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SUMMARY

We investigate two approaches to constructing compatible prior laws over alter-
native models: ‘projection’ and ‘conditioning’. Each of these is shown to require
additional inputs. We suggest that these can be chosen in a natural way in each
case, leading to ‘Kullback-Leibler projection’ and “Jeffreys conditioning’. We
recommend the former for the case of coexisting models, and the latter for com-
peting models.
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1. INTRODUCTION

Suppose we wish to compare two models, M and M g, for the same observable X. Let M
be parametrised by 8, with model densities f(z |6), and M, by ¢, with model densities
fo(z | ¢). Within each model, we have a prior density, 7(8) and wo(¢) respectively, repre-
senting uncertainty about its parameter conditional on the model. If we observe X = z,
the impact of this on model uncertainty can be isolated in the corresponding Bayes factor:

. o fM f(z]0)n(0)do
B Mo) o= e a9 mo(6) d

In general there is no compelling reason to relate the prior densities over different
models, even when one is a submodel of another. However, the task of assessing a prior
density for a model parameter is difficult enough when we only have a single model to deal
with, and we might hope that, having once conducted this exercise, we can use the resulting
distribution to assist in assigning an appropriate prior over a different model. Furthermore,
it is known that Bayes factors can be quite sensitive to the specific choice of priors. It
would lend some degree of objectivity if the priors over the different models were chosen
to be, in some sense still to be made precise, as similar as possible — we shall then call
them compatible. In this case we can argue that the Bayes factor is truly responding to the
data, rather than merely reflecting prior prejudices.

Our purpose in this paper is to investigate possible explications of this informal con-
cept of “‘compatibility’. For simplicity, we restrict attention to the case that M g is a lower
dimensional submodel of M, and examine two methods that have commonly been used




in this case: ‘projection’ and ‘conditioning’. We point out that neither method is uniquely
defined, each depending on additional inputs. We suggest that there are natural choices for
these, leading to ‘Kullback-Leibler projection” and “Jeffreys conditioning’. And we make
tentative recommendations as to when each of these methods might be appropriate.

2. EXAMPLES

We focus attention on two simple examples, each involving a random sample of n observa-
tions on a pair of outcome variables. In the first example the outcome variables have a joint
Gaussian distribution, while in the second they are binary. Our notation for multivariate
and matrix-variate distributions follows Dawid (1981).

Example 1 [Two Gaussian variables] Our data arise as n independent copies of
a pair of continuous variables X = (Xp, X1). Under model M, X is assumed to
follow a bivariate Gaussian distribution: X ~ N3(0,Y), with arbitrary dispersion
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The standard conjugate prior for ¥ in this model is the inverse Wishart distribution:
¥ ~ IW(5; ®). That is, the concentration matrix K := ¥ 7! is assumed to have the
Wishart distribution, K ~ W(d + 1; ®~1), with density, with respect to Lebesgue
measure on the set of positive definite matrices:

F(K) o {det(K)}° " exp{— tx(PK)/2}. (1)

We take as M the model under which Xy and X; are independent, each still
being normal with zero mean. This model may be parametrised by (79, 71), where
7; := var(X;). It can also be described as the submodel of M under which ¥ satisfies
the restriction g1 = 0, or, equivalently, K satisfies ky; = 0.

The question is: Which prior distribution for (79, 71) in My ‘corresponds nat-
urally’ to the inverse Wishart distribution ZW(4; ®) specified for ¥ in M? As we
shall see, this question can be answered in a variety of ways. O

Example 2 [Two binary variables] Consider now n independent copies of a pair of
binary variables I and J. Under model M, the associated probabilities

g— ( foo for
bo 011 )’
where 0;; := P(I =i, J = j), are arbitrary, subject only to

6i; >0and » 6;; =1. (2)

