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Abstract. This paper develops a general framework to support the combina-
tion of information from independent but related experiments, by introducing

a formal way of combining statistical models represented by families of dis-

tributions. A typical example is the combination of multivariate Gaussian
families respecting conditional independence constraints, i.e. Gaussian graph-

ical models. Combining information from such models, represented by their

dependence graphs, yields a formal basis for what could suitably be termed
structural meta analysis. We consider issues of combination of pairs of dis-

tributions, extending the concept of meta-Markov combination introduced by

Dawid and Lauritzen. The proposed theory is then applied to the special case
of graphical models.

1. Introduction

Consider a number of independent statistical investigations that not necessar-
ily address the same question but have some aspects in common, in particular the
variables under study. This may be the case, for example, when different laborato-
ries analyze related phenomena using different methods or when different sources
of information relate to different parts of the same experiment. It may happen
when small experiments are conducted with the purpose to reconstruct and make
inference about a system where a global investigation involving all relevant vari-
ables for some reason is not feasible. Or it may happen simply because studies are
performed independently and under different circumstances.

In a biological context, we may think of studies involving regulatory networks
or signaling pathways with common elements (genes, proteins, etc.). The networks
might be the results of independent experiments and the interest is in constructing a
meaningful joint network to encapsulate the biological understanding. We mention
the study of [9], where a large number of studies of diseases and related genes are
combined to form “the human diseasome” bipartite network which can be seen as
a simple but prominent and large scale example of the type of structural meta-
analysis which we have in mind. Meta-analysis is usually meant to integrate and

2000 Mathematics Subject Classification. Primary 62H99; Secondary 68R99.
Key words and phrases. collapsibility; consistent distributions; cut; lower Markov combi-

nation; meta-consistent families; meta-Markov combination; quasi-consistent families; structural
meta-analysis, super Markov combination; upper Markov combination.

The first author was supported by University of Padua grant CPDR070805.

c©2010 American Mathematical Society

1



2 M.S. MASSA AND S.L. LAURITZEN

combine evidence from different studies that are well-designed, address the same
questions and use similar outcome measures (see [8, 10]). In our setup, we extend
the concept of meta-analysis so that it covers the more general process of creating
a consistent overview of information in several independent and related studies.

Some literature on similar topics already exists. [2] focus on constructing prior
distributions for decomposable graphical models from prior distributions on its
cliques, and considers in this connection the notion of meta-Markov combination of
the models. This paper extends and generalizes the latter. [6] address the problem
of combining conditional graphical log-linear structures involving the same group
of variables. They build a hyper model including the initial variables and a new one
that takes into account the different structures. Then they study the conditional
independence relationships given by the hyper model. [14] proposes a method to
combine the structures of marginal decomposable graphical models. He focuses on
the construction of a joint graph, analyzing the structural properties and describing
a grafting process, based on the minimal connectors of the marginal graphs. Note
that his idea is that of finding all the possible structures compatible with the initial
ones. [3] yield a general axiomatic theory for combination of compatible objects
in so-called conditional products and [11] introduce a method for constructing
discrete multidimensional distributions by combining many low-dimensional ones
using non-symmetric composition operations in the case where distributions are
not necessarily compatible. [21] propose an algorithm to integrate partial ancestral
graphs with overlapping variables without conflictual information.

In contrast, our attention is focused on constructing combinations which in
some sense are as simple as possible. In our general setup, we consider families of
distributions defined over subsets of variables with respect to a product measure
which respect some form of compatibility and we are interested in constructing a
joint family of distributions over all the variables of interest. We develop a gen-
eral framework for combination of families of distributions and a first development
of formal concepts to underpin the ideas mentioned above. Although we in the
present paper focus on the general aspects, the prime application we have in mind
is the combination of families of distributions respecting conditional independence
constraints with respect to a graph G, i.e. graphical models.

We are conscious that it is also important to describe a procedure for combining
the inferences from each of the models in the combination when data are available
in some form. However, in this paper we investigate the combination of the models
and combination of inferences will be discussed elsewhere.

The paper is organized as follows. In Section 2 we introduce a few motivating
examples. Section 3 studies conditions for compatibility for distributions and fami-
lies of distributions. Section 4 deals with combination of distributions and families
of distributions and studies the properties of such combinations in some detail.
Section 5 applies the ideas of the previous sections to the combination of Gaussian
graphical models and gives some examples of combinations. We conclude with a
general discussion and some possibilities for future work.

2. Motivating examples

Before developing the general concepts, we provide some simple examples to
introduce the ideas behind the concepts. To begin with, we give the definition of a
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Figure 2.1. From left to right, graphs GA and GB and a possible
combination of them.

Gaussian graphical model with undirected graph G = (V,E) with |V | = p, following
[15].

Definition 2.1. A Gaussian graphical model is determined by the family of
multivariate normal distributions YV ∼ Np(µ,Σ), where the mean µ is an arbitrary
vector, the concentration matrix K = Σ−1 is assumed to be positive definite, and
its elements are equal to zero whenever there is no edge between the corresponding
elements in V .

For simplicity we consider the case where the mean vector µ is set to zero to
focus the interest on issues concerning the covariance matrix. Thus a Gaussian
graphical model is represented by a set of multivariate normal distributions as
YV ∼ Np(0,Σ) where Σ−1 ∈ S+(G), and S+(G) is the set of symmetric positive
definite matrices whose elements are equal to zero whenever there is no edge between
the corresponding elements of V . Note that we use graph to indicate the conditional
independence structure of the model and family to indicate both the graph and the
set of distributions conforming with the conditional independence structure.

