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Recently, it has been demonstrated that graphical models promise some potential for expressing
causal concepts, see for example Pearl (2000), Lauritzen (2001), or Dawid (2002). The causal inter-
pretation is most direct in models based on directed acyclic graphs, whereas causal interpretation for
chain graph models generally is more subtle and complex (Lauritzen and Richardson 2002).

In the articles cited, such concepts as confounding, partial compliance, causal sufficiency of
covariates, and prediction of treatment effects were discussed and illuminated.

In this article we will use graphical models to illustrate and analyse the notion of asurrogate
outcome,such as also discussed e.g. in Frangakis and Rubin (2002).

Causal Markov models

The basic causal interpretation of a directed graphical model is as follows. We consider a
directed acyclic graph (DAG) where nodesV of D represent random variables. The DAG is said to
becausalfor a probability distributionP with respect to a subset of variablesB ⊆ V , if it holds for
all A ⊆ B that

p(x ||x∗A) =
∏

α∈V \A
p(xα |xpa(α))
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xA=x∗A

.(1)

Here p(x || y) = P (X = x |Y ← y) refers to the distribution ofx after aninterventionwhich
givesY the specific valuey. Generallyp(x || y) 6= p(x | y), where the latter is the more conventional
conditional distribution, obtained asp(x | y) = p(x, y)/p(y). Generally we distinguish betweeninter-
vention conditioningandobservation conditioning.

Note that the causal Markov property specifies a relation betweendifferent probability mea-
sures, each representing the law associated with a specific intervention. Thus, in leftmost of the
causal DAGs below
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we have thatp(y ||x) = p(y |x) andp(x || y) = p(x), whereas these relations are reversed in the
rightmost graph, i.e. there it holds thatp(y ||x) = p(y) andp(x || y) = p(x | y).

The formula (1) has appeared in various forms in Pearl (1993) and Spirtes, Glymour and
Scheines (1993). It is implicit in Robins (1986) and in other literature.

The causal Markov property of the DAG gives an easy way of reading off important conditional
independence properties directly from the DAG itself. We refer e.g. to Dawid (2002) or Lauritzen
(2001) for further details.

Surrogate outcomes

In certain therapeutic trials it may be difficult or practically infeasible to measure a responseR
of primary interest, for example if this is survival time for an individual. It may however be possible
at an early stage to measure a post-treatment variableS which is known to predict the final outcome
R well. Such an intermediate responseS is said to be asurrogate outcomefor the effect ofT onR.



However, there is some ambiguity about the precise properties thatS should have to justify it
to be considered a surrogate. Prentice (1989) suggests a relevant property to be the independence
of response and treatment, conditionally on surrogate outcome, i.e.S is astatistical surrogateif the
relationR⊥⊥T |S holds.

However, as argued by Frangakis and Rubin (2002), using a statistical surrogate for treatment
evaluation can lead to serious and undesirable biases and misinterpretation of experimental results
in the presence of potential confounding variables. In particular a statistical surrogate does not obey
what the latter authors denotecausal necessity. It may happen that the treatment can have no effect
onS and still have a proper effect on the responseR. Essentially this is a consequence of differences
between conditioning by intervention and conditioning by observation, as mentioned earlier in this
article.

Clearly, for a surrogateS to be useful it must also predict the responseR well. This aspect is
not discussed in this article.

The causal graphical model formulation leads naturally to the notion of a surrogate in a simple,
randomised clinical trial through the diagram below:
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whereT is treatment,R is response,S is intermediate response, andU represents possible unmea-
sured confounding variables. The missing edge betweenU andT reflects the independenceT ⊥⊥U
ensured by allocating treatmentsT at random to individuals.

The missing edge betweenT andR reflects the property that the entire effect ofT on R is
mediated through the surrogateS, represented by the conditional independenceR⊥⊥T | (S, U). The
latter allows the relationship betweenS andR to be modified by unknown confoundersU .

We say that such a variableS is a strong surrogatefor the effect ofT on R. Note that a
statistical surrogate is typically not a strong surrogate and vice versa. The diagram above doesnot
imply R⊥⊥T |S.

Note also that a strong surrogateS also satisfies the notion of causal necessity. No effect ofT
on S would correspond to a missing arrow betweenT andS and this will automatically yield thatT
has no effect onR either.

