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Graphical Models for Genetic Analyses
Steffen L. Lauritzen and Nuala A. Sheehan

Abstract. This paper introduces graphical models as a natural environment
in which to formulate and solve problems in genetics and related areas.
Particular emphasis is given to the relationships among various local com-
putation algorithms which have been developed within the hitherto mostly
separate areas of graphical models and genetics. The potential of graphical
models is explored and illustrated through a number of example applications
where the genetic element is substantial or dominating.
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1. INTRODUCTION

In the current climate of rapid development in bi-
ological research with modern DNA technology and
computing power, genetic analyses involving complex
models and family data are becoming both feasible
and interesting. Specialized algorithms and software
have been developed for the purpose of performing re-
quired calculations such as, for example, FASTLINK
(Cottingham, Idury and Schäffer, 1993), GENE-
HUNTER (Kruglyak, Daly, Reeve-Daly and Lander,
1996) and VITESSE (O’Connell, 2001), all of which
are programs for the analysis of genetic linkage. The
set of familial relationships among a group of individ-
uals forms what is commonly known as a pedigree and
a variety of graphical representations have been devel-
oped for handling pedigrees in a precise and consistent
manner. As several authors, including Kong (1991) and
Heath (2003), have acknowledged, such representa-
tions logically tempt an exploitation of graphical mod-
els (Lauritzen, 1996) for the description and analysis
of genetic problems associated with pedigrees. It is the
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aim of this paper to explore the potential of a graphical
model approach to such genetic analyses, an approach
which is also behind the efficient linkage analysis soft-
ware SUPERLINK developed by Fishelson and Geiger
(2002). Here, however, we attempt to exploit the flexi-
bility and generality of graphical models even further.

Many complex genetic computations can only be
performed approximately and involve repeated random
sampling techniques, typically in the form of Markov
chain Monte Carlo (MCMC) methods (Thompson,
1994, 2000, 2001; Jensen, Kjærulff and Kong, 1995;
Sheehan, 2000; Fernandez et al., 2001; Heath, 2003).
However, this paper has its focus on exact computa-
tional methods, noting that these are also of crucial
importance to many of the steps within any efficient
MCMC algorithm.

The paper is organized as follows. In Section 2 we
introduce basic concepts from genetics and graphical
models. In Section 3 we give a relatively detailed
account of the basic local computation algorithms used
in genetics and graphical models and discuss how
they relate to each other. In Section 4 we illustrate
the approach and its use in a number of applications.
Finally, in Section 5, we discuss further perspectives.

2. PRELIMINARIES

This section introduces fundamental and classical
concepts in genetics and graphical models with the
primary purpose of introducing newcomers to either
of the fields, as well as defining and describing the
terminology used.
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2.1 Graphs and Pedigrees

We will formally define a pedigree or genealogy to
be a group of individuals together with a full specifi-
cation of all the relationships among them (Thompson,
1986). It is conventional, but not necessary, to assume
that every individual has either both parents in the pedi-
gree or neither. We define a pair of pedigree members
to be spouses only if they have mutual offspring in
the pedigree and every such pairing is called a mar-
riage. Those without parents are called the founders
of the pedigree and these, by definition, are unrelated.
Founders either belong to some baseline generation
back to which ancestry has been traced or have married
into the pedigree more recently. Pedigrees are com-
monly represented graphically, although not always
strictly as a graph. A standard representation is shown
in Figure 1.

A graph associated with any particular model is a
set of vertices or nodes representing the variables in the
model and a set of edges representing the links between
these variables. Edges can be either directed, with ar-
rows indicating the direction of the link, or undirected.
Directed edges are also called arcs. A pedigree can eas-
ily be expressed as a directed graph (Lange and Elston,
1975), the simplest of these depicted in Figure 2 where
the nodes denote individuals and the arcs connect indi-
viduals to their offspring. We shall henceforth refer to
this graph as the relationship graph and note that it is
a standard representation of the transmission of genes
from parents to offspring.

A natural extension leads to the marriage node graph
of Figure 3 (Thomas, 1985) which has two kinds of

FIG. 1. Standard graphical representation of a simple pedigree
of 14 individuals. As is consistent with common usage, females
are represented by circles and males by squares. Individuals
1,2,3 and 4 are the baseline founders, while 5,8 and 9 are recent
founders who have married in. Individuals 11,12,13 and 14 are
finals in that they have no marriages.

FIG. 2. Pedigree of Figure 1 drawn as a relationship graph
with nodes representing individuals and directed edges connecting
individuals to their offspring.

node and two kinds of arc (Lange and Elston, 1975;
Cannings, Thompson and Skolnick, 1978). Here, in-
dividuals and marriages are represented as nodes, and
the connecting arcs are marriage arcs, directed from
an individual to his marriages, and descent arcs, di-
rected from a marriage to the resulting offspring. When
drawing a marriage node graph, it is conventional to
omit the directions on the arcs since direction is al-
ways down from parents to offspring via the relevant
marriage node.

2.2 Some Basic Genetics

In diploid individuals the basic genetic material or
DNA in each normal cell is packaged into pairs of ho-
mologous strings or chromosomes. Human beings, for
example, have 23 such pairs, 22 of which are called the
autosomes and the remaining pair are the sex chromo-
somes. For a given individual, one chromosome in each
pair derives from the DNA of his mother and the other
from the DNA of his father. A specific segment of chro-

FIG. 3. Pedigree in Figure 1 represented as a marriage node
graph with edge directions omitted.
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mosome is known as a locus, and we typically refer to
the individual’s DNA at this locus as his gene. Differ-
ent forms that can be assumed by the DNA at a locus,
or different variants of a gene, are called alleles. The
word “gene” is sometimes used to refer to the actual lo-
cus (“the ABO gene”) or to the allelic type predisposing
an individual to a particular disease (“the breast can-
cer gene”) but here we will follow Thompson (2001)
and use the term as Mendel (1866) intended it, to refer
to the entity transmitted from parent to offspring. The
(unordered) pair of alleles at any locus (one on each
chromosome in the pair) is known as the genotype and
the potentially observable characteristic (if this is the
locus for a functional gene) is the phenotype (e.g., af-
fected/normal, height, blood type, etc.). With modern
DNA technology, the observable phenotype determines
the genotype completely in many cases.

Sometimes it is convenient to keep track of the
parental origins of each allele in a genotype. The term
ordered genotype, or full genotype, can be used to make
this distinction, but in this paper genotypes will be
unordered. If both alleles are of the same type, we say
that the genotype is homozygous while differing allelic
types yield a heterozygous genotype. If a homozygous
genotype (or homozygote) has the same phenotype as
a heterozygous type with which it has an allele in
common, we say that the common allele dominates
the other allele in the heterozygote. Alternatively, the
allele that is not shared is said to be recessive to
the common one. Table 1 displays the genotypes,
associated phenotypes and dominance patterns for the
human ABO blood group, simplified to a three-allele
genetic system. The discussion in this paper will be
centered around autosomal traits. Although completely
analogous, the treatment of sex-linked inheritance is a
little different and will not be dealt with here.

According to Mendel’s first law which has formed
the basis for modern genetics, any given characteristic
of an individual is determined by two discrete factors,
or genes, one of which is a copy of one of the corre-
sponding pair in his mother and the other a copy of one
of the paternal pair. Furthermore, an individual passes
a copy of, that is, segregates a randomly chosen one
of his two genes to each of his children, independently
for different segregations and independently of segre-
gations from the other parent. When genes segregate
with equal probability 1/2, we have what is known as
Mendelian segregation. This is often assumed for auto-
somal traits. Mendel’s second law states that segrega-
tions of genes at different loci are independent. This is
now known not to be true in general: these segregations

TABLE 1
The six genotypes for the human ABO system and the four corres-

ponding observable characteristics or expressed phenotypes

Genotype AA AO AB BB BO OO

Phenotype A A AB B B O

NOTE: The homozygous genotypes are AA, BB and OO, while the
heterozygous types are AO, AB and BO. AA and AO have the same
phenotype, so A dominates O or O is recessive to A. Similarly,
B dominates O. The genotype AB has its own phenotype, however,
and we conclude that A and B are co-dominant.

may be correlated if the loci are close together on the
same chromosome or linked.

During gamete formation in a process called meio-
sis (see Figure 4), the maternal and paternal copies
of a particular chromosome in an individual pair up.
Breaks occur at several random positions which allow
for the exchange of segments of chromosome within
the pair. This is called crossing over and refers to the
interchange of genetic material between the two ho-
mologous chromosomes. The resulting chromosomes,
which are mixtures of the maternal and paternal chro-
mosome segments, separate and one of each pair is
passed to the gamete—the genetic contribution from
a single parent to the next generation. The term haplo-
type is often used to refer to a listing of alleles in a sin-
gle gamete at a given number of loci. They may all lie
on the same chromosome (see Figure 4), but not neces-
sarily. The alleles appearing in a haplotype are said to
be in phase and haplotype information on an individ-
ual is known as the phase of that individual’s meioses.
The correlation in segregations between linked loci is
due to the fact that it is highly unlikely that a crossover
will occur between two loci which are physically close
on the chromosome. Loci which are “far apart” (or on
different chromosomes) are more likely to segregate in-
dependently in accordance with Mendel’s second law.

The recombination fraction r between two loci is
defined as the probability that the genes segregating to
the gamete at these loci come from different parental
chromosomes. For loci close together, r ≈ 0 so the two
alleles in the gamete (and hence the future offspring)
will tend to have the same grandparental origins.
Under assumptions of the meiosis model for most
diploid species, the maximum value r can assume is 1

2 ,
indicating that the loci are segregating independently.
A recombination occurs between two loci if there is
an odd number of crossovers between them in that
meiosis.
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FIG. 4. Schematic representation of meiosis adapted from Heath
(2003) showing the chromosomes which form the gametes contain-
ing some maternal and some paternal DNA after crossing over has
occurred.

The genetic map distance between two loci
(Haldane, 1919) is defined as the expected number of
crossovers that occur between them in a gamete and
is measured in units called Morgans (or often centi-
Morgans, for convenience). Various mapping functions
exist (Ott, 1999) relating map distance to recombina-
tion fractions. The one we will use in this paper is
due to Haldane and assumes that crossovers occur as
a Poisson process with rate 1 per Morgan and that
the numbers of crossovers in nonoverlapping intervals
are independent. Under this model of no interference,
the relationship between λ, the genetic distance be-
tween any two loci, and the corresponding recombi-
nation fraction r is given by

r = 1
2(1 − e−2λ),

with inverse function

λ = −1
2 log(1 − 2r).

Because they are expectations, map distances are
additive and hence may be more convenient to work
with from a computational viewpoint. In a probabilistic
model, however, it is more natural to think of linkage
using recombination fractions. For this reason, it is
common to vary between the two quantities within an
analysis using an appropriate mapping function and the
two terms are often used interchangeably.