The standard conjugate prior for 6 in this model is the Dirichlet distribution D(«),

where
Qoo Qp1
o= .
Q1o Q11



Then the prior density of § (with respect to Lebesgue measure on the simplex (2))
is
a;j—1
f(8) o< H eij :
j

We again take as Mg the model in which I and J are independent. We can
parametrise this by ¢ := P(I = 0) and ¢ := P(J = 0). We can also describe M, as
the submodel of M for which 6 satisfies the restriction: for all ¢ and j, ;; = ;4 045,
where 91'4_ = Zj 0”' and 9+]’ = Zl 9”

Again the question is: Which prior distribution for (¢,4) in My ‘corresponds
naturally’ to the Dirichlet distribution D(«) specified for § in M? And again, this
question can be answered in a variety of ways. O

3. PROJECTION

A statistical model parameter can be regarded, either as an abstract label, identifying one
out of many possible distributions in the model; or, in some cases at least, more concretely
as a direct measure of some aspect of that distribution: for example, its mean, or correlation.
If we take the latter approach then, since M is a submodel of M, we might continue to
describe any distribution in M by the same parameter 6 we used for M. In fact, because
M has lower dimension, only a subvector 6, of 6 will typically be required. We can
then use the original prior distribution for 6 to induce a marginal distribution for 6 ¢, thus
supplying a ‘compatible’ prior for M.

The following example demonstrates that this seemingly ‘natural’ construction is in
fact non-unique, being dependent on exactly how we choose to interpret our parametrisa-
tion.

Example 3 In Example 1, there are two equally ‘obvious’ ways of identifying the
parameters of model My with (a subset of) those of model M. The first sets

T =0, 1=0,1
while the second takes
Ti:]-/kii; iZO,l.

That is, in the first case we identify the variances in the two models, whereas in the
second case we identify the concentrations.

In the first case, using the induced joint distribution for (g9, 011) under the
IW(3; ®) prior for ¥ leads to

2
Ti ~ Gii [ X5
whereas in the second case we obtain
2 2
T0 ~ ¢’00.1/X§+1a T~ ¢’11.0/X§+1>

where

bo0.1 = doo — Pg1 /P11, D110 := 11 — dg1 /oo



In either case 7y and 7; are not independent, their joint distribution being compli-
cated. We note in passing that the compatible hyper inverse Wishart priors sug-
gested in Dawid and Lauritzen (1993) would have the same marginal distributions
as in the first case, but in addition 75 and 71 would be independent. O

A more abstract way of thinking about the above approach is that, explicitly or im-
plicitly, we have to specify a way of associating, with each distribution P in M, a cor-
responding distribution Py in My. Thus in the first method suggested in Example 3, Py
is the (unique) distribution in M having the same values for var(Xo) and var(X;) as
does P; in the second method, Py has the same value for var(X | Xo) and var(Xo | X1).
Such a specification can be described by an appropriate mapping » : M — M, such
that P, = r(P); we can think of r as a generalised ‘projection’ function. Given r, the
distribution of »(P), when P varies according to its assigned prior law in M, will supply
the ‘compatible’ prior law for P, over M,. Here we are using the term “law” to indicate
a “distribution for a distribution”. However, as there is an almost limitless choice for the
function r, the above “projection method’ does not, without additional input, yield a unique
answer, as Example 3 makes clear.

3.1. Kullback-Leibler projection
One approach to defining a projection map r is in terms of a ‘discrepancy function’ D(P, Q)
between distributions P and @) for X. We could then define the *‘minimum discrepancy’
projection map onto M by:

P) := in D(P
r(P) arg min (P,Q),

provided a mimimiser exists and is uniquely defined. A popular discrepancy function is the
Kullback—Leibler divergence,

KL(P,Q) := Ep{logp(X)/q(X)},
where p(-) denotes the density of P, etc., leading to the projection

rir(P) = arg Qrg}\r/llo KL(P, Q).

