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In this paper, we unify the Markov theory of a variety of different types of graphs used in graphical Markov
models by introducing the class of loopless mixed graphs, and show that all independence models induced
by m-separation on such graphs are compositional graphoids. We focus in particular on the subclass of
ribbonless graphs which as special cases include undirected graphs, bidirected graphs, and directed acyclic
graphs, as well as ancestral graphs and summary graphs. We define maximality of such graphs as well as
a pairwise and a global Markov property. We prove that the global and pairwise Markov properties of a
maximal ribbonless graph are equivalent for any independence model that is a compositional graphoid.
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1. Introduction

1.1. Introduction and motivation

Graphical Markov models have become widely used in recent years. The models use graphs
to represent conditional independence relations for systems of random variables, with nodes
of the graph corresponding to random variables and edges representing dependencies. Several
classes of graphs with various independence interpretations have been described in the literature.
These range from undirected graphs with simple separation for derivation of independencies
[19] to various forms of mixed graphs [18,24,30], including chain graphs with several different
separation criteria [2,5,8,10,17].

In spite of the differences among these graphs, their structural similarities motivate an attempt
to unify them. For this purpose, we introduce the class of loopless mixed graphs and let them
entail independence models using the same separation criterion, m-separation. This unification
covers many graphical independence models in the literature with some independence models
for chain graphs forming a notable exception; see Section 4 for further details. We show that
any independence model generated by m-separation in a loopless mixed graph is a composi-
tional graphoid. This ensures that certain intuitive methods of reasoning are indeed valid for
such graphs, as they in some sense behave as ordinary undirected graphs.

A common motivation for defining MC-graphs [18], summary graphs [30], and ancestral
graphs [24], is to represent independence relations implied by marginalisation over and con-
ditioning on sets of variables satisfying the Markov property of a directed acyclic graph (DAG).
The focus of our study is on a subclass of loopless mixed graphs which we shall term ribbonless.
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The class of ribbonless graphs is sufficiently rich to serve the same purpose: these graphs are
obtained by a simple modification of MC graphs derived from a DAG after marginalisation and
conditioning; and it contains summary graphs and ancestral graphs as special cases.

For ribbonless graphs, we define global and pairwise Markov properties, the latter being asso-
ciated with interpreting missing edges in the graph as representing conditional independencies.
We prove as our main result that a compositional graphoid independence model over a maxi-
mal ribbonless graph satisfies the global Markov property if and only if it satisfies the pairwise
Markov property. This ensures that the independence models represented by such graphs are
generated by their missing edges, which again supports the direct visual intuition.

1.2. Some early results on Markov properties

The concepts of pairwise and global Markov properties for undirected graphs were introduced
in [13] in the context of random fields and shown to be equivalent for positive densities. Al-
ternative proofs were later given independently by several authors, for example [3,12]; see also
[4]. An abstract variant of this theorem was proven in [21] for independence models satisfying
graphoid axioms as these are satisfied by probabilistic distributions with positive densities; see
also [29] and [11]. Independence models for undirected graphs were discussed comprehensively
in Chapter 3 of [19].

A global Markov property that uses the m-separation criterion and a pairwise Markov property
were defined in [24] for maximal ancestral graphs without considering conditions under which
they are equivalent. We use a generalisation of these Markov properties for maximal ribbonless
graphs, which contains maximal ancestral graphs as a subclass, and prove their equivalence for
compositional graphoids. This has been mentioned as a conjecture in [14].

1.3. Structure of the paper

In the next section, we introduce the basic concepts of graph theory, general and probabilistic
independence models, and compositional graphoids.

In Section 3, we introduce the class of loopless mixed graphs and additional graph theoretical
definitions special to mixed graphs. We also associate the m-separation criterion to this class,
and prove for any loopless mixed graph that the independence model induced by m-separation is
a compositional graphoid.

In Section 4, we introduce the class of ribbonless graphs and the concept of anterior graphs.
We describe the relations between these as well as subclasses of loopless mixed graphs that have
been discussed in the literature.