Example 2.1. The two leftmost graphs in Figure 2.1 represent two Gaussian
graphical models, YA ∼ N3(0,Σ), Σ−1 ∈ S+(GA), YB ∼ N2(0,Φ), Φ−1 ∈ S+(GB).
We imagine that the graphical models represent information of two studies acquired
from two laboratories. The studies have some (Y2 and Y3) but not all variables in
common, and it is of interest to construct a model that combines the initial pieces of
information in the best way. Each graphical model represents a family of probability
distributions. For a simple combination of them to make sense, we have to ensure
that at least one pair of distributions exist within the models which induce the same
distribution over the variables in common. It can be easily shown in this case that
the second graphical model is indeed the marginal family of the first one, hence we
may simply take a combination with the Y23-marginal determined by the leftmost
graph of the figure, the joint family being represented by the rightmost graph in
Figure 2.1. �

Example 2.2. In the first example there is a particular simple relation between
the families, i.e. one family is the marginal of the other family. Figure 2.2 presents
two Gaussian graphical models, YA ∼ N3(0,Σ), Σ−1 ∈ S+(GA) and YB ∼ N3(0,Φ),
Φ−1 ∈ S+(GB) that are related only through the variables Y2 and Y3 and involve
two different conditional independence relationships. Here, there is no obvious way
of defining the combination; in particular, it is not naturally given by the graph
obtained as the union of the two graphs as this would represent very different
conditional independence restrictions. �

Example 2.3. In Figure 2.3, there are no conditional independence relation-
ships expressed by the two graphs and one possible graph for the combined model is
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Figure 2.2. From left to right, graphs GA and GB . It is not
straightforward to define a combination of them.
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Figure 2.3. On the left, two complete graphs. On the right, a
graph representing a possible combination of them.

the union of the two graphs. Nevertheless, there are several different graphs which
are compatible with the independence structure of the initial ones, for example the
four graphs containing the cycle (1243) but differing by the presence or absence of
the edges (2, 3) and (1, 4). Our approach for combining models chooses the simplest
model which is compatible with the initial graphical models, in this case represented
by the graph to the right in Figure 2.3 having the edge (1, 4) absent. �

3. Consistency issues

We begin by describing some notation that we use throughout the paper. Let
V be a set of variables. We let Yv denote a random variable taking values in a
sample space Yv. For A ⊆ V , we let YA = (Yv)v∈A with values in the product
space YA = ×v∈AYv. By a probability distribution over A ⊆ V , we indicate a joint
distribution for YA over YA. If f is a distribution over V and A,B ⊂ V , then fA
denotes the marginal distribution of YA, and fB|A the conditional distribution of
YB\A given YA = yA. For a family of distributions F = {f | f distribution over A}
and C ⊆ A, F↓C denotes the family of marginal distributions induced by F over
C. If C = ∅, F↓C is trivial containing only the constant equal to one.

The general formulation of the problem addressed in this paper is as follows.
We consider two sets of variables A and B which are possibly different subsets of a
finite set V of variables, and two families F and G of distributions for YA and YB .
We ideally search for a joint family of distributions H for YA∪B , such that

H↓A = F , H↓B = G.

We restrict attention to distributions which are absolutely continuous w.r.t. product
measures ⊗v∈Aµv and ⊗v∈Bµv, where the measures µv, v ∈ V are fixed. We can
therefore use the term distribution synonymous with the term density.

When combining such families we must ensure that they in some way induce
the same distributions over the variables in common. Following the works of [12,
13, 22, 23], we firstly define consistency for distributions.



COMBINING STATISTICAL MODELS 5

Definition 3.1. Two distributions f and g for random variables YA and YB ,
f over A and g over B, are said to be consistent if fA∩B = gA∩B .

This is now extended to families following [2]:

Definition 3.2. Two families of distributions F and G for random variables
YA and YB , are said to be meta-consistent if F↓A∩B = G↓A∩B .

The notion of meta-consistency is very restrictive. We shall therefore consider
combination of families also in cases where this does not hold. Therefore we intro-
duce a weaker form of compatibility by only requiring the existence of comparable
distributions. Let

(3.1) FG = {f ∈ F | ∃ g ∈ G : f << g},

where f << g is set to mean that the densities satisfy

gA∩B(xA∩B) = 0 =⇒ fA∩B(xA∩B) = 0,

i.e. that fA∩B is dominated by gA∩B . We define

Definition 3.3. Two families F of distributions over A and G of distributions
over B are said to be quasi-consistent if FG = F , and GF = G.

Clearly, if two families are meta-consistent, they are also quasi-consistent.

4. Markov combinations

4.1. Combination of distributions. [2] introduce the Markov combination
of two consistent distributions as

Definition 4.1. The Markov combination of a pair f and g of consistent
distributions is defined as

f ? g = f · g/gA∩B .

If A ∩B = ∅, fA∩B = gA∩B = f∅ = 1 and f ? g = f · g. It is worth noting that
the Markov combination of f and g preserves the marginal distributions and it is
the simplest possible with that property, in the sense that it has maximal entropy
among all distributions with the given marginals, as detailed below.

Proposition 4.1. The Markov combination f ? g preserves the marginal dis-
tributions

(f ? g)↓A = f, (f ? g)↓B = g.

Proof. This is immediate, see also [2]. �

Proposition 4.2. Let HF (A) be the entropy of a family of distributions F over
A. Then, Hf?g(A ∪B) ≥ Hh(A ∪B),∀h ∈ Q, whereQ = {h : hA = f, hB = g}.

Proof. This follows from the calculation below which establishes and exploits
that the entropy is a submodular function on the subsets of a finite set (see [19])
so it holds that

H(A ∩B) +H(A ∪B) ≤ H(A) +H(B),
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with equality if and only if A and B are conditionally independent given A ∩ B.
Then, since A⊥⊥B |C with respect to f ? g we have

Hf?g(A ∪B) = Hf?g(A) +Hf?g(B)−Hf?g(A ∩B),

= Hf (A) +Hg(B)−Hf (A ∩B),

= Hh(A) +Hh(B)−Hh(A ∩B) ≥ Hh(A ∪B)

for any h which has marginals equal to f and g respectively. �

The Markov combination is commutative from the way it is defined. Now,
consider three pairwise consistent distributions f , g and h defined over A, B, C,
respectively. If A∩B = A∩C = B ∩C = A∩B ∩C, the Markov combination also
satisfies

f ? (g ? h) = (f ? g) ? h = (f ? h) ? g,

but it is not in general associative. If A ∩C ⊂ B there is a limited associativity in
the sense that

(4.1) f ? (g ? h) = (f ? g) ? h 6= (f ? h) ? g.

This is seen by applying the definition of Markov combination twice; we get

f ? (g ? h) =
f · g · h

fA∩(B∪C) · gB∩C
=

f · g · h
fA∩B · gB∩C

,

where we have also used that A ∩ C ⊂ B, and similarly

(f ? g) ? h =
f · g · h

fA∩B · h(A∪B)∩C
=

f · g · h
fA∩B · hB∩C

.

