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Introduction

Structure estimation
Some examples

General points

Advances in computing has set focus on estimation of structure:
» Model selection (e.g. subset selection in regression)
» System identification (engineering)
» Structural learning (Al or machine learning)

Graphical models describe conditional independence structures, so
good case for formal analysis.

Methods must scale well with data size, as many structures and
huge collections of data are to be considered.
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Introduction

Structure estimation
Some examples
General points

Why estimation of structure?

» Parallel to e.g. density estimation

» Obtain quick overview of relations between variables in
complex systems

» Data mining
» Gene regulatory networks
» Reconstructing family trees from DNA information

» General interest in sparsity.
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PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases
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Tree model
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Bayesian GES
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SNPs and gene expressions

min BIC forest
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classified into three types:
» score-based methods: For example optimizing a penalized
likelihood by using convex programming e.g. glasso;
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Introduction

Structure estimation
Some examples

General points

Methods for structure identification in graphical models can be
classified into three types:

> score-based methods: For example optimizing a penalized
likelihood by using convex programming e.g. glasso;

» Bayesian methods: |dentifying posterior distributions over
graphs; can also use posterior probability as score.

» constraint-based methods: Querying conditional

independences and identifying compatible independence
structures, for example PC, PC*, NPC, IC, ClI, FCI, SIN, QP,
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Assume P factorizes w.r.t. an unknown tree 7. Based on a sample

x(M = (x1,...,x") the likelihood function becomes
Ur.p) = logL(r)=logp(x"|r)
= > logp(x") = Y {deg(v) — 1} log p(x").
ecE(T) veV

Maximizing this over p for a fixed tree 7 yields the profile likelihood

i(r) = Z Hn(e) + > Hn(v)

ecE(T vev
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Here Hy(e) is the empirical cross-entropy or mutual information
between endpoint variables of the edge e = {u, v}:

Hale) =Y n(xy, xv) | n(xu, x,)/n

n O n(x)n(x)/n?

and similarly Hp(v) is the empirical entropy of X,.

Based on this fact, (Chow and Liu, 1968) showed MLE 7 of T has
maximal weight, where the weight of 7 is

Here ¢ is the graph with all vertices isolated.
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Fast algorithms (Kruskal Jr., 1956) compute maximal weight
spanning tree from weights W = (wy,, u,v € V).

Chow and Wagner (1978) show a.s. consistency in total variation
of P: If P factorises w.r.t. 7, then

sup |p(x) — p(x)| — 0 for n — oo,

so if T is unique for P, 7 = 7 for all n > N for some N.

If P does not factorize w.r.t. a tree, P converges to closest
tree-approximation P to P (Kullback-Leibler distance).

Note that if P is Markov w.r.t. and undirected graph G and we
define weights on edges as w(e) = H(e) by cross-entropy, P is
Markov w.r.t any maximal weight spanning tree of G.
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Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

Forests

Note that if we consider forests instead of trees, i.e. allow missing
branches, it is still true that

(@) =1(¢,p) = Y _ Hale)+ > Ha(v)
ecE(¢) veV

Thus if we add a penalty for each edge, e.g. proportional to the
number of additional parameters g. of introducing the edge e, we
can find the maximum penalised forest by Kruskal's algorithm

using weights
= > {Hale) = A}
ecE(¢)

This has been exploited in the package gRapHD (Edwards et al.,
2010), see also Panayidou (2011) and Hgjsgaard et al. (2012).
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Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

SNPs and gene expression

min BIC forest
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Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

Gaussian Trees

If X = (Xy,v € V) is regular multivariate Gaussian, it factorizes
w.r.t. an undirected graph if and only if its concentration matrix
K = ¥ ! satisfies

kyy =0 <= udv.

Results of Chow et al. are easily extended to Gaussian trees, with
the weight of a tree determined as

w(r)= Y —log(l—r2),

ecE(T)

with r? being the empirical correlation coeffient between X, and
Xy .
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

» Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

Steffen Lauritzen, University of Oxford Structure Estimation in Graphical Models



Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

» Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

» (Boootstrap) sampling distribution of tree MLE can be
simulated

Steffen Lauritzen, University of Oxford Structure Estimation in Graphical Models



Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

» Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

» (Boootstrap) sampling distribution of tree MLE can be
simulated

» Penalty terms additive along branches, so highest AIC or BIC
scoring tree (forest) also available using a MWST algorithm.

Steffen Lauritzen, University of Oxford Structure Estimation in Graphical Models



Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

(Boootstrap) sampling distribution of tree MLE can be
simulated

Penalty terms additive along branches, so highest AIC or BIC
scoring tree (forest) also available using a MWST algorithm.
Tree methods scale extremely well with both sample size and
number of variables;

Steffen Lauritzen, University of Oxford Structure Estimation in Graphical Models



Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

(Boootstrap) sampling distribution of tree MLE can be
simulated
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problem (empirical covariance matrix in the Gaussian case).
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

» Direct likelihood methods (ignoring penalty terms) lead to
sensible results.

