Q factorizes w.r.t. T and each of XQ

factorizes w.r.t. GQ.

In particular, if G is decomposable, X = (Xv, v ∈ V )
factorizes w.r.t. G if and only if XC , C ∈ C factorizes w.r.t.
T , i.e. the Markov property has essentially been transferred
to that of a tree of cliques.
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Local computation

Local computation algorithms similar to probability
propagation have been developed independently in a
number of areas with a variety of purposes. For example:

• Kalman filter and smoother (Thiele 1880;
Kalman and Bucy 1961);

• Solving sparse linear equations (Parter 1961);

• Decoding digital signals (Viterbi 1967;
Bahl et al. 1974);

• Estimation in hidden Markov models (Baum 1972);

• Peeling in pedigrees (Elston and Stewart 1971;
Cannings et al. 1976);
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• Belief function evaluation (Kong 1986;
Shenoy and Shafer 1986);

• Probability propagation (Pearl 1986;
Lauritzen and Spiegelhalter 1988;
Jensen et al. 1990)

• Abstract framework (Shenoy and Shafer 1990;
Lauritzen and Jensen 1997).

Also dynamic programming, linear programming, optimizing
decisions, calculating Nash equilibria in cooperative games,
and many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a graph
decomposition and a junction tree or similar to make the
computations.
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An abstract perspective

V is large finite set and C collection of small subsets of V .

φC , C ∈ C are valuations with domain C.

Combination: φA ⊗ φB has domain A ∪B.

⊗ is assumed commutative and associative.

For A ⊂ V φ↓A denotes the A-marginal of φ. φ↓A has
domain A.

Assume consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and distributivity: (φ⊗ φC)↓B =

(
φ↓B

)
⊗ φC , if C ⊆ B.
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Computational challenge

Calculate marginals ψA = φ↓A of joint valuation

φ = ⊗C∈CφC

with domain V = ∪C∈CC.

Direct computation of φ↓A is impossible if V is large.

Challenge: calculate φ↓A using only local operations, i.e.
operating on factors ψB with domain B ⊆ C for some
C ∈ C.

Typically also a second purpose of calculation.
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A probability perspective

Factorizing density on X = ×v∈V Xv with V and Xv finite:

p(x) =
∏
C∈C

φC(x).

The potentials φC(x) depend on xC = (xv, v ∈ C) only.

Basic task to calculate marginal (likelihood)

p↓E(x∗E) =
∑
yV \E

p(x∗E , yV \E)

for E ⊆ V and fixed x∗E , but sum has too many terms.

A second purpose is to get the prediction
p(xv |x∗E) = p(xv, x

∗
E)/p(x∗E) for v ∈ V .
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Sparse linear equations

• Valuations φC are equation systems involving
variables with labels C;

• φA ⊗ φB concatenates equation systems;

• φ↓AB eliminates variables in B \A;

• Marginal φ↓A of joint valuation reduces the system of
equation to a smaller one;

• Second computation finds a solution of the equation
system by substitution.
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Constraint satisfaction

• φC represent constraints involving variables in C;

• φA ⊗ φB represents jointly feasible configurations;

• φ↓AB finds implied constraints;

• Marginal φ↓A finds extendible configurations;

• Second computation identifies jointly feasible
configurations.

If represented by indicator functions, ⊗ is ordinary product
and φ↓E(x∗E) = ⊕yV \E

φ(x∗E , yV \E), where
1⊕ 1 = 1⊕ 0 = 0⊕ 1 = 1 and 0⊕ 0 = 0.
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Computational structure

Algorithms all (implicitly or explicitly) arrange the
collection of sets C in a junction tree T .

Hence, this works only if C are cliques of chordal graph G.

If this is not so from the outset, a triangulation is used to
construct chordal graph G′ with E ⊆ E′.

Clearly, in a probabilistic perspective, if P factorizes w.r.t.
G it factorizes w.r.t. G′.