This KL-projection approach was used by McCulloch and Rossi (1992), who proposed
Monte Carlo methods for calculating the associated Bayes factors. Among other advan-
tages, KL-projection does not depend on the parametrisations of M and M g, is invariant
under one-to-one transformations of the observable X, and scales by sample size for ob-
servables modelled as independent and identically distributed under both P and (), so that,
for this common case, the associated projection map does not depend on sample size.

Example 4 In the multivariate Gaussian case, the KL divergence between Py, =
N(0,%) and Py = N (0, ®) is
1
KL(Ps,Py) = 5 {tr(S®~" —I) — logdet(S®™ ")},

and for ® restricted to being diagonal this is minimised when ¢;; = 04;. That is,
using KL-projection onto the model of complete independence identifies variances
rather than concentrations, thus resolving the ambiguity seen in Example 3. O



Example 5 In Example 2, the KL-projection method relates the parameters (¢, 1)
of My to those of M through

¢ =00, ¢ =040

Used with the Dirichlet prior D(«) for My, this leads to

¢~ Blaos, o), ¥~ Blato,aq1).

Once again, however, ¢ and 9 are not independent in this induced distribution, in
contrast to the hyper Markov specifications of Dawid and Lauritzen (1993), who
suggest these marginal distributions for ¢ and ¢ under model My, but in addition
require their independence. |

4. CONDITIONING

We now consider a different general approach to constructing compatible priors.

The submodel M can typically be derived from M by imposing a constraint on its
parameter 0: say n = o, for an appropriate parameter n := n(6). It might then appear
‘natural’ to derive the compatible prior distribution in M o by simply conditioning that for
6 in M on n(#) = no. But, once again, this proposal turns out to be subject to ambiguity:
there is typically a variety of choices for the function 7, each leading to a different answer.
This phenomenon is sometimes termed the Borel-Kolmogorov paradoz.

Example 6 Consider Example 1 from the point of view of conditioning. The con-
straint X 1l Y can be expressed in any of the following ways, among others:

(i). ko1 =0

(ii). 091 =0
(iii). Br.0 =0, where B1.0 := 001 /000 is the regression coefficient of X; on Xy
(iv). p =0, where p := 091 /{000 011}% is the coefficient of correlation between

;Xb and.)(y

We shall see that we obtain different answers, depending on which of these con-
straints we condition on.

(i). The joint prior density 7(koo,ko1,k11) is given by (1). To condition on
ko1 = 0, we substitute this value and renormalise. We obtain:

50 16—

ls_1 1
mo (Koo, k11) oc kgy  exp (—¢oo koo/2) X kfy  exp (=11 k11/2),
i.e., in terms of 79 = k&)l, T = kﬁl,

To ~ doo/X3, T~ ¢11/X3, independently.



(ii).

(ii).

Example 7 Similar instances of the Borel-Kolmogorov paradox arise in Example 2.
A := 0|1, the joint distribution of (I,.J) can be param-
etrised by (¢, k,\) where ¢ = P(J = 0) = 6, as earlier. Note that, under the
constraint of independence between I and J imposed by Mg, we have Kk = A = ¢

Introducing & := 6o,

Making a change of variables in (1), we find that the joint prior density
(000, 001,011) is proportional to

(det T) 202 exp { — tr (8X") /2}. (3)
Restricting this to gg1 = 0 yields the conditional joint density:
mo(G00,011) X a&)%d% exp (—4500 (70_01/2) X 0171%672 exp (—gbll 01_11/2) ,
i.e., in terms of 79 = ogg, T1 = 011,
To ~ ¢00/X§+2, T~ ¢11/x§+2, independently.

To condition on 319 = 0, we note (Dawid, 1988, Lemma 2) that, under
the specified ZW(d; ®) prior distribution for ¥, we have ogp LL (k11,081.0),
with joint distribution given by:

000 ~ oo/ X%
kip ~ ¢f11.0 X§+1
Biolki ~ N{bro,(dooki1) "},
where by g := ¢o1/doo. Consequently, conditioning on ;9 = 0, we still
have oo ~ ¢oo /Xg, independently of ki1; while the conditional distri-

bution of ki; is readily found to be ¢1_11 X§+2- Thus, in terms of 79 =
000, T1 = kl_ll, we have:

To ~ ¢00/X§, Ty ~ ¢11/X§+2, independently.

