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A directed acyclic graph or influence diagram is frequently used as a representation for
qualitative knowledge in some domains in which expert system techniques have been
applied, and conditional probability tables on appropriate sets of variables form the
quantitative part of the accumulated experience. It is shown how one can introduce
imprecision into such probabilities as a data base of cases accumulates. By exploiting
the graphical structure. the updating can be performed locally, either approximately or
exactly, and the setup makes it possible to take advantage of a range of well-established
statistical techniques. As examples we discuss discrete models. models based on Dirichlet
distributions and models of the logistic regression type.

1. INTRODUCTION

In a recent article (Lauritzen and Spiegelhalter [6]. henceforth abbreviated as
L-S), we described algorithms for fast computation of conditional and marginal
probabilities in influence diagrams or **causal networks.,™ in which independence
properties of an initial joint distribution of a set of random variables X.. v € V.
are related to an acyclic directed graph with each vertex (node) representing a
random variable in V. The value of this graphical representation has been
stressed by, for example. Pearl {9,10], Shachter [13]. and Cooper [12].

A clear limitation of this approach is that it is assumed that the conditional
probabilities necessary to initialize the system are specified precisely. This is
liable to be unrealistic, whether the component probabilities are derived from
subjective assessments or are based on specific data. and there are a number
of reasons for wishing to be able to retain an explicit representation of this
inevitable imprecision. First, this will allow probabilistic predictions provided
by the system to be tempered with an allowance for possible error, traceable
back to the current imprecision in the quantities held in the system. Second. it
is only by allowing imprecision that the probabilities can be updated and im-

NETWORKS, Vol. 20 (1990) 579-605
© 1990 John Wiley & Sons, inc. CCC 0028-3045/90/050579-027$04.00




§80 SPIEGELHALTER AND LAURITZEN

proved in the light of new data. Finally. the procedure for obtaining the con-
ditional probability tables becomes more acceptable if doubt about subjective
assessments can be incorporated or sampling error in data-based estimates
recorded.

Essentially, we wish to process each individual case as best we can. but allow
the quantitative aspects of the experience gained to be carried over to future
cases. Figure 1 shows a general structure for this.

The experience is the quantitative memory, which may be based both on
quantitative expert judgment and past cases and which is relevant to the process-
ing of a future case. This provides the quantitative input to the core which
expresses the qualitative relationships between the features of the case in hand,
and the experience is disseminated into the core prior to the case-specific infor-
mation being obtained. The case is then processed using whatever data have
been gleaned, and the additional knowledge gained is then retrieved by the
experience. The updated experience is then ready for passing on to a further
case.

Within a Bayesian statistical paradigm. these general ideas become familiar
operations. Specifically, the experience will consist of a distribution p(6) over
a parameter space 6. and the core will specify the joint distribution p(V|8) for
a particular realization 8 € ©. Here we adopt the abbreviated notation from
L-S such that p(V|6) is short for p(X, = x,.v € V|6) and so on. Dissemination
of experience now involves integrating out over 6 to produce a marginal distribu-
tion

p(vV)= IP(V)IB)P(O)dO H

from which p(V) may be used to process the case. Having observed some data
E*. the retrieval operation comprises the calculation and storage of the updated
posterior probability distribution p(§lE*).

In most contexts it is reasonable that the qualitative core should also adapt
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FIG. 1. General structure of case-to-case updating of experience.
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its structure as a data base of cases accumulates. amdshis general framework
allows cases to have different core structures and fomthe case specific infor-
mation to include external elements such as contrealwariables. However. in
many situations there will be at least a period in whicchaases can be considered
exchangeable, in that the core is common to each and:-ceaditional on a particular
parametrization @ € ©. the feature vector V,.i = 1.. .. .afor a set of n cases are
independent each with distribution p(V}6). Equivalezrdy, the joint distribution
p(V\.....V,) is invariant to the order in which the c:aws are actually observed
and is given by

pVi... Vo= | Tl pviorp(me.

Although it will be common to assume exchangeaibily over a set of cases
judged to be homogeneous. the following developmesnt will only deal with the
operations for a single case. and. hence. exchangeraMlity is not an essential
prerequisite.

2. DIRECTED ACYCLIC GRAPHS AS CORE STRUXCTURES
3.1. The General Model

The basis for the algorithms of L-S rests on asswrming that the qualitative
core structure may be represented as a directed acwclic graph. in which each
variable v € V forms a node with a set of ““parent™ nades pa(v). where for each
w € pa(v) there exists a directed link w —s v. The geantitative specification
comprises a conditional probability distribution for v for each configuration
of parents pa(v). These conditional probability tablles form the fundamental
components from which case-specific inferences are eventually derived and are
the natural parametrization for initialization from clinical opinion or available
data. It therefore seems reasonable to break a general parametrization 8. into
components 6, corresponding to each node v. Hence. © = x, .,-0,. and
6. € ©, completely specifies the relationship between a node v and its parents
pa(v). The conditional probability table correspondling to a realization 6, is
denoted p(v|pa(v).6,). and. hence. our conditional distribution on V is

p(vio) = 1 pipa(r). 6,) Q)

€V

using the conditional independence assumptions represented in the directed
graph (L-S).

In order to explore Bayesian updating of experience we need 1o specify a
form for the prior distribution p(6). This must depend both on what is known
about the context and on more pragmatic issues of computational and represen-
tational simplicity. In some applications of influence diagrams, particularly
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genetics [16]. 8 may have only a few elements related to unknown quantities in.
say. the Mendelian segregation probabilities. genotype-phenotype penetrance
function, and population frequency of alleles. Such a parametrization makes
the likelihood p(E *|6). E C V reasonably straightforward to calculate [18] and
to be used as a basis for inference on 8. A posterior distribution p(&#E *) could
also be carried over to future cases. which would take the form of analysis of
similar traits on the same genealogy. However. such a parsimonious parametriz-
ation. in which a single parameter enters into many conditional probability
tables, tends to give a complex structure for the joint distribution (1) and.
hence, makes it difficult to calculate efficiently conditional probabilities on
individual cases. say p(D|E*). where D C V\E. which are not made conditional
on € O. It is precisely this kind of case-specific probability statement. con-
ditional on known case-data. but unconditional on unknown parameters. that
is crucial in making individualized predictions in applications such as expert
systems.