In genetic linkage studies, the aim is to localize
the genes for some trait of interest by mapping their
positions relative to known marker loci within the
pedigrees being studied. A genetic marker locus can

be defined as a position on a particular chromosome
which is characterized by a specific DNA sequence
or observable variations in the sequence. In linkage
studies, marker loci are assumed not to have any effect
on the trait under consideration. Good estimation of
the recombination fraction is often restricted by the
pedigree size and structure and so a linkage analysis is
generally viewed as a first step in the mapping process
with the aim of identifying a general chromosomal
region of interest. The precise location of the gene
is then determined by a study giving finer resolution
using linkage disequilibrium mapping, for example
(Heath, 2003).

A genetic trait for which the expressed phenotype
corresponds to the genotype at a single locus is of-
ten called a Mendelian or single-locus trait. Such traits
are generally well understood and many have been
successfully mapped over the last two decades using
standard techniques. Examples include cystic fibrosis
(Riordan et al., 1989) and Duchenne’s muscular dis-
trophy (Monaco et al., 1985). The human ABO blood
group of Table 1 is an example of a discrete Mendelian
trait whereby the observed phenotypes can be classified
into distinct categories. A quantitative trait has a phe-
notype which is affected by the simultaneous segrega-
tion of many genes at many loci (we call this polygenic
variation) and may, in addition, have some nongenetic
variation superimposed (Falconer and Mackay, 1996).
Quantitative traits can exhibit variation on a continu-
ous scale (e.g., height, weight, etc.) but can also be
discrete as in threshold traits. A quantitative trait lo-
cus (QTL) can be thought of as a segment of chromo-
some affecting a quantitative trait but whose effect is
not large enough to cause an observable discontinu-
ity and is hence not detectable using Mendelian meth-
ods. More generally, complex genetic traits are those
for which the simple correspondence between geno-
type and phenotype breaks down (Lander and Schork,
1994). They include discrete, continuous and quantita-
tive traits and may also have multivariate phenotypes
measured on either discrete or continuous scales. They
can also have interaction effects in that the underly-
ing genotype effects on the trait phenotype may vary
with age and sex, for example, and various environ-
mental factors may have to be accounted for. Coronary
heart disease is an example of such a trait: despite the
strong evidence for a genetic component to heart dis-
ease, few genes have been identified which clearly in-
fluence the risk of developing the condition (Thompson
and Wijsman, 1990).
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For a more detailed discussion of the basic genetic
concepts introduced in this section, see Thompson
(2000) and Sham (1997).

2.3 Elements of Bayesian Networks

A probabilistic approach to dealing with uncertainty
in expert systems began with the realization that cal-
culations on seemingly intractable high-dimensional
problems can be efficiently performed when a set
of simplifying conditional independence assumptions
is imposed (Pearl, 1988; Lauritzen and Spiegelhalter,
1988). These assumptions essentially split the prob-
lem into small manageable components. The immedi-
ate advantage is that a complex problem can be repre-
sented in a graphical form which can then inform the
development of efficient computational algorithms for
performing calculations. The most common of these
graphical models (Lauritzen, 1996) are the Bayesian
networks (Pearl, 1986; Jensen, 1996) but more general
types of network may be appropriate and lend them-
selves to essentially the same computational simplifi-
cations (Cowell, Dawid, Lauritzen and Spiegelhalter,
1999).

It is unfortunate for our applications that the ter-
minology traditionally used in this area derives from
genetics (Sheehan, Gulbrandtsen, Lund and Sorensen,
2002). For instance, for nodes labeled a and b, we say
that a is a parent of b, or b is a child of a, if there is a
directed edge from a to b. In contrast with the biologi-
cal interpretation of these terms, a node in a graph can
have more than two parents (e.g., Figure 5). Usually it
will be clear from the context whether terms such as
“parent” refer to the graph-theoretic notion or its bio-
logical analogue. When there can be ambiguity, we will
further qualify the term using expressions like graph
parent or bio parent.

Recall that a graph is a collection of nodes and
edges which can be either directed (arcs) or undirected.
A trail in a graph is defined as a sequence of edges,
each having a node in common with both preceding
and succeeding edges. A path is a trail with no edges
violating the direction of the trail. If all edges of the
trail are undirected, the path is undirected, and the path
is directed if all edges are directed. If there is a directed
path from node a to node b (i.e., we can arrive at b by
following arrows from a), we say that a is a (graph)
ancestor of b and b is a (graph) descendant of a. A trail
beginning and ending with the same node is a cycle or
loop. If all the edges of a graph are directed, it is a
directed graph, and if it has no directed cycles, it is a
directed acyclic graph or DAG (Cowell et al., 1999).

FIG. 5. Simple Bayesian network with nodes a, b and c all par-
ents of d while f is a child node of both d and e. Note that if nothing
is known about d besides what can be inferred from its parents, then
a, b and c are all independent. Conditional dependencies between
a, b and c are imposed, however, if information on f influences the
certainty of d .

A graph is connected if there is a trail between any pair
of nodes. A connected graph with no cycles is a tree. In
this paper, unless otherwise stated, it will be assumed
that all graphs are connected.

Returning to the marriage node graph representation
of our simple pedigree in Figure 3, note that individu-
als 5, 6, 7 and 8 are all connected by marriage edges.
The corresponding trail is known as a marriage chain.
A directed path in a marriage node graph is an al-
ternating sequence of marriage and descent arcs and
since an individual cannot be his own biological an-
cestor or descendant, there are no directed cycles in a
pedigree. Hence, a marriage node graph is a DAG and
so is the relationship graph of a pedigree (e.g., Fig-
ure 2). However, loops arise more easily in the rela-
tionship graph as can be seen in Figure 2. The loop
14–10–13–9–14 formed by siblings 13 and 14 does not
feature in the marriage node graph representation of
Figure 3. Pedigrees are described as either looped or
unlooped according to whether or not their marriage
node graphs have undirected cycles. An inbreeding
loop arises, for example, when two biologically related
individuals marry, causing two separate paths of de-
scent from a common ancestor to the node representing
their marriage. Other loops include marriage rings, ex-
change loops, multiple marriage loops and all kinds of
interconnecting combinations of the above (Cannings,
Thompson and Skolnick, 1978).

A Bayesian network is a DAG with node set V ,
where the nodes represent random variables, X =
(Xv)v∈V , having some joint probability distribution
function of the form

f (x) = ∏
v∈V

f (xv|xpa(v)),(1)
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with pa(v) denoting the set of parent nodes of the node
v and xA = (xv)v∈A for any subset A ⊆ V . It then holds
that any node, given the values at its parents, is con-
ditionally independent of all nodes which are not de-
scendants. This is known as the directed local Markov
property. Further independences can be deduced from
the global directed Markov property which gives a
complete description of independence relationships as-
sociated with a Bayesian network. In fact, the factor-
ization (1) is equivalent to either of the local and global
directed Markov properties; see Lauritzen (1996) for
details concerning these Markov properties. Note that
through (1) the joint distribution of a Bayesian network
is completely specified from the associated DAG and
the conditional distributions of each node given its par-
ents.

It may be worth emphasizing that the term “Bayesian
network” has no direct reference to “Bayesian infer-
ence”; it is referring to its common usage in expert sys-
tems, where the networks were designed for efficient
calculation of “reverse conditional probabilities” as in
Bayes’ formula.

2.4 Bayesian Network Representations
for Pedigrees

To express a pedigree as a Bayesian network, the
graph nodes should represent random variables for
which a joint probability distribution can be defined
satisfying the factorization in (1). There are several
ways of designing such a network and these various
representations have different properties. The visually
most parsimonious representation, although not neces-
sarily the most useful, is the genotype network. This
uses the relationship graph (see Figure 2) as the un-
derlying DAG, the nodes now representing the geno-
types of the individuals rather than the individuals
themselves. We will later return to this representation
but initially we describe the segregation network since
this is the most direct and complete representation of
the inheritance relationships in a pedigree. We will
discuss the various representations by way of exam-
ple, using a single-locus discrete genetic trait. As in
Sheehan (2000), we consider a pedigree of m individ-
uals uniquely labeled by the integers 1, . . . ,m.

2.4.1 The segregation network. This is a Bayesian
network constructed as follows. For each individual i,
we have two nodes which represent the maternally
and paternally inherited genes. The underlying random
variables can assume any of the a allelic types in
the system. Following common usage (Thompson,

2001), we will use 0 to label maternal inheritance and
1 for paternal inheritance. Thus the node labeled i1 is
identified with the random variable Li1 assigning the
allelic type of the gene inherited by individual i from
his father.

For each nonfounder, arcs are directed from the
two genes in the father to the paternal gene in the
individual and, similarly, the individual’s maternal
gene is a (graph) child of the two genes in his
mother. Additional nodes representing the meiosis or
segregation indicators (Thompson, 1994; Sobel and
Lange, 1996) are then added as parents to each gene
node. These are binary nodes assuming the value 1
to denote that a copy of the paternal gene in the
corresponding parent was inherited and 0 to indicate
inheritance from the maternal gene. In this way, each
allelic type of a nonfounder is a deterministic function
of its (graph) parents. For the paternally inherited gene:

Li1 = f
(
lp1

i
, lp0

i
, spi,i

) =
{

lp1
i
, if spi,i = 1,

lp0
i
, if spi,i = 0

(2)

and similarly for the maternally inherited gene:

Li0 = f
(
lm1

i
, lm0

i
, smi,i

) =
{

lm1
i
, if smi,i = 1,

lm0
i
, if smi,i = 0,

(3)

where mi and pi are the labels of the mother and father
of individual i and Smi,i and Spi,i are binary random
variables assigning indicators for the segregations to i

from the mother and father, respectively.
The laws of inheritance can now be encoded by

letting the segregation indicators be independent with
transmission probabilities

P (Spi,i = 1) = σ1 and P (Smi,i = 1) = σ0.(4)

In the simplest case of Mendelian inheritance, we have
σ1 = σ0 = 1/2, and this assumption is reasonable for
many autosomal traits. But we emphasize that the
segregation network has sufficient detail to represent
more complex inheritance laws.

The assumption of random union of gametes is
fully incorporated in the segregation network of Fig-
ure 6 with the graph clearly indicating that founder
genes are independent of each other and of the seg-
regation indicators. This implies Hardy–Weinberg pro-
portions for founder genotypes. The probability with
which founder genes arrive into the pedigree could be
P (Li1 = l) = P (Li0 = l) = fl , where fl is the popula-
tion frequency of the allelic type l, for instance. These
allele frequencies may, of course, differ between indi-
viduals if there are known differences in race, breed,
species and so on.
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FIG. 6. Segregation network for our simple pedigree of Figure 1.