In Section 5, we introduce the concept of maximality by demanding that any additional edge
will change the independence model. It is shown that ribbonless graphs are not necessarily max-
imal, and conditions for maximality are given.

In Section 6, we define a pairwise and a global Markov property for independence models
for ribbonless graphs, and prove our main result: that pairwise and global Markov properties are
equivalent for compositional graphoid independence models over maximal ribbonless graphs.
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2. Basic definitions and concepts

In this section, we introduce basic definitions and notation for independence models, graphs, and
compositional graphoids.

2.1. Basic graph theoretical definitions

A graph G is a triple consisting of a node set or vertex set V , an edge set E, and a relation that
with each edge associates two nodes (not necessarily distinct), called its endpoints. When nodes
i and j are the endpoints of an edge, they are adjacent and we write i ∼ j . We say the edge is
between its two endpoints. We usually refer to a graph as an ordered pair G = (V ,E). Graphs
G1 = (V1,E1) and G2 = (V2,E2) are called equal if (V1,E1) = (V2,E2). In this case we write
G1 = G2.

Notice that our graphs are labeled, that is, every node is considered as a different object. Hence,
for example, graph i j k is not equal to j i k.

A loop is an edge with the same endpoints. Multiple edges are edges with the same pair of
endpoints. A simple graph has neither loops nor multiple edges.

A subgraph of a graph G1 is a graph G2 such that V (G2) ⊆ V (G1) and E(G2) ⊆ E(G1) and
the assignment of endpoints to edges in G2 is the same as in G1. An induced subgraph by nodes
A ⊆ V is a subgraph that contains all and only nodes in A and all edges between two nodes in
A. A subgraph induced by edges B ⊆ E is a subgraph that contains all and only edges in B and
all nodes that are endpoints of edges in B .

A walk is a list 〈v0, e1, v1, . . . , ek, vk〉 of nodes and edges such that for 1 ≤ i ≤ k, the edge ei

has endpoints vi−1 and vi . A path is a walk with no repeated node or edge. If the graph is simple
then the path can be uniquely determined by an ordered sequence of node sets. Throughout this
paper, we use node sequences to describe paths even in graphs with multiple edges, as it usually
is apparent from the context which of multiple edges belong to the path. We say a path is between
the first and the last nodes of the list in G. We call the first and the last nodes endpoints of the
path and all other nodes inner nodes.

If π1 = 〈i = i0, i1, . . . , in, h〉 and π2 = 〈h, jm, jm−1, . . . , j0 = j 〉 are paths, their combination
π12 = π1 ◦ π2 is the path π12 = 〈i, . . . , ip−1, k, jq−1, . . . , j〉, where k = ip = jq is the first node
of π1 which is on both paths. If k = h then π12 is simply the concatenation of the two paths. In
general, the concatenation of two paths will be a walk and not a path as the paths may intersect
in more than one point.

A subpath of a path π is a path that can be considered a subgraph of π with the ordering
associated with π . A cycle in a graph G is a simple subgraph whose nodes can be placed around
a circle so that two nodes are adjacent if they appear consecutively along the circle.

2.2. Independence models

An independence model J over a set V is a set of triples 〈X,Y | Z〉 (called independence state-
ments), where X, Y , and Z are disjoint subsets of V and Z can be empty, and 〈∅, Y | Z〉 and
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〈X,∅ | Z〉 always being included in J . The independence statement 〈X,Y | Z〉 is interpreted as
“X is independent of Y given Z”.

An independence model J over a set V is a semi-graphoid if for disjoint subsets A, B , C, and
D of V , it satisfies the four following properties:

1. 〈A,B | C〉 ∈ J if and only if 〈B,A | C〉 ∈ J (symmetry);
2. if 〈A,B ∪ D | C〉 ∈ J then 〈A,B | C〉 ∈ J and 〈A,D | C〉 ∈ J (decomposition);
3. if 〈A,B ∪ D | C〉 ∈ J then 〈A,B | C ∪ D〉 ∈ J and 〈A,D | C ∪ B〉 ∈ J (weak union);
4. 〈A,B | C ∪ D〉 ∈ J and 〈A,D | C〉 ∈ J if and only if 〈A,B ∪ D | C〉 ∈ J (contraction).