In this paper we therefore explore in some detail the simplifying assumptions
that will provide the marginal distribution (1) with the simplest possible struc-
ture. Our major assumption is that of global independence. i.e.. the parameters
{8..v € V'} are a priori independent random variables and so p(8) = 1. p(8,).

This assumption leads to the joint distribution of case-variables V and par-
ameters 8 being expressed as

p(v.0) = [l p(vipa(r).0)p(6,) . (3)

From (3) it is clear that 8, may be considered. formally. as another parent of
v in a general influence diagram. such as that shown in Figure 2 for the example
introduced in L-S. This diagram expresses, for example. that 6, is a random
quantity whose realization, possibly vector-valued. fully specifies the conditional
probability table p(r|a). We note that even if conditional probabilities on V
are known. such as in the logical connection p(€i7.A). it is convenient to retain
an explicit representation of 8, as a random quantity with a degenerate distribu-
tion.

For readers familiar with the details of the L-S procedure. we note that. in
theory. it would be possible to treat (V.8) in a uniform fashion. not distinguish-
ing between core and experience variables and. hence. carry out the operation
of “marrying™ and “filling-in"" on the influence diagram corresponding to (3)
as described in L-S and forming cliques as the basic representation for process-
ing of evidence. In particular. we note that we may form a “moral graph™ by
joining parents (pa(v).6,) of each node v and dropping directions. From (2).
the joint distribution of (V.0) can be seen to be expressed in terms of functions
on joined nodes in this moral graph and. hence. forms a Markov random field.
An example of such a moral graph is given in Figure 3.

By adding the dotted "fill-in™ in Figure 3. we have a triangulated graph. We
note that this operation requires no additional fill-in beyond those required for
the triangulation of the core graph. This can be seen by the following argument.
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FIG. 2. Influence diagram representation of our assumption that “core™ variabies
V = {a.1.£.€.8.A.8.0} have conditional independence properties described in L-S. with
conditional probability tables generated by realization of marginally independent random
quantities 6..v € V forming a level of “experience.”

A graph is triangulated if there exists a node ordering such that for each node
all lower-ordered neighbors form complete sets (are mutual neighbors) (L-S).
Consider such an ordering of the triangulated core. and add each node 6, in
turn. joined to v and to the parents pa(v): since parents are married. v U pa(v)

Jung cancer?
)

bronchuus?

(B

Suher tub. or
lung cancer?
(€)

FIG. 3. Moral graph (solid lines) formed by joining parents and dropping directions
from Figure 2. (Dashed line is fill-in needed for triangulation.) Joint distribution on
(V.8) is Markov on this moral graph.
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are all joined and the boundary of 4, is complete. It then follows that the
overall graph is triangulated without additional fill-ins.

However. although this general structure may be useful in providing proper-
ties of the representation. it appears most useful to exploit the experience/core
structure. and we now consider the processes of ““dissemination™ of experience
and “'retrieval™ of information.

2.2. Dissemination and Retrieval of Information

Dissemination involves integrating out parameters in order to process a new
case, and we obtain that

p(v) = fp(v'-O) dé= I HP(VIpa(V)-B.-)p(O.-) dé, = np(vlpa(v)) . (4)
where

p(vipa(v)) = IP(VIPS( v).8.)p(6.) d6. (%)

is simply the expectation of the local conditional probability table for v. Hence.
our assumption implies that the global dissemination operation can be per-
formed locally. (Note that in some parametrizations approximation may be
necessary in carrying out this local operation.)

We emphasise that expression (4) shows that the conditional independence
assumptions concerning the features V have been preserved under dissemin-
ation, and. hence. the standard evidence propagation described in L-S can
take place. essentially using the “mean probability values™ derived from the
experience. After observing. say. evidence £* on a current case, revised beliefs
p(v U pa(v)|E*) may be easily obtained as the set v U pa(v) will always be a
subset of a clique whose revised marginal distribution will have been calculated
in the L-S procedure.

We can now retrieve the new information about 6, by the following operation.
Since v U pa(v) separates 6. from the remaining nodes in the moral graph, it
follows that 6, is conditionally independent of E* given v U pa(v). Hence, a
revised opinion concerning 6. is given as

pBJED = Z P8y U pa(v)p(vU pa(IE®). (6)

vUpa(y

We refer to this calculation (6) as the local retrieval of information. We first
note that a local inversion is required to obtain

p(8.}v U pa(v)) = p(vipa(v).6.)p(6.) . )

Second. unless the configuration at nodes in v U pa(v) is observed. (6) forms a
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mixture distribution. Thus. although this local retrieval formula is exact as it
stands. we shall see that it may be convenient to approximate both these
operations within particular parametrizations.

Although (6) provides the correct marginal posterior distribution for 6.. it
cannot be guaranteed without conditions explored in the next section that
the @,’s are still marginally independent. However. our basic philosophy is to
approximate the process of global retrieval by a sequence of local retrievals.
assume independence of the 6,s. and leave the experience in the same localized
form for the next case. The consequences of this approximation are to be
explored. :

2.3 Local Independence

A considerable simplification in the local retrieval operation is achieved if
we assume what we shall term local independence. The distribution of v con-
ditional on each configuration x,,,., of its parent set is then individually parame-
trized, and these parameters are assumed a priori independent. Thus.

ev = X-l'p-« 1€ Xpe(v) evupam

and 6,..,,., are independent.

Consider then a particular configuration of parent nodes and denote this
pa(v)*. Then 6, parametrizes the conditional probability table
p(vipa(v)*.6;), and conditional on v U pa(v)~.6. is independent of the remain-
ing parameters 0,\6;. In addition. (6) is the sum of a set of terms for each
parent configuration, with contribution from, say, pa(v)* of

P(8.\6) 2 p(671v U pa(v) ")p(v U pa(v)"|E*)..