2.4.2 The allele network. The segregation network
provides the most detailed description of the inheri-
tance relationships in a pedigree at a single locus. In
many contexts it is unnecessary to keep track of the
full details and the segregation network can then con-
veniently be reduced to what we term an allele net-
work, which is obtained from the segregation network
by removing the segregation indicators and the associ-
ated arcs. Conditional probability distributions of the
allelic types given their parents are easily derived from
(2), (3) and (4) to become

P
(
Li1 = l

∣∣lp
i1
, lp

i0

) =
{

σ1, if l = lp
i1
,

1 − σ1, if l = lp
i0

and similarly for the maternally inherited gene. Since
(2) and (3) define the transmission to a given node
as deterministic functions of its (graph) parents in the
allele network and independent noise variables (the
segregation indicators), Theorem 2.20 of Lauritzen
(2001) ensures that the reduction from segregation to
allele network preserves the local Markov property
of the corresponding DAG and is hence a Bayesian
network. Figure 7 shows the allele network for a
single locus corresponding to our simple pedigree of
Section 2.

We note that what we have termed an allele network
is also a standard representation and figures similar to
Figure 7 can be found in Jensen (1997), Thompson and
Heath (1999) and Thompson (2001), for example. In
particular, Jensen (1997) uses the term “gene represen-
tation” for our allele network and Thompson and Heath
(1999) call it the “gene pedigree.”

2.4.3 The genotype network. For certain purposes it
may be advantageous to make yet a further reduction
to obtain what we term a genotype network. Again,
we note that this representation is called a “genotype

FIG. 7. Allele network for our simple pedigree of Figure 1.

representation” in Jensen (1997) and also features in
Heath (2003) and Spiegelhalter (1990). Here we let
Gi denote the individual’s genotype at the locus of
interest, so that Gi = {Li1,Li0} and as the basic DAG
we use the representation graph of Figure 2 with each
node i in the DAG representing the random variable
assigning a genotype to individual i. The graph parents
of nonfounder nodes represent the genotypes of the
biological parents of the individual.

To verify that the inheritance model represented
by the allele and segregation networks implies the
local Markov property for the genotype network, we
must ensure that the genotype of individual i, Gi ,
is conditionally independent of the genotypes of his
nondescendants, given the genotypes of his parents.
In contrast to the segregation and allele networks, this
holds only under the Mendelian inheritance model.
Otherwise, the haplotype (or phase) information on the
parental genotype will be informative for segregation
to children.

As an example of this, consider a diallelic trait and a
nuclear family with a homozygous mother, that is, with
genotype gm = {A,A}, and heterozygous father gp =
{A,a}. The conditional probability of a second child
getting genotype G2 = {A,A}, given the genotype g1
of the first child, becomes

P (G2 = {A,A}|gm,gp, g1) = σ 2
1 + (1 − σ1)

2

(5)
when g1 = {A,A},

with both children inheriting a copy of the same gene
from their father, and

P (G2 = {A,A}|gm,gp, g1) = 2σ1(1 − σ1)
(6)

when g1 = {A,a}
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when they inherit copies of different paternal genes.
Hence genotypes of siblings are not conditionally
independent, given the genotypes of their parents,
unless σi = 1/2 in which case the right-hand sides of
(5) and (6) are identical and equal to 1/2.

Although the genotype network is visually less
complex than the allele network, a price has been paid,
not only by restricting the inheritance model to be
Mendelian, but also by increasing the state spaces at
each node. For a genetic system with a alleles, the
genotypes Gi can assume any of a(a + 1)/2 distinct
states, whereas the nodes in an allele network only
have a states. This can be of substantial importance for
computational issues and will be discussed in further
detail in Section 3.

For the genotype network, we need to derive proba-
bilities both for founder genotypes and for the inheri-
tance of genotypes from parental genotypes, the latter
also referred to as transmission probabilities in the lit-
erature. If we denote the probabilities of the founder
genotypes by π and the transmission probabilities by

τ
(
gi |gmi

, gpi

) = P
(
Gi = gi |Gmi

= gmi
,Gpi

= gpi

)
,

the factorization (1) yields the familiar expression

P (g1, . . . , gm) = ∏
i∈F

π(gi)
∏
j /∈F

τ
(
gj |gmj

, gfj

)
,(7)

where F denotes the set of individuals which are
founders of the pedigree and the transmission proba-
bilities, τ , are Mendelian. See Thompson (1986), for
example.

2.4.4 Phenotypic information. Each of the types of
networks above specifies the inheritance relationships
without referring to the observational situation in
any given context. Although the genotypes may be
identifiable from the phenotypes in many cases, they
often are not and only partial information is available
in some situations. To accommodate such data, an extra
node is added for each individual where phenotypic
information is available, and possibly also for other
individuals, depending on the purpose of the analysis.
We let Yi denote the variable associated with the
phenotype of individual i. In the allele and segregation
networks the node carrying the phenotype Yi has the
two alleles of individual i as parents, whereas in the
genotype network Yi has the genotype Gi as its only
parent. If the genotype is itself observable, Yi = Gi ,
and we can omit this extra node in the genotype
network.

The local Markov property of the genotype network
augmented with phenotypic information is ensured by

FIG. 8. Bayesian allele network with phenotypic information on
two individuals.

the phenotype Yi of any individual being conditionally
independent of other variables in the network, given the
genotype Gi of that individual. When the paternal and
maternal alleles influence the phenotype differently
(genetic imprinting), this conditional independence is
violated. The allele and segregation networks contain
sufficiently detailed information for the Markov prop-
erty to hold in the augmented network. Alternatively,
one could define a network in terms of ordered geno-
types where the Markov property would then hold.

The conditional distribution of the phenotype Yi

given its (graph) parents is known as the penetrance
distribution. This may often be given through a deter-
ministic relationship, for example, when Yi = Gi , or
through a more complicated function such as the pen-
etrance function for the ABO blood group system of
Table 1. Figure 8 shows an allele network augmented
with phenotype nodes for two individuals.

3. LOCAL COMPUTATION ON GRAPHS

Almost every problem associated with pedigree
analysis or other complex genetic problems involves
a difficult computation. This could be the computation
of a likelihood; the probability of an individual hav-
ing a specific allele, genotype or haplotype; or some
other characteristic of the system under investigation.
Superficially, such computations seem too complex to
be feasible at all and indeed many are not. However,
there are a number of related computational algorithms
which exploit the local structure of the system, in-
cluding that of the pedigree. These algorithms yield
drastic reductions in the computational complexity.
In genetic applications, such computation is typically
referred to as “peeling” (Elston and Stewart, 1971;
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Cannings, Thompson and Skolnick, 1978; Lander and
Green, 1987). See also Thompson (2000, 2001) and
Heath (2003) for further discussion.

The peeling algorithms are special cases, or variants,
of general algorithms for so-called local computation
on graphs (Cowell et al., 1999). In this section we
describe and explain the general types of algorithms
and their relation to peeling algorithms.

3.1 General Algorithm

The general algorithm for local computation can be
seen as having two phases. During the first phase,
a suitable computational structure is established. In
the second phase the computations themselves are
executed. The first phase is sometimes referred to as
compilation, the latter as propagation. In the genetics
literature, it is more usual to describe the peeling algo-
rithm with these two phases executed simultaneously.

3.1.1 Compilation. The compilation process invol-
ves the collection of groups of variables into cliques so
that computations can be performed locally to these,
that is, only involving functions of sets of variables
belonging to the same clique. At the next stage,
these cliques are organized in a tree structure, the
junction tree, which is used to coordinate the local
computations in a consistent way to yield the desired
correct global result. Finally, the numbers to be used
in the calculations are associated with the relevant
location in the junction tree. The various steps of the
compilation process are as follows, to be described in
further detail below:

• From Bayesian network to undirected graph
• Triangulation
• Constructing the junction tree
• Loading the junction tree
• Incorporation of observations

From Bayesian network to undirected graph. The
local computation algorithms are most conveniently
and efficiently described in terms of undirected graphs,
thereby displaying their full flexibility and symmetries.
The first step, therefore, is to transform the Bayesian
network into an undirected graph. This is done by
removing the directions from the existing edges and
adding further undirected edges between all pairs of
graph parents with a common (graph) child node.
The latter process is referred to as moralising the
graph, that is, by “marrying” the (graph) parents.
In the resulting moral graph all sets of the form
{v} ∪ pa(v) are complete in the graph, meaning that

all pairs of elements are connected with edges. The
factorization (1) can therefore be written as

f (x) = ∏
v∈V

f (xv|xpa(v)) = ∏
C∈C

φC(xC),(8)

where C denotes the set of cliques of the moral
graph, that is, the maximal complete subsets of nodes,
and the functions φ are the potentials. To obtain this
factorization, we just collect factors f (xv|xpa(v)) with
{v} ∪ pa(v) in the clique C so the potential φC is a
product of these factors. Since {v} ∪ pa(v) is complete
in the moral graph, this can always be done. Heath
(2003) uses the term dependency graph for the moral
graph.

Figure 8 shows a Bayesian allele network corre-
sponding to a modification of the pedigree in Figure 1,
where individuals 12 and 14 have married and the
phenotypes of their common offspring (15) and of in-
dividual 11 have been explicitly represented. The cor-
responding moral graph is displayed in Figure 9. Note
that it is the graph parents (i.e., the allele pairs) which
are married in this graph and not the bio parents.

Triangulation. The next step of the compilation
process is to triangulate the graph by adding fill-in
edges to the moral graph until all cycles involving more
than three nodes have chords. For a pedigree without
loops, this step is unnecessary in the case of a single-
locus analysis, as the moral graph will then satisfy
this requirement automatically. However, in linkage
analysis problems, for example, even an unlooped
pedigree may induce long chordless cycles in the
moral graph of the corresponding Bayesian network
representation. Computational difficulties associated
with pedigree analysis are related to these cycles rather

FIG. 9. Moral graph for the Bayesian allele network of Figure 8
with phenotypic information on two individuals. The graph parents
(allele pairs) have been married and directions dropped.
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than to the loops of the pedigree graph. An example of
such a cycle in a simple half-sib design is given later
in Section 4.2. The technical reason for triangulating
the graph is that the cliques of an undirected graph can
only be arranged in a junction tree after this has taken
place. Further details will be presented below.

The moral graph in Figure 9 has a chordless cycle,
comprising the nodes 10m, 6m, 11m, 11p, 7m, 12p, 15p,
15m, 14m, 10m. Note that if the phenotypic information
on individual 15 in Figure 8 were not represented,
15p and 15m would not be connected and the allele
network would have no chordless cycles in its moral
graph, despite the fact that the marriage node graph of
the corresponding pedigree has loops.