A semi-graphoid for which the reverse implication of the weak union property holds is said to be
a graphoid, that is

5. if 〈A,B | C ∪ D〉 ∈ J and 〈A,D | C ∪ B〉 ∈ J then 〈A,B ∪ D | C〉 ∈ J (intersection).

Furthermore, a graphoid or semi-graphoid for which the reverse implication of the decomposition
property holds is said to be compositional, that is

6. if 〈A,B | C〉 ∈ J and 〈A,D | C〉 ∈ J then 〈A,B ∪ D | C〉 ∈ J (composition).

Notice that simple separation in an undirected graph will trivially satisfy all of these properties,
and hence compositional graphoids are direct generalisations of independence models given by
separation in undirected graphs.

2.3. Probabilistic conditional independence models

The most common independence models are induced by probability distributions. Consider a set
V and a collection of random variables (Xα)α∈V with state spaces Xα,α ∈ V and joint distribu-
tion P . We let XA = (Xv)v∈A etc. for each subset A of V . For disjoint subsets A, B , and C of
V we use the short notation A ⊥⊥ B | C to denote that XA is conditionally independent of XB

given XC [7,19], that is, that for any measurable � ⊆ XA and P -almost all xB and xC ,

P(XA ∈ � | XB = xB,XC = xC) = P(XA ∈ � | XC = xC).

We can now induce an independence model J (P ) by letting

〈A,B | C〉 ∈ J (P ) if and only if A ⊥⊥ B | C w.r.t. P.

We say that an independence model J is probabilistic if there is a distribution P such that
J = J (P ). We then also say that P is faithful to J .

Probabilistic independence models are always semi-graphoids [21], whereas the converse is
not necessarily true; see [29]. If P has strictly positive density, the induced independence model
is also a graphoid; see, for example, Proposition 3.1 in [19]. If the distribution P is a regular
multivariate Gaussian distribution, J (P ) is a compositional graphoid. This follows from the fact
that for such a distribution

A ⊥⊥ B | C ⇐⇒ k
αβ
A∪B∪C = 0 for all α ∈ A,β ∈ B,
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where k
αβ
A∪B∪C is the αβ entry in the concentration matrix of the distribution of XA∪B∪C and

hence setwise conditional independence is directly determined by nodewise conditional inde-
pendence.

Probabilistic independence models with positive densities are not in general compositional
graphoids; this only holds for special types of multivariate distributions such as the Gaussian
mentioned above and, say, the symmetric binary distributions used in [32].

3. Independence models for mixed graphs

3.1. Mixed graphs

A mixed graph is a graph containing three types of edges denoted by arrows, arcs (bi-directed
edges), and lines (full lines). Notice that we allow multiple edges of the same type. A loopless
mixed graph (LMG) is a mixed graph that does not contain any loops (a loop may be line, arrow,
or arc). For an arrow j  i, we say that the arrow is from j to i. We also call j a parent of i,
i a child of j and we use the notation pa(i) for the set of all parents of i in the graph. In the cases
of i  j or i ≺  j , we say that there is an arrowhead at j or pointing to j .

A path 〈i = i0, i1, . . . , in = j〉 is direction-preserving from i to j if all ikik+1 edges are arrows
pointing from ik to ik+1. If there is a direction-preserving path from j to i then j is an ancestor
of i and i is a descendant of j . We denote the set of ancestors of i by an(i). Notice that we do
not include i in its set of anteriors or descendants.

A tripath is a path with three nodes. Note that [26] used the term V-configuration for such a
path. However, here we follow [16] and most texts by letting a V-configuration be a tripath with
non-adjacent endpoints.

