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Abstract

We present a statistical methodology for making inferences about mutation rates from paternity casework. This takes account of a number of

sources of potential bias, including hidden mutation, incomplete family triplets, uncertain paternity status and differing maternal and paternal

mutation rates, while allowing a wide variety of mutation models. An object-oriented Bayesian network is used to facilitate computation of the

likelihood function for the mutation parameters. This can process either full or summary genotypic information, both from complete putative

father–mother–child triplets and from defective cases where only the child and one of its parents are observed. We use a dataset from paternity

casework to illustrate the effects on inferences about mutation parameters of various types of biases and the mutation model assumed. In particular,

we show that there can be relevant information in cases of unconfirmed paternity, and that excluding these, as has generally been done, can lead to

biased conclusions.

# 2007 Elsevier Ireland Ltd. All rights reserved.

Keywords: DNA profile; Hidden mutation; Likelihood function; Mutation models; Object-oriented Bayesian network; Uncertain paternity

1. Introduction

DNA testing is often conducted to resolve a disputed

attribution of paternity. However, when this results in an

incompatibility – values of a child’s genotype and those of its

presumed parents at some forensic marker locus that appear

inconsistent with simple genetic segregation – the obvious

interpretation of this as due to non-paternity is clouded by an

alternative possibility that it is in fact due to mutation. Dawid

et al. [1] gave formulae for, and illustrated the effect of,

allowing for mutation when conducting paternity analyses.

Bayesian networks to conduct such analyses, for assumed

values of the mutation rates, were presented in Refs. [2,3].

Since the conclusions are very sensitive to the values assumed,

it is important to have good estimates of these rates.

Mutation rates for the STR markers used in forensic

paternity tests range from around 5� 10�4 to 7� 10�3 per

generation [4–6]. Such a rate is commonly estimated by the

observed frequency, s=n, of inferred mutation at that marker in

casework triplets, where n is the total number of meioses, and s

the number of these deemed to be mutations. However, this

naı̈ve estimate can be very misleading. The aim of this paper is

to show how one can estimate mutation rates while correctly

accounting for uncertain paternity – an unavoidable feature of

data collected at forensic laboratories – and other sources of

bias [4,7,8]. Once we have good mutation rate estimates, these

can be used for many purposes; in particular, they can be fed

back into individual paternity case analyses.

We encapsulate our statistical inferences in the likelihood

function for the unknown parameters based on the data analysed.

The maximum likelihood estimate can then readily be calculated,

while the spread of the likelihood around this point indicates

the appropriate uncertainty to be attached to it. Alternatively,

the likelihood function can be combined, by Bayes’s theorem,

with a prior distribution for the parameters based on external

information, to yield the posterior distribution: a full probabil-

istic description of the remaining uncertainty after taking the new

data into account. Our technical approach is two-pronged, based

both on developing algebraic expressions, and on the construc-

tion and numerical analysis of an object-oriented Bayesian

network (OOBN) model [3].
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Throughout this paper, for simplicity, we assume both

Hardy–Weinberg and linkage equilibrium, i.e. independence of

an individual’s genes both within and across markers, so that

each DNA marker in the profile may be handled separately. We

further restrict attention to the case that all unrelated founder

individuals considered can be regarded as having DNA profiles

drawn independently from a common randomly mating

population with known allele frequencies.

The paper is organised as follows. In Section 2 we

describe the paternity casework data used for mutation

estimation, and the biases that need to be accounted for. In

Section 3 we consider some models of inter-allelic mutation

transitions. In Section 4 we study the algebraic structure of

the likelihood function. In Section 5 we present a Bayesian

network model to analyse single-marker data for any single

case. For illustrative purposes and to highlight the principal

issues affecting estimation of a mutation rate, in Section 6 we

analyse a dataset from a paternity laboratory. We conclude

with some cautionary comments on the construction and

analysis of such datasets. In particular, cases with non-

negligible uncertainty about paternity are often omitted from

the dataset, but this can lead to biased estimates. Instead,

such cases should be retained and subjected to appropriate

analysis.

For fuller details and justification of the methodologies and

analyses presented here, see Ref. [9].

2. Background

The DNA STR markers used for forensic purposes are

particularly prone to mutation. Data on inter-allelic muta-

tional transitions are very sparse since, in the datasets

collected at forensic laboratories and used to assess mutation

rates, the number of meioses where mutation appears

plausible is typically very small. In order to have any chance

of estimating allele-specific mutation rates from such data, we

need to construct models expressing them in terms of a small

number of parameters. The main thrust of this work is to

estimate such mutational parameters, and thereby the overall

mutation rate.