» (Boootstrap) sampling distribution of tree MLE can be
simulated

» Penalty terms additive along branches, so highest AIC or BIC
scoring tree (forest) also available using a MWST algorithm.

» Tree methods scale extremely well with both sample size and
number of variables;

» Pairwise marginal counts are sufficient statistics for the tree
problem (empirical covariance matrix in the Gaussian case).

Note sufficiency holds despite parameter space very different from
open subset of RX.
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Score-based methods

Estimating trees and forests
Graphical lasso

Score-based methods for DAGs

Consider an undirected Gaussian graphical model and the
h-penalized log-likelihood function

2lpen(K) = logdet K — tr(KW) — A||K]|1.

The penalty [|K||] = >_,; k| is essentially a convex relaxation of
the number of edges in the graph and optimization of the
penalized likelihood will typically lead to several kjj = 0 and thus in
effect estimate a particular graph.

This penalized likelihood can be maximized efficiently (Banerjee
et al., 2008) as implemented in the graphical lasso (Friedman
et al., 2008).

Beware: not scale-invariant!
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Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

glasso for bodyfat
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Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

Markov equivalence

D and D' are equivalent if and only if:
1. D and D’ have same skeleton (ignoring directions)

2. D and D’ have same unmarried parents

’ NN
NN

Steffen Lauritzen, University of Oxford Structure Estimation in Graphical Models



Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

Equivalence class searches

Searches directly in equivalence classes of DAGs.

Define score function o(D), with the property that
D =D = o(D) =o(D).

This holds e.g. if score function is AIC or BIC or full Bayesian
posterior with strong hyper Markov prior (based upon Dirichlet or
inverse Wishart distributions).

Equivalence class with maximal score is sought.

dlasso? problems with invariance over equivalence classes!
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Score-based methods
Estimating trees and forests
Graphical lasso
Score-based methods for DAGs

Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes with a single
additional edge and go to class with highest score - until no
improvement.

3. Repeatedly search among equivalence classes with a single

edge less and move to one with highest score - until no
improvement.

For BIC, for example, this algorithm yields consistent estimate of
equivalence class for P. (Chickering, 2002)
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Bayesian analysis Basic Bayesian model estimation

Decomposable graphical models
Bayesian methods for DAGs

For g in specified set of graphs, ©, is associated parameter space
so that P factorizes w.r.t. g if and only if P = Py for some 0 € ©,.

Tg is prior on ©4. Prior p(g) is uniform for simplicity.

Based on x(", posterior distribution of G is
p*(g) = p(g | x") o p(x(") | g) = / p(x(") | g,0) mg(db).
14

Bayesian analysis looks for MAP estimate g* maximizing p*(g) or
attempts to sample from posterior, using e.g. MCMC.
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Bayesian analysis Basic Bayesian model estimation

Decomposable graphical models
Bayesian methods for DAGs

For connected decomposable graphs and strong hyper Markov
priors Dawid and Lauritzen (1993) show

(n)
p(x
plx | ) = LeecPECT),

H5e5 P(Xén))

where each factor has explicit form. C are the cliques of g and S
the separators (mininal cutsets).

Hence, if the prior distributions over a class of graphs is uniform,
the posterior distribution has the form

cec P(X(cn)) _ [Tcee w(€)
[Tsesp(”)  Isesw(S)

plg] ") x
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Bayesian analysis Basic Bayesian model estimation

Decomposable graphical models
Bayesian methods for DAGs

Byrne (2011) shows that a distribution over decomposable graphs
having the form
[Teee w(€)

P(g) HSes ( )

satisfies a structural Markov property so that for subsets A and B
with V = AU B, it holds that

Gall Gg| (A, B) is a decomposition of G.

In words, the finer structure of the graph bits in two components
of any decomposition are independent.
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Bayesian analysis Basic Bayesian model estimation

Decomposable graphical models
Bayesian methods for DAGs

Trees are decomposable, so for trees we get
p(r XMy o T p(<")
ecE(T)
which more illuminating can be expressed as
p(r|xM) o I] Be
ecE(T)

where
)
p(x™)p(x¢™)

is the Bayes factor for independence along the edge uv.

uv
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Bayesian analysis Basic Bayesian model estimation

Decomposable graphical models
Bayesian methods for DAGs

MAP estimates of trees can be computed (also in Gaussian case)

Good direct algorithms exist for generating random spanning trees
(Guénoche, 1983; Broder, 1989; Aldous, 1990; Propp and Wilson,
1998) so full posterior analysis is possible for trees.

MCMC methods for exploring posteriors of undirected graphs have
been developed.

