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Recall that a sequence of random variables X1, . . . ,Xn, . . . is a
Markov chain if it holds for all n that

P(Xn+1 ∈ A |X1, . . . ,Xn) = P(Xn+1 ∈ A |Xn).

We express this by saying that Xn+1 is conditionally independent of
X1, . . . ,Xn−1 given Xn and write symbolically

Xn+1⊥⊥ (X1, . . . ,Xn−1) |Xn

or
Xn+1⊥⊥P (X1, . . . ,Xn−1) |Xn

when we wish to emphasize that the statement is relative to a
given probability distribution P.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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A Markov chain is graphically represented as

X1 X2 X3 Xn Xn+1

This is a so-called directed acyclic graph (DAG) representing one
of many extensions of the Markov property.

Alternatively, we may consider an undirected representation

X1 X2 X3 Xn Xn+1

and derive a number of further conditional independence relations
such as, for example, for i < j < k < l < m

Xk ⊥⊥ (Xi ,Xm) |Xj ,Xl .

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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The graph above corresponds to a factorization as

f (x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)

× ψ356(x3, x5, x6)ψ47(x4, x7)ψ567(x5, x6, x7).

The global Markov property (Hammersley and Clifford, 1971)
implies, for example, 1⊥⊥ 7 | {3, 4, 5}.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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The above graph corresponds to the factorization

f (x) = f (x1)f (x2 | x1)f (x3 | x1)f (x4 | x2)

× f (x5 | x2, x3)f (x6 | x3, x5)f (x7 | x4, x5, x6).

The global Markov property (Pearl, 1986; Geiger et al., 1990;
Lauritzen et al., 1990) implies, for example, 3⊥⊥ 4 | 1.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Chain components {1}, {2, 3, 5}, {4, 6, 7}; correspond to

p(x) = p(x1)p(x2, x3, x5 | x1)p(x4, x6, x7 | x2, x3, x5)

p(x2, x3, x5 | x1) = Z−1(x1)ψ(x1, x2)ψ(x1, x3)ψ(x2, x5)ψ(x3, x5)

p(x4, x6, x7 | x2, x3, x5) = Z−1(x2, x3, x5)

×ψ(x2, x4)ψ(x4, x7)ψ(x5, x7)ψ(x6, x7).

Global Markov property (Frydenberg, 1990) implies, for example,
1⊥⊥ 6 | {2, 3}.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Independence models
Compositional graphoids

Graphical models have now developed a variety of ways of coding
conditional independence relations using quite general graphs
(Andersson et al., 1996; Cox and Wermuth, 1993; Koster, 2002;
Richardson and Spirtes, 2002; Sadeghi, 2012) moving towards
making sense of pictures as the following:

A

B

C

D

E

F

G

We shall in the following elaborate on this development.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Let V be a finite set. An independence model ⊥σ over V is a
ternary relation over subsets of a finite set V . The independence
model is a semi-graphoid if it holds for all subsets A, B, C , D:

(S1) if A⊥σ B |C then B ⊥σ A |C (symmetry);

(S2) if A⊥σ (B ∪ D) |C then A⊥σ B |C and A⊥σ D |C
(decomposition);

(S3) if A⊥σ (B ∪ D) |C then A⊥σ B | (C ∪ D) (weak
union);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C ), then
A⊥σ (B ∪ D) |C (contraction);

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Probabilistic independence models

For a system V of labeled random variables Xv , v ∈ V with
distribution P we can define an independence model ⊥⊥P by

A⊥⊥P B |C ⇐⇒ XA⊥⊥P XB |XC ,

where XA = (Xv , v ∈ A) denotes the variables with labels in A.

General properties of conditional independence imply that
probabilistic independence models are semi-graphoids.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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If a semi-graphoid further satisfies

(S5) if A⊥σ B | (C ∪ D) and A⊥σ C | (B ∪ D) then
A⊥σ (B ∪ C ) |D (intersection).

we say it is a graphoid.

In general, probabilistic independence models are neither graphoids
nor compositional.

If P has strictly positive density wrt a product measure, ⊥⊥P is a
graphoid.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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A compositional graphoid further satisfies.

(S6) if A⊥σ B |C and A⊥σ D |C then A⊥σ (B ∪ D) |C
(composition).

If P is a regular multivariate Gaussian distribution, ⊥⊥P is a
compositional graphoid, but in general this is not the case.

The composition property ensures that pairwise conditional
independence implies setwise conditional independence, i.e. that

A⊥σ B |C ⇐⇒ α⊥σ β |C ,∀α ∈ A, β ∈ B.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Thus a compositional graphoid satisfies for all subsets A, B, C , D:

(S1) if A⊥σ B |C then B ⊥σ A |C (symmetry);

(S2) if A⊥σ (B ∪ D) |C then A⊥σ B |C and A⊥σ D |C
(decomposition);

(S3) if A⊥σ (B ∪ D) |C then A⊥σ B | (C ∪ D) (weak
union);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C ), then
A⊥σ (B ∪ D) |C (contraction);

(S5) if A⊥σ B | (C ∪ D) and A⊥σ C | (B ∪ D) then
A⊥σ (B ∪ C ) |D (intersection);

(S6) if A⊥σ B |C and A⊥σ D |C then A⊥σ (B ∪ D) |C
(composition).