2.1. Paternity casework

Data collected by paternity testing laboratories mainly

consist of DNA profiles for mother–putative father–child

triplets, as well as some ‘‘defective’’ cases where one of the

putative parents has not been profiled. For each putative family,

the data at a given marker can be: either

Compatible: For example, mother (5, 5), putative father

(5, 12), and child (5, 12). This can be explained by paternity

and Mendelian segregation, with the mother handing down

either of her 5’s, and the father his 12.

or

Incompatible: For example, mother (5, 5), putative father

(5, 12) and child (5, 8). This cannot be explained as above,

since there would then be no source for the child’s 8.

2.2. Biases

Among the features that should be properly accounted for

when using paternity cases to estimate mutation rates are:

hidden mutation [7]; differential mutation [4] and unknown

paternity status. Previous work accounting for all these

features [8] required various simplifying assumptions and

approximations. In this paper we relax or remove these. In

particular:

(1) We can analyse detailed genotype data, with case-specific

prior probabilities.

(2) Defective cases, i.e. mother–child and putative father–child

pairs, can be included.

(3) General mutation models can be used.

As will be seen in Section 6, a further source of bias not

accounted for in Ref. [8], but having possibly dramatic effects

on mutation rate estimates, is preselection: cases regarded as of

insufficiently certain paternity may have been excluded from

the database, leading to loss of information and biased

conclusions. Wherever possible complete databases should

be used, but subjected to an appropriate analysis, such as

described here, that takes full account of the uncertainty over

paternity.

3. Mutation models

For a given marker, let qi! j ( j 6¼ i) denote the probability

that allele i mutates to allele j in a parent–child transmission.

The probability that allele i is transmitted unmutated is thus

qi! i :¼ 1�
P

j 6¼ iqi! j, and the overall mutation rate is

m :¼
X

ði; jÞ:i 6¼ j

pi qi! j ¼ 1�
X

i

pi qi! i;

where pi denotes the population frequency of allele i.

Various models describing the allele-specific mutation rates

qi! j in terms of a small set of adjustable parameters have been

proposed [1,2,10–13]. The estimate of the overall mutation rate

m can be sensitive to the particular mutation model assumed for

the inter-allelic transitions, which could in turn affect individual

case paternity analyses. It is therefore important that the

statistical methodology used should be able to analyse a range

of alternative plausible models.

3.1. Scalar models

A very flexible class of mutation models comprises the

scalar mutation models [8], having the general form:

qi! j ¼ l si! j ð j 6¼ iÞ

where l� 0 is an unknown scale parameter to be estimated and

S :¼ ðsi! jÞ is a specified transition matrix, i.e. si! j� 0 and,

for each i,
P

jsi! j ¼ 1. The overall mutation rate per trans-

mission is then

m ¼ k l (1)

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–1810
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where

k :¼ 1�
X

i

pisi! i: (2)

3.2. Parametrisations

Assume a common scalar mutation model in both the

maternal and paternal lines, but with possibly differing line-

specific scale parameters, lM and lP, respectively. The line-

specific mutation rates are thus mM ¼ k lM , mP ¼ k lP, with k

given by (2). We introduce t :¼ mM þ mP, the total mutation

rate, and r :¼ mP=t, the paternal fraction of the total mutation

rate. We thus have mP ¼ r t and mM ¼ ð1� rÞ t. We further

introduce the total mutation parameter j :¼ lP þ lM. Then

t ¼ k j (3)

and

r ¼ lP

j
: (4)

In this paper we treat r as known, and regard the total mutation

rate t, or equivalently j, as the parameter of principal interest

(note that l ¼ j=2 was used in Ref. [14]).

4. Likelihood function

We consider mother–putative father–child triplets, on each

of which we have full or partial information (‘‘findings’’) about

their DNA profiles. We suppose that we have a collection of

such cases randomly drawn from the relevant population. For

any case, full information at any given marker would comprise

the genotypes of all three individuals for that marker. Partial

information comprises both defective cases, in which the data

on one of the ‘‘parents’’ are missing, and/or summary data, for

example a simple report as to compatibility or otherwise.

4.1. General structure

We wish to use all the available data to make inferences

about the mutation rates of the various markers, allowing in

particular for the possibility of non-paternity. In Ref. [9,

Appendix] it is shown that, under reasonable assumptions,

estimation for each marker can be carried out separately.

Therefore from now on we focus on a single marker.

Suppose we have a model – not necessarily scalar –

describing the mutation process in terms of a parameter j. The

overall likelihood function for j can be computed as the product

of the individual case likelihood functions. Considering a single

such case, with information f for that marker, it is shown in Ref.