A triangulation of the graph in Figure 9 is displayed
in Figure 10, where six fill-in edges have been added.
Such a triangulation is most often found by using an
ordering for node elimination; when a node is elim-
inated, fill-in edges are added between any pairs of
neighbors of the node which are not already connected
by an edge. The node is then removed together with all
its adjacent edges. Adding the fill-in edges produced
in this way to the original set of edges in the moral
graph will always produce a triangulated graph. Con-
versely, for any triangulation of the graph there is an
elimination ordering which produces it; see Proposi-
tion 2.17 of Lauritzen (1996). The notion of an elim-
ination ordering is identical to what is known in the
genetics literature as a peeling sequence, and the term
“peeling” refers to the elimination process. The fill-in
edges ensure that the “cutsets” of Cannings, Thompson
and Skolnick (1978) become complete sets so the cor-
responding R-functions created during the associated

FIG. 10. Triangulated graph for the Bayesian allele network
of Figure 8 with phenotypic information represented for two
individuals. The numbers 1, . . . ,32 indicate the corresponding
node elimination ordering.

computations are local to these cutsets (Heath, 2003).
In this way, a triangulated graph is also being created
during a standard peeling process, although it is typ-
ically not represented in explicit form. The factoriza-
tion (8) clearly implies a similar factorization

f (x) = ∏
C∈C

φC(xC),(9)

where C now denotes the set of cliques in the triangu-
lated graph, since cliques in the moral graph are com-
plete in any graph with more edges.

Figure 10 also displays the elimination order used
to produce the given triangulation. A triangulation
is not unique and the goal is to generate cliques
(maximal sets of pairwise connected nodes) which are
as small as possible. Optimizing this step is known
to be NP-complete (Yannakakis, 1981), but there are
several heuristic algorithms which find good trian-
gulations (George and Liu, 1989; Kjærulff, 1992;
Amestoy, Davis and Duff, 1996). In fact, there are
also algorithms which in most cases run at reason-
able computational speed and are guaranteed to return
an optimal triangulation. Such an algorithm has been
implemented in Version 6 of the commercially avail-
able software HUGIN (Andersen, Olesen, Jensen and
Jensen, 1989). This algorithm is based on the work of
Shoikhet and Geiger (1997), Berry, Bordat and Cogis
(2000) and Bouchitté and Todinca (2001), and it is de-
scribed in Jensen (2002).

The triangulation step is crucial, as the computa-
tional complexity is essentially determined by the to-
tal size of the state spaces associated with the cliques
of the resulting triangulated graph. This determines
whether exact computations are at all feasible and
whether approximate methods such as MCMC meth-
ods will be required. Since the total size is exponential
in the size of the cliques, the clique with largest state
space makes a dominating contribution to the complex-
ity. For the triangulation in Figure 10, the clique with
the largest state space is {6p,6m,10m,11m} with the
associated state space having a4 states for a model with
a distinct allelic types. For comparison, a genotype
representation of the same pedigree yields the triangu-
lation shown in Figure 11 with a largest clique state
space of (a(a + 1)/2)3. So, even when a = 2, the al-
lele network is preferable here.

Constructing the junction tree. Once the graph has
been triangulated, the cliques can easily be identified
and connected in what is known as a junction tree;
see Sections 4.3 and 4.4 in Cowell et al. (1999) for
a description of the construction algorithms. This is a
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FIG. 11. Triangulation and corresponding node elimination
sequence for the genotype network associated with our example.
Visually, the genotype network is the same as the relationship graph
(i.e., Figure 2 with individuals 12 and 14 married with offspring 15)
but the nodes represent the genotypes, Gi, i = 1, . . . ,15, of the
individuals and two phenotype nodes, Y11 and Y15, have been
added for the observations on 11 and 15.

tree having the set C of cliques of a triangulated graph
as nodes and satisfying the additional property that

C ∩ D ⊆ E for all C,D,E ∈ C
(10)

with E between C and D,

where E is between C and D if it lies on the unique
path from C to D. This property is crucial for the
correctness of the propagation algorithm described
later, and the set of cliques in an undirected graph can
be arranged in a tree with property (10) if and only
if the graph is triangulated (Theorem 4.6 of Cowell
et al., 1999). A junction tree for the triangulated graph
in Figure 10 is displayed in Figure 12. The junction
tree property (10) is, for example, reflected through
C11 ∩C18 = {12p} being contained in all of the cliques
C16,C17, C20 and C19, placed between C11 and C18 in
the junction tree.

Loading the junction tree. The next step is to identify
the potentials φC in the factorization (9). This is done
by collecting factors of the form f (xv|xpa(v)) in (8) into
cliques which contain both v and pa(v). For each node
v at least one such clique exists and we choose one
of them, say C, and assign the node v to C. If V (C)

denotes the set of nodes which are assigned to C, we
let φC(xC) ≡ 1 for V (C) = ∅ and else

φC(xC) = ∏
v∈V (C)

f (xv|xpa(v)),

whereby (9) is clearly satisfied with the joint distrib-
ution expressible as a product of potentials over the

FIG. 12. Junction tree for the Bayesian allele network showing
the cliques as given in Table 2.

cliques. This concludes the general part of the com-
pilation process. Table 2 gives the full list of cliques,
assignments and potentials for the triangulated allele
network of Figure 10.

For a trait with a distinct alleles and where the phe-
notype of the ith individual, Yi , is equal to the geno-
type Gi , the total size of the computational structure in
Table 2 with 21 cliques is equal to

2a4 + 2a3(a + 1)/2 + 17a3,

whereas the structure for the corresponding genotype
network (triangulated in Figure 11) has total size equal
to 11(a(a + 1)/2)3, since it has 11 equally sized
cliques. Table 3 indicates how the sizes of the state
spaces for both networks vary with the number of
alleles in the genetic system.

Incorporating observations. The compilation pro-
cess described above has not yet taken account of
the available data for the analysis in question. The
representation (9) gives the joint probability of an
arbitrary configuration of variables in the network.
However, we want the probability of configurations
which are consistent with the observations. This can
be obtained if for all v where Xv = x∗

v is observed we
find a clique C with v ∈ C and modify the potential
there to φ∗

C by changing appropriate values to 0. More
precisely, we let

φ∗
C(xC) =

{
φC(xC), if xv = x∗

v ,

0, otherwise.
(11)
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TABLE 2
Cliques, node assignments and potentials for the junction tree of our allele network

corresponding to the triangulation in Figure 10. We have identified
each allele variable with its label

Number Elements Assignments Potential

1 15p,15m,Y15 Y15 f (Y15|15p,15m)

2 11p,11m,Y11 Y11 f (Y11|11p,11m)

3 10p,10m,13m 13m f (13m|10p,10m)

4 9p,9m,13p 13p f (13p |9p,9m)

5 9p,9m,14p 14p,9m,9p f (14p |9p,9m)f (9p)f (9m)

6 14p,14m,15m 15m f (15m|14p,14m)

7 5p,5m,10p 10p,5m,5p f (10m|5p,5m)f (5p)f (5m)

8 10p,10m,14m 14m f (14m|10p,10m)

9 4p,4m,7m 7m,4m,4p f (7m|4p,4m)f (4p)f (4m)

10 8p,8m,12m 12m,8m,8p f (12m|8p,8m)f (8p)f (8m)

11 12p,12m,15p 15p f (15p|12p,12m)

12 3p,3m,7p 7p,3m,3p f (7p|3p,3m)f (3p)f (3m)

13 2p,2m,6m 6m,2m,2p f (6m|2p,2m)f (2p)f (2m)

14 1p,1m,6p 6p,1m,1p f (6p|1p,1m)f (1p)f (1m)

15 15p,15m,14m 1
16 15p,12p,14m 1
17 12p,10m,14m 1
18 12p,11p,7m,7p 11p,12p f (11p |7p,7m)f (12p|7p,7m)

19 12p,11p,11m 1
20 12p,10m,11m 1
21 10m,11m,6m,6p 11m,10m f (11m|6p,6m)f (10m|6p,6m)

This then implies that
∏

C φ∗
C(xC) is equal to the

joint probability of an arbitrary configuration x which
is consistent with the observations. The process of
forming φ∗ from φ is often referred to as entering
evidence. If we denote the set of observed nodes by E,
we have

f (x|x∗
E) =

∏
C∈C φ∗

C(xC)

Z(x∗
E)

,(12)

where the normalizing constant Z(x∗
E) is the probabil-

ity of the observations, obtained by summing over all
configurations which are consistent with the observa-

TABLE 3
Comparison of total state space sizes of the allele and genotype
network representations corresponding to the triangulations in

Figures 10 and 11, respectively, for a single-locus trait
with a alleles

Number of alleles Allele network size Genotype network size

2 192 297
3 729 2,376
4 1,920 11,000
5 4,125 37,125

10 48,000 1,830,125

tions:

f (x∗
E) = Z(x∗

E) = ∑
x:xE=x∗

E

∏
C∈C

φC(xC)

(13)
= ∑

x

∏
C∈C

φ∗
C(xC).

This also yields the likelihood when comparing differ-
ent models.

In the example considered, we may have observed
phenotypes Y11 = y∗

11 and Y15 = y∗
15, and the potentials

in the two first cliques in Table 2 should therefore
be modified to incorporate this information by setting
their values equal to 0 for other values of Y11 or Y15.

3.1.2 Propagation. In the second part of the algo-
rithm, often referred to as propagation of evidence, the
actual computations with numbers are made, and the
probabilities of interest are calculated. In particular,
the sum in (13) must be calculated with more sophisti-
cated techniques than brute force, since the number of
terms in the sum grows exponentially with the number
of nodes in the network.

There are several variants of the general algorithm
of which we choose to describe two in some detail:
the Shafer–Shenoy procedure (Shenoy and Shafer,
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1990) and the HUGIN procedure (Jensen, Lauritzen
and Olesen, 1990), which represents a refinement of
the algorithm in Lauritzen and Spiegelhalter (1988).
The Shafer–Shenoy procedure appears to be closest to
what is known as “peeling,” but it includes the more
general variant used in Thompson (1981) to derive
gene probabilities for all individuals in the pedigree. In
Thompson (2000), page 98, this variant is referred to as
“reverse peeling” although “simultaneous peeling” (to
all individuals) would seem a more appropriate term.

Peeling toward a root. To help clarify the relation-
ship between genetic peeling and these algorithms,
we initially describe a scheme which essentially is a
junction tree formulation of peeling as described in
Cannings, Thompson and Skolnick (1978).

As a first step, we choose one of the cliques to be
a root R of the tree, and the algorithm then proceeds
by passing appropriate messages toward this root.
Initially, the messages are sent from the leaves of the
junction tree, where a leaf of the tree is any clique
other than the root which has only a single neighboring
clique. The messages gradually progress toward the
root as the leaves are “peeled” off the junction tree.