In a mixed graph the inner node of three tripaths i  t ≺ j , i ≺  t ≺ j , and
i ≺  t ≺  j is a collider (or a collider node) and the inner node of any other tripath is a
non-collider (or a non-collider node) on the tripath or more generally on any path of which the
tripath is a subpath. We shall also say that the tripath itself with inner collider or non-collider
node is a collider or non-collider. We may speak of a collider or non-collider without mention-
ing the relevant tripath or path when this is apparent from the context. Notice that a node may be
a collider on one tripath and a non-collider on another.

Two paths π1 and π2 (including tripaths or edges) between i and j are called endpoint-
identical if there is an arrowhead pointing to i in π1 if and only if there is an arrowhead
pointing to i in π2 and similarly for j . For example, the paths i  j , i k ≺  j , and
i  k ≺ l ≺  j are all endpoint-identical as they have an arrowhead pointing to j but no
arrowhead pointing to i on the paths.

3.2. Anterior graphs and sets

The anterior graph of a loopless mixed graph G, denoted by G∗, is the graph obtained from G

by recursively removing arrowheads pointing to nodes that are the endpoints of a line, that is, by
obtaining ◦ and ≺ ◦ from  ◦ and ≺  ◦ respectively. Hence,
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Figure 1. (a) A mixed graph G. (b) The anterior graph G∗ of G.

it holds that G = G∗ if and only if there are no arrowheads pointing to lines in G. Notice also
that since removing an arrowhead pointing to a line does not affect other arrowheads pointing
to lines, it does not matter which arrowhead is removed first; therefore, the order of removing
arrowheads pointing to lines does not affect the final graph obtained.

A path 〈i = i0, i1, . . . , in = j〉 from i to j (i �= j ) in G∗ is an anterior path if it has the form
i i1 · · · im  im+1  · · ·  j . Notice that this path may only contain lines
or arrows. We shall say that i is anterior of j in G if there is an anterior path from i to j in
G∗. Notice that although the anterior path is defined in G∗ we may from time to time refer to an
anterior path in G as the path corresponding to the anterior path in G∗.

We use the notation ant(i) for the set of all anteriors of i. Notice that, since ancestral graphs
have no arrowheads pointing to lines, we have G = G∗ for an ancestral graph. Thus, our defi-
nition of anterior extends the notion of anterior used in [24] for ancestral graphs with the minor
difference that we do not include a node in its anterior set. However, it is different from and
inconsistent with the definition of anteriors in [10] and [1].

For example, in the graph G in Figure 1(a), ant(i) = {l, h, j,p} and ant(p) = {l, h, j}. This
can be seen by looking at the anterior paths 〈p, j,h, l, i〉 from p to i and 〈l, h, j,p〉 from l to p

(as well as from p to l) in Figure 1(b).
We first show that transitivity holds for anteriors.

Lemma 1. For any loopless mixed graph it holds that if i ∈ ant(j) and j ∈ ant(k) then i ∈ ant(k).

Proof. If i ∈ ant(j) and j ∈ ant(k), G∗ has anterior paths π1 from i to j and π2 from j to k.
As no arrowhead meets a line in G∗ their combination π1 ◦ π2 is an anterior path from i to j in
G∗. �

Here we also introduce a lemma that is used in several proofs of this paper.

Lemma 2. Let G be a loopless mixed graph. If i ∈ ant(j) \ an(j), then either i or a descendant
of i is the endpoint of a line in G.

Proof. The proof uses induction on the number of arrowheads removed from G to obtain G∗.
For the base, if G = G∗ it follows immediately from the definition of an anterior path that i must
be the endpoint of a line or we would have i ∈ an(j).

Next, suppose that G∗ is obtained from G by removing n+1 arrowheads and let G̃ be obtained
from G by removing a single arrowhead pointing to a line from G. Then G∗ is also the anterior
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graph of G̃, but with only n arrowheads needing removal. Thus, if i ∈ ant(j) in G, it is also
anterior to j in G̃. Consider now two cases:

Case I. Assume i is an ancestor of j in G̃. Since i is not an ancestor of j in G, G̃ must have
been obtained by turning an arc into an arrow. Say this arrowhead points to h. Then h is an
endpoint of a line and it is a descendant of i in G.