The consistency condition hB∩C = gB∩C gives the first equality, whereas

(f ? h) ? g =
f · h · g

fA∩C · h(A∪C)∩B
,

which clearly is different in general.
If two distributions f and g are not consistent, there is no single obvious way

of combining them, so we follow [11] and define

Definition 4.2. The operator of right composition of f and g is defined as

f . g =

{
f · g

gA∩B
if f << g

undefined otherwise
.

Definition 4.3. The operator of left composition of f and g is defined as

f / g := g . f.

Note that the expressions make sense when we define 0/0 = 0 since fA∩B(xA∩B) =
0 implies f(x) = 0 almost everywhere.

The two operators of composition were originally introduced for discrete dis-
tributions and they are equivalent to the Markov combination when the two distri-
butions f and g are consistent. Hence, if f and g are two consistent distributions,
f . g = f / g = f ? g.

[11] say that two distributions f and g are a perfect pair if f . g = f / g.
Clearly, a pair of distributions is perfect if and only if they are consistent because
fA∩B = gA∩B implies f . g = f / g and vice versa.
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The operators of left and right composition preserve only one marginal distri-
bution. In particular, (f . g)↓A = f and (f / g)↓B = g, provided the expressions
are well-defined. The operators f . g and f / g are neither commutative nor as-
sociative in general. However, the combination satisfies a fundamental conditional
independence relation and can as such be considered a type of Markov combination:

Proposition 4.3. Consider two distributions f defined over A, and g defined
over B. It then holds that

(4.2) A⊥⊥B | (A ∩B),

for any of the distributions f ? g, f / g, and f . g.

Proof. This follows directly from the definition of conditional independence
and Definitions 4.1, 4.2, 4.3. �

4.2. Combination of families. This section is concerned with lifting the
notions of combinations for distributions to families of distributions.

We have two different specific situations in mind. In the first situation we
imagine the two families F for YA and G for YB having been established in their
respective laboratories with a high degree of certainty so that restrictions in each of
the families necessarily must be respected and taken at their face value. Below we
define a lower Markov combination which reflects this by reducing the families to
satisfy this demand. In the second situations the families may only reflect conjec-
tures about the issue under study and we would like to combine the two studies in
a way that allows either of the laboratories to be correct, but not necessarily both.
We therefore also define an upper Markov combination which extends the families
to incorporate both of the original ones.

The lower Markov combination combines only pairs of consistent distributions
(f, g), f ∈ F , g ∈ G:

Definition 4.4. The lower Markov combination of F and G is defined as

F ? G = {f ? g : f ∈ F , g ∈ G, } ,
where f ? g = f · g/gA∩B is the Markov combination of distributions f and g.

Note that only consistent pairs of distributions are combined. In the case where
F and G are meta-consistent, this specializes to the meta-Markov combination F ?G
of [2] which again is a special instance of a conditional product (see [3]).

As for the Markov combination of distributions, the lower Markov combination
of families is commutative but has only limited associativity so that for A∩C ⊂ B
it holds that

(4.3) F ? (G ? H) = (F ? G) ? H 6= (F ? H) ? G.
Note also that if F and G have no consistent pairs, we have F ? G = ∅.

Now we provide two examples with combination of families of multivariate nor-
mal distributions.

Example 4.1. [Combining meta-consistent families] Consider two families of
bivariate normal distributions defined as

F =

{(
X
Y

)
∼ N2

((
0
0

)
,

(
σ2
x 0

0 σ2
y

))}
, G =

{(
Y
Z

)
∼ N2

((
0
0

)
,

(
λ2y 0
0 λ2z

))}
.
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Here, F↓Y = {Y ∼ N(0, σ2
y)} and G↓Y = {Y ∼ N(0, λ2y)}. Therefore, F↓Y = G↓Y ,

i.e. F and G are meta-consistent. For all f ∈ F , there exists g ∈ G such that
fY = gY . It is sufficient to take λ2y = σ2

y. In this case, the lower (and meta-)
Markov combination is given by

F ? G = F ? G =

exp
{
− 1

2 ( x
2

σ2
x

+ y2

σ2
y

+ z2

λ2
z
)
}

(2π)
3
2σxσyλz

 ,

obtained by combining all f ∈ F and g ∈ G which are pairwise consistent, i.e. with
σ2
y = λ2y. It holds that (F ? G)↓(X,Y ) = F and (F ? G)↓(Y,Z) = G and all distribu-

tions in the resulting family are products of univariate Gaussian distributions. �

In the next example, the families are not meta-consistent so the lower Markov
combination represents a proper restriction of the families.

Example 4.2. [Combining non-meta-consistent families] Consider two families
of distributions defined as follows: F as in the above example and

G =

{(
Y
Z

)
∼ N2

((
0
0

)
,

(
1 0
0 σ2

z

))}
.

Here, F↓Y = {Y ∼ N(0, σ2
y)} and G↓Y = {Y ∼ N(0, 1)}. Therefore the families

are not meta-consistent. The lower Markov combination is given by

F ? G =

exp
{
− 1

2 ( x
2

σ2
x

+ y2 + z2

σ2
z
)
}

(2π)
3
2σxσz

 .

Note that here (F ? G)↓(X,Y ) ⊂ F and (F ? G)↓(Y,Z) = G so the marginal families
are genuinely reduced. �

The upper Markov combination, as defined below, is freely combining marginals
of f from F with conditionals gB|A∩B for g ∈ G and vice versa, corresponding to
the set of left and right compositions of elements of F with elements of G.

Definition 4.5. The upper Markov combination of F and G is

F ? G = {f . g | f ∈ F , g ∈ G, f << g} ∪ {f / g | f ∈ F , g ∈ G, g << f}.

The lower Markov combination defines a smaller family than the upper Markov
combination since it associates consistent pairs only, whereas the upper Markov
combination associates more pairs.

Proposition 4.4. It holds that F ? G ⊆ F ? G.