. Using ko1 = —p (koo k11)® with (1) to evaluate 7 (koo, k11, p), we now find

that, conditional on p = 0,

To ~ ¢00/X§+1, T ~ ¢11/x§+1, independently.

= P(I =0). We now define:

These parameters are familiar quantities in epidemiology: 7, is the excess risk (for
having I = 0, due to having J = 0), 19 is the risk ratio, and ns is the odds ratio.

The

m = K—A
K
N = X

KJ(].—A) — 900011
(L=K)X "~ 010601

n3 =

logarithm of 73 is the interaction between I and J.
The independence constraint of My can be expressed in any of the forms:



(i). m =0
(ii). m2 =1
(iii). 73 = 1.

Again we start with the prior distribution 8 ~ D(«) in M, and condition on the cho-
sen independence constraint. We find that, conditionally on any of (i), (ii) or (iii),
¢ and 1 are independent, with ¢ ~ 8(a40,@+1); but ¢ has different distributions
in the three cases:

(i). ¢ ~ Blaoy —1L,a14 — 1),
(ii). ¢ ~ Blaos, 4 — 1),
(iii). ¢ ~ Blao+, a1y).

4.1. Jeffreys conditioning

The fact that the method of conditioning depends on the particular parameter-function 7
used to define the submodel M suggests the need for an alternative formulation of the
method.

One possible generalisation proceeds by choosing reference measures, v and vq, on
M and M respectively. Given a prior law IT in M, we can form its density function with
respect to v: «(-) := dII/dv. This is a scalar function, with a value for each P € M
(we suppose that there is sufficient smoothness in the problem that we are able to define
this function everywhere, rather than merely almost everywhere). We can then construct a
law TI, in M, by requiring that its density with respect to vg, mo(+) := dIly/dvg, which is
defined for P € M, should be proportional to 7 there. That is, using the given measures
v and v as the basis for our construction of densities, we are merely restricting the density
on M to the submodel M, and then renormalising.

In the special case that v is a probability measure, and v is obtained from v by
conditioning on a constraint n = 7y, this ‘density restriction’ method will give the same
answer as simply conditioning IT on n = 7. The arbitrariness in the form of the function
n is now replaced by the arbitrariness in the choice of the measures v and v,. However,
this reinterpretation opens up new possibilities for resolving this ambiguity: by choosing
measures v and v, that are in some way intrinsic to the models, and independent of specific
ways of parametrising them.

One such intrinsic measure, for a general smooth model M, is the Jeffreys measure
J = Jum, which, in any smooth parametrisation, has density j = j ¢ with respect to
Lebesgue measure given by:

§(8) = {det 1(9)}'/?,

where I(6) is the Fisher information matrix, having (r, s)-entry

02 log f(X |0)

{IO)}rs :=—-F 90, 0,



The Jeffreys measure is the Riemannian uniform measure when M is equipped with its
Riemannian information geometry (Amari et al. , 1987; Kass and Vos, 1997) and is thus
invariant under reparametrisation.