Case II. If i is not an ancestor of j in G̃, the inductive hypothesis yields that i is either adjacent
to a line ih in G̃ or has a descendant h in G̃ which is the endpoint of a line in G̃. Let h be the
node adjacent to a line in G̃. If the arrowhead removed is not on the direction-preserving path π

from i to h the conclusion obviously follows. Else, there must be node k on π which is adjacent
to a line in G and can be used instead of h. �

3.3. The m-separation criterion

Here we define a separation criterion for LMGs. We use this criterion to induce independencies
on LMGs and its subclasses defined in Section 3.

We first define an m-connecting path: Let C be a subset of the node set of an LMG. A path is
m-connecting given C if all its collider nodes are in C ∪ an(C) and all its non-collider nodes are
outside C. For two disjoint subsets of the node set A and B , we say that C m-separates A and
B if there is no m-connecting path between A and B given C. In this case, we use the notation
A ⊥m B | C. Notice that the m-separation criterion induces an independence model Jm(G) on
G by A ⊥m B | C ⇐⇒ 〈A,B | C〉 ∈ Jm(G).

We note that m-separation is unaffected if we replace multiple edges of the same type with a
single edge of that type. The m-separation criterion for LMGs is the same as the separation cri-
terion defined in [24]. It is an extension of the d-separation criterion introduced in [21]. Clearly,
m-separation is also an extension of simple separation in an undirected graph, as then all edges
are lines.

For example, in graph G in Figure 2 it holds that h ∈ an(l) and, thus, 〈i, h, j 〉 is an m-
connecting path given l. Therefore, 〈i, j | l〉 /∈ Jm(G). We now have the following theorem.
A similar result for the induced independence model for MC graphs was given in Proposition 2.10
of [18].

Theorem 1. For any loopless mixed graph G, the independence model Jm(G) is a composi-
tional graphoid.

Proof. For G = (N,F ) and disjoint subsets A, B , C, and D of N , we prove that ⊥m satisfies
the six compositional graphoid axioms:

Figure 2. A loopless mixed graph G for which 〈i, j | l〉 /∈ Jm(G).
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(1) Symmetry: If A ⊥m B | C, then B ⊥m A | C: If there is no m-connecting path between A

and B given C, then there is no m-connecting path between B and A given C.
(2) Decomposition: If A ⊥m (B ∪ D) | C, then A ⊥m D | C: If there is no m-connecting path

between A and B ∪ D given C, then there is no m-connecting path between A and D ⊆ (B ∪ D)

given C.
(3) Weak union: If A ⊥m (B ∪ D) | C then A ⊥m B | (C ∪ D): From (2) we know that A ⊥m

D | C and A ⊥m B | C. Suppose, for contradiction, that there exist m-connecting paths between
A and B given C ∪ D. Consider a shortest path of this type and call it π . If there is no inner
collider node on π , then there is an m-connecting path between A and B given C, a contradiction.
On π all collider nodes are in (C ∪ D) ∪ an(C ∪ D). If all collider nodes are in C ∪ an(C), then
there is an m-connecting path between A and B given C, again a contradiction. Hence, consider
the closest collider node i ∈ (D ∪ an(D))\ (C ∪ an(C)) to A on π . Now since the nodes between
A and i are not in B ∪ D, there is an m-connecting path between A and i given C. If i ∈ D,
then this is obviously a contradiction. Otherwise there is a node k ∈ D, for which i ∈ an(k) and
thus an m-connecting path between A and k given C, a contradiction again. Therefore, there is
no m-connecting path between A and B given C ∪ D.

(4) Contraction: If A ⊥m B | C and A ⊥m D | (B ∪ C), then A ⊥m (B ∪ D) | C: Suppose, for
contradiction, that there exists an m-connecting path between A and B ∪ D given C. Consider a
shortest path of this type and call it π . The path π is either between A and B or between A and D.
The path π being between A and B contradicts A ⊥m B | C. Therefore, π is between A and D. In
addition, since all inner collider nodes on π are in C ∪ an(C) and because A ⊥m D | (B ∪C), an
inner non-collider node should be in B . This contradicts the fact that π is a shortest m-connecting
path between A and B ∪ D given C.