Principal surrogates

Frangakis and Rubin (2002) define the notion of aprincipal surrogateusing the method of
potential responses (Neyman 1923; Rubin 1974). To describe this notion in terms of graphical models
we need to considermapping variables(Heckerman and Shachter 1995) — a variant of potential
responses. The mapping variables describe deterministically how the treatment affects the responses
in the coarsest possible way, as illustrated in the rightmost of the diagrams below, where the diagram
to the left represents an unspecified and unobserved confounderU . Dawid (2002) uses the term
‘canonical functional model’ for the diagram involving mapping variables.
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Hereσ is a map which identifies howT affectsS: S(T, σ) = σ(T ) and similarlyη identifies the
effect of the response asR(T, S, η) = η(T, S). The mapping variablesσ, η are describe completely
howU moderates the treatment effects, so that further knowledge aboutU is irrelevant.

To illustrate the idea of a mapping variable, consider the situation in whichS andT each have
two levels,T ∈ T = {1, 2} andS ∈ S = {L, H}. The table below gives the values ofS for different
values ofT , where we have in mind thatS represents low or high level of a substance which can be
easily measured. There are four possible maps fromS to T :

T σ = sicker σ = normal σ = healthier σ = special
1 L L H H
2 L H H L

The mapping variableσ = normal is representing the case where the second treatment raises the level
of S, etc.

In a similar way there are eight possible maps fromT × S toR if also the response is binary.
Frangakis and Rubin (2002) define the notion of aprincipal surrogatein a way which in our

formulation would be implied by the conditionR⊥⊥T | (S, σ), since the mapping variableσ defines
what they termprincipal strata. The authors in fact only demand this conditional independence to
hold for suchσ which are constant maps, i.e. forσ = sicker andσ = healthier in the example above.

This is thus considerably weaker than the graphical condition on a strong surrogate, which
demands absence of the directed link fromT to S. Thus,a strong surrogate is a principal surrogate,
but not vice versa.

Identifying strong surrogates

In general it can be a difficult task to very that a post-treatment variable indeed satisfies the
conditions needed for it to be a strong or principal surrogate, as both notions involve unobserved or
even unobservable variables.

However, the diagram defining a variable to have the property of a strong surrogate is identical
to a similar diagram describing the notion ofinstrumentalvariables. More precisely, it holds thatS is
a strong surrogate for the effect ofT onR if and only ifT is an instrumental variable for the effect of
S onR.

It thus follows that the property ofS being a strong surrogate for the effect ofT on R can be
falsifiedin principle from observation of(T, S, R) only, if S is a discrete variable. This is true because
the instrumental inequality (Pearl 1995) implies that ifS is a strong surrogate we must have

max
s

∑
r

max
t

p(r, s | t) ≤ 1,

and this condition is in principle falsifiable from empirical observations.
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Hall/CRC Press, London/Boca Raton.

Lauritzen, S. L. and Richardson, T. S. (2002). Chain graph models and their causal interpreta-
tion (with discussion). Journal of the Royal Statistical Society, Series B,64, 321–61.



Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay
on principles. In Polish. English translation of Section 9 by D. Dabrowska and T. P. Speed in
Statistical Science5 (1990), 465–480.

Pearl, J. (1993). Graphical models, causality and intervention. Statistical Science,8, 266–9.
Comment to Spiegelhalter et al. (1993).

Pearl, J. (1995). Causal inference from indirect experiments. Artificial Intelligence in
Medicine,7, 561–82.

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge University Press,
Cambridge, UK.

Prentice, R. L. (1989). Surrogate endpoints in clinical trials. Statistics in Medicine,8, 431–40.
Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained

exposure periods — application to control of the healthy worker survivor effect. Mathematical
Modelling,7, 1393–512.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-randomized
studies. Journal of Educational Psychology,66, 688–701.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., and Cowell, R. G. (1993). Bayesian analysis
in expert systems (with discussion). Statistical Science,8, 219–83.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, prediction and search. Springer-
Verlag, New York. Reprinted by MIT Press.

RÉSUMÉ

On consid́ere la representation des notions causales par des modèles graphiques probabilistes.
On discute la representation des variables qui sont capable de prévoir le comportement des resultats
finals d’une experiment: les variables surrogats.