In general. this will create posterior dependence between the 6. «,..., s unless
the parent configuration is observed to be, say pa(v)~. in which case posterior
independence is retained and the only change is to revise the distribution of
0" to be

p(6:|E*) = 2 p(87|v U pa(v)* )p(v U pa(v)~|E¥)

since pa(v)* C E*. This may itself need to be approximated unless v is also
observed. Even if the true parent configuration is not observed. we may approxi-
mate by making the local independence assumption and just retain the true
marginal distribution
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p(671E*) = Z p(671v U pa(v) " )p( U pa(v)”|E*)

+2 2 p(0:v U pa(v)*)p(v U pa(v)*E*)

v pa(v)*=pa(r)”

= 2_ p(8;|v U pa(v)~)p(v U pa(v)|E*)

+p(67)(1 - p(pa(v)”|E*)) . (8

We have here used that 6,” is independent of v U pa (v)* for pa(v)* # pa(v)”.
which is true since

p(v U pa()*62) = 2 p(v U pa(v)*|6:.62)p(6316])
[

and neither term depends on 6;.

We illustrate the above discussion of local independence with a simple
example. Consider the example of L-S shown in Figure 2. and let v=1
(Bronchitis?) and so pa(v) = {0} (Smoking?). Thus, the experience node 6
needs to specify a joint distribution over p(bls.8s) and p(b|s.65), denoted g
and g5 ; i.c.. to express the uncertainty concerning the frequencies with which
bronchitis occurs in smokers and nonsmokers. respectively.

Assuming local independence entails g,” and g, being independent random
quantities. and. hence, Figure 4 represents the initial independencies.

However. Figure 4 does not reveal all the conditional independencies that
exist. Suppose we observe both o and B to be, say, sand b (i.c., a smoker with
bronchitis). Then the parameter revision leaves opinion concerning g, un-
changed and g, has a revised distribution

p(qils.b) = p(s.blgs p(qr) * p(bls.g5)p(qs) = q5p(gs) -

Local independence is retained. and. hence. g5 and g; are conditionally inde-

smoking”
(9)

FIG. 4. Influence diagram assuming local independence of conditional probabilities
relevant to 8.
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pendent given o and B. This is not a direct consequence of the influence
diagram. since B would normally introduce a dependency between g, and
q~ . butin a sense this is cancelled by also observing o. Essentially. our minimal
Markov field is obtained without full moralization. since a link does not need
to be introduced between g; and g,. However. even more is concealed by
Figure 4, since if we observe o. one of ¢, or ¢, is rendered independent
of 8. The answer lies in seeing that. conditional on o, only one of g5 and q;
is ‘relevant’; essentially, observing o revises the structure of the graph so that
nonrelevant parts are pruned and. hence. made independent of the remainder.
A systematic approach to the manipulation of such relevance links would be
an important development.

The dependency between q; and q; introduced by observing general data
E* may be examined by studying p(q;|E*.q;). We have

p(q5|E*q5) = %p(qﬁla.B-E‘-q;)p(a.ﬁIE*-q;)

= %p(qﬁ is.8)p(s.BIE*) + §p(q;)p(f.B|E *qsn) -

since g; is conditionally independent of £* and ¢; given s and B. and q; is
conditionally independent of E*. g, , and B given $. Thus. we obtain

p(qslE*.q5) = %p(q;is.ﬁ)p(s-BIE‘) +p(q7)pSIE*qr) .

Comparison with (8) shows that the assumption of local independence is equiva-
lent to ignoring the dependence on ¢; of the current belief in the parent node.
We note that if E* includes . the dependence disappears.

2.4. Recollection

To summarize so far: An assumption of global independence of 8,’s allows
global dissemination to be carried out locally. Local inversion procedures need
to be specified. and then global retrieval can take place locally if global indepen-
dence is either correct or to be assumed. Assumed local independence allows
each conditional probability distribution to be individually updated. Each of
these a priori assumptions only remains valid under certain sampling schemes.
and these are explored in the next section. The fundamental local operations
to be carried out at each node are thus dissemination (5). inversion (7). and
retrieval (6). In Section 4 we consider a number of different parametrizations
and examine the approximation procedures that may be appropriate to make
these operations computationally feasible.

3. SAMPLING SCHEMES AND APPROXIMATIONS

We now consider the need for approximations under three sampling situ-
ations: complete data. a special pattern of observed data known as “ancestral
sets.” and arbitrary patterns of missing data.
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3.1. Complete Data

In some situations it may be possible to develop a system using complete
training data. If this is the case. the expression (6) degenerates to

P(8.JE*) = p(6.Jv* U pa(v)*)

and so no mixing is necessary in the local retrieval operation. while expression
(8) also degenerates and local independence. as well as global independence,
is retained. The only possible need for approximation is in storing the local
inversion expression p(8.|v U pa(v)) required for local retrieval (see Subsection
4.3)

3.2. Sampling from an Ancestral Set

We first define an ancestral set of a directed acyclic graph as a set of nodes
W in which for each node w € W, the parents of w are also in W. For example.
in Figure 2, nodes {6,.a.8,.7} form an ancestral set. but {6,.7} do not. It follows
that p(W) is directed Markov on the influence diagram comprising the ancestral
set and, hence, that p(W) is Markov on the moral graph formed from this. For
any three sets of nodes A. B. and C in a influence diagram. we therefore can
state that A is conditionally independent of B given C. if C separates A from
B in the moral graph formed from an ancestral set containing A U BU C: the
minimal ancestral set to consider is that containing AU BU C and all their
ancestors [5].

Our objective is to see under what conditions 6..v € V are conditionally
independent given a core node set E. The minimal ancestral set containing
these nodes comprises 8 U E U an(E). where an(E) are the ancestors of E in
V. The moral graph for this segment comprises cliques {v U pa(v) U 6,} for
v € E U an(E). The nodes 6,.v € V are all separated by E in this moral graph
if and only if an(E) = 0. i.e., E itself forms an ancestral set of the core influence
diagram. Hence. for example, marginal independence of {6} in Figure 2 is
retained if we were to observe a and 7. but not if we were to just observe .

Our assumption of marginal independence of 8, is thus retained if we observe
data on a case with the property that if node v is observed, then its core parents
pa(v) are observed, too.

We note that local independence is also preserved under sampling from
ancestral sets. For a specific node v with parents pa(v). two patterns are pos-
sible: We may observe either v U pa(v) or neither v nor any descendants of v.
In the first case. local independence is protected by the argument of the previous
section, and in the second case. no information on p(v|pa(v)) is obtained.