[9] that its contribution to the likelihood for j has the form:

‘ðjÞ/p� prð f jj;PÞ þ ð1� p�Þ prð f jj; P̄Þ; (5)

where P [resp. P̄] denotes paternity [resp. non-paternity];

prð f jj;PÞ [resp. prð f jj; P̄Þ] is the probability, assuming pater-

nity [resp. non-paternity], that for this case we would obtain the

information f on that marker, when the value of the mutation

parameter is j and p� is the ‘‘prior’’ probability of paternity for

this case, calculated taking into account the findings on all the

other DNA markers in the profile assuming no further muta-

tions (after incorporating any relevant external evidence into

the initial probability of paternity before any DNA evidence):

this may be obtained from standard formulae [15].

Finally we multiply all such likelihood contributions across

the different families in the dataset to obtain the overall

likelihood function for j.

4.2. Algebraic form

One way of proceeding is to develop algebraic formulae for

the terms prð f jj;PÞ and prð f jj; P̄Þ in (5).

Suppose that we have full triplet genotype data: mother’s

genotype AB, putative father genotype CD, and child’s

genotype EF (here A, B, C, D, E, F are arbitrary and any of

them could be identical). Let qM
i! j denote the mutation

transition rate from allele i to allele j for the maternal line, and

qP
i! j that for the paternal line. Then under paternity, P, we have

prð f jj;PÞ / prðEFjAB;CD; PÞ
/ ðqM

A!E þ qM
B!EÞðqP

C!F þ qP
D!FÞ

þ ðqM
A!F þ qM

B!FÞðqP
C!E þ qP

D!EÞ:
(6)

Formula (6) has been used [16] to develop a likelihood analysis

and comparison of various mutation models on the assumption

of paternity in all cases.

Since
P

jqi! j ¼ 1, apart from highly exceptional cases

where neither of the child’s alleles agrees with any of those of

its ‘‘parents’’, to a very good approximation we can treat (6) as a

linear function of the small q’s.

Under non-paternity, P̄,

prð f jj; P̄Þ / prðEFjAB;CD; P̄Þ
/ 2fðqM

A!E þ qM
B!EÞ pF þ ðqM

A!F þ qM
B!FÞ pEg:

(7)

Expression (7) is a linear function of ðqM
i! j : i 6¼ jÞ, the con-

stant term being non-zero except for a case of maternal

incompatibility (when neither of the child’s alleles is present

in the mother).

The omitted constant of proportionality is the same in both

(6) and (7), see [9]. The likelihood contribution ‘ðjÞ for this

case can thus be calculated by substituting (6) and (7) into (5).

4.3. Scalar model

Henceforth we restrict attention to scalar mutation models.

We have qM
i! j ¼ lMsi! j (i 6¼ j), qM

i! i ¼ 1� lMð1� si! iÞ,
and similarly for the paternal line. Expressing lP ¼ r j,

lM ¼ ð1� rÞ j, it is readily seen that, as a function of j for

fixed r, for any findings f on a case, ‘ðjÞ is exactly quadratic,

and very close to linear, in j.1

1 The quadratic term in ‘ðjÞ is entirely due to considering the possibility of

two simultaneous mutations—a very rare event.

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–18 11
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4.4. Incompatible cases

For an incompatible case ‘ðjÞ will typically be increasing in

j. Using (3) and rescaling, we then have an expression for the

likelihood contribution, in terms of the total mutation rate t, of

the form

‘ðtÞ/ aþ t (8)

where a> 0 determines the behaviour of the likelihood con-

tribution for this case.

4.4.1. Influence of the constant

Plausible values of t typically range from 0.002 to 0.01.

When the intercept a> 0:02, the likelihood contribution (8) is

effectively constant in this region, and the case can thus be

discarded as essentially uninformative about t. On the other

hand, when a< 0:001, ‘ðtÞ can be well approximated by t,

equivalent to taking paternity as confirmed. These are the only

two options that have typically been considered in previous

analyses. However, in the intermediate range, 0:001< a< 0:02,

the function ‘ðtÞ is not well approximated either by a constant

or by t. Then, rather than either discard the case or assume

paternity, we need to compute a and use the correct likelihood

contribution ‘ðtÞ� aþ t.

4.5. Compatible cases

For any marker the vast majority of cases considered

will be compatible (an attribute henceforth denoted by

‘‘Comp’’). Using the above algebraic approach we could in

principle obtain, for each such case, the likelihood function

based on its full genotype data. However, this detailed

analysis may be impossible or inconvenient, whether because

the full data are unavailable, or simply because of the large

number of cases to be analysed. Instead we could use, as the

finding on each such case, just the relevant summary

‘‘compatibility’’ property, as described in Ref. [9], and

compute a likelihood contribution based on this summary

finding alone.

There are three types of compatible case to consider.