More precisely, we denote a generic clique potential
of the junction tree by ψC and we initially have
ψC = φ∗

C , C ∈ C. When a message is sent from a leaf
L to its neighbor D, the potential ψL is marginalized
to S = L ∩ D as

ψ
↓S
L (xS) = ∑

yL\D
ψL(xS, yL\D).(14)

Furthermore, the neighboring clique D absorbs the
message from L by modifying its potential ψD to ψ̃D

as

ψ̃D = ψDψ
↓S
L .(15)

Finally, the leaf L is removed; that is, it is “peeled” off
the junction tree.

The marginal ψ
↓S
L in (14) and (15) is exactly

the R-function of Cannings, Thompson and Skolnick
(1978) and the separator S is the cutset. The important
fact is that these calculations are “local” to the cliques
L and D and therefore performed with relatively few
variables, as long as the cliques are small. Therefore
it is crucial for the algorithm to obtain small cliques
during the triangulation process described earlier.

Now let L′ = L \ D, V ′ = V \ L′ and C ′ = C \ {L},
where V is the set of nodes and C is the set of cliques
as before. We then have that

V = L′ ∪ V ′ and V ′ = ⋃
C∈C′

C

since any node v in the leaf L, which also belongs
to another clique, must be in D by the junction tree
property (10). As we shall see shortly, after a message
has been sent and absorbed as above, it holds that

f (xV ′ |x∗
E) =

∏
C∈C′ ψ̃C(xC)

Z(x∗
E)

(16)

and

Z(x∗
E) = f (x∗

E) = ∑
x

∏
C∈C′

ψ̃C(xC),

where ψ̃C are the potentials modified through the
passing of the message from L to D. Note that only
ψD is modified so ψ̃C = ψC for C 
= D. In effect, the
summation is only over configurations consistent with
the evidence x∗

E because initially ψC = φ∗
C for all C as

in (11) and all other values are equal to 0.
Equation (16) holds because

f (xV ′ |x∗
E) = ∑

yL′
f (yL′, xV ′ |x∗

E)

= ∑
yL′

∏
C∈C ψC(yL′∩C, xV ′∩C)

Z(x∗
E)

=
∏

C∈C′\{D} ψC(xC)

Z(x∗
E)

· ∑
yL′

ψL(yL′, xS)ψD(xD)

=
∏

C∈C′\{D} ψ̃C(xC)

Z(x∗
E)

ψD(xD)ψ
↓S
L (xS)

=
∏

C∈C′ ψ̃C(xC)

Z(x∗
E)

.

Proceeding in this fashion, all cliques other than the
root R are eventually peeled so we finally have

f (xR|x∗
E) = ψR(xR)/Z(x∗

E) and
(17)

Z(x∗
E) = ∑

xR

ψR(xR),

where ψR now refers to the modified potential after
all messages have been sent. Thus we have succeeded
in calculating Z and the conditional joint probability
of all configurations of nodes in the root clique R.
Their individual conditional probabilities can then be
obtained by a further simple summation. This message
passing scheme is illustrated in Figure 13.



502 S. L. LAURITZEN AND N. A. SHEEHAN

FIG. 13. Peeling the junction tree toward a root. Messages are
initially sent from leaves and propagate toward the root C21. When
all messages have been sent, the potential at C21 is proportional
to the probability distribution of the variables in C21 and the
normalization constant is the joint likelihood of the observations.
Messages are sent according to the numbering of the cliques, so
C1 sends first.

The Shafer–Shenoy procedure. If the marginal
probability f (x∗

E) is the only quantity of concern, the
peeling procedure described is fully satisfactory and no
further computation is needed. However, in many cases
it is also of interest, for example, to calculate updated
probabilities f (xv|x∗

E) for nodes v which are not ele-
ments of the chosen root R. In principle, one could then
find another clique C with v ∈ C and repeat the full
scheme with a new root R′ = C. However, many quan-
tities would then be recalculated several times. With a
bit of clever bookkeeping, as also noted by Thompson
(1981), this repetition can be avoided. A systematic ap-
proach to this has been described in Shenoy and Shafer
(1990) and proceeds as follows.

With every branch of the junction tree between
neighbors C and D, we associate a separator S =
C ∩ D and place two mailboxes along S, one for
messages from C to D and one for messages in the
reverse direction, from D to C. We initialize all the
mailboxes to be empty and they become full when a
message is placed in them. A clique C may now send a
message to D if and only if all its incoming mailboxes
other than that coming from D are full. Thus, at first,
only the leaves are allowed to send messages as in the
peeling procedure just described.

The structure of a message µC→D from a clique C

to its neighbor D along the separator S = C ∩ D is

calculated as

µC→D =
(
ψC

∏
A∈ne(C)\{D}

µA→C

)↓S

,

where ne(C) are the neighbors of C in the junction tree
and µA→C are messages from A to C. Essentially, the
message which C sends to D is a suitable marginal-
ization of the product of its own potential with all the
messages that C has received from its other neighbors.
The absorption of messages in (15) is initially avoided
and the message is just stored in its appropriate mail-
box which then changes its status to being full. The
procedure stops when all mailboxes are full, that is,
when exactly two messages have been sent along every
branch. The Shafer–Shenoy procedure is illustrated in
Figure 14.

Each of the messages µC→D is identical to the
R-function in (14) which would have been calculated
during a process of peeling toward a root R of the
junction tree where D is located between R and C

or possibly D is equal to R. Thus we have implicitly
succeeded in peeling toward all cliques simultaneously.

The final step follows by observing that when all
mailboxes are full it holds that, for any clique C,

f (xC |x∗
E) = ψC(xC)

∏
A∈ne(C) µA→C(xA∩C)

Z(x∗
E)

,

FIG. 14. Shafer–Shenoy procedure. Messages are stored in mail-
boxes along the branches of the junction tree. Every clique C can
send a message to a neighbor D when all incoming mailboxes other
than that from D are full. When all messages have been sent, a sin-
gle local step at any C completes the procedure of peeling toward C

as root. In the figure mailboxes with ∗ are full, so at this point C20
is allowed to send to C17 but not to C19.
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where

Z(x∗
E) = f (x∗

E)

= ∑
xC

(
ψC(xC)

∏
A∈ne(C)

µA→C(xA∩C)

)
.

The HUGIN procedure. The algorithm used in the
software HUGIN also makes specific use of the sepa-
rators but stores only a single potential ψS along every
branch of the junction tree. Initially, all these separator
potentials are set to be identically equal to unity, so the
factorization (12) implies that

f (x|x∗
E) ∝

∏
C∈C ψC(xC)∏
S∈S ψS(xS)

,(18)

where S is the set of separators and, initially, ψC = φ∗
C

after evidence has been entered.
When a message is sent from C to D via the

separator S = C ∩ D, the following operations are
performed:

ψ
↓S
C (xC) = ∑

yC\S
ψC(xS, yC\D),

ψ̃D(xD) = ψD(xD)
ψ

↓S
C (xS)

ψS(xS)
,

ψ̃S(xS) = ψ
↓S
C (xS);

that is, first the S-marginal ψ
↓S
C of ψC is calculated

by summing out over all variables not in S, then the
clique potential ψD is modified by multiplication with
the “likelihood ratio” ψ

↓S
C /ψS and finally the separator

potential ψS is replaced with ψ
↓S
C . The potential from

the clique which sends the message is unmodified, that
is, ψ̃C = ψC . Since we have that

ψ̃C(xC)ψ̃D(xD)

ψ̃S(xS)

= ψC(xC)(ψD(xD)(ψ
↓S
C (xS)/(ψS(xS))

ψ
↓S
C (xC)

= ψC(xC)ψD(xD)

ψS(xS)
,

the factorization (18) remains valid at all times during
the computational procedure.

Messages are now sent between neighbors in the
tree according to a specific schedule. An efficient mes-
sage passing schedule allows a clique to send ex-
actly one message to each of its neighbors and only
after it has already received messages from all its
other neighbors. Such a message passing schedule

FIG. 15. First of the two computational phases in the HUGIN
procedure. During COLLECTEVIDENCE messages are sent toward
a root (C21) as in the peeling procedure.

can be implemented via a local control using the
same rule as in the Shafer–Shenoy procedure. Alterna-
tively, corresponding to the actual implementation in
HUGIN, one can use a global control by first choos-
ing a root R, then making an inward pass through
the junction tree, known as COLLECTEVIDENCE, by
which messages are sent from the leaves inward to-
ward R, and subsequently making an outward pass,
DISTRIBUTEEVIDENCE, which sends messages in the
reverse direction from the root toward the leaves. The
two phases are illustrated in Figures 15 and 16.

FIG. 16. Second computational phase in the HUGIN procedure.
After COLLECTEVIDENCE (Figure 15), DISTRIBUTEEVIDENCE

sends messages from the root toward the leaves. After message
passing, all cliques and separators are proportional to the relevant
probability distribution, the normalizing constant in all cases being
equal to the likelihood, that is, the probability of the observed data.
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The COLLECTEVIDENCE procedure is identical here
to what was described as “peeling toward a root”
since all separator potentials are initialized to unity.
DISTRIBUTEEVIDENCE seems closer to “reverse peel-
ing” than the procedure used by Thompson, 1981
which is more like the “simultaneous peeling” of the
Shafer–Shenoy procedure.

When exactly two messages have been sent along
every branch of the junction tree in an efficient sched-
ule, it holds that

f (xA|x∗
E) = ψA(xA)/Z(x∗

E) for all A ∈ C ∪ S.

The marginal probability and normalizer Z can there-
fore be found as

f (x∗
E) = Z(x∗

E) = ∑
xS

ψS(xS)

from any of the separator potentials ψS . In particular,
the separator with the smallest associated state space
can be chosen.

3.2 Random and Other Propagation Schemes

Some generalizations of the message passing sche-
mes described above use different definitions of the
marginalization operation ↓ and the multiplication
used in the basic factorization and message computa-
tion, but work otherwise in essentially the same fash-
ion (Shenoy and Shafer, 1990; Lauritzen and Jensen,
1997). For example, replacing summation with maxi-
mization in (13) and in (14) still yields a valid prop-
agation scheme, known as max-propagation. Then,
after COLLECTEVIDENCE, the (max) normalization
constant, Z, is the probability of the most probable
configuration of all variables in the network, and this
configuration will be identified after DISTRIBUTE-
EVIDENCE (Dawid, 1992). Since the relation (18) re-
mains invariant in the HUGIN procedure (also un-
der max-propagation), one can easily switch between
propagation modes.