3.3 General Patterns of Incomplete Data

After the system has been initialized and trained with, optimistically. com-
plete data, it is still possible to carry out parameter updating with a general
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configuration of missing data. A number of approximations may be necessary.
as will be shown in the following sections. First. as with complete data. it may
be necessary in the local inversion form (7) for p(6,iv U pa(v)). Second. in the
local retrieval operation. the mixture expression (6) may require approximation.
Third, local dependencies may be introduced (and possibly ignored) between
conditional probability distributions for a specific node v. Finally. global depen-
dencies may arise.

We observe that global independence may, fortuitously. remain although this
will not generally hold. Secondly. subsets of 8 may still retain independence
within themselves. For example, if in our basic example we observe a nonsmok-
ing patient with dyspnoea that has been to Asia and has a negative chest X-
ray, the experience-nodes break into three independent groups: 6,. 6,. and the
remaining experience-nodes . This is seen in Figure 5 where the observed set
of nodes separate these groups from each other.

Also if, as is the case here, there is almost sure evidence that none of the
diseases tuberculosis and lung cancer are present. it is to be expected that 6,.
0;, 6.. and (0s.05) are very close to being posterior independent such that
the only essential error in the approximation is due to ignoring the posterior
dependence between 6g and 6;.

A standard measure of the goodness of the global approximation to the true
joint distribution is the Kullback-Leibler distance

1(p.q) = — E,[log(p/q)]

and a decomposition of this measure may be of help in monitoring the goodness
of the approximation. When approximating the true posterior density p(6E*)

FIG. 5. Observed nodes (shaded) separate experience nodes into three groups (6,.0,.
and the remaining) of mutually posterior independent variables.
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by the product of the marginal densities p, = p(68,.E*) and these. in turn. get
approximated by p. = p(8,./E*). we obtain

l(p‘l:lﬁ‘.)= l(p.n p‘)+;l(p..ﬁ,.). 9)

This equation decomposes the Kullback-Leibler distance into a global and local
term. More precisely. the first term on the right-hand side of (9) is the error
due to assuming posterior global independence. This can easily be seen to be
additive over groups of nodes that are independent as in the example. The
second term is the contribution to the total distance from the errors in the local
approximations. and this is additive over the set of nodes in the system.

4. SPECIFIC MODELS FOR CONDITIONAL PROBABILITIES

We next consider a number of alternative representations for a conditional
probability table p(v|pa(v).6,). These range from discrete to strongly parame-
trized models. and we emphasize the means of specifying the distribution p(6,)
and carrying out the local dissemination (4). inversion (7). and retrieval (6)
operations. In particular. we consider approximations that may be necessary to
allow p(6.|E*) to remain in a suitable form for future use. having observed
incomplete data £* on a specific case.

4.1. Models with Discrete Parameter Space

Consider a single node v and a particular configuration pa(v)~ of its core-
parents pa(v). The conditional probability distribution p(vipa(v)~.6,). denoted
q. . may be considered as a random quantity taking on values in a discrete
domain Q. with p(6,) taking the form of a fully specified distribution p(q.7).
This approach was suggested by Spiegelhalter [15] and involves full storage of
a discrete distribution on q;7. The dissemination is trivially carried out by
calculating the mean of gq. while the local inversion expression
p(qZv U pa(v)™) may be calculated and stored for each possible realization of
v. thus allowing straightforward retrieval to obtain a revised discrete distribu-
tion p(q”|E*). No approximation problem occurs in the local retrieval operation
since the distribution of ¢ has no assumed parametric structure that it would
be desirable to retain. We note local independence has been adopted. We
consider again the example of the last section.

In L-S we specified a single value q; = p(bis.0g) = .60. but. in practice. this
quantity would not be exactly known. and so a distribution over g is necessary.

For illustration. we specify our prior distribution as
[ ]

p(gs = 40)=2 plgs =.60)=.6 p(q, =.80)=.2

reflecting a moderate confidence in our assessment (standard deviation = .13)
but recognizing the proportion of smokers who present with bronchitis could
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be considerably lower or higher than 60%. Before processing a case. we can
first carry out the dissemination (4) to give

plbls) = §p(bls.0a)p<oa) =2 g5 p(g;) = .60

the mean of the distribution of ¢, . and. henceforth, the analysis of a case will
proceed exactly as in L-S. Further. we may calculate in advance the inverse
relation p(68g|B.c) required for retrieval. First. we note that conditional on §(not
smoker). our opinion concerning g, is unchanged due to local independence.
We therefore only have to consider revisions conditional on s. This is best
considered by calculating a joint distribution. conditional on s. of B8 and
q; = p(bls.0). From Table I the prior distribution on q; appears as the lower
margin. the predictive distribution over 8. calculated in the dissemination oper-
ation. appears as the right-hand margin. and the calculations for retrieval are
easily obtained. Specifically. we sce that the general distribution p(6.|v U pa(v))
is given in this case by

p(qs|b.s) = p(bls.q5 )p(qs Is)p(bls) = g5 p(q5 ) p(bls).

while
p(g:ibs) = (1 — q7)p(qr)ip(bls) .

The solutions are shown in Table Il and can be seen to be simply obtained by
normalizing the rows of Table I to add to 1. We note that a single observation
on whether a smoker has bronchitis is surprisingly influential on our beliefs
concerning the proportion of smokers who have bronchitis: if the patient has
bronchitis the chance that the condition is common (g; = .80) goes up from
20% to 27%. whereas if the patient does not have bronchitis, the chance that
the condition is not so common (q, = .40) goes up from 20% to 30%. If we
do observe b. the value of p(bis) to be disseminated to the next case is
E(gs|b) = .628.

In fact. suppose we observe neither whether the patient is a smoker nor has
bronchitis. but only the indirect evidence E*. described in L-S. that the patient
has dyspnoea and has been to Asia. The retrieval operation (6) then consists

TABLE 1. Joint distribution conditional on s
(smoker). of 8 (bronchitis). and ¢, (conditional
probability of bronchitis given smoker).

9
B 0.40 0.60 0.80 p(B)

0.08 0.36 0.16 0.60
0.12 0.24 0.04 0.40

Pigs) 020 060 020

o
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TABLE II. Conditional distribution of g, (pro-
portion of smokers who have bronchitis) having ob-
served a smoker with bronchitis (row b) or without
bronchitis (row b).