(5) Intersection: If A ⊥m B | (C ∪ D) and A ⊥m D | (C ∪ B), then A ⊥m (B ∪ D) | C: Sup-
pose, for contradiction, that there exists an m-connecting path between A and B ∪ D given C.
Consider a shortest path of this type and call it π . The path π is either between A and B or
between A and D. Because of symmetry between B and D in the formulation it is enough to
suppose that π is between A and B . Since all inner collider nodes on π are in C ∪ an(C) and
because A ⊥m B | (C ∪ D), an inner non-collider node should be in D. This contradicts the fact
that π is a shortest m-connecting path between A and B ∪ D given C.

(6) Composition: If A ⊥m B | C and A ⊥m D | C, then A ⊥m (B ∪ D) | C: Suppose, for
contradiction, that there exist m-connecting paths between A and B ∪ D given C. Consider a
path of this type and call it π . Path π is either between A and B or between A and D. Because
of symmetry between B and D in the formula it is enough to suppose that π is between A and
B . But this contradicts A ⊥m B | C. �

Theorem 1 implies that we can focus on establishing conditional independence for pairs of
nodes, formulated in the corollary below.

Corollary 1. For a loopless mixed graph G and disjoint subsets of its node set A, B , and C, it
holds that A ⊥m B | C if and only if i ⊥m j | C for every nodes i ∈ A and j ∈ B .

Proof. The result follows from the fact that ⊥m satisfies the decomposition and the composition
properties. �
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4. Subclasses of loopless mixed graphs

LMGs and their associated independence models induced by m-separation unify a variety of
previously discussed graphical independence models.

4.1. Chain graphs

Important exceptions include certain independence models for chain graphs. Chain graphs them-
selves are LMGs, but at least four different Markov properties for chain graphs have been dis-
cussed in the literature. Drton [8] has classified them into (i) the LWF or block concentration
Markov property, (ii) the AMP or concentration regression Markov property, (iii) a Markov prop-
erty that is dual to the AMP Markov property, and (iv) and the multivariate regression Markov
property. When the chain components consist entirely of arcs, the multivariate regression prop-
erty is identical to the one induced by m-separation. However, the independence model induced
by m-separation in a chain graph is typically different from any of the other chain graph inter-
pretations; see also [22,25] and [20].

4.2. Ribbonless graphs

The class of MC graphs, defined in [18], contains line loops and uses a different separation
criterion for inducing an independence model. However, a small modification of any MC graph
that is derived from a DAG after marginalisation and conditioning yields a so-called ribbonless
graph, which is loopless and induces the same independence model as the MC graph, but by
m-separation [27]. Any ribbonless graph can be generated from a DAG by marginalisation and
conditioning and ribbonless graphs are stable under these operations [26]. The remaining part of
this paper deals with such graphs. We first give a formal definition of a ribbon.

A ribbon is a collider tripath 〈h, i, j 〉 such that both of the following two conditions hold:

1. there is no endpoint-identical edge between h and j , that is, there is no hj -arc in the case
of h ≺  i ≺  j ; there is no hj -line in the case of h  i ≺ j ; and there is no
arrow from h to j in the case of h  i ≺  j ;

2. i or a descendant of i is the endpoint of a line or is on a direction-preserving cycle.

If i or a descendant of i is the endpoint of a line, then we say the ribbon is straight and if they
are on a direction-preserving cycle we say the ribbon is cyclic. A ribbonless graph (RG) is an
LMG that has no ribbons as induced subgraphs. Figure 3 illustrates a straight ribbon 〈h, i, j 〉 and
the simplest cyclic ribbon.

Figure 4(a) illustrates a graph containing a straight ribbon 〈h, i, j 〉 and Figure 4(b) illustrates
a ribbonless graph. Notice that 〈h, i, j 〉 is not a ribbon here since there is a line between h and
j and this is an endpoint-identical edge. We proceed to establish that ribbonless graphs yield
identical independence models to their anterior graphs and need the following lemma.