Another important generalization is the random
propagate algorithm described by Dawid (1992). This
begins with COLLECTEVIDENCE to a root R using
sum-marginalization, that is, with peeling to R, but in
the reverse step a Monte Carlo sample is drawn as fol-
lows. After COLLECTEVIDENCE, the potential ψR is
proportional to the conditional probability distribution
of the variables in the root clique, given the evidence;
see (17). Hence a random configuration x̌R can read-
ily be sampled according to this distribution. The root
clique now passes this configuration on to each of its
neighbors C as x̌R∩C = x̌S , where S = C ∩ R is the

separator between C and R. After this has been done,
each of the neighboring cliques C chooses a random
configuration x̌C\S of the remaining variables accord-
ing to a probability distribution which is proportional
to ψC(xC\S, x̌S). When the neighboring cliques have
sampled their configurations in this way, they in turn
pass on the chosen configuration to their neighbors
and so on. When the sampling stops at the leaves of
the junction tree, a configuration x̌ has been correctly
generated from the conditional distribution f (x|x∗

E),
given the evidence. This procedure is the general ver-
sion of what Thompson (2000), page 95, describes as
a variation of the Baum (1972) algorithm and forms
an essential step in many Monte Carlo-based computa-
tional schemes which are relevant for genetic analyses.
In particular, any sampling scheme which carries out a
block update on several variables jointly, conditionally
on the values of the remaining variables in the network,
makes use of the random propagate algorithm.

3.3 Computational Shortcuts

Computational issues have been considered by
geneticists for a long time. As a result, a number of
shortcuts have been developed which speed up compu-
tations beyond the efficiency intrinsic to the local com-
putation algorithms themselves. These shortcuts are all
associated with preprocessing before the compilation
and propagation steps and have the purpose of eventu-
ally leading to a reduction of the total size of the state
spaces associated with the cliques of the final junction
tree. Several of these preprocessing steps are, for exam-
ple, described in Sheehan (2000), Fishelson and Geiger
(2002) and Heath (2003).

Below we give a brief description—from a graphical
model perspective—of the preprocessing steps which
lead to computational savings. This may have interest
also beyond genetic applications, as the savings pro-
vided are often quite considerable and therefore useful
in more general cases.

3.3.1 Trimming. One way of reducing the compu-
tational problems in a Bayesian network is to remove
any unobserved terminal node v, that is, an unobserved
node which has no (graph) children. In genetics this
is typically a phenotype node or a node representing
the genotypes or alleles of a final individual. This re-
moval can be made without loss of information in any
Bayesian network unless the updated probabilities for
the node itself are of interest. In genetic counseling
problems, where the purpose of the analysis is to pro-
vide individual risk probabilities or similar cases, such
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nodes may be of interest in themselves and must then
be kept in the network, but in many other genetic prob-
lems, say linkage analysis, they are redundant. Re-
peated removal of nodes of this type will eventually
lead to reducing the Bayesian network to the smallest
ancestral subset containing all nodes which are either
observed or of interest. For example, if the risk proba-
bilities of individual 13 in the network in Figure 8 were
not of separate interest, and the only observed nodes
were the phenotypes Y11 and Y15, the nodes 13p and
13m would be removed as they are not part of the an-
cestral sets of the observed node. Also, if Y15 were nei-
ther observed nor of specific interest, all nodes corre-
sponding to individuals 5, 8, 9, 10, 12, 13, 14 and 15
would similarly be redundant.

A related reduction can be made by removing any
groups of (graph) founder nodes with a single common
(graph) child, provided this child has no other (graph)
parents. In general, this has the associated drawback
that the probability distribution of the variable associ-
ated with the child node must be calculated, but in a
genetic model which implies stable gene frequencies,
such computation can be avoided. In general, repeated
application of this process can simplify the Bayesian
network considerably. If we return to Figure 8, the al-
leles of individuals 1, 2, 3, 4, 5 and 8 could be removed
in this fashion.

3.3.2 Forcing and excluding. In Bayesian networks
with many deterministic or close to deterministic
relationships, the values at some nodes may strongly
restrict the state spaces at neighboring nodes. When
a value at a given node can be determined exactly
by the known values at some neighboring nodes, we
speak of forcing and the forced value at such a node
may simply be added to the list of observations. For
example, if genotypes are observable and we have that
Y15 in Figure 8 is homozygous, the alleles 15p and 15m

are completely identified and we may include these as
observations even though they were initially unknown.

Similarly, the values at some nodes can be restricted
in the sense that certain values can be excluded as
possibilities, given the observations at neighboring
nodes. In this way the individual state space at a
particular node can be reduced. Such forcings and
exclusions can be repeatedly and recursively applied
node by node in the network. The derivation of
all globally implied forcings and exclusions in a
given network is in its essence solving a constraint
satisfaction problem and has the same computational
complexity as the full computation itself. But it can still
be very effective to derive the forcings and exclusions
which follow directly from local considerations.

3.3.3 Delayed triangulation. To take full advantage
of the forcing, and to speed up computation in general,
it is advantageous to incorporate the evidence into
the factorization of the joint probability already at the
stage of the moral graph, rather than after triangulation
and setting up the junction tree. If we recall the
factorization (8)

f (x) = ∏
v∈V

f (xv|xpa(v)) = ∏
C∈C

φC(xC),

where C now denotes the cliques of the moral graph,
we may also write

f (xV \E|x∗
E) ∝ ∏

C∈C

φC(xC\E,x∗
E∩C).

Since x∗
E is fixed, we can let C∗ denote the set of

maximal subsets among C \E,C ∈ C and collect terms
appropriately into revised potentials φ∗∗ and obtain

f (xV \E|x∗
E) ∝ ∏

A∈C∗
φ∗∗

A (xA).

Thus the conditional distribution factorizes over the
subgraph of the moral graph induced by the unob-
served nodes V \ E. This is the graph obtained from
the moral graph by removing observed nodes and all
links associated with these nodes.

Because observations tend to “break” cycles in the
graph, the (optimal) triangulation of the subgraph
will typically have much smaller cliques than the
corresponding subgraph of the triangulated graph.
Thus, with good and fast triangulation algorithms
available and with many observations and forcings,
such delayed triangulation will be preferable.

In the example above where Y15 is observed to be
homozygous so that the alleles of individual 15 can
be considered observed, we can remove the associated
nodes and links from the moral graph in Figure 9, thus
rendering the remaining part of the graph triangulated
so that no additional links are needed and all cliques
have at most three nodes with associated clique size a3.

3.3.4 Allele recoding. If a genetic system has sev-
eral alleles, but only a subset of the possible allelic
types is represented in the set of observations, it may be
advantageous to combine all unobserved allelic types
into a single type, labeled other, say. This reduces the
individual state space of any multiallelic system with-
out loss of information in most genetic models. How-
ever, this allelic recoding is specific to genetic applica-
tions and does not seem to have any counterpart within
general graphical models.
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4. SOME SPECIFIC APPLICATIONS

In this section we will show how some specific
problems in pedigree analysis can be formulated using
the Bayesian network representations of Section 2.4.

In the first of these, we will consider the prob-
lem of detecting a rare recessive disease by linkage
to a marker locus where both loci are assumed to
be discrete. A graphical modeling approach to this
particular problem has been taken by several authors
(Kong, 1991; Jensen and Kong, 1999; Thomas, Gutin,
Abkevich and Bansal, 2000). Our aim here is to em-
phasize that the entire model can be specified by the
graph without the need for complicated equations and
derivation of the relevant joint and full conditional dis-
tributions. The second example is taken from Sheehan
et al. (2002) and shows how to incorporate a continu-
ous quantitative trait into this setting.

4.1 Simple Linkage Analysis

Consider the scenario where we have a disease segre-
gating through a population with two discernible phe-
notypes, affected and normal. Typically, we will have
some observed phenotypes for the disease and some
individuals will be typed (i.e., will be of known geno-
type) at the marker locus. We are willing to assume that
there is a single locus for the disease with two possible
alleles, D and d . Let d be the “disease” allele in that
homozygous dd individuals are more likely to have the
disease than other types. The model we assume for the
disease penetrance is that of complete penetrance as
used in Kong (1991) whereby dd individuals are af-
fected with probability 1 and are never normal while
both other genotypes are normal with probability 1 and
affected with probability 0. For now we will assume
that allele frequencies for both loci are known and seg-
regation is Mendelian so the only unknown quantities
are the unobserved genotypes and phenotypes and r ,
the recombination fraction between the two loci. The
question of interest is whether the locus for the disease
is close to the known marker locus. In particular, an
estimate of r is required. Founder genotype frequen-
cies are taken to be in Hardy–Weinberg proportions, as
before. Furthermore, we will assume that the founder
population is in linkage equilibrium; that is, the fre-
quency of any haplotype is the product of the relevant
allele frequencies.

In a linkage analysis, this question is addressed by
trying to assess whether the patterns of segregation
at the disease locus are comparable with those at the
marker. A tendency for the paternal gene at the disease

locus to be inherited with the paternal gene at the
marker, for instance, would be interpreted as evidence
that the loci are not segregating independently and
the strength of this dependence is related to the
proximity of the loci on the chromosome, or the
tightness of the linkage between them. Formally, we
calculate the likelihood L(r) for the disease and
marker observations as a function of the recombination
fraction over a grid of values of r . Note that the peeling
algorithm is fully sufficient in this case as only the
likelihood is required. When there is a large amount
of missing information, and particularly on a large
looped pedigree, the necessary summation over all
configurations of unobserved variables consistent with
the data can be intractable and approximate methods
must be used (Heath, 2003).

To test the hypothesis of “no linkage,” the ratio
L(r)/L(1

2 ) is calculated and maximized over r ∈ [0, 1
2 ].

Recall that r = 1
2 means that there is no linkage and the

loci are segregating independently, whereas r ≈ 0 indi-
cates tight linkage. Traditionally, it is the standardized
log-likelihood ratio

log10

[
L(r)

L(1
2 )

]

which is maximized and this is known as the LOD
score (Morton, 1955; Ott, 1999). The maximizing
value r̂ will provide us with an estimate of the
recombination fraction and hence the location of the
disease locus.

As an alternative one may take a Bayesian approach
which, in addition, incorporates uncertainty on gene
frequencies. Then random propagation becomes an
important part of a block updating MCMC algorithm
as in the more complex problem of locating a major
gene for a quantitative trait discussed in Section 4.2,
and also the problem associated with genetic modeling
of the fur color of foxes discussed in Section 4.3.1.