-

qr
B 0.40 0.60 0.80
b 0.13 0.60 0.27
b 0.30 0.60 0.10

of calculating
P@:1E*) = Z p(qs1B.0)p(B.0IEY) .
B.o

This calculation is shown in Table III. where values for p(q;|B.0) are obtained
from Table II. and p(B.0lE*) is derived from the calculation in L-S. We note
that. because of local independence. conditioning on § produces no revision of
opinion concerning q; . and so it is not really necessary to explicitly represent
rows 2 and 4 of Table III. The evidence E* raised the probability that the
patient were a smoker from .5 to .616 (L-S) and the probability that they had
bronchitis from .45 to .812. This pattern supports the idea that bronchitis is
very common among smokers. and, hence. by indirect observation the belief
in conditional probability g5 = p(bls.6) is revised upwards.

For the next case. the estimated value p(b|s) to be disseminated to the core
will be

pbls) = & qi p*(gr) = .612.

where p*(q,) is the revised distribution on g, . This shows a small increase
over .6 due to observation of the previous case.

We make a number of observations concerning the use of discrete distribu-
tions. First. no approximation is involved in the retrieval operation and. hence.

TABLE II1. Derivation of the retrieved distribution p(q,]E*). having observed a
patient with dyspnoea who has visited Asia, showing small increase in belief that bron-
chitis in smokers is common (g, =0.80).

p(4s1B.0)
B o q; =0.40 g5 =0.60 g, =0.80 p(B.alE*)
b s 0.13 0.60 0.27 0.54
b s 0.20 0.60 0.20 027
b 5 0.30 0.60 0.10 0.08
b $ 0.20 0.60 0.20 0.11

P(qs|E®) 0.17 0.60 0.23
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p(q~|E*) is the correct revised distribution. although approximation still takes
place in the assumption that the components of 8 are both locally and globally
marginally independent having observed data such as E* that does not form an
ancestral set. Second. the dissemination and retrieval operations are attractively
straightforward.

However. the unparametrized means of representing p(6,). v € V is extremely
expensive in storage. particularly if. as could be desirable, the domains of the
conditional probability tables are fairly extensive. Nevertheless. the simplicity
of the operations suggest that discrete distributions might be a reasonable
option, if one only allows, say. three values that a probability could take on
(low, medium. high). which could be changed once it was clear what direction
the data were taking.

4.2. Conditional Probabilities as Dirichlet Random Variables

In multinomial sampling, the conjugate prior for the parameters is a Dirichlet
distribution. which specializes to the beta distribution as a prior for the par-
ameter of a binomial experiment. Such a parsimonious modeling of a con-
ditional probability table is an attractive alternative to full discrete distributions.
particularly for variables with more than two states, although we shall find
problems in approximations when complete case-data is not obtained.

Consider a specific conditional probability distribution p(v|pa(v)*.8;") for a
fixed configuration pa(v)* and assume local independence. We shall denote this
distribution over the states x,;. ... .x,x by ¢ = (¢.1. . . . .¢,1). and assume that
a priori it has a Dirichlet distribution 2 with parameters a™ = (a7, ...,az)
SO

plalay =l gy,

We note that the number of parameters necessary to specify a distribution over
the possible conditional probabilities is only one more (k) than required for
specifying the distinct probabilities (k — 1). and so this is an extremely efficient
means of representing p(6.). (Essentially. instead of a table of probabilities. a
table of ““counts™ for each state is stored as a memory of past experience.)

The dissemination is straightforward. since by (4) the table to be used for
processing the next case is

p(vlpa(v)*) = JP(V!PG(V‘)’-OF )p(87) d6r

= J q:p(qrla”)dg; = oa* /T a7 (10)

so that, for example. the conditional probability p(x,;lpa(v)”) is taken to be
a;/Z;a;. The retrieval operation can. however. be more complex. From (6)
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and (8). we require a specification of p(8; v U pa(v)~) for each state of v. If
we observe v to be in state x,, and parent configuration pa(v)~. we have by
standard conjugate Bavesian updating that

i.e.. one is added to the relevant parameter. corresponding to an additional
case in the memory. Thus, if both pa(v) and v are observed. retrieval is trivial.
However. if v is not observed. this mixture is over k Dirichlet distributions.
each with unity added to the appropriate a term. whereas if pa(v) is not
definitely known to be pa(v)™. an additional Dirichlet distribution is specified
with the original parametrization. Thus, in general. (8) takes the form

P@IIED) =2 9ai. ... .a +1.... ai]p(x,. pa(v)"|E*)
J

+ Qay,....a (1 - p(pa(v)T|E*). (1

Note that if pa(v)™ is observed. and neither v nor any descendants of v are
observed. then (11) is formally a mixture of k Dirichlet distributions but is
identical to a single Dirichlet distribution with parameters a™. i.e.. no updating
has taken place. Before discussing how we may deal with this potential explosion
of terms. parallel to the issues faced in unsupervised learning (4. 20]. we con-
sider our specific example examined previously. Our initial opinion concerning
the proportion of smokers who had bronchitis had mean 0.6 and standard
deviation 0.13. which we would also obtain if we adopted a beta distribution
for g5 with parameters a; = 9. a3 = 6: so this opinion can be roughly thought
of as equivalent to having observed ai + a3 = 15 smokers. of whom nine had
bronchitis. (These parameters are most easily obtained by noting that if we
were to observe n smokers with 0.6n having bronchitis our estimate of q,
would have mean 0.6 and standard deviation (0.6 x 0.4/n)'"*: equating the latter
10 0.13 gives n = 15.)

It can be seen from Table IV that if. for example. we were to observe a
smoker with bronchitis (b.s) our “experience’” would change to 16 smokers. 10
of whom had bronchitis. giving a revised mean of 0.625 to be disseminated to
the next case. The true revised marginal distribution on g,

p(gr|E*) = BE p(q71B.oWp(B.0IE®)

is. however. a mixture of three distinct beta distributions. It has mean 0.611
and standard deviation 0.1210. The mean is almost precisely that obtained by
assuming the crude three point distribution as the previous subsection.

