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Recently, it has been demonstrated that graphical models promise some potential for expressing
causal concepts, see for example Pearl (2000), Lauritzen (2001), or Dawid (2002). The causal inter-
pretation is most direct in models based on directed acyclic graphs, whereas causal interpretation for
chain graph models generally is more subtle and complex (Lauritzen and Richardson 2002).

In the articles cited, such concepts as confounding, partial compliance, causal sufficiency of
covariates, and prediction of treatment effects were discussed and illuminated.

In this article we will use graphical models to illustrate and analyse the notiorsofragate
outcomesuch as also discussed e.g. in Frangakis and Rubin (2002).

Causal Markov models

The basic causal interpretation of a directed graphical model is as follows. We consider a
directed acyclic graph (DAG) where node&sof D represent random variables. The DAG is said to
be causalfor a probability distribution” with respect to a subset of variablBsC V/, if it holds for
all A C B that

(1) plx|lzy) = H P(Ta | Tpa(a))
aeV\A

TA=TY
Herep(z||ly) = P(X = x|Y « y) refers to the distribution of after aninterventionwhich
givesY the specific valug. Generallyp(z || y) # p(x|y), where the latter is the more conventional
conditional distribution, obtained a$z | y) = p(z,y)/p(y). Generally we distinguish betweanter-
vention conditioningandobservation conditioning

Note that the causal Markov property specifies a relation betwédtrent probability mea-
sures, each representing the law associated with a specific intervention. Thus, in leftmost of the
causal DAGs below
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we have thap(y || x) = p(y|z) andp(z||y) = p(z), whereas these relations are reversed in the
rightmost graph, i.e. there it holds that, || z) = p(y) andp(z || y) = p(z | y).

The formula (1) has appeared in various forms in Pearl (1993) and Spirtes, Glymour and
Scheines (1993). It is implicit in Robins (1986) and in other literature.

The causal Markov property of the DAG gives an easy way of reading off important conditional
independence properties directly from the DAG itself. We refer e.g. to Dawid (2002) or Lauritzen
(2001) for further details.

Surrogate outcomes

In certain therapeutic trials it may be difficult or practically infeasible to measure a resfonse
of primary interest, for example if this is survival time for an individual. It may however be possible
at an early stage to measure a post-treatment variablbich is known to predict the final outcome
R well. Such an intermediate respornsés said to be &urrogate outcoméor the effect ofl” on R.



However, there is some ambiguity about the precise properties'tehould have to justify it
to be considered a surrogate. Prentice (1989) suggests a relevant property to be the independence
of response and treatment, conditionally on surrogate outcomé, isea statistical surrogatef the
relationR 1L T'| S holds.

However, as argued by Frangakis and Rubin (2002), using a statistical surrogate for treatment
evaluation can lead to serious and undesirable biases and misinterpretation of experimental results
in the presence of potential confounding variables. In particular a statistical surrogate does not obey
what the latter authors denatausal necessityit may happen that the treatment can have no effect
on S and still have a proper effect on the respoisd=ssentially this is a consequence of differences
between conditioning by intervention and conditioning by observation, as mentioned earlier in this
article.

Clearly, for a surrogaté to be useful it must also predict the resposevell. This aspect is
not discussed in this article.

The causal graphical model formulation leads naturally to the notion of a surrogate in a simple,
randomised clinical trial through the diagram below:

U
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whereT' is treatment,R is responses is intermediate response, ahdrepresents possible unmea-
sured confounding variables. The missing edge betweandT reflects the independendell U
ensured by allocating treatmenfsat random to individuals.

The missing edge betweéh and R reflects the property that the entire effectofon R is
mediated through the surrogaierepresented by the conditional independeRce T | (S,U). The
latter allows the relationship betweé&rmand R to be modified by unknown confounddrs

We say that such a variable is a strong surrogatefor the effect of 7’ on R. Note that a
statistical surrogate is typically not a strong surrogate and vice versa. The diagram abowetdoes
imply RLLT|S.

Note also that a strong surrogafealso satisfies the notion of causal necessity. No effet of
on .S would correspond to a missing arrow betwdeand S and this will automatically yield thaf’
has no effect oiR either.

Principal surrogates

Frangakis and Rubin (2002) define the notion grancipal surrogateusing the method of
potential responses (Neyman 1923; Rubin 1974). To describe this notion in terms of graphical models
we need to considemapping variablefHeckerman and Shachter 1995) — a variant of potential
responses. The mapping variables describe deterministically how the treatment affects the responses
in the coarsest possible way, as illustrated in the rightmost of the diagrams below, where the diagram
to the left represents an unspecified and unobserved confodhdéawid (2002) uses the term
‘canonical functional model’ for the diagram involving mapping variables.

U o n



Hereo is a map which identifies hoW' affectsS: S(T,0) = o(T) and similarlyn identifies the
effect of the response d§(7', S,n) = n(T,S). The mapping variables,  are describe completely
how U moderates the treatment effects, so that further knowledge &bisutrelevant.

To illustrate the idea of a mapping variable, consider the situation in whighd7T each have
two levels,T € T = {1,2} andS € § = {L, H}. The table below gives the values®for different
values of7’, where we have in mind that represents low or high level of a substance which can be
easily measured. There are four possible maps fam7 :

T \ o = sicker o = normal o = healthier o = special
1 L L H H
2 L H H L

The mapping variable = normal is representing the case where the second treatment raises the level
of S, etc.
In a similar way there are eight possible maps ffonx S to R if also the response is binary.
Frangakis and Rubin (2002) define the notion gfrencipal surrogatein a way which in our
formulation would be implied by the conditioR LL 7" | (S, o), since the mapping variabtedefines
what they ternprincipal strata. The authors in fact only demand this conditional independence to
hold for suchs which are constant maps, i.e. for= sicker and> = healthier in the example above.
This is thus considerably weaker than the graphical condition on a strong surrogate, which
demands absence of the directed link frénto S. Thus,a strong surrogate is a principal surrogate,
but not vice versa.

Identifying strong surrogates

In general it can be a difficult task to very that a post-treatment variable indeed satisfies the
conditions needed for it to be a strong or principal surrogate, as both notions involve unobserved or
even unobservable variables.

However, the diagram defining a variable to have the property of a strong surrogate is identical
to a similar diagram describing the notionin§trumentalariables. More precisely, it holds théts
a strong surrogate for the effect @fon R if and only if 7" is an instrumental variable for the effect of
SonR.

It thus follows that the property of being a strong surrogate for the effectioon R can be
falsifiedin principle from observation off’, S, R) only, if S is a discrete variable. This is true because
the instrumental inequality (Pearl 1995) implies thef i a strong surrogate we must have

méaxzr:mgxp(r, s|t) <1,
and this condition is in principle falsifiable from empirical observations.
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RESUME

On consiére la representation des notions causales par desahesdyraphiques probabilistes.
On discute la representation des variables qui sont capable eeqarle comportement des resultats
finals d’une experiment: les variables surrogats.