4.5.1. Fully compatible triplets

A large number, nFC say, of the compatible cases will be

triplets that are fully compatible, i.e. compatible on all

markers. For a general scalar model, the summary likelihood

contribution ‘ðjÞ ¼ prðCompjjÞ from such a case, being a

sum of terms (one for each possible compatible configura-

tion) each of which is very close to linear in j, will itself be

very close to linear. Moreover, the appropriate ‘‘prior

probability’’ p� in (5), although varying from case to case

in the light of the findings on the other markers (and other

evidence), will always be near 1, and can to a good appro-

ximation be taken to be 1. Thus, to a very good approximation

we have:

‘ðjÞ/ prðCompjj;PÞ/ 1� aj (9)

for a suitable value of a—which is, however, difficult to obtain

by algebraic methods.

Equivalently,

‘ðtÞ/ 1� a0t (10)

for a0 :¼ a=k with k given by (2). We note ([8] Section 5) that

prðCompjj;PÞ does not depend on r, and hence neither does a0.
If there are nFC fully compatible cases, the overall likelihood

contribution from the summary data ‘‘full compatibility’’ on

these cases is thus

LFCðtÞ� ð1� a0tÞnFC : (11)

4.5.2. Locally compatible triplets

A further (typically small) number nLC of the cases

compatible on this marker will be only locally compatible,

i.e. incompatible on one or more of the other markers. Then p�

is essentially 0, and the summary likelihood contribution is, to a

very good approximation,

‘ðtÞ/ prðCompjt; P̄Þ: (12)

Clearly prðCompjt; P̄Þ only depends on the maternal mutation

rate, mM ¼ ð1� rÞt, and will be of the form prðCompjt; P̄Þ/
1� b0ð1� rÞ t. Again, b0 is not readily determined by alge-

braic methods.2

The total likelihood contribution from the summary data on

these locally compatible cases is

LLCðtÞ� f1� b0ð1� rÞ tgnLC : (13)

There is thus some information about t in locally compatible

cases, although if, as is typical, nLC� nFC, this will be of a

smaller order of magnitude than that in fully compatible cases.

4.5.3. Compatible pairs

We can conduct similar analyses for cases of mother–child

or putative father–child compatible pairs.

For a mother–child case we can without loss of generality

always assume non-paternity, generating the approximate

likelihood contribution (accounting for possible hidden

mutation, i.e. one not resulting in incompatibility):

‘ðtÞ/ 1� ð1� rÞ g 0 t; (14)

for a suitable value of g 0, this linear approximation again being

excellent.

For a putative father–child case, if there is also an

incompatibility at some other marker we can assume non-

paternity—but since that now leaves only the data on the child,

which is clearly uninformative about mutation, such cases can

be discarded. Otherwise, there being no other incompatibility, it

will again usually be an acceptable approximation to assume

paternity. This case is then formally identical to a mother–child

pair except for the interchange of maternal and paternal

2 Note that the algebraic analysis of Ref. [8] for this case was incorrect, and

its subsequent results are thus potentially inaccurate, since it applied an

approximation valid only for small values of the parameter l to the case l ¼ 1.

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–1812
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mutation rates. It will therefore generate a likelihood

contribution that can be excellently approximated by

‘ðtÞ/ 1� r g 0 t; (15)

with the same g 0 as in (14).

5. Object-oriented Bayesian network for mutation rate

estimation

The algebraic approach is not well suited to the analysis of

incomplete information, as in Section 4.5; for example, simple

expressions for the constants a0;b0; g 0 are generally unavail-

able. To handle such cases we have explored an alternative

route, involving the construction and application of a computer

software system to calculate the appropriate likelihood

expression numerically. This was originally built as a regular

Bayesian network (BN) [9], and more recently reconfigured as

an object-oriented Bayesian network (OOBN). The use of

OOBN technology to simplify the requisite tasks of network

specification and construction is explained in Ref. [14].

The same BN can be used to analyse any information, whether

complete or incomplete. In addition, the OOBN interface makes

it straightforward to extend such a system to allow for additional

complexities, such as laboratory errors, silent alleles, etc. [3]. An

OOBN extended to handle non-stationary mutation models and

incomplete cases is described in Ref. [17].

Fig. 1 shows the top level network representing the mutation

rate estimation problem for a single marker. For detailed

descriptions of all our OOBN networks, see Refs. [3,14,17].

Here m (for the mother), pf (for the putative father) and af

(for the alternative father) are founders. The true father is

represented by means of a query node tf, choosing either pf or

af according to the value of the Boolean hypothesis node

tf = pf? Node c represents the child: its internal structure

incorporates Mendel’s law and the mutation model used. We

have built and used network modules implementing the mixed

mutation model, including its special case the proportional

mutation model [8]. However, our methods can readily be

modified to handle other (not necessarily scalar) mutation

models as desired.