A number of possibilities exist for handling such a mixture. First. we could
explicitly store a number of tables of counts and mix them when disseminating.
This number will multiply with each incomplete case observed. but a maximum.
say, five tables. could be stored. and above this. similar tables could be amalga-
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TABLE IV.
figuration of g
patient with dvs

595

etrieved distribution p(g..B.0) were we to observe each possible con-

ltnd o together with the posterior distribution of B.o after observing the

pnoea who had been to Asia.

Observed configuration qr*B.c~ Bla;*.a:*}

B o a* as* Mean s.d.  p(B.oglE®)
b s 10 6 0.625 0.1174 0.54

b 3 9 6 0.60 0.1225 0.27

b s 9 0.5625 0.1203  0.08
b s 9 6 0.60 0.1225 0.11

mated using o
the mixture w
a conjugate p

ne of the methods discussed below. Second. we could approximate
th a single Dirichlet distribution after each observation. providing
rior for the next case. A number of combination rules have been

explored in the literature. One possibility is the “fractional updating™ procedure

[14.19]. in w
are the appr¢
distributions.
mated by a D

This simple y
properties [14
approximate |
since p(b.s|E?
mean. 0.611.

However. a
procedure. S
observed and

hich the parameters of the approximate Dirichlet distribution
bpriate mixtures of the parameters of the individual Dirichlet
Thus. in the general formulation. we assume that (11) is approxi-
irichlet distribution with revised parameters

(a)*=a; +p(x.,.pa(v)~IE*). i=1..... (12)
pdating scheme has been claimed to have a number of good
]. For the specific example. the fractional updating method will
he mixture by a beta distribtuion with parameters (9.54. 6.08).
F) = 0.54 and p(b.s|E*) = 0.08. This distribution has the correct
but a somewhat smaller standard deviation. 0.1196.

number of objections can be raised against the fractional updating
ppose. for simplicity. that the parent nodes pa(y)~ have been
the final term in (11) is absent. This situation is now equivalent

to standard unsupervised learning in which the child node takes the role of the
unobserved true class of the observation. the Dirichlet distributions express the
uncertainty about the prior distribution over the classes. and the class-con-
ditional feature probabilities are known and so provide the posterior probability
that the observation comes from each class. Expression (12) is one method of
revising the Dirichlet parameters. but Bernardo and Girén [1] have suggested
two plausible |desiderata that any such procedure should satisfy. We now con-
sider these using the expressions relevant to our context. The first states that
there should be no updating if no information concerning the node v has
been obtained. i.e.. p(x,,|E*) = p(x,,ipa(v)~). This is not obeved in fractional
updating since (12) will perform an update of the a's even if there is no relevant
evidence. The second desideratum states that the implicit sample size T o,
underlying the Dirichlet distribution should increase by 1 if and only if the true
state of v |is observed. This is also not obeyed by (12). since
Z(a)*=Z a + 1 whatever the evidence E*. Fractional updating therefore
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seems capable of unwarranted inflation of the implicit sample size and. hence.
the precision. A final criticism is that if the parent nodes pa(v) are not observed
with certainty so that the final term of (11) is nonzero then the updating
procedure (12) does not even necessarily provide the correct mean for the
conditional probabilities.

An alternative method is to use¢ the method of moments. i.e.. to choose the
parameters of the beta distribution such as to match the mean and standard
deviation; see, for example. Titterington et al. [20] for a short discussion of
this approach. In the example. the approximating beta distribution would have
parameters (9.32, 5.94). The difference between the approximating distribution
and the true mixture is almost invisible by eye on a drawing, see Table V.

The moment approach can be generalized to nonbinary response variables
in a number of ways. One possibility is to equate the “average variance™ of the
approximating Dirichlet destribution to that of the mixture as follows. Let m,,
and v;; denote the mean and variance of ¢, in the jth term of (11). where the
Oth term is the last. Then, the true posterior mean and variance of q;” are equal
to

k
m;= 2 myp(x,;. pa(¥)*|E*) + mol1 = p(pa(v)|E®))
P

and

k

vi= 2 (V.»,- +(m; - mi)z)p(x.-,. pa(v)~|E*)

=1

+ (V,n + (mio - ma‘)z) (1 = p(pa(v)~|E*)) .
The average variance of the mixture distribution is

F=2my,.
i

TABLE V. The density of the exact mixture distribution and the approximating beta
distribution with the same mean and standard deviation in the example.

0.20 0.30 0.40 0.50 0.55 0.60
Mixture 0.011 0.157 0.790 2.046 2.689 2.099
${9.32,5.94) 0.010 0.154 0.787 2.048 2.684 3.100

0.65 0.70 0.75 0.80 0.85 0.90
Mixture 3.121 2.701 1.947 1.103 0.438 0.094

${9.32.5.94] 3.119 2.699 1.947 1.106 0.442 0.096
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and if we approximate the mixture with a Dirichlet distribution with parameters
(sm,. . . . .sm;) for some s> 0. it will have the correct mean but average
variance equal to

=2 mi(l -m)s+1).

Equating ¥ to v leads to using a Dirichlet distribution with -

_Lmi(l-m)
2,‘ m;v;

s -1

as the approximating distribution.

The Dirichlet assumption therefore requires approximation in the mixture
operation in local retrieval, in the assumptions of both local and global indepen-
dence. However, the virtue is in its simplicity of operation. and its ready
interpretation. in terms of ‘counts.’

4.3. Modeling Log-odds as Gaussian Variables

The previous two subsections have discussed representations of conditional
probability tables as random quantities that required specification of more
parameters than did the conditional probabilities of interest. We now consider
a more parsimonious assumption in which the conditional probabilities for
all possible parent configurations are simultaneously modeled. Hence. ‘local
independence’ does not hold. We hope thereby to illustrate how to exploit
some more sophisticated statistical modeling.