Proof. Immediate from the definition. �

If the families F and G are not quasi-consistent, their upper Markov combina-
tion contains the upper Markov combination of FG and GF where these are defined
in (3.1). Note that FG ? GF ⊆ F ? G, but the inclusion is strict in general.

All of the combinations imply conditional independence of the marginals given
the intersection, thus deserving to be called Markov combinations.

Proposition 4.5. For all distributions h in the upper Markov combination
F ? G, and hence also in the meta or lower Markov combination, it holds that
A⊥⊥B |A ∩B.
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Proof. This follows directly from Proposition 4.3. �

Now we continue the two examples on combination of families of multivariate
normal distributions.

Example 4.1 (continued). [Upper Markov combination for meta-consistent
families] The families are meta-consistent and hence they define equivalent mea-
sures, that is to say f << g and g << f for each pair (f, g) with f ∈ F and g ∈ G.
Thus the upper Markov combination is given by

F ? G =

exp
{
− 1

2 ( x
2

σ2
x

+ y2

σ2
y

+ z2

λ2
z
)
}

(2π)
3
2σxσyλz

,
exp

{
− 1

2 ( x
2

σ2
x

+ y2

λ2
y

+ z2

λ2
z
)
}

(2π)
3
2σxλyλz

 ,

=

exp
{
− 1

2 ( x
2

σ2
x

+ y2

σ2
y

+ z2

λ2
z
)
}

(2π)
3
2σxσyλz

 .

Indeed this is the same family as for the lower Markov combination so we have in
this particular case

F ? G = F ? G = F ? G.
Proposition 4.9 below yields conditions under which this identity holds. �

Example 4.2 (continued). [Upper Markov combination for non-meta-consistent
families] The families are quasi-consistent and the upper Markov combination is

F ? G =

exp
{
− 1

2 ( x
2

σ2
x

+ y2 + z2

σ2
z
)
}

(2π)
3
2σxσz

,
exp

{
− 1

2 ( x
2

σ2
x

+ y2

σ2
y

+ z2

σ2
z
)
}

(2π)
3
2σxσyσz

 ,

=

exp
{
− 1

2 ( x
2

σ2
x

+ y2

σ2
y

+ z2

σ2
z
)
}

(2π)
3
2σxσyσz

 .

�

As for the lower Markov combination, the upper Markov combination is com-
mutative but not associative unless we impose additional strong conditions such as
A ∩B = A ∩ C = B ∩ C = A ∩B ∩ C, cf. the examples below.

Example 4.3. Consider A = {X,W}, B = {Y,W}, C = {Z,W} and let all
families consist of single elements: F = {f}, G = {g}, H = {h} defined over A, B,
C, and assume, for simplicity, that all state spaces are discrete. A typical element
of (F ? G) ? H is

(f . g) / h =
f(x,w) · g(y, w) · h(z, w)

g(w) · f̃(w)
,

where f̃(w) is the marginal given as

f̃(w) =
∑
x,y

f(x,w) · g(y, w)

g(w)
= f(w),

so in this case (f . g) /h = f / (g /h), and the latter element is also in F ? (G ? H).
Similarly with other combinations. �
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If we only have A∩C ⊆ B, the associativity fails, as shown in the next example.

Example 4.4. Consider A = {X,Y }, B = {Y,Z}, C = {Z,W} and let all
families consist of single elements: F = {f}, G = {g}, H = {h} defined over A, B,
C and assume that all state spaces are discrete. One element of (F ? G) ? H is

(f . g) / h =
f(x, y) · g(y, z) · h(z, w)

g(y) · g̃(z)
,

and now g̃(z) is

g̃(z) =
∑
x,y

f(x, y) · g(y, z)

g(y)
=
∑
y

f(y) · g(y, z)

g(y)
,

where this marginal does not simplify further so (f . g) / h is not contained in
F ? (G ? H). �

In general, the lower Markov combination reduces or preserves the marginal
families, whereas the upper Markov combination preserves or extends them:

Proposition 4.6. (F ? G)↓A ⊆ F and (F ? G)↓B ⊆ G. Further, if A = B
then F ? G = F ∩ G.

Proof. This follows directly from Proposition 4.1 and Proposition 4.3. �

Proposition 4.7. (F ? G)↓A ⊇ FG and (F ? G)↓B ⊇ GF . Moreover, if A = B
then F ? G = FG ∪ GF .

Proof. From the definition it follows that (F ? G)↓A = FG ∪{f /g, f ∈ F , g ∈
G, g << f}↓A and (F ? G)↓B = GF ∪ {f . g, f ∈ F , g ∈ G, f << g}↓B . �

If applied to meta-consistent families, the lower Markov combination preserves
the marginal families, as also noted by Dawid and Lauritzen dawid:lauritzen:93.

Proposition 4.8. If F and G are meta-consistent, (F ? G)↓A = F and
(F ? G)↓B = G, and F ? G = F ? G.

Proof. The first part follows from Definition 4.4 and the construction of the
Markov combination. The final statement follows from [2] who show that for a
meta-consistent pair, the lower (meta-) Markov combination is the unique Markov
combination which preserves the marginal families. �

For the upper Markov combination the result is the reverse of that in Proposi-
tion 4.8 and it will be shown in Proposition 4.9.

The converse to Proposition 4.8 does not hold in general, but as summarized in
Proposition 4.9 below, it does so when marginalizations to the variables in common
form cuts. We recall the definition of a cut from [1] and [2].

Definition 4.6. YA∩B is a cut in F if F = F↓(A|A∩B)×F↓A∩B i.e. if A|A∩B
and A ∩B are variation independent: (A|A ∩B)‡(A ∩B)[F ].

It is equivalent to say that any product f1A∩B · f2A|A∩B , with f1A∩B ∈ F↓A∩B

and f2A|A∩B ∈ F
↓(A|A∩B) defines a distribution f in F .

The following proposition summarizes the interplay between cuts and combi-
nations for meta-consistent families of distributions.

Proposition 4.9. Let F and G be two families of distributions for random
variables YA and YB. The following are equivalent:
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(i) F and G are quasi-consistent and F ? G = F ? G.
(ii) (F ? G)↓A = F and (F ? G)↓B = G.

(iii) F and G are meta-consistent and YA∩B is a cut for F and G.
(iv) F and G are meta-consistent and YA∩B is a cut for F ? G.