The Jeffreys measure is often used as a (typically improper) prior distribution repre-
senting ignorance about a parameter. Our usage here is entirely different: as a base measure
for defining the density of a proper prior. We may term a density with respect to the Jeffreys
measure invariantised. If = denotes the density of IT with respect to Lebesgue measure,
the invariantised density p is given by:

p(6) = m(6)/5(6) = m(§){det 1(9)} />,

When the method of density restriction is applied using the invariantised densities, formed
with respect to the respective Jeffreys measures v = Jq, vo = Jaq,, We shall refer to the
procedureas Jeffreys conditioning. Then the Jeffreys conditioning of 7, with invariantised
density pg o p, has density with respect to Lebesgue measure

det Io(6) ) '/*
det I(0) }

Example 8 In the bivariate Gaussian case of Example 1, we have, for Models M
and M, respectively,

wammpmmww=mwma%w»”%=ﬂw{

leo

Jj(E) o« (detX)™
. 11
Jo(m0,71) o< — —.
To T1
The invariantised form of (3) is thus
p(%) o (det £) 72O oxp (B 1 /2)
and restricting to My (and identifying 7; = oy;) yields

—L1(6+1) _1 —L1(6+1) _1
polro,m) oc 1 2 T emhono/mo o 730 omhon/m,

The corresponding Lebesgue density is then

—3(3+1)-1

_1 —L1(4+1)—1 _1
mo(T0, T1) X T, e~ 3%00/T0 2(8+1) e 2¢11/Tl,

1

i.e.To ~ Poo/X341> Tt ~ $11/X341, independently. In this case, Jeffreys conditioning
yields the same answer as simple conditioning on the constraint p = 0. |

Example 9 Consider again the 2 x 2 table of Example 2. Using the notation of
Example 7, the joint probability function of (I, .J) is

pli g, 6, A) = I (1 = o)/ ,i(l—i)(l—j)(l _ H)i(l—j) )\(1—1')1'(1 — N,
The density j of the Jeffreys measure J in M is found to be
. 1 v (1) }” ’
7h:7 A =
N = o w e M
= {x(1-R)A1-N}T,




leading to the invariantised prior density p in M:
p(,¢}’ K, )\) o ,¢O{+0—1(1 _ ¢)a+1—1 K/aoo—l/?(l _ I‘C)alo_l/Q )\Oz01—1/2(1 _ )\)au—l/Q-
For My we similarly obtain

o, 9) = {$(1 — ) p(1 — )}/,

so that using Jeffreys conditioning we obtain for the prior density in M, with
respect to Lebesgue measure:

7T0('(/1,¢) = p(¢7¢7¢) ]0(¢7¢)
,l/}a+0—3/2(1 _ w)a+1—3/2 ¢a0+—3/2(1 _ ¢)a1+—3/2

i.e. ¢ 1L ¢, and

¢~ﬁ(a+0—1/2,a+1—1/2), ¢~ﬁ(a0+—1/2,a1+—1/2).

This is distinct from all the solutions found in Example 7. Note that the
‘effective sample size’ is reduced by 1 compared to conditioning with respect to the
odds ratio 173. We could regard Jeffreys conditioning as compensating for additional
prior information arising from simplification of the model. O

5. CONCLUSIONS

There are many problems in which we might wish to entertain two (or more) distinct para-
metric models for our data. Within these, we can distinguish two somewhat different sce-
narios:

(i). We have competing models, only one of which can be true.

(if). We have coezisting models, describing the same reality but at different levels of
detail.

For example, M may describe a linear regression of weight on height and age, while M ¢
omits the regressor age. Under interpretation (i), M g is valid only if, once height is known,
age is of no further value in predicting height. Under interpretation (ii), we may feel that,
even when further information on age might still be relevant, it could nevertheless be ade-
quate for our purposes to use only height to predict weight. A Bayesian analysis of coex-
isting regression models may be found in Dawid (1988).

In case (i), since we are unsure about the true model, an appropriate Bayesian approach
would be to assign probabilities to the truth of the various models (conditional on whatever
data we have), and represent our opinion about reality as a mixture over the models, with
these probabilities. This is the method of ‘model averaging’. However, in case (ii) all
models are true, and we merely wish to work with the most useful, i.e. it would be more
appropriate to undertake ‘model selection’.

Although further investigations are required, it is tempting to recommend the method
of Kullback-Leibler projection to define model compatibility in the case of co-existing
models, and Jeffreys conditioning in the case of competing models.
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