Henceforth we assume this has been done and G is chordal.

Computations are executed by message passing .
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Setting up the structure

In many applications P is initially factorizing over a
directed acyclic graph D. The computational structure is
then set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P
factorizes on D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G
with Dm ⊆ G. This step is non-trivial (NP-complete)
to optimize;

3. Constructing junction tree:

4. Initialization: Assigning potential functions φC to
cliques.
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Basic computation

This involves following steps

1. Incorporating observations: If XE = x∗E is observed,
we modify potentials as

φC(xC)← φC(x)
∏

e∈E∩C

δ(x∗e, xe),

with δ(u, v) = 1 if u = v and else δ(u, v) = 0. Then:

p(x |XE = x∗E) =
∏

C∈C φC(xC)
p(x∗E)

.

2. Marginals p(x∗E) and p(xC |x∗E) are then calculated
by a local message passing algorithm.
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Separators

Between any two cliques C and D which are neighbours in
the junction tree we introduce their intersection
S = C ∩D. In fact, S are the minimal separators
appearing in the decomposition sequence.

We also assign potentials to separators, initially φS ≡ 1 for
all S ∈ S, where S is the set of separators.

We also let

κ(x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

, (1)

and now it holds that p(x |x∗E) = κ(x)/p(x∗E).

The expression (1) will be invariant under the message
passing.
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Marginalization

The A-marginal of a potential φB for A ⊆ B is

φ↓AB (x) =
∑

yB :yA=xA

φB(y)

If φB depends on x through xB only and B ⊆ V is ‘small’,
marginal can be computed easily.

Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC)↓B =
(
φ↓B

)
φC .
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Messages

When C sends message to D, the following happens:

Before�
�
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�φC φ↓SC φD

φ↓S
C

φS

After

Computation is local , involving only variables within cliques.
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The expression

κ(x) =
∏

C∈C φC(xC)∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓S

C

φS

φ↓SC

=
φCφD

φS
.

After the message has been sent, D contains the
D-marginal of φCφD/φS .

To see this, calculate(
φCφD

φS

)↓D
=
φD

φS
φ↓DC =

φD

φS
φ↓SC .
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Second message

If D returns message to C, the following happens:

First message

�
�

�
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�φC

φ↓S
D

φS
φ↓S φD

φ↓S
C

φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓S
C

φS

Second message

Now all sets contain the relevant marginal of
φ = φCφD/φS :
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The separator contains

φ↓S =
(
φCφD

φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC

φS

)↓S
=
φ↓SC φ↓SD

φS
.

C contains

φC
φ↓S

φ↓SC

=
φC

φS
φ↓SD = φ↓C

since, as before(
φCφD

φS

)↓C
=
φD

φS
φ↓DC =

φC

φS
φ↓SD .

Further messages between C and D are neutral! Nothing
will change if a message is repeated.
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Message passing

Two phases:

• CollInfo: messages are sent from leaves towards
arbitrarily chosen root R.

After CollInfo, the root potential satisfies
φR(xR) = p(xR, x

∗
E).

• DistInfo: messages are sent from root R towards
leaves. After CollInfo and subsequent DistInfo,
it holds for all B ∈ C ∪ S that φB(xB) = p(xB , x

∗
E).

Hence p(x∗E) =
∑

xS
φS(xS) for any S ∈ S and p(xv |x∗E)

can readily be computed from any φS with v ∈ S.
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CollInfo
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Messages are sent from leaves towards root.
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DistInfo
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After CollInfo, messages are sent from root towards
leaves.
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Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already
received message from all other neighbours. Such messages
are live.

Using this protocol, there will be one clique who first
receives messages from all its neighbours. This is effectively
the root R in CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency
issues) as κ is invariant under message passing.

Exactly two live messages along every branch is needed.
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Maximization

Replace sum-marginal with A–maxmarginal:

φ↓AB (x) = max
yB :yA=xA

φB(y)

Satisfies consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and

distributivity: (φφC)↓B =
(
φ↓B

)
φC , if φC depends on xC

only and C ⊆ B.