Following Sheehan et al. (2002), we now show
how to construct a graphical model for the two-locus
linkage problem by focusing on a nuclear family com-
prising a father 1, mother 2 and their offspring 3. This
construction is, of course, replicated for all parent–
child triplets in the pedigree but it is far too compli-
cated visually to consider more than a few individuals
at a time. As we need haplotype information for
linkage in order to detect recombinations, it is most
convenient to use the segregation network for this
representation. Beginning with the marker locus—the
“α-locus”—for each parent i = 1,2, we create the two
nodes, i1α and i0α , for the paternal and maternal genes
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of the individual with values assigned at random ac-
cording to the marker allele frequencies. Note that this
random assignment immediately deals with the fact
that phase is unknown in the parents and we have to
sum over all possibilities. We can assume that

P (Sα
1,3 = 1) = P (Sα

1,3 = 0) = 1/2(19)

by Mendelian inheritance at this first locus in the
absence of information at the linked locus. As in
Section 2.4, the node for the paternally inherited allele
of the offspring, 31α , is a (graph) child of both alleles
in the father, 11α and 10α , and of Sα

1,3. Similarly, Sα
2,3

describing the segregation from 2 to 3 has a Bernoulli
distribution with probability 1

2 and the maternally
inherited gene in 3 is a child of this node and of
both genes in the mother. Next we add genotype nodes
to the graph for each individual. As the genotype is
fully determined by the allelic types of the individual’s
genes at the locus, it is a (graph) child of both gene
nodes. Figure 17 shows the corresponding network for
one locus in our nuclear family.

Now consider the disease locus where the frequency
of the disease allele d is fd . If we label this locus as δ,
we now extend our graph by adding two nodes for each
of the parents exactly as before with values determined
by a Bernoulli distribution with parameter fd . These
are labeled i1δ and i0δ for i = 1,2 in Figure 18. The
unobserved genotype, Gδ

i , is represented as a child
node of the corresponding gene nodes. It is also a
(graph) parent of the observable phenotype, Y δ

i , with
link specified by the penetrance function. For the
offspring, 3, we have gene nodes and a segregation
indicator exactly as for the marker locus with the
difference now being that we must take account of
linkage between the loci. In particular, the values of
the segregation indicators Sδ

1,3 and Sα
1,3 are dependent

via the recombination fraction, r . This dependence
can be modeled with an undirected link between the

FIG. 17. Segregation network for the α-locus for a father 1,
mother 2 and child 3.

FIG. 18. Segregation network for two linked loci on individuals
1 ( father), 2 (mother) and 3 (offspring). Note that the information
on linkage is contained in the directed edge between the segregation
indicators Sα

1,3 and Sδ
1,3 and similarly between Sα

2,3 and Sδ
2,3.

corresponding nodes. Formally, this would lead to a
chain graph representation (Lauritzen, 1996) rather
than a DAG. However, for the sake of exposition,
we here use the equivalent nonsymmetric description
through the conditional distribution of Sδ

1,3 given Sα
1,3,

specifically:

Sδ
1,3 ∼

{
Ber(1 − r), if Sα

1,3 = 1,

Ber(r), if Sα
1,3 = 0,

(20)

and similarly for Sδ
2,3. To complete the graph in

Figure 18, we now add nodes Gδ
3 and Y δ

3 for the
offspring’s unobserved genotype and phenotype with
links defined exactly as above.

Note that this is a full specification of the model sim-
ilar to that described in Kong (1991). Further derivation
of the relevant joint and marginal distributions is not
necessary as these are a direct result of the factoriza-
tion (1) in Section 2.3. We note that, in principle, this
model could have been represented in terms of either
an allele or a genotype network. Compared with these,
we have complicated the problem visually by adding
extra variables, but as pointed out by Kong (1991),
such visual complications can often reduce computa-
tional complexity since each variable now has fewer
possible values. The graph that has most appeal to the
human eye is not necessarily the best graph on which
to perform the required calculations. Rather, the most
disaggregated graph possible tends to exploit factor-
izations better, leading to more efficient computation
(Section 3).

4.2 Detection of a Quantitative Trait Locus

The discussion so far has focused on genetic traits
with a phenotype which is fully determined by the
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genotype at a single locus, or Mendelian traits. Sheehan
et al. (2002) extend the linkage scenario described
above to the problem of detecting a quantitative trait
locus (QTL) from possibly incomplete marker data and
begin with the trivial example involving two flank-
ing loci. Recall (Section 2.2) that the phenotype of a
quantitative trait is held to derive from the segrega-
tion of many genes at many loci and may also have a
nongenetic component. In principle, if individuals are
scored for their genotypes at a marker locus and phe-
notypes for the quantitative trait, differences in mean
records for the trait among different classes of marker
genotype would provide evidence for a QTL close to
the marker.

In this application two markers are considered with
known map positions (and hence known recombina-
tion fraction between them), and it is hypothesized that
there is a diallelic QTL somewhere between the two.
The trait of interest is any trait measured on a contin-
uum having an associated polygenic effect unlinked to
the QTL such as milk yield in dairy cattle. Marker data
are available on a half-sib design comprising several
families, each with a single sire and up to 100 off-
spring. Trait data are only available on the offspring.
By contrast, with the two-locus linkage example above,
no information is given on the mothers (dams) of these
offspring and hence the maternal segregations are all
ignored. This is common in animal breeding applica-
tions where data are habitually collected on designs
which can be handled by simple least squares or likeli-
hood methods.

The phenotype record on offspring j of sire i is
a realization of Yij . The effect of the unobserved
genotype at the QTL is qij where qij can have three
possible values, µ1,µ2,µ3, corresponding to each of
the three genotypes. A normal linear mixed model for
the data is

Yij = Zi + qij + Eij ,

where Zi represents the average additive genetic effect
of the ith sire on the phenotypes of his offspring and
which cannot be explained by the QTL. Let σ 2

a be the
total additive genetic variance unexplained by the QTL
and σ 2

e be the environmental variance. We have that
Zi ∼ N(0, σ 2

z ) ∀ i, where σ 2
z is the sire variance com-

ponent (Falconer and Mackay, 1996), and σ 2
z = 1

4σ 2
a

since half the genes of an offspring are shared with its
sire. The remaining unexplained variation is picked up
by the residual term Eij ∼ N(0, 3

4σ 2
a + σ 2

e ). Estimates
of the recombination fractions between the QTL and
each of the markers are required and estimates of the

QTL effects, µ1,µ2,µ3, are also of interest. Assum-
ing no genetic interference (Section 2.2), only one of
the unknown recombination fractions, or, equivalently,
the QTL map location λQ, is necessary.

Figure 19 shows the graphical model for this trivial
QTL mapping problem for one sire and two offspring.
The marker loci are labeled α and β while the QTL
locus is now δ. The model is essentially an extension
of the two-locus linkage problem in Figure 18 to
a three-locus problem. Gene nodes are added for
the third locus in an analogous fashion with the
segregation indicator for inheritance from the sire
linked to the previous value via the recombination
fraction between the second and third loci, just as
described in (20) above. This assumes that there is
no genetic interference and that recombinations in
adjacent intervals are independent.

The main difference is that the offsprings’ maternal
genes are assumed to be randomly drawn from the
population as there is no phase information on the
dams. Nonrelatedness of the dams is a fundamental
assumption of the half-sib design. Sire and offspring
have marker genotype nodes while only offspring
have trait genotype and phenotype nodes. Finally,
covariance between the offspring is reflected in the
genes they share with their sire and they are duly
connected by the sire effect node. Note that this creates
a cycle in the graph which becomes increasingly
complex computationally when more offspring are
added, and for a typical half-sib design with a sire
having up to 100 offspring the relevant Bayesian
network for this problem features many long cycles

FIG. 19. Graphical model for the QTL-mapping problem depict-
ing a sire, i, with two daughters, ij and ij ′ , adapted from Sheehan
et al. (2002).
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despite the simplicity of the pedigree structure and the
model under consideration (see Section 3).

We conclude this section by noting that these mod-
els lend themselves readily to Bayesian analysis and
interpretation (Sham, 1997) where all unknown quan-
tities can be regarded as random variables. Thus data,
latent variables and model parameters can all be rep-
resented as nodes in the graph with associated distri-
butions. Lund and Jensen (1999) use graphical mod-
els for a Bayesian formulation of a mixed inheritance
model, for example, and Sheehan et al. (2002) extend
the model in Figure 19 to a full Bayesian analysis for
the QTL mapping problem. In all of these, random
propagation is used as an essential part of the asso-
ciated MCMC computational procedure.

4.3 Beyond Pedigrees

The flexibility of a graphical modeling approach to
applications in genetics is powerfully demonstrated by
examples where the pedigree is not fixed and known,
or when other circumstances should be integrated into
the analysis. We briefly discuss some examples of this.

4.3.1 Fur color of foxes. Hansen and Pedersen
(1994) elegantly handle incomplete paternity informa-
tion in a two-locus inheritance model for fur color
in foxes from pedigrees supplied by Scandinavian fur
farms. A more standard analysis of the same data
appears in Skjøth, Lohi and Thomas (1994). There
are four fox pedigrees in this dataset, comprising
253 animals in total, all born between 1975 and 1982.
Although there are some loops, the pedigrees are gen-
erally small enough to enable exact likelihood calcu-
lations for the simple models considered (Skjøth, Lohi
and Thomas, 1994). However, there is uncertainty with
some of the litter paternities. In many cases a female is
mated with two males in order to increase the chances
of fertilization. Depending on the time between these
matings, it is not always possible to determine which
male actually fathered the resulting pups. Indeed, with
this breeding practice, two males could father pups in
the same litter. However, for the pedigree, the farmer
states the most likely candidate as the father (to all
pups) and registers the second sire as an alternative
whenever there is doubt.

The phenotypic record on each fox is a subjective
classification of fur color with animals classified by
different observers and at different ages. Modes of in-
heritance of genes for fur color have been studied for
many animals, especially mice (Silvers, 1979). Based
on homology with mice and sheep, Adalsteinsson,

Hersteinsson and Gunnarsson (1987) proposed a ge-
netic model involving two diallelic loci, α and ε, pos-
sibly on the same chromosome. Labeling the alleles at
the “α-locus” as A and a and those at the “ε-locus”
as E and e, the relationship between fur color pheno-
type and corresponding two-locus genotype suggested
by this model is given in Table 4, taken from Hansen
and Pedersen (1994).

The animals are also classified on a scale from
1 to 10, increasing numbers reflecting increasing
amounts of black color over red. This classification
is again subjective and not always consistent with the
one based on overall coat color. Hansen and Pedersen
(1994) reduce this to a scale of 1 to 8. The structure
of the penetrance matrix they use for the nine possi-
ble genotypes and these eight phenotypes is shown in
Table 5.