Proof. (i) ⇒ (ii): From Propositions 4.6 and 4.7 it follows that

(F ? G)↓A ⊆ FG and (F ? G)↓A ⊇ FG ,

and hence, as the combinations are equal we must have

(F ? G)↓A = (F ? G)↓A = FG = F ,

where the last equality follows from quasi-consistency. The case for the B-marginal
is analogous.

(ii) ⇒ (iii): Recall that we have (F ? G)↓A = FG ∪ {f / g, f ∈ F , g ∈ G, g <<
f}↓A. If

{f / g, f ∈ F , g ∈ G, g << f}↓A ⊆ F ,
it must also hold that {f / g, f ∈ F , g ∈ G, g << f}↓A ⊆ FG as (f / g)↓A << g.
Hence then also FG = F whereby (F ? G)↓A∩B = F↓A∩B = G↓A∩B , i.e. the families
are meta-consistent. An arbitrary element of (F ? G)↓A is, for example, of the form

(f / g)↓A =

(
f · g
fA∩B

)↓A
= fA|A∩B · gA∩B .

Since the families are meta-consistent, gA∩B = f∗A∩B for some f∗ ∈ F , and hence

(f / g)↓A = fA|A∩B · f∗A∩B ,

showing that YA∩B forms a cut in (F ? G)↓A = F and similarly in G.
(iii) ⇒ (i): Since F and G are meta-consistent they are also quasi-consistent.

As F ? G ⊆ F ? G follows from Proposition 4.4, we must show the reverse inclusion.
Assume YA∩B is a cut for F and G, and consider an arbitrary element of F ? G of the
form f / g = fA|A∩B · g. We must show it is also in F ? G, i.e. find a consistent pair
which gives the same combination. Since F and G are assumed meta-consistent,
we can find f∗ with f∗A∩B = gA∩B . As YA∩B is a cut in F it holds that

f̃ = fA|A∩B · f∗A∩B ∈ F ,

and since f̃A|A∩B = fA|A∩B and f̃A∩B = f∗A∩B = gA∩B , f̃ and g are consistent and

f̃ ?g = f /g, hence the latter is in F ? G. The argument is analogous for an element
of the form f . g.

(iii)⇔ (iv): Proposition 4.5 yields the conditional independence A⊥⊥B |A∩B
which implies that YA∩B is a cut for F and G if and only if it is a cut for F ? G. �

Corollary 4.1. For C ⊆ A, YC is a cut for F if and only if F ? F↓C = F .

Proof. This follows from Proposition 4.9 by letting G = F↓C . �

In all of the Markov combinations it holds that the pair of marginal families in
the combined families are necessarily meta-consistent, by construction. If we let

F? = (F ? G)↓A, F? = (F ? G)↓A, G? = (F ? G)↓B , G? = (F ? G)↓B ,

we have
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Proposition 4.10. The pairs of marginal families (F?,G?) and (F?,G?) are
meta-consistent. Each of the combinations F ? G and F ? G is the meta-Markov
combination of its constituent pair of marginals. Further, it holds that

(4.4) F ? G = F? ? G? = F? ? G? ⊆ F? ? G?,
and

(4.5) F ? G = F? ? G? = F? ? G? ⊆ F? ? G?.

Proof. The pair of marginal families for any family of joint distributions is
necessarily meta-consistent, which gives the first statement. This automatically
implies the equalities in (4.4) and (4.5), and the last inequality in these follows
from Proposition 4.4. �

This proposition highlights that the Markov combinations can be seen as first
reducing or extending the given marginal families as appropriate and subsequently
forming their meta-Markov combination. Note that the notation is slightly impre-
cise as F? and F? depend on G as well, so F?(G) etc. would be more appropriate.
However, for simplicity of notation we shall leave this fact as implicit. This is clear
also from the following, where we give an alternative expression for F? and G?.

Proposition 4.11. F? = {f ∈ F | fA∩B = gA∩B for some g ∈ G} and
G? = {g ∈ G | fA∩B = gA∩B for some f ∈ F}.

Proof. Follows by direct calculation of (F ? G)↓A and (F ? G)↓B . �

In general, the inclusions on the right-hand sides of (4.4) and (4.5) are strict.
For example, if we combine an element of the form (f / g)↓A ∈ F? with one of the

form (f̃ . g̃)↓B ∈ G?, we get

(f / g)↓A =

(
f · g
fA∩B

)↓A
=
f · gA∩B
fA∩B

, (f̃ . g̃)↓B =

(
f̃ · g̃
g̃A∩B

)↓B
=
f̃A∩B · g̃
g̃A∩B

,

and further
(f / g)↓A∩B = gA∩B , (f̃ . g̃)↓A∩B = f̃A∩B ,

so that, for example,

(4.6) (f / g)↓A / (f̃ . g̃)↓B =

f ·gA∩B

fA∩B
· f̃A∩B ·g̃
g̃A∩B

gA∩B
=
f · f̃A∩B

fA∩B
· g̃

g̃A∩B
,

which is not necessarily an element of the upper Markov combination. If we let

F?? = (F? ? G?)↓A, G?? = (F? ? G?)↓B , F?? = (F? ? G?)↓A, G?? = (F? ? G?)↓B ,
and so on, we have

Proposition 4.12. The iterated extensions F?? and G?? are given as

F?? = {f1 . f2 : f1 ∈ F↓A∩B , f2 ∈ F} ∪ {f / g : f ∈ F , g ∈ G}↓A,

=

{
f · hA∩B

fA∩B
, f ∈ F , h ∈ F ∪ G

}
,

and

G?? = {g1 . g2 : g1 ∈ G↓A∩B , g2 ∈ G} ∪ {f . g : f ∈ F , g ∈ G}↓B ,

=

{
hA∩B
gA∩B

· g, h ∈ F ∪ G, g ∈ G
}
.
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Proof. Follows by direct calculation of (F? ? G?)↓A and (F? ? G?)↓B . �

In words, the iterated extension F?? is obtained by combining all A ∩ B
marginals from F and G with all conditionals of B \ A given A ∩ B from F , thus
constructing a cut to A ∩B. G?? is derived in an equivalent manner.

If we modify the families repeatedly by combining them, the families remain
unchanged after a finite number of steps.