Node xi is the total mutation parameter j; we gave it 43

possible states ranging from 0 to 0.0198, more concentrated

around the mutation rate values reported in the literature. Node

compat represents an additional module necessary for

analysing summary data on compatibility of complete and

defective (putative father–child and mother–child pairs) cases

as described in Ref. [14].

5.1. Using the network

5.1.1. Computation of the likelihood

When implemented in appropriate software,3 the OOBN

enables numerical calculation of the contribution ‘ðjÞ to the

likelihood function for the mutation parameter j, based on the

(complete or incomplete) information on any single case.

We first set the parameters r, the paternal fraction of the

mutation rate, and h, the mixing parameter for the mixed

model,4 and specify whether the case is a triplet or a pair. We

next enter the findings (complete or incomplete) on the case. If

we have data on the putative father, we also set the prior

probability p of paternity. We now propagate, using the

software, and interrogate the node xi to obtain the posterior

probabilities for its various states. Since we have set j to be

uniformly distributed a priori, these posterior probabilities will

be proportional to the desired likelihood function ‘ðjÞ, based on

this case, evaluated at these points. The overall likelihood at

these points is now obtained by multiplication across all cases.

(This can also be interpreted as the likelihood for t, on making

the substitution j ¼ t=k.)

Unlike the analysis of Ref. [8], this analysis allows for

simultaneous mutation in both the paternal and the maternal

germline. However, it does not directly yield the continuous

likelihood function, but only its values at the discrete set of values

chosen as states for node xi in the network. We therefore fit a

curve to these points to obtain, either exactly or approximately,

the continuous likelihood contribution ‘ðjÞ. This is particularly

straightforward for a scalar model, since, according to Section

4.3, ‘ðjÞ is exactly quadratic, and very close to linear.

5.1.2. Incompatible cases

The number of incompatible cases will typically be very

small, but influential on the analysis. It is important to use full

genotype evidence for these. The associated likelihood

contributions can be obtained using either the network, as

described above, or the algebraic approach of Section 4.

6. Illustrative data analysis

We illustrate our methodology by applying it to a set of data

collected at the Institut für Rechtsmedizin and provided to us by

Professor Bernd Brinkmann. We use these data only to show the

Fig. 1. Object-oriented Bayesian network to assess mutation rate: top level

network.

3 We used HUgin Version 6, available from http://www.hugin.com.
4 r and h are contained in a subnetwork (not visible in Fig. 1) of c.

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–18 13
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possible biasing effects of the standard procedures applied in

the forensic laboratories: consequently our data analysis must

be taken as illustrative only, and not used to support any specific

numerical values for mutation rates.

We focus attention on estimation of the total mutation rate t
for the STR marker vWA. The allele frequencies for this marker

in the reference population are given in Table 1. We use the

mixed mutation model, considering values 0 (proportional

model), 0.5, 0.9 and 1 (single-step mutation model, SMM) for

the mixing parameter h.

6.1. Data and assumptions

The dataset comprises 2013 meioses. Information about

these cases is largely taken from Ref. [4], with some variations

and additional information for incompatible cases supplied by

Brinkmann’s laboratory.

The total number of meioses is odd because some of the

compatible cases are deficient, and whereas each triplet

contributes two meioses, a pair contributes only one. In the

naı̈ve analysis, each meiosis, be it associated with a triplet or

a pair, is taken as contributing the same information to the

estimation of the mutation rate. In fact different compositions

of the meioses in terms of triplets and pairs will affect the

mutation rate estimate differently. In the dataset analysed

here 4% of meioses are from deficient cases. Therefore, we

assume that we have 8 meioses from 4 triplets incompatible

for vWA, 1924 meioses from 962 compatible triplets, and a

further 81 meioses from 81 compatible pairs. Among the 962

triplets compatible for vWA, 943 are fully compatible, and 19

only locally compatible. According to Ref. [4], the overall

ratio of maternal to paternal meioses is approximately 1: we

therefore assume that there are 40 mother–child pairs and 41

putative father–child pairs, all these cases being fully

compatible.

We have used full genotype data for the four incompatible

cases. We did not have access to the detailed genotype data on

the compatible cases. We have thus based our analysis of these

on summary information only, as described in Section 4.5.

6.2. Preselection

Traditionally, mutation analysis of paternity casework data

has been preceded by a preliminary preselection stage, where

only those cases for which paternity is regarded as sufficiently

firmly established are retained for further analysis. Then, at the

analysis stage, each retained incompatible case is regarded as

contributing one mutation event (possibly further classified as a

paternal or a maternal mutation), while compatibility is taken as

evidence of no mutation. If paternal and maternal mutation

rates are assumed to be equal, a naı̈ve estimate of their common

value is given by the ratio of the number of incompatibilities to

the total number of meioses.