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Separation in undirected graphs
Mixed graphs
Separation in directed acyclic graphs
Separation in mixed graphs
Separation in chain graphs
Additional properties

Let G = (V ,E ) be finite and simple undirected graph. For subsets
A,B,S of V , let A⊥g B |S denote that S separates A from B in
G, i.e. that all paths from A to B intersect S .

It is readily verified that the relation ⊥g on subsets of V is a
compositional graphoid.

A C

B

D

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Graph basics

A mixed graph G over a finite set of vertices V has three types of
edges: arrows (directed edges), arcs (bi-directed edges), and lines
(undirected edges).

A walk is a list 〈v0, e1, v1, · · · , ek , vk〉 of nodes and edges such that
for 1 ≤ i ≤ k , the edge ei has endpoints vi−1 and vi .

A path is a walk with no repeated node or edge.

A cycle is a path with the modification that v0 = vk .

A path or cycle is directed if all edges are arrows and ei points
from vi−1 to vi for all i .

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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More graph basics

If u → v , u is a parent of v and v is a child of u. If u ↔ v , u and
v are spouses and if u — v , u and v are neighbours. We write
u ∼ v to denote that there is some edge between u and v and say
that u and v are adjacent.

If there is a directed path from u to v , u is an ancestor of v and v
is a descendant of u. The ancestors of u are an(u) and the
descendants are de(u) and similarly for sets of nodes A we use
an(A), and de(A).

A node v is a collider on a walk if two arrowheads of the walk
meet head to head at v , i.e. if 〈· · · ,→ v ←, · · · 〉 or
〈· · · ,↔ v ←, · · · 〉, or 〈· · · ,→, v ,↔, · · · 〉, or 〈· · · ,↔, v ,↔, · · · 〉.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Consider a directed acyclic graph (DAG) D, i.e. a graph where all
edges are directed but no cycles are directed.

For S ⊆ V we say that a path is rendered active by S if all its
collider nodes are in S ∪ an(S) and none of its other nodes are in
S . A path that is not active is blocked.

If A,B,S ⊆ V and all paths from A to B are blocked by S , we say
that S d-separates A from B, and write A⊥d B | S .

For any directed acyclic graph, the independence model ⊥d is a
compositional graphoid (Koster, 1999).

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Separation by example
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For S = {5} or S = {7}, the path (4, 2, 5, 3, 6) is active, whereas
trails (4, 2, 5, 6) and (4, 7, 6) are blocked for S = {5} and active for
S = {7}.
For S = {3, 5}, they are all blocked.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Now consider a general mixed graph, with potentially three types
of edges. The d-separation can be directly extended to a general,
mixed graph (Richardson, 2003; Sadeghi, 2012).

For S ⊆ V we say that a path is rendered active by S if all its
collider nodes are in S ∪ an(S) and none of its other nodes are in
S . A path that is not active is blocked.

If A,B,S ⊆ V and all paths from A to B are blocked by S , we say
that S m-separates A from B, and write A⊥m B |S .

For any mixed graph, the independence model ⊥m is a
compositional graphoid (Sadeghi and Lauritzen, 2012).

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Clearly, for a DAG D, we have that A⊥d B |S if and only if
A⊥m B |S . But note also that for an undirected graph G it holds
that A⊥g B |S if and only if A⊥m B | S . Thus m-separation
extends and unifies standard independence models for DAGs and
UGs.

However, this is not true for chain graphs, not even with most
alternative interpretations of such graphs discussed in the literature
(Andersson et al., 2001; Drton, 2009).

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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A standard chain graph is a mixed graph with no multiple edges,
no bi-directed edges, and no directed or semi-directed cycles i.e. no
cycles with all arrows on the cycle pointing in the same direction.

A C

B D

E

A C

B D

E

The graph to the left is a chain graph, with chain components
(connected components after removing arrows)
{A,B}, {C ,D}, {E}. The graph to the right is not a chain graph,
due to the semi-directed cycle 〈A→ C —D → B —A〉.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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The separation criterion for standard chain graphs was developed
by Studený and Bouckaert (1998) and further simplified by
Studený (1998). It is similar to but different from m-separation.

Firstly, as in Koster (2002), we are considering walks rather than
paths, allowing repeated nodes.

Next, a section of a walk is a maximal cyclic subwalk with only
directed edges, i.e. a subwalk of the form 〈v — · · · — v〉.
It is a collider section on the walk if there are arrowheads meeting
head-to-head at v .