Even for forests, it seems complicated to sample from the posterior
distribution (Dai, 2008).

po|x™) o ] B

ecE(9)
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Bayesian analysis Basic Bayesian model estimation
Decomposable graphical models
Bayesian methods for DAGs

Some challenges for undirected graphs

» Find feasible algorithm for (perfect) simulation from a
distribution over decomposable graphs as

HCeC W( C)
P&) o oo w(S)’

where w(A), A C V are a prescribed set of positive weights.

» Find feasible algorithm for obtaining MAP in decomposable
case. This may not be universally possible as problem is
NP-complete, even for bounded maximum clique size.
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Bayesian analysis Basic Bayesian model estimation
Decomposable graphical models
Bayesian methods for DAGs

Posterior distribution for DAG

For strong directed hyper Markov priors it holds that
n) (n)
A1d) = [T ™ ai)
veV

SO

p(d|x™) o TT p(x™ 1x520,):
veV
see e.g. Spiegelhalter and Lauritzen (1990); Cooper and Herskovits
(1992); Heckerman et al. (1995)
Challenge: Find good algorithm for sampling from this full
posterior.
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Constraint-based methods PC algorithm

First step of constraint-based methods (eg PC-algorithm) is to
identify skeleton of G, which is the undirected graph with o +¢ 8 if
and only if there exists S C V' \ {a, 8} with o Lz 3| S.

The skeleton stage of any such algorithm is thus correct for any
type of graph which represents the independence structure!

In particular, the the PC algorithm can easily be adapted to UGs
and CHGs (Meek, 1996).

Challenge: the properties of these algorithms when translated to
sampling situations are not sufficiently well understood.
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Constraint-based methods PC algorithm

Step 1: ldentify skeleton using that, for P faithful,
uv <= ISCV\{uv}: X, L X, | Xs.

Begin with complete graph, check for S = () and
remove edges when independence holds. Then
continue for increasing |S]|.

PC-algorithm (Spirtes et al., 1993) exploits that only
S with S C ne(u) or S C ne(v) needs checking, ne
refers to current skeleton.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.
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Constraint-based methods PC algorithm

pcalg for bodyfat
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Constraint-based methods PC algorithm

pcalg for carcass
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Constraint-based methods PC algorithm

Faithfulness

A given distribution P is in general compatible with a variety of
structures, i.e. if P corresponds to complete independence. To
identify a structure G something like the following must hold

P is said to be faithful to G if
AL B|Xs <= AlgB]|S.

Most distributions are faithful. More precisely, for DAGs it holds
that the non-faithful distributions form a Lebesgue null-set in
parameter space associated with a DAG.
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Constraint-based methods PC algorithm

Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D' equivalent to D.
It uses N independence checks where N is at most

d d+1
V| V-1 4
N<2 < -
- < 2 'Zo i ~(d-1)V
where d is the maximal degree of any vertex in D. f So worst case
complexity is exponential, but algorithm fast for sparse graphs.

Sampling properties are less well understood although consistency
results exist.
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Constraint-based methods PC algorithm

Constraint based methods establish fundamentally two lists:

1. An independence list T of triplets (o, 8, S) with ao 1L 3| S;
identifies skeleton;

2. A dependence list D of triplets («, 8, S) with =(a 1L 5| S).

They get established recursively, for increasing size of S, and the
list Z is most likely to have errors. The lists may or may not be
consistent with a DAG model, but methods exist for checking this.
Question: Assume a current pair of input lists is consistent with
compositional graphoid axioms and a new triplet («, 3,S) is
considered. Can it be verified whether it can be consistently added
to any of the two lists? Graph representable? Compositional?
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Summary and challenges

» Seems out of hand to extend Bayesian and score based
methods to more general graphical models;
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Summary and challenges

Seems out of hand to extend Bayesian and score based
methods to more general graphical models;

Fully Bayesian methods do typically not scale well with
number of variables;

Constraint based methods have less clear formal inference
basis; challenge to improve this.

Constraint based methods have been developed to work in
cases where P is faithful and conditional independence queries
can be resolved without error.
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Things | did not even get near

» Factorisation properties for Markov distributions;
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computation;

v

Causality and causal interpretations;

» Non-parametric graphical models for large scale data analysis;
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Local computation algorithms for speeding up any relevant
computation;

Causality and causal interpretations;
Non-parametric graphical models for large scale data analysis;

Probabilistic expert systems, for example in forensic
identification problems;
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Factorisation properties for Markov distributions;

Local computation algorithms for speeding up any relevant
computation;

Causality and causal interpretations;
Non-parametric graphical models for large scale data analysis;

Probabilistic expert systems, for example in forensic
identification problems;

Markov theory for infinite graphs (huge graphs).
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Things | did not even get near

Factorisation properties for Markov distributions;

Local computation algorithms for speeding up any relevant
computation;

Causality and causal interpretations;
Non-parametric graphical models for large scale data analysis;

Probabilistic expert systems, for example in forensic
identification problems;

Markov theory for infinite graphs (huge graphs).
THANK YOU FOR LISTENING!
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