Proposition 4.13. F?? = F?, G?? = G?, F??? = F??, G??? = G??.

Proof. The first two identities follow directly from Proposition 4.10. Propo-
sition 4.12 shows that F?? and G?? are meta-consistent and also that YA∩B is a cut
for F?? and G??. Therefore F?? ? G?? = F?? ?G?? and F??? = (F?? ?G??)↓A = F??
because the meta-Markov combination preserves the marginal families (see Propo-
sition 4.8). The last identity just involves interchanging F with G. �

Note that, once we have reduced the families with the lower Markov combina-
tion to obtain F? and G?, they will not be reduced any further by repeated com-
bination, whereas with the upper Markov combination we may extend them one
more step by forming their upper combination. Combining this with Proposition
4.10 and (ii) ⇒ (i) of Proposition 4.9 yields

(4.7) F ? G = F? ? G? = F??G? ⊆ F? ? G? = F?? ? G?? = F???G?? = F?? ? G??,

i.e. when the families have been sufficiently modified, they combine in the obvious
way. Note in particular that

F ? G ⊆ F ? G ⊆ F?? ? G??.

This motivates the introduction of a super Markov combination as the meta-Markov
combination of the maximally extended families:

Definition 4.7. The super Markov combination F ⊗G of F and G is given as

F ⊗ G = F?? ? G??.

Note that YA∩B is a cut in F ⊗ G as well as in the families F?? and G??. This
implies in particular that the super Markov combination is a strong meta-Markov
combination of its constituent marginal families F?? and G??, as is also the case for
the lower Markov combination when the conditions of Proposition 4.9 are fulfilled
as then F = F??. We also have, from (4.7), that

F ⊗ G = F? ? G?,

so the super Markov combination can also be obtained by double upper combination
of the families. The super Markov combination has no associativity properties.

Proposition 4.14. The super Markov combination F ⊗ G can also be written
as

F ⊗ G =
{
fA|A∩B · hA∩B · gB|A∩B , f ∈ F , h ∈ F ∪ G, g ∈ G

}
.

Proof. This follows from Definition 4.7. �

In words, the super Markov combination is the combination of all conditional
distributions from the two families with any marginal distributions.
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Example 4.5. [General example with all combinations and properties of cuts]
Let F = {f1, f2} and G = {g1, g2}. If f1A∩B = g1A∩B , and f2A∩B = g2A∩B , the
families are meta-consistent. The lower Markov combination is then equal to the
meta-Markov combination

F ? G = F ? G =
{
f1 ? g1, f2 ? g2

}
.

The upper Markov combination in the general case is equal to

F ? G =
{
f1 / g1, f1 . g1, f1 / g2, f1 . g2, f2 / g1, f2 . g1, f2 / g2, f2 . g2

}
,

yielding

F? = F ∪
{
f1 · g1A∩B
f1A∩B

,
f1 · g2A∩B
f1A∩B

,
f2 · g1A∩B
f2A∩B

,
f2 · g2A∩B
f2A∩B

}
,

G? = G ∪
{
f1A∩B · g1

g1A∩B
,
f1A∩B · g2

g2A∩B
,
f2A∩B · g1

g1A∩B
,
f2A∩B · g2

g2A∩B

}
,

whereas F?? and G?? have 8 elements each because they combine all 4 marginals
to A ∩ B with 2 conditionals from F or 2 conditionals from G, respectively, see
Proposition 4.12. The super Markov combination F⊗G has 2×4×2 = 16 elements,
reflecting the fact that it combines all 4 marginals to A∩B with both conditionals
from F and both conditionals from G (see Proposition 4.14), i.e.

F ⊗ G =

{
f1 · g1 · g2A∩B
f1A∩B · g1A∩B

,
f1 · g1 · f2A∩B
f1A∩B · g1A∩B

,
f1 · g2 · g1A∩B
f1A∩B · g2A∩B

, . . .

}
.

If YA∩B is a cut for F , it holds that f1A|A∩B · f
2
A∩B = f i for some i ∈ {1, 2},

f2A|A∩B · f
1
A∩B = f i for some i ∈ {1, 2}. Therefore if f1A|A∩B · f

2
A∩B = f1, then

we must have f1A∩B = f2A∩B , otherwise f1A|A∩B = f2A|A∩B . Therefore there are two

conditions for YA∩B to be a cut for F : f1A∩B = f2A∩B or f1A|A∩B = f2A|A∩B . If YA∩B

is a cut for G, there are two other conditions, i.e. g1A∩B = g2A∩B or g1B|A∩B = g2B|A∩B .

Therefore, let us suppose that YA∩B is a cut for both F and G. There are four
possible cases to which the meta-consistency conditions (f1A∩B = g1A∩B , f2A∩B =
g2A∩B) are added :

(1) f1A∩B = f2A∩B and g1A∩B = g2A∩B ,
(2) f1A∩B = f2A∩B and g1B|A∩B = g2B|A∩B ,

(3) f1A|A∩B = f2A|A∩B and g1A∩B = g2A∩B ,

(4) f1A|A∩B = f2A|A∩B and g1B|A∩B = g2B|A∩B .

Under meta-consistency and the hypotheses of each case we get

F ? G = F ? G = F ? G = F ⊗ G;

see also Proposition 4.9. �

5. Combining Gaussian graphical models

We first recall the definitions of dependence graph, marginal graph and graph-
ical collapsibility.

Definition 5.1. The dependence graph G(f) of a distribution f is defined by

α 6∼ β ⇐⇒ α⊥⊥ fβ |V \ {α, β}.
The dependence graph G(F) of a family F is the union of the graphs G(f) for
f ∈ F .
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Thus G(F) is the smallest graph G such that all f ∈ F are pairwise Markov
with respect to G.

Definition 5.2. For C ⊆ V the marginal graph G[C] is defined by α ∼ β
unless C \ {α, β} separates α and β in the original graph.

The marginal graph G(F)[C] is the dependence graph of the marginal family

F↓C . It is in general different from the induced subgraph G(F)C .

Definition 5.3. An undirected graph G is collapsible onto A if the boundary
of every connected component of V \A is complete.