The cases supplied to us had already been preselected by the

laboratory as those for which paternity was regarded as

established with very high probability. As we show below, such

preselection of cases can lead to biases in estimation. To

illustrate this, we henceforth proceed as if our data had not been

preselected, but consider the effect of further selection of cases.

We compute, for each of the four incompatible cases, the

probability p� of paternity, after taking account of the data on

the remaining markers: this can be calculated using the formula

of Ref. [15]. However, in order to illustrate the possible biasing

effects of preselection we have used only a subset of the other

markers, leading to the values given in Table 2. Using 0.999 as a

threshold for the probability of paternity, for the cases as

reported in Table 2, Case 4 would have been discarded at the

preselection stage.

Having discarded Case 4, three incompatibilities are left from

a total of 2011 meioses. The naı̈ve estimate of the combined

mutation rate t is thus 2� 3=2011 ¼ 0:003. We shall see below

that taking proper account of the information in the discarded

Case 4, i.e. not applying the preselection process, would lead to

estimates closer to 0.004. If used in paternity analysis of a new

case of prima facie exclusion, such a difference of around 30% in

the estimated mutation rate would lead to a similar percentage

difference in the calculated paternity index [1].

6.3. Compatible cases

Compatible cases carry information on hidden mutation.

The approximate likelihood contribution from the summary

information on compatible triplets is computed using formulae

(11) for the fully compatible cases and (12) for the locally

compatible cases, while that from the compatible pairs is

obtained from (14) for mother–child cases and (15) for fully

compatible putative father–child cases. The overall approx-

imate likelihood term for all compatible cases is thus

ð1� a0 tÞ943f1� b0 ð1� rÞ tg19f1� g 0 ð1� rÞtg40ð1� g 0 rtÞ41
:

(16)

The parameter a in (9) is evaluated by first computing

prðCompjj;PÞ from the network, simultaneously for each of

the values used for j, and fitting a linear relationship to these

values. Then a0 is obtained as a=k. The parameters b0 and g 0 are

Table 1

Population gene frequencies for marker vWA

Allele 12 13 14 15 16 17 18 19 20 21 22

Frequency 0.0003 0.0018 0.1009 0.1004 0.1949 0.2834 0.2162 0.0866 0.0137 .0015 .0003

Table 2

Prior probability p� of paternity in the four incompatible cases

Case 1 Case 2 Case 3 Case 4

p� 0.99984 0.99959 0.99920 0.99612
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obtained similarly. Table 3 shows the coefficients a0, b0 and g 0

as functions of the mixing parameter h.5 We see that the

dependence on the specific mutation model, determined by

h, is essentially ignorable.

For our further analysis we set the parameter r at 0.5. The

overall likelihood function from compatible cases then becomes

ð1� a0tÞ943ð1� 0:5 b0tÞ19ð1� 0:5 g 0tÞ81
:

6.4. Incompatible cases

The detailed findings on vWA for the four incompatible

cases are given in Table 4. These four triplets are compatible on

all other markers.

In contrast to the compatible cases, the value p assumed for

the probability of paternity affects the information about t

contained in an incompatible case. As shown in [9, Appendix]

and expressed in (5), it is appropriate to use p ¼ p�, the

probability of paternity based on the findings on the other

markers. These values (using non-committal prior probabil-

ities) are given in Table 2.

6.4.1. Individual cases

We first investigate, for the incompatible cases, the

sensitivity of the associated likelihood contribution ‘ðtÞ to

the assumed paternity probability p. For each incompatible case

we evaluated the constant a in (8) for various values of p and h.6

Tables 5 and 6 report the results for Cases 1 and 4; Cases 2 and 3

were very similar to Case 1.

Case 1 is a case of paternal exclusion, where either a one-

step or a six-step paternal mutation could explain the

incompatibility. From Table 5 we see that, for the proportional

model, we have a � 0:001, effectively confirming paternity, so

long as p� 0:9995; however a � 0:02, and thus the case is

already informative about t, as soon as p exceeds about 0.995.

For the SMM and mixed models, the case is informative even

for p around 0.9, although paternity is confirmed only for

p� 0:9995. Thus, Case 1 contains non-negligible information

about t for values of p that would normally lead to rejection of

this case. Since the likelihood contribution ‘ðtÞ� aþ t

increases with t, such a rejection would result in a downward

bias in the mutation rate estimate.