Consider (r + 1) functions 5.1y, - . . .1, of the configuration at parent nodes of
a node v with ¢ + 1 states, numbered as x.q.....x,,. For notational con-
venience. f is the constant function assumed to take on the value 1. Choose
the state x,¢ as a particular reference state. and let fori=1... .. q

ei(xpa(l')) = |°Sf-[P(-"w‘|—tpa(r))/P(Xerpa(-~))]-

i.e.. the log-odds on x,, against x,, having observed a particular parent con-
figuration. Our basic assumption is that 6(xp,.,) are linear combinations of
the functions 1;(Xpay). We also create a random vector Z with Z, =1 if X, =
x,; and Z, = 0 otherwise. fori = 1.. .. .q. and. hence. we may state our assump-
tion as

o,‘(XPa(‘-)) = 8,(Xp,(..,.a,) = 0,('.0,‘) = a:l.

where a; = (ap. . - . .a;) are unknown coefficients. t = (fp{Xpaqiy). - - - . t(Xpagy))
are the given values of the functions and ’ denotes transpose. We shall first
consider the binary case where g = 1. corresponding to standard logistic regres-
sion.
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4.3.1. The Binary Case

In this case. there is only one state apart from the reference state and we
may ignore the subscript i. The prior assumption is that the coefficients a have
a multivariate normal distribution with mean u and covariance matrix S and.
hence. 6(xpaiy.a) ~ N(u't.r'Se). This assumption of prior normality for log-
odds has been explored by. for example. Lindley [8] and Leonard [7].

The dissemination operation to obtain the conditional probability
P(Z = 1xpa(.y) Tequires the evaluation of

E.[p(Z= Ixpage )] = Eole®/(1 + e’)],

where 8~ A (v,0%): v = u't. 0% = 'Sr. In Appendix A we show that this may
be well approximated by

B = P(Z = lxpaiy) = € /(1 + &),

where ¢ = (1 + 0.368¢°)~ ! is a shrinking factor to what we term the direct
estimate

p=pZ= ll"'pa(--)) =e"/(1 +e").

Hence. dissemination is a simple operation.
The retrieval operation (6). after having observed evidence E*. is given by

PAEY) = T plalXpacr)p(Xpo-2 E*). (13)

VYpats )3

where the second term is obtained by the L-S procedure. The local inversion
p(alXpaq).2) could be performed exactly in the previous parametrizations. but
here we need to consider approximations. Specifically. we would like a multi-
variate normal approximation to the posterior density. plaixp,,,.2) for any
specified value of xp,,,. where

P@lXpai1-2) X pla)p(2Ppaiir-a) = exp{ = (@ — u)' S~ N - p)2}——— .
(1+e)

In Appendix B.1 we show that a Gaussian approximation to this posterior has
mean 4 and covariance matrix S where
}f=:—(——”u)——) SIS (14)
1+p(1 - pro*

where o = 1'Ir was the prior variance of 6(r.a) = a'r and p was the direct
estimate mentioned above. while

E=p+(z-p)s
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Hence. the mean is changed by the residual predictive error times a function
that relates the parents to the coefficients u. Thus. 6(x,..,.a) has its variance
and mean adjusted to

=l - sl - p)a’ - o-
L+ p1=pye*  (1+p(1 - p)o?)
and
v=y+ (2 - p)oi.

This local inversion operation is straightforward to perform. If pa(v) and v
are not observed. then (13) may be approximated by a single multivariate
normal distribution with the correct mean and covariance.

We illustrate the technique with a trivial example. In subsection 4.1 we
considered the single conditional probability of observing bronchitis in a smoker
whose prior distribution had mean 0.6 and standard deviation 0.13. This is
comparable to taking 8 ~ .\ (u.0%), where

6 = log[ p(bls))/p(bis)]

and p = 0.427. ¢* = 0.293 since then the approximate mean of p(bis) is p = 0.6
and the approximate standard deviation, calculated by the delta method. is
p(1 — p)o=0.13. The direct estimate becomes p = 0.605. Having observed a
smoker with bronchitis, the variance is modified to ¢° = 0.284 and the new
mean of 6 is updated to 4 = 0.539, implying that the value of p(bis) to be
disseminated next has increased to 0.625 (compared to 0.628 for the discrete
distribution and 0.625 for the beta distribution).

4.3.2. The Case with Multiple States

In the case of multiple states. things get slightly more complex although we
shall see that there is much analogy with the binary case. First. we organize
the coefficients a, as columns in an (r + 1) X ¢ matrix denoted a. The prior
assumption is that the coefficients a have an (r + 1) x g-variate normal distribu-
tion with mean u and covariance matrix & ® A, where £ denotes Kronecker
product of matrices and A is to be defined below. Hence.
0(Xpagry.a) ~ N (m't.t'StA) such that A. apart from a scalar depending on t. is
the covariance matrix of the log-odds. To describe A. we first introduce the
vector = w(u) = as

m, = p(Z, = lpXpaiy) = exp{ut = W(pa)}.

where

d(p.r) = Iog[l + ﬁ e“i'] .

i=]
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and let the matrix IT = [1(u) be a q x q diagonal matrix with the entries of =
in the diagonal. Further. let E be the matrix with all entries equal to one. We
then let

A=A(p)=N""'+ n;'E.

where m, = exp(—¥(a.1)). is the probability of observing the state x,o. Thus. A
has 77! + w5! in the diagonal and ="' in all off-diagonal elements. Then. the
variance of a;t becomes o? = a¥(m5' + 75!). where s° = ¢'St. Note that ¢o*
has a slightly different meaning here as in the previous subsection.

The dissemination operation to obtain the conditional probabilities
P(Z; = lixpavy) is made approximately in analogy with the binary case as

pi = p(Z, = llxpa(r)) = ﬂl(,‘i)'

where 4i; = p/1(1 + 0.36807)~!"? is obtained by shrinking the direct estimate as
before. Hence. dissemination creates no difficulties.

The local inversion p(a|xpa(.).:) is done by a multivariate normal approxi-
mation to the posterior density.

plalxpany.2) xexp{—trfA~Y(a - p)’'Z " (a— )] +1'az — Ha.t)}

In Appendix B.2. we show that a Gaussian approximation to this posterior has
mean ;i and covariance matrix Z ®A, where

=3~ SNENAL+ ). (15)
while
H=p+3(: - 7)A.

To make the approximation work for the next case. we need to change the A
to A = A(4). This latter change gives a slightly different approximation than
the one used in the binary case. Thus. the approximate local inversion operation
is carried out by using .\, . , . L. ® A) as posterior (and prior for the next
case). If pa(v) and v are not observed. then we again have to approximate the
mixture in the retrieval by a single multivariate normal distribution.