Recall that G is collapsible onto A if and only if G[A] = GA which again is true

if and only if the marginal F↓A of the graphical Gaussian model F with graph G
is exactly equal to the graphical Gaussian model determined by GA (see [7]).

We now consider two families of multivariate Gaussian distributions F and G
determined as the graphical Gaussian models with graphs (A,EA) and (B,EB) so
G(F) = (A,EA) and G(G) = (B,EB). We now wish to consider combinations of
these and would ideally search for an undirected graph G = (V,E) with vertex set
V = A∪B so that the combined family is the graphical Gaussian model with graph
G.

If two Gaussian graphical models are meta-consistent, the marginal graphs over
the variables in the intersection must be identical. However, the converse is not
generally true as there may be other constraints, such as vanishing tetrad differences
[16, 17]; see also the example below, taken from [18, pp. 149–150].

Example 5.1. [Identical marginal graphs but not meta-consistent]
Consider the two Gaussian graphical models as displayed in Figure 5.1. The mar-
ginal graphs over the vertices {3, 4, 5, 6} are the same but the families of distribu-
tions induced over the corresponding variables are different.
The graph on the left-hand side implies the constraint (among others)

(5.1) σ35σ46 = σ36σ45,

whereas the graph on the right-hand side implies in addition

(5.2) σ34σ56 = σ36σ45 and σ35σ46 = σ34σ56.

Since the structure of the concentration matrix of the graph on the right-hand side
gives

σ34σ77 = σ47σ37, σ35σ77 = σ57σ37, σ45σ77 = σ57σ47,

there are further constraints induced because, for example, if σ34 > 0 and σ35 > 0
then also σ45 > 0. Moreover we have also

σ47σ37
σ34

=
σ57σ37
σ35

=
σ57σ47
σ45

.

As the families F and G do not induce the same constraints on the common variables
they are not meta-consistent. �

If the two graphs are isomorphic then the meta-consistency of the families is
guaranteed, as in example 5.2 below. Otherwise, all the constraints on the common
variables must be investigated.

Example 5.2. [Meta-consistency] The graphical Gaussian models displayed in
Figure 5.2 are meta-consistent because the two graphs are isomorphic and therefore
induce the same restrictions on the common variables. �
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Figure 5.1. Two graphical Gaussian models with the same mar-
ginal graphs over vertices {3, 4, 5, 6} which are not meta-consistent.
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Figure 5.2. Two graphical Gaussian models which are meta-consistent.
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Figure 5.3. Two graphical Gaussian models whose graphs are
collapsible onto {1, 2, 3} but the families are not meta-consistent.

Meta-consistency is related to but different from collapsibility of the two graphs
onto A∩B. In example 5.2, the two Gaussian graphical models are meta-consistent,
however, none of the graphs are collapsible onto {1, 2, 3, 4}. This is also true for
the graphs displayed in Figure 2.2, although there in a trivial way as the common
marginals are unrestricted. In Example 5.1, the families are not meta-consistent
and the graphs are not collapsible onto {3, 4, 5, 6}. In example 5.3, the graphs are
collapsible onto {1, 2, 3} but the families are not meta-consistent.

Example 5.3. [Collapsibility without meta-consistency] In Figure 5.3, both
graphs are collapsible onto {1, 2, 3} but the Gaussian graphical models are not
meta-consistent because the two marginal graphs over {1, 2, 3} are not identical. �

If the graphs are collapsible onto A ∩ B and the induced subgraphs on the
common variables are the same, then the families are meta-consistent and the lower,
meta-, upper and super Markov combination are identical.

Proposition 5.1. If two graphical Gaussian models F and G have both graphs
collapsible onto A ∩B and G(F)A∩B = G(G)A∩B, then

F ? G = F ? G = F ? G = F ⊗ G.

Proof. It follows from the fact that the graphical collapsibility ensures that
YA∩B is a cut in the original families [7] and then by the results of Proposition
4.9. �

Now we describe in detail the combinations already studied in Section 4.2 when
the two initial families are two Gaussian graphical models. The lower Markov com-
bination is given by the family of distributions that satisfy all induced constraints.
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These can be polynomial equality relations, i.e. conditional independence, tetrad
and pentad constraints, and also inequality constraints, see [5]. In general, the
equality constraints can all be identified by algebraic methods, see [20]. For exam-
ple, the tetrad representation theorem in the version of [20] permits to compute all
the tetrad constraints for a directed acyclic graph. In contrast, no method for com-
putation of all inequality constraints is known to us. In example 5.1, the equality
constraints are the conditional independence constraints of each graph converted
into vanishing minors (see Lemma 2.1 of [4]) and the tetrad constraints (shown in
5.1 and 5.2). In Example 5.2, the families are meta-consistent, the lower Markov
combination is equal to the meta-Markov combination which is seen by considering
all induced constraints.

The upper Markov combination combines all the marginal distributions from
one family with all the conditional distributions from the other family.

The super Markov combination is the combination of all conditional distribu-
tions from the two families with any marginal distributions on the common vari-
ables. In Example 5.2, the sets of marginal distributions of YA∩B from the two
families are identical, YA∩B becomes a cut in each extended marginal family F?
and G?. Hence, from Propositions 4.9 and 4.10 we have

F ? G = F? ? G? = F? ? G? = F? ? G? = F ⊗ G,

and also F? = F?? and G? = G??.
The chosen combination determines the joint family of distributions. The next

step is to find the dependence graph G(F ∗G) of the combined family F ∗G, where
the symbol ∗ is one of {?, ? , ? ,⊗}, and its relation with the two initial graphs.
As we saw in Definition 5.1, the dependence graph G(F ∗ G) is always defined
but the Gaussian graphical model with graph G(F ∗ G) may be different from
F ∗ G. Moreover, G(F ∗ G) may not be the graph union of the two original graphs.
We therefore introduce the concept of a graphical combination as a combination in
which F∗G is the Gaussian graphical model with graph G(F∗G). Thus, a graphical
combination takes into account only conditional independence constraints. So for
example, a graphical lower Markov combination F ? G is the Gaussian graphical
model with graph G(F ? G).