The usual method for handling paternity uncertainty
in a likelihood setting is to compare the likelihoods
for all possible pedigrees (Thompson, 1986). In this
case there is only one alternative father for each of a
small number of litters but as each pup in the litter
could have been fathered by either of the two candi-
dates, a likelihood comparison for this particular prob-
lem would require the consideration of 221 pedigrees.
Skjøth, Lohi and Thomas (1994) circumvent this prob-
lem by estimating paternal genotypes from the pheno-
typic information and choosing the most likely indi-
vidual. Standard statistical genetics programs will not
accept a pedigree where an individual can have more
than one biological father. However, a graphical model
does not distinguish between biological and graph par-
ents, and Hansen and Pedersen (1994) exploit this by

TABLE 4
Relationship between genotypes and fur color phenotypes

for the model proposed by Adalsteinsson,
Hersteinsson and Gunnarsson (1987)

Color phenotype Two-locus genotype

Red fox AA EE

Gold fox Aa EE

Cross foxes
Gold (Alaska) cross fox AA Ee

Silver (blended) cross fox Aa Ee

Silver foxes
Alaska silver fox aa EE

Canadian (standard) silver fox AA ee

Sub-Canadian silver fox Aa ee

Sub-Alaska silver fox aa Ee

Double black fox aa ee
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TABLE 5
Penetrance matrix adapted from Hansen and Pedersen (1994)

Genotype Phenotype

AA EE * * * — — — — —
Aa EE * * * * — — — —
AA Ee — — — * * * — —
Aa Ee — — — — * * * —
AA ee — — — — — — * *
aa EE — — — — — — * *
Aa ee — — — — — — — *
aa Ee — — — — — — — *
aa ee — — — — — — — *

NOTE: Allowing for inconsistencies between the different classi-
fications, entries marked with an asterisk have associated positive
probability. All other entries have zero probability. The j th ele-
ment of the ith row of this matrix is the conditional probability of
observing phenotype j given genotype i.

defining a binary node, Wi , to indicate the paternity
of i. Specifically,

Wi =
{

1, if stated father is the true father,

0, if alternative father is the true father

and Wi ∼ Ber(pw) where pw is to be estimated.
We now build the graphical model for the fox data,

following Hansen and Pedersen (1994), but simplify-
ing the model slightly by assuming a known penetrance
matrix and known allele frequencies at both loci. The
recombination fraction r between the two loci is un-
known in this example. We consider four animals: the
mother, 1; putative father, 2; offspring, 3; and alter-
native father, 4. Using the same notation as before,
we assign paternal and maternal alleles at both loci,
i1α, i0α, i1ε, i0ε , from the relevant Bernoulli distribu-
tions to the founders, i = 1,2 and 4. Segregation from
mother to offspring can be quantified by indicators
for each locus, Sα

1,3, S
ε
1,3, and corresponding indicators

for paternal inheritance will be denoted as Sα
f3,3

, Sε
f3,3

where f3 = 2 if W3 = 1 and f3 = 4 otherwise. In
contrast with our representation of Section 4, where
the segregation indicator at the first locus is given a
Bernoulli(1/2) distribution to reflect Mendelian seg-
regation and the second indicator depends on the
value of this via the recombination fraction r , Hansen
and Pedersen (1994) consider segregation at both loci
jointly. We will represent their joint segregation, or

phase indicator, for maternal inheritance by S1,3 where

S1,3 =




(0,0), with probability (1 − r)/2,

(0,1), with probability r/2,

(1,0), with probability r/2,

(1,1), with probability (1 − r)/2.

Paternal inheritance is represented analogously and
designated by Sf3,3. Note that S1,3 = (Sα

1,3, S
ε
1,3) in our

notation and that this is the same model as described
in (19) and (20) above. The latter parameterization, in-
volving more nodes with fewer states, is more flexible
when considering more than two loci and is generally
better for computational purposes. All four alleles of
individual i are graph parents of the node Gi repre-
senting the two-locus genotype and Yi denotes the fur
color phenotype. Figure 20 shows the corresponding
graphical model for this problem.

Despite the fact that we have omitted nodes for the
allele frequencies and parameters of the penetrance
matrix, the graph in Figure 20 is more complicated than
those shown earlier in this section in that it has many
more loops. The advantage, however, is that questions
about paternity, genetic inheritance and linkage can all
be addressed from this one graph.

Hansen and Pedersen (1994) use a Bayesian ap-
proach with prior Dirichlet (or Beta) distributions on
unknown parameters and an alternating blocking Gibbs
sampler to carry out their analysis. In one step of the
sampler all unobserved nodes in the network are im-
puted by random propagation as described in Sec-
tion 3.2 using fixed and current values of the parame-
ters. In the other step all parameters of the model are
sampled using conjugate updating of Dirichlet distrib-
utions, conditional on complete observed and imputed
data.

FIG. 20. Graphical model for the fox data depicting a mother 1,
father 2, offspring 3 and alternative father 4, adapted from Hansen
and Pedersen (1994).



GRAPHICAL MODELS FOR GENETIC ANALYSES 511

4.3.2 Forensic genetics. The ease with which graph-
ical models, or probabilistic expert systems, can be
adapted to handle a wide range of routine problems
in forensic inference is illustrated clearly by Dawid,
Mortera, Pascali and van Boxel (2002). Here the focus
is on the general problem of inferring the identity of
an individual based on the given evidence which may
include DNA profile information. In principle, this can
be done (Dawid and Mortera, 1996) by calculating rel-
ative likelihoods for the various competing hypotheses.
Such calculations can become computationally inten-
sive, however, when information is either imperfect or
missing altogether (Dawid and Mortera, 1998), or es-
pecially when the possibility of observing a mutation
from one generation to the next is entertained (Dawid,
Mortera and Pascali, 2001) and efficient computational
algorithms on good representations are required.

Paternity problems. As an example, consider an in-
heritance claim case taken from Dawid et al. (2002)
which can formally be expressed as a case of disputed
paternity and is represented in pedigree form in Fig-
ure 21. A man whom we shall label as 9 (the disputed
child) claims to be the son of the diseased individual 3
(the putative father) and hence entitled to part of his
estate. We know that 3 has an undisputed child, 6, and
we know that the two children in question have dif-
ferent mothers. There is no DNA information on the
putative father since he is dead and buried, nor is there
information on either of the two mothers, but we have
DNA profile samples from both children and the man’s
brother, 4. As is often the case with such applications,
we focus attention on just two competing hypotheses:
either the true father, 8, of the disputed child, 9, really
is one and the same as the putative father, 3, or the true

FIG. 21. Simple paternity problem of Dawid et al. (2002)
represented here by two marriage node graphs. Individuals shaded
in gray are those for whom DNA evidence is available. Note that
individuals 1,2,5 and 7 are only drawn in to clarify relationships.

father can be considered as randomly drawn from the
general population.

It is usually assumed that the markers used in foren-
sic inference are unlinked, as they are either on dif-
ferent chromosomes or else so far apart on the same
chromosome that linkage is negligible. Hence we need
only consider the model for calculating the likelihood
of interest at any single marker and the overall likeli-
hood will be the product taken across all markers. Fig-
ure 22 shows the representation used by Dawid et al.
(2002) for a single forensic marker. They use the al-
lele network rather than the segregation network, but,
as noted previously, the latter is superfluous in the ab-
sence of linkage. Our notation is as before, but we
omit the marker labels for simplicity. Thus i0 and i1

represent the random variables assigning maternal and
paternal genes of individual i and Gi assigns the geno-
type of i at the marker. Note that untyped individuals
who are not directly of interest (i.e., 1,2,5 and 7) are
only represented by the genes they contribute to the
next generation which, in the absence of any informa-
tion, are assumed to be randomly drawn from the pop-
ulation.

One of the interesting features of the graph in
Figure 22 is the black node referred to as the “query”
or “target” node by Dawid et al. (2002) and which is
a (graph) parent of both genes in individual 8. This
is a binary node taking the value 1 if the true father
of the disputed child is the putative father, that is, if
individual 8 is the same as 3 in Figure 21. In this case
the two genes in 8 are copies of the corresponding
two in 3. Otherwise, the men are different individuals
and the genes of 8 are drawn randomly from the

FIG. 22. Graphical model representation used by Dawid et al.
(2002) for the simple paternity problem of Figure 21. The three
gray nodes represent the observed genotypes. The black node is the
“query” node.
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population. The advantage of using the query node
is that the quantity of interest to the court case—the
likelihood ratio in favor of paternity—can be read off
directly. Note that this node is essentially the same as
the paternity indicator, Wi , of Hansen and Pedersen
(1994) which determines which of the two possible
alternatives fathered individual i (Figure 20). The
emphasis in the fox analysis was, however, somewhat
different.

Complex identification problems. Related problems
which extend the traditional paternity question to the
consideration of more than two alternatives are those of
establishing family relationships in immigration cases
and of identifying multiple remains from disasters such
as airplane crashes, wars and fires. In particular, it
may be important to identify members of the same
family as, for example, in the famous case of the
executed Romanov family believed to have been found
in Yekaterinburg (Gill et al., 1994). Here interest is
centered on finding the most probable pedigree, given
the DNA evidence from the bodies buried in the grave
as well as from a few known living individuals, in
this case individuals known to have a specific genetic
relationship to members of the Romanov family.

All possibilities, ranging from totally unrelated in-
dividuals to all individuals belonging to the same con-
nected pedigree, including all the extra people required
to define the necessary relationships, must be enter-
tained. Sometimes the set of possible pedigrees is too
large for an exact approach. Egeland, Mostad, Mevåg
and Stenersen (2000) consider this problem by select-
ing a subset of probable pedigrees. Certain structures
are eliminated according to various criteria which may
vary from case to case. For example, if sex and age data
are available, some individuals will not be allowed to
feature as parents in any pedigree structure and limits
on incestuous relationships and numbers of marriages
and offspring may also be applied. A prior probabil-
ity distribution is then imposed on the selected set of
pedigrees and the program FAMILIAS used to com-
bine this with the relevant likelihood information to
deliver posterior probabilities for the various structures
considered. To date, this problem has not been tackled
systematically with graphical models but, as noted by
Dawid et al. (2002), it is an important application for
consideration.

In addition to the problems mentioned, the area of
forensic genetics yields a variety of problems where
the flexibility and modularity of the graphical model
approach can be fruitfully exploited. For example, in
criminal cases it is not uncommon to observe DNA

evidence which represents a mixture of phenotypes
of an unknown number of individuals. Such cases
can readily be accommodated within graphical models
(Mortera, Dawid and Lauritzen, 2003).

5. PERSPECTIVE

We have hopefully demonstrated that graphical mod-
els can be used to formulate and analyze many prob-
lems in genetics, or problems having a strong ge-
netic component, especially when potentially complex
family relations must be taken into account. The ad-
vantages of phrasing these problems in the language
of graphical models derive from the flexibility with
which standard problems can be modified to accom-
modate special situations, whether they be observa-
tional schemes, types of problem under consideration
or other external circumstances that need to be in-
corporated into the basic genetic models. Moreover,
this entirely general approach facilitates the accessi-
bility of these problems in genetics together with their
associated computational and statistical methods to a
wider and less specialized community. In this perspec-
tive analyses of complex genetic data can benefit enor-
mously from current rapid developments in the area
of general graphical models, thereby extending the do-
main in which these methods can be most usefully ex-
ploited.
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