5. FURTHER ISSUES

The preceding development provides a computationally straightforward basis
for local revision of conditional probabilities as data accumulates. However.
there are a number of stages at which assumptions have been made. and we
can currently point to possible alternatives.

First. our assumption of exchangeability over a sequence of cases will not
generally hold over a substantial period. and we would expect more recent
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cases to be most important in our updating procedure. Such an adaptive system.
in which past cases are gradually eliminated from the memory summarized by
the experience. could be established. say. by downweighting past experience
by a small amount at each updating step. Specifically. all measures of precision.
which will usually be represented by a sample size. are multiplied by (1 - ¢)
when being combined with the newest observation.

Second. it is clear that our global independence assumption. while making the
updating scheme attractively simple. will often be inappropriate when similar
fragments of knowledge are represented in many parts of a network. Pedigree
analysis is an extreme example. in which only a few unknown parameters may
exist. One possibility is to do the L-S evidence propagation with algebraic
expressions and. hence. provide both a final likelihood for the unknown par-
ameters obtained from the case in hand such as indicated in our reply to the
discussion of (L-S) as well as an expression for p(C|E*.6) for each clique C.
Dissemination could then take place after propagation by combining with the
prior in force before the case was analyzed. and the resulting posterior distribu-
tion calculated by combining the prior with the likelihood. Alternatives are to
carry out within-case analysis for a range of parameter values that would be
equivalent to a numerical version of the procedure just sketched. When more
parameters are unknown. a full simulation procedure using the IP algorithm
[17] may be appropriate.

Third, the robustness of the proposed schemes in the face of extreme amounts
of missing data has yet to be explored. For example, in the face of totally
unsupervised learning, when, say, we wish to learn the sensitivity and specificity
of a diagnostic test and yet the true disease is never known, we might expect
the discrete procedure to be rather unstable.

Finally. we have not addressed the crucial area of criticism of the qualitative
structure of the model. If we consider a number of possible network structures
denoted by H,, . .. .H,, say, then we can monitor the predictive probability of
the data obtained on each case

p(EY. ... .EH) = 1 p(EXH)).
=1

which makes the global comparison simply the product of the Bayes factors
obtained while treating each case.

We note that it should be possible to decompose such a Bayes factor into
components relative to cliques of the filled-in network. Hence. local model
comparisons. concerned with whether a link could be dropped. or whether two
adjacent cliques should be merged. could be monitored locally. Provided a full
database on past cases had been retained. it would be reasonable to systemat-
ically explore the possible benefits. in terms of better prediction. that would be
obtained by introducing a single additional link. However. we believe that
major reconfigurations of the network should not be contrived automatically.
and a domain-expert is essential for structural “learning.”
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APPENDIX
A. The Mean of the Logistic Transform

We wish to find an approximation to E[e?/(1 + ¢*)] when 8 ~ A (v.0%). This
is achieved by twice making use of the approximation e%/(1 + %) = ®(8£). with
£ chosen appropriately. If we, for example. choose ¢ = 0.607. the approximation
is excellent and differences are very small in absolute value. see table 2.1 of
Cox [3]). Thus.

E[e®/(1 + )] = f ) D(0€)dN 0: v.0?) de.

where &(0 : v.a?) denotes a normal density function with mean v and variance
a>. The right-hand side can be written

f P(U<0|6)](8: v.a*) de.
where U8~ .V(~-6.£72). implying that the integral can be found as P(U < 0).
Since 6~ .V(v.07). we get that U ~ N (—v.0* + £€72) and therefore
E[e°/1 + €%)] = P(U < 0) = d(vl(* + £7%)'7),
which. using the approximation in the reverse direction. is approximately equal

to e/(1 +ev). where c=(l+ §%0*)"'". For £=0.607. this gives c =
(1 +0.3680°%)"172, ‘

B. Local Inversion of Normal Log-odds
B.1. The Binary Case
The log-posterior density /(a ) has. apart from an additive constant. the form
Ka)= —(a— u)S (a—-u)2 +(a'nz - log(l +e).
Our estimate of a good multivariate normal approximation to this distribution
are based on a single step in a Fisher-Newton approximation. i.e.. approximat-
ing I(a) locally by a quadratic around u. Hence. we find the gradient ¥ and

hessian H of l(a). both evaluated at a = u and let 4= pu — H™'V. The new
covariance matrix I is set to —H~'. We get

Vo= = —wila = ) = 2owlag = ) + 2t — e (L + e,
i

where W= X!, Hence. evaluating at a = u. we find
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V=(-pu

the residual error times the observed value of the functions of the parent
configuration. Further,

-

a-l

Hy=—==—w; - tie" (1 + €’
Ja;
and
&l : ‘"
g = = —w, — ti;e""I(1 + e').
Y da;da; ! ! »

and. hence. H evaluated at @ = u can be expressed as
H=-=37'=p(l-ph.

Fortunately. this means that its inverse can be simply evaluated by a standard
identity. see. e.g.. Rao {12]. giving expression (14) for —H~! = X. Hence.

E=p-H'C=p+(z-p)

These recursive updating formulae are analogous to expressions in Walker and
Duncan [21] and Pregibon [11].

B.2. The Case with Multiple States

In the case of multiple states. we proceed as before. The log-posterior density
is. apart from a constant,

la)= -trfA"Ya— u)’S~Ya~-pu))2 +1raz - da.r).

Before differentiating. note that the function & has gradient and hessian equal
to

Vié(a.r) = E[Zr'|a) = m(a)’
Hé(at) = V[Z0'|a] = ' Q(Il(a) ~ m(a)7(a)’).
Thus. we obtain by differentiation
Yla) = -S-Ya- p)A(p)~' + 21" - m(a)’
which. evaluated at a = pu, gives

V=(z—a).
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Differentiating a second time yields
H=-X"'®A"' -1 Q(l(a) - n(a)m(a)).

But, we have, in fact. that

A~ = ([(p) ~ m(p)m(p)).

which can be seen by straightforward multiplication. such that when we evaluate
at a = u we get

-H-'=C '+1)'QA.

Using the identity from before gives expression (15). and then 4 can be calcu-
lated directly.
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