If the graphs of the original families are collapsible onto A ∩ B and the fam-
ilies are meta-consistent, as in Proposition 5.1, the combination of the families is
graphical and

G(F ∗ G) = G(F) ∪G(G),

for all combinations.
Another type of situation occurs when the joint family of distributions is not

a graphical model, so that F ∗ G has dependence graph G(F ∗ G), but it is not a
Gaussian graphical model with graph G(F ∗ G). This combination is said to be a
non-graphical combination. In such cases, the dependence graph of the combination
does not fully describe the features of the combined family. Nevertheless, a graphical
combination can be identified by the Gaussian family corresponding to G(F ∗ G).

In Example 5.1, the upper Markov combination and the super Markov combina-
tion are both non-graphical combinations. A graphical combination is the Gaussian
graphical model with graph G(F ? G) which is the graph obtained by merging the
two graphs after having added all the edges that render the induced subgraph over
{3, 4, 5, 6} a complete graph. In Example 5.2, the upper Markov combination (equal
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Figure 5.4. The three upper graphs correspond to families F , G
and H, respectively. The lower graph (a line) represents any joint
combination of the three families.

to the super Markov combination) is a non-graphical combination. We conclude
the section providing further examples of such combinations.

Example 5.4. [Graphical combinations] We represent the two graphical models
of Figure 2.1 as the families
F =

{
YA ∼ N3(0,Σ),Σ−1 ∈ S+(GA)

}
and G =

{
YB ∼ N2(0,Φ),Φ−1 ∈ S+(GB)

}
.

Here, F↓{2,3} = {Y ∼ N2(0,Σ{2,3}), Σ−1{2,3} ∈ S+(GB)}, and G↓{2,3} = G. The

families F and G are meta-consistent because F↓{2,3} = G↓{2,3}. The lower Markov
combination is the family

F ? G =
{
Y ∼ N3(0,Σ),Σ−1 ∈ S+(GA),Σ{2,3} = Φ{2,3}

}
,

and it is represented by the graph on the left.
The upper Markov combination (equal to the super Markov combination) is a

graphical combination and its dependence graph is the complete graph. �

Example 5.5. [Combinations and cuts] We represent the two graphical models
of Figure 2.3 as F = {YA ∼ N3(0,Σ)} and G = {YB ∼ N3(0,Φ)}. We have that
F↓{2,3} =

{
Y ∼ N2(0,Σ{2,3})

}
, and G↓{2,3} =

{
Y ∼ N2(0,Φ{2,3})

}
. The families

F and G are meta-consistent because F↓{2,3} = G↓{2,3}. The lower Markov combi-
nation is the graphical model obtained as the union of the two. It is equivalent to
the meta-, upper and super Markov combinations because the two graphs are both
collapsible onto {2, 3} and the families are meta-consistent. �

Example 5.6. [Associativity and commutativity] Suppose F = {YA ∼ N2(0,Γ)},
G = {YB ∼ N2(0,Ω)}, and H = {YC ∼ N2(0,Φ)} represent three complete Gauss-
ian graphical models as in Figure 5.4. Here all the combinations satisfy (F∗G)∗H =
F ∗ (G ∗H) = F ∗ (H∗G), and are the Gaussian families corresponding to the union
of the three graphs (a line). It follows from the associativity property of the meta-
Markov combination and the fact that the families are pairwise meta-consistent and
form a cut over the common variables so that all the combinations are identical (see
Proposition 5.1). If we change the order of combination, (F ? H) ? G represents
the independence model (1, 2)⊥⊥ (3, 4) and (F ? H) ? G is again the lower graph
in Figure 5.4. Suppose now to add another complete graph with variables 4 and
1. The lower Markov combination of all four graphs is the graphical model with
1⊥⊥ 4 | (2, 3). The upper Markov combination is the cordless four cycle because
it combines all marginal distributions over {1, 4} with all conditional distributions
over {1, 2, 3, 4} and all marginal distributions over {1, 2, 3, 4} with all conditional
distributions over {1, 4}. �
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Figure 5.5. From left to right, graphs GA and GB .

Example 5.7. [Non-graphical and graphical combinations] We represent the
two graphical models of Figure 5.5 as the families F =

{
YA ∼ N3(0,Σ),Σ−1 ∈ S+(GA)

}
and G =

{
YB ∼ N2(0,Φ),Φ−1 ∈ S+(GB)

}
.

Moreover F↓{2,3} =
{
Y ∼ N2(0,Σ{2,3}),Σ

−1
{2,3} ∈ S

+(G)
}

, and G is the graph with

vertex set {2, 3} and edge (2, 3). Here, G↓{2,3} = G and the families are not meta-
consistent because G↓{2,3} ⊂ F↓{2,3}. The lower Markov combination combines
only consistent pairs but it is not a graphical combination. It is given by

F ? G = {Y ∼ N3(0,Ω), ω23ω11 = ω12ω13, ω23 = 0} ,
where Ω = {ωij}. It is the union of the graphical model with vertex set {1, 2, 3}
and edge (1, 2) and the graphical model with vertex set {1, 2, 3} and edge (1, 3).
The upper Markov combination is

F ? G = {Y ∼ N3(0,Ω), ω23 = 0} ,
whereas the super Markov combination becomes

F ⊗ G =

{
f123 · g23
f23

, f123

}
,

and thus a graphical combination. �

6. Conclusion

In this paper, we developed a general framework for combination of statistical
models which was then specialized to Gaussian graphical models. After having
described the combination of consistent and non-consistent distributions and intro-
duced the concept of meta-consistent and quasi-consistent families of distributions,
we presented three ways of combination for families of distributions: the lower
Markov combination, the upper Markov combination and the super Markov combi-
nation. The first combines only consistent pairs of distributions and will in general
reduce the original marginal families; it is equivalent to the meta-Markov combina-
tion of [2] when the original families are meta-consistent. The second combines all
marginal distributions from the first family with all the conditional distributions
of the second family and vice versa. In general, it extends the original marginal
families. The third one permits to extend the marginal families in such a way that
they become meta-consistent and can be combined by using the meta-Markov com-
bination. It corresponds to combine any marginal distribution with any conditional
distribution. Within this framework we then studied the combination of Gaussian
graphical models.

The goal for the combination of models is also to combine inferences from
the associated statistical analyses based on available data or for the individual
graphical models. We shall study this aspect in detail in the future, both concerning
combination of maximum likelihood estimates and Bayesian inferences.
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