CollInfo yields maximal value of density f .

DistInfo yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.

Since (1) remains invariant, one can switch freely between
max- and sum-propagation.
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Random propagation

After CollInfo, the root potential is φR(x) ∝ p(xR |xE)

Modify DistInfo as follows:

1. Pick random configuration x̌R from φR.

2. Send message to neighbours C as x̌R∩C = x̌S where
S = C ∩R is the separator.

3. Continue by picking x̌C according to φC(xC\S , x̌S)
and send message further away from root.

When the sampling stops at leaves of junction tree, a
configuration x̌ has been generated from p(x |x∗E).

39



References

Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. (1974). Op-
timal decoding of linear codes for minimizing symbol
error rate. IEEE Transactions on Information The-
ory, 20, 284–7.

Baum, L. E. (1972). An equality and associated maxi-
mization technique in statistical estimation for prob-
abilistic functions of Markov processes. Inequalities,
3, 1–8.

Cannings, C., Thompson, E. A., and Skolnick, M. H.
(1976). Recursive derivation of likelihoods on pedi-
grees of arbitrary complexity. Advances in Applied
Probability, 8, 622–5.

Elston, R. C. and Stewart, J. (1971). A general model for

40



the genetic analysis of pedigree data. Human Hered-
ity, 21, 523–42.

Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990).
Bayesian updating in causal probabilistic networks by
local computation. Computational Statistics Quar-
terly, 4, 269–82.

Kalman, R. E. and Bucy, R. (1961). New results in linear
filtering and prediction. Journal of Basic Engineering,
83 D, 95–108.

Kong, A. (1986). Multivariate belief functions and graph-
ical models. Ph.D. Thesis, Department of Statistics,
Harvard University, Massachusetts.

Lauritzen, S. L. and Jensen, F. V. (1997). Local computa-
tion with valuations from a commutative semigroup.

41



Annals of Mathematics and Artificial Intelligence, 21,
51–69.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local
computations with probabilities on graphical struc-
tures and their application to expert systems (with
discussion). Journal of the Royal Statistical Society,
Series B, 50, 157–224.

Leimer, H.-G. (1993). Optimal decomposition by clique
separators. Discrete Mathematics, 113, 99–123.

Parter, S. (1961). The use of linear graphs in Gauss elim-
ination. SIAM Review, 3, 119–30.

Pearl, J. (1986). Fusion, propagation and structuring in
belief networks. Artificial Intelligence, 29, 241–88.

Rose, D. J., Tarjan, R. E., and Lueker, G. S. (1976). Algo-

42



rithmic aspects of vertex elimination on graphs. SIAM
Journal on Computing, 5, 266–83.

Shenoy, P. P. and Shafer, G. (1986). Propagating belief
functions using local propagation. IEEE Expert, 1,
43–52.

Shenoy, P. P. and Shafer, G. (1990). Axioms for probabil-
ity and belief–function propagation. In Uncertainty
in artificial intelligence 4, (ed. R. D. Shachter, T. S.
Levitt, L. N. Kanal, and J. F. Lemmer), pp. 169–98.
North-Holland, Amsterdam, The Netherlands.

Tarjan, R. E. (1985). Decomposition by clique separators.
Discrete Mathematics, 55, 221–32.

Tarjan, R. E. and Yannakakis, M. (1984). Simple
linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce

43



acyclic hypergraphs. SIAM Journal on Computing,
13, 566–79.

Thiele, T. N. (1880). Om Anvendelse af mindste
Kvadraters Methode i nogle Tilfælde, hvor en Kom-
plikation af visse Slags uensartede tilfældige Fejlk-
ilder giver Fejlene en ‘systematisk’ Karakter. Vidensk.
Selsk. Skr. 5. Rk., naturvid. og mat. Afd., 12, 381–
408. French version: Sur la Compensation de quelques
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