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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For S ⊆ V we say that a walk is rendered active by S if all its
collider sections intersect with S and its other sections are disjoint
from S . A walk that is not active is blocked.

If A,B, S ⊆ V and all walks from A to B are blocked by S , we say
that S c-separates A from B, and write A⊥c B |S .
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It is not difficult to verify that for any chain graph, the
independence model ⊥c is a compositional graphoid.

Studený (1998) shows that even though there are infinitely many
walks, there is a local algorithm for checking c-separation.

The notion of c-separation ⊥c for chain graphs also coincides
with standard separation ⊥g in UGs and d-separation ⊥d in
DAGs (Studený, 1998), but it is distinct from m-separation for
general chain graphs or general mixed graphs.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Other independence models have been associated with chain
graphs, see for example Drton (2009) who classifies them into four
types, one of which has been described above.

The multivariate regression Markov property (Cox and Wermuth,
1996; Wermuth et al., 2009) would correspond to m-separation in
chain graphs with bi-directed chain components, whereas the
remaining two types (AMP and its dual) are different yet again.

Are the last two compositional graphoids?

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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The powerful features of graphical models are partly related to the
fact that graphs and graph structures are easy to communicate to
computers, but not least their visual representation.

The visual features are most immediate for undirected graphs,
where separation is simple. But in general it is desirable that the
graphs represent their independence model in the sense that

α 6∼ β ⇐⇒ ∃S ⊆ V \ {α, β} : α⊥σ β | S

so missing edges represent conditional independence.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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We say that a graph G with separation criterion ⊥G is maximal
Richardson and Spirtes (2002) if adding an edge changes the
independence model ⊥G .

It then holds that maximal graphs represent their independence
models.

UGs, DAGs and the various versions of chain graphs are always
maximal, but other mixed graphs are not.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Global Markov property
Probabilistic representation
Pairwise and local Markov properties

Let P be a joint distribution for random variable Xv , v ∈ V and let
G be a graph with independence model ⊥G . A described earlier, P
defines its own independence model ⊥⊥P .

We say that P is (globally) Markov w.r.t. (G, ⊥G ) if it holds for all
A,B,S ⊆ V that

A⊥G B | S ⇒ A⊥⊥P B | S .

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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We further say that P is faithful to (G, ⊥G ) if also the converse
holds

A⊥G B | S ⇐⇒ A⊥⊥P B |S .

Note that if P is faithful to (G, ⊥G ) , ⊥⊥P is a compositional
graphoid, whether or not it originates from a specific family of
distributions.

If there is a P such that P is faithful to (G, ⊥G ), we say that ⊥G
is probabilistically representable.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models



Introduction
General Markov theory

Graphical independence models
Markov properties

Summary
References

Global Markov property
Probabilistic representation
Pairwise and local Markov properties

Graphical independence models based on UGs, DAGs, chain graphs
in all its variations, and mixed graphs without ribbons (Sadeghi,
2012) are all probabilistically representable.

In fact, for all these, a dimensional argument gives that most P
that are Markov w.r.t. (G, ⊥G ) are indeed also faithful (Meek,
1995, 1996).

Question: Are all of the graphical independence models described
here probabilistically representable? If not, which are?

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Global Markov property
Probabilistic representation
Pairwise and local Markov properties

For certain purposes it can be helpful to consider weaker Markov
properties than the global Markov property.

Pairwise Markov properties are of the type

α 6∼ β ⇒ α⊥⊥P β | S(α, β),

where, for example, S(α, β) = ant(α) ∪ ant(β) \ {α, β}, and local
Markov properties of the type

α⊥⊥P V \ (α ∪ N(α)) |N(α)

for some kind of neighbourhood N(α), typically involving parents,
spouses, and neighbours.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Global Markov property
Probabilistic representation
Pairwise and local Markov properties

Pairwise and local properties are useful for establishing global
Markov properties and hence conditions which ensure these to
imply the global property are sought.

Typically the semi-graphoid properties of P are insufficient for
these, with exceptions depending on the particular type of graph.

For example, for ribbonless graphs with ⊥m the pairwise Markov
property implies the global Markov property if ⊥⊥P is a
compositional graphoid (Sadeghi and Lauritzen, 2012).

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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Graphical Independence Model

I Model determined by a graph G = (V ,E );

I Edges in E can have several types; at least three;

I Markov condition defined by a relation ⊥G so that query
A⊥G B |C has clear resolution; preferably path-based
criterion;

I Must represent their independence model: α and β are
non-adjacent in G if and only if α⊥G β | S for some
S ⊆ V \ {α, β}; requires maximality in mixed graphs;

I ⊥G defines a compositional graphoid.

I Independence structure probabilistically representable: ∃P so
that A⊥⊥P B |S ⇐⇒ A⊥G | S , ie P is faithful.

Steffen Lauritzen, University of Oxford Markov Properties for Graphical Models
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