Case 4 is a case of ambiguous exclusion, which can be

explained under paternity either by a three-step maternal

mutation or by a two-step paternal mutation. Under the SMM

neither of these can happen and non-paternity becomes the only

possible explanation. Otherwise (see Table 6), the case is

already informative for p� 0:995 (for the proportional model,

and mixed model with h ¼ 0:5) or p� 0:9995 (for h ¼ 0:9);

while paternity can be taken as established for p� 0:9995

(proportional model) or p� 0:9997 (mixed model, h ¼ 0:5).

However, under the mixed model with h ¼ 0:9 we cannot safely

proceed as if paternity were established even when p ¼ 0:9997.

Intuitively this is because this model, which is close to the

SMM, gives very low probability to the observed data under

paternity, so favouring the alternative explanation of non-

paternity—which is much less informative about mutation.

6.5. Overall likelihood

We here examine the sensitivity of the overall likelihood for

t (incorporating all cases, both compatible and incompatible) to

Table 3

Coefficients a0, b0 and g 0 for different values of h

h

1 0.9 0.5 0

a0 0.790 0.788 0.780 0.768

b0 0.620 0.616 0.607 0.590

g 0 0.561 0.561 0.557 0.548

Table 4

Findings on incompatible cases for marker vWA

Child Mother Putative father

Case 1 18 20 18 19 14 19

Case 2 16 18 16 17 17 19

Case 3 18 19 17 18 16 18

Case 4 15 18 18 18 17 18

Table 5

Intercept a of the likelihood contribution ‘ðtÞ� aþ t from incompatible

Case 1 (p*)

p h

1 (SMM) 0.9 0.5 0 (Prop. model)

0.9 0.01165 0.01263 0.02002 0.18207

0.95 0.00565 0.00612 0.00969 0.08556

0.995 0.00055 0.00060 0.00094 0.00812

0.9995 0.00005 0.00006 0.00009 0.00081

0.9997 0.00003 0.00004 0.00006 0.00048

0.99984 0.00002 0.00002 0.00003 0.00026

1 0 0 0 0

Table 6

Intercept a of the likelihood contribution ‘ðtÞ� aþ t from incompatible

Case 4 (p*)

p h

0.9 0.5 0 (Prop. model)

0.9 4.98779 0.30287 0.12480

0.95 1.03600 0.13419 0.05778

0.995 0.06788 0.01217 0.00542

0.99612 0.05228 0.00943 0.00420

0.9995 0.00656 0.00121 0.00054

0.9997 0.00393 0.00072 0.00032

1 0 0 0

5 The naı̈ve approach, which simply counts each compatible triplet as

exhibiting no mutation, is equivalent to taking a0 ¼ b0 ¼ g 0 ¼ 1; departure

of these coefficients from 1 is due to taking proper account of hidden mutation.

It is clear from Table 3 that this effect is important and would lead to the naı̈ve

estimates being strongly biased [7,8].
6 We used both the algebraic approach of Section 4.3 and, as a check,

numerical computation in the network.

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–18 15



Author's personal copy

the mutation model and the probabilities of paternity used for

the four incompatible cases. We consider the proportional

(h ¼ 0) and mixed (h ¼ 0:9) models, together with the

following choices for p:

(i) p ¼ 1. This ignores any effect of non-paternity, although

hidden mutation is correctly accounted for.

(ii) p ¼ 0:9997. At this value paternity would typically be

taken as established, further analysis proceeding as for (i)

above.

(iii) p ¼ p�. This uses data on other markers to assess the

relevant probability of paternity.

(iv) p ¼ 0:995. Such cases would normally be discarded. We

investigate how much information on the mutation rate

they contain.

The corresponding overall likelihoods for t are shown in

Fig. 2 for the proportional model and in Fig. 3 for the mixed

model. We see that, on introducing even a very small

probability of non-paternity, smaller values of t become more

likely; the smaller p is, the more the curve shifts to the left.

Intuitively this is because, as we decrease p, we can more easily

explain away an incompatibility as due to non-paternity rather

than mutation. The effect of this on the maximum likelihood

estimate is shown in Table 7.

The value of p affects the overall likelihood differently for

the proportional model and the mixed model. This is essentially

due to the differences between the columns for h ¼ 0 and

h ¼ 0:9 in Table 5 for Case 1 (with similar behaviour for Cases

2 and 3) and in Table 6 for Case 4. Under either model, when

p ¼ 0:9997 the contribution from the first three cases was well

approximated by t, just as if paternity were established.

However, (see Section 6.4.1), this approximation is poor for

Case 4 under the mixed model with h ¼ 0:9, on account of its

intercept a ¼ 0:00393. Allowing a very small chance that the

observed incompatibility might be due to non-paternity has led

to a flatter likelihood contribution. It is essentially just this

effect for this one case that has caused the overall likelihood to

move noticeably to the left under the mixed model.

Very similar considerations apply when we take p ¼ p�. For

Case 4, the flattening effect of its low value p� ¼ 0:9961 is now

seen even under the proportional model; while under the mixed

model this case is effectively discarded as a non-paternity

(paternity would require a mutation of at least two steps, which

is very unlikely for this model).

When p ¼ 0:995, under the proportional model all four

incompatible cases have non-negligible intercept a. These

flatter contributions result in a likelihood favouring very small

values of t. The behaviour is quite different under the mixed

model. For Cases 1–3, the observed incompatibilities could be

explained by one-step mutations, which are quite probable

under this mutation model, to the extent that it becomes safe to

assume paternity, together with mutation, for these cases;

conversely Case 4, which cannot now be easily explained by

mutation, can be discarded as a non-paternity.

7. Discussion, extensions, recommendations

We have described and illustrated how algebraic expressions

and Bayesian networks can be used to make inferences about

mutation rates from paternity casework, taking full account of a

variety of logical subtleties and computational complexities,

including in particular hidden mutation and uncertain paternity.

We have not considered such complications as more complex

pedigrees, allelic dropout, measurement error or uncertainty in

the population gene frequencies. In principle these could be

incorporated into a more elaborate Bayesian network descrip-

tion of the problem [3].

For simplicity, in our illustrative data analysis we fixed r, the

paternal fraction of the total mutation rate, at 0.5 (so taking

mM ¼ mP). One could easily explore the sensitivity of

Fig. 2. Likelihood for t, proportional model.

Fig. 3. Likelihood for t, mixed (h ¼ 0:9) model.

Table 7

Maximum likelihood estimates of t for the proportional and mixed (h ¼ 0:9)

mutation models

p Proportional model Mixed model

1 0.0053 0.0052

0.9997 0.0049 0.0044

p� 0.0042 0.0038

0.995 0 0.0022

P. Vicard et al. / Forensic Science International: Genetics 2 (2008) 9–1816



Author's personal copy

inferences to the value assumed for r.7 Our basic framework

can also be used to make inferences about r, treated as an

unknown parameter along with t [18]. Many more incompa-

tible triplets are then needed to obtain a reliable estimate of r.8

However, if we could assume a common value of r across all

markers the combined information could become appreciable.

Evidence could also be combined across different studies.

We have seen that mutation estimates can be quite sensitive

to the mutation model assumed, expressed in our case by the

value of the mixing parameter h. With a little further

elaboration we could treat h as another unknown parameter,

and estimate it, too, from the same data. In particular we could

then compare the relative support for the SMM (h ¼ 1) as

against the proportional model (h ¼ 0). We could similarly

compare other, distinct, mutation models.

An issue deserving further investigation is how to quantify

the loss of information from analysing only summary data,

rather than full genotype information, for compatible cases.

Although this does not lead to systematic biases, it can reduce

the precision of parameter estimates, as well as affecting their

values. When full data are available, the large number of cases

could be analysed either numerically, using a suitable batch-

processing interface to the Bayesian network, or by construct-

ing a program to handle the algebra and related calculations as

described in Section 4.

We cannot emphasise too strongly that our focus in this

paper has been entirely methodological; in particular, our data

analysis is intended purely to illustrate this methodology, and

its results must not be taken as substantively meaningful. This is

because the paternity dataset supplied to us, like most of those

used for mutation estimation, was not randomly selected from

casework, but instead comprised only preselected cases, where

the assessed probability of paternity was very close to 1. As we

have observed in our treatment of Case 4 in Section 6, there can

be valuable information about mutation even in cases that

would be excluded by this criterion, and ignoring this is likely

to lead to biases in the estimates obtained. We therefore

recommend retaining a much more complete collection of cases

than usual for analysis. If it is not possible to analyse all cases

(or a large random sample), then the choice of those to exclude

should be based on an assessment, according to the criteria of

Section 4.4.1, of the constant a in (8), for a variety of realistic

assumptions about the probability of paternity and the mutation

model. Taking proper account of cases where the value of the

probability of paternity is below the threshold commonly

considered as confirming paternity should lead to more precise

estimates of both t and r—which could differ notably from

those based on the biased sets of cases usually analysed.

We hope that future work based on appropriate analysis of

full paternity casework will provide better estimates of

mutation rates on specific markers. Analysis of casework data

from various reference populations could enable valuable

assessment of the variation of mutation rates across popula-

tions. But, prior to any analysis, however simple or

sophisticated, an appropriate data collection, selection and

recording process is essential if we are to obtain credible

estimates of mutation parameters.
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