Lemma 3. Let G be a ribbonless graph. If there is a collider tripath 〈i, j, k〉 in G that is non-
collider in G∗, then G has an ik-edge that is endpoint-identical to 〈i, j, k〉.
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Figure 3. (a) A straight ribbon 〈h, i, j〉 with ne(i) = ∅. (b) The simplest cyclic ribbon 〈h, i, j〉.

Proof. Suppose that 〈G = G0,G1, . . . ,Gn = G∗〉 is a sequence of graphs, where each graph
has been generated by removing one arrowhead pointing to a full line from the previous graph
starting from G.

Consider the first intermediate graph Gp+1 where 〈i, j, k〉 turns into a non-collider tripath. We
prove by reverse induction that, for each 0 ≤ q ≤ p, 〈i, j, k〉 is a straight ribbon unless there is
an endpoint-identical ik-edge to 〈i, j, k〉.

In Gp , the node j is obviously the endpoint of a line and the result holds. Thus, we assume
that the result holds for Gq . In Gq−1, it is easy to observe that if the line that makes the ribbon
is an arrow pointing to another line or if an arrow on the direction-preserving cycle pointing to a
line is an arc then j or a descendant of j is still the endpoint of a line. Therefore, the result holds
in Gq−1. Therefore, by reverse induction, this result holds in G, and since G is ribbonless, in G

there is an endpoint-identical ik-edge to 〈i, j, k〉. �

For the graph G in Figure 3(a), the anterior graph G∗ is the graph where all edges become
undirected. Clearly there is no endpoint-identical edge hj and the conclusion of Lemma 3 does
not hold. This illustrates the role of a graph being ribbonless.

Proposition 1. For a ribbonless graph G, it holds that Jm(G) = Jm(G∗), that is, G and G∗ are
Markov equivalent.

Proof. It is enough to prove that there is an m-connecting path between i and j given C in G if
and only if there is an m-connecting path between i and j given C in G∗.

Suppose that there is an m-connecting path between i and j given C in G. All non-colliders on
the path in G are preserved in G∗. In addition, by Lemma 3, a collider tripath 〈i, j, k〉 becomes
non-collider if there is an endpoint-identical ik-edge to 〈i, j, k〉. In this case, the ik-edge can be
used instead of 〈i, j, k〉 to establish an m-connecting path in G∗.

Figure 4. (a) A graph that is not ribbonless. (b) A ribbonless graph.
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Conversely, suppose that there is an m-connecting path between i and j given C in G∗. Col-
lider tripaths are collider tripaths in G, and if a non-collider tripath 〈i, j, k〉 has been collider in
G then, by Lemma 3, one can again use the ik-edge instead of 〈i, j, k〉. Thus the only thing that
remains to be proven is that a direction-preserving path pointing to a member of C in G remains
direction-preserving in G∗.

In this case, by the same argument as in Lemma 3, if for the collider tripath 〈i, j, k〉, where
j ∈ an(C), the arrowhead of an arrow on the direction-preserving path in G is taken away then
〈i, j, k〉 is a ribbon unless there is an endpoint-identical ik-edge to 〈i, j, k〉. Hence, we can use
the ik-edge instead of 〈i, j, k〉 to establish an m-connecting path. �

Thus, the absence of ribbons ensures that the Markov property is unchanged by forming the
anterior graph G∗. Again, as the anterior graph G∗ of the graph G in Figure 3(a) is the graph
with all edges becoming undirected, we have h ⊥m j in G but not h ⊥m j in G∗, illustrating that
absence of ribbons is essential for the Markov equivalence of G and G∗.

Independence models induced by m-separation in a ribbonless graph can be induced by
marginalisation over and conditioning on a DAG-independence model [26]. This implies that
independence models corresponding to RGs are probabilistic, that is, any RG has a faithful prob-
ability distribution.

4.3. Other subclasses of loopless mixed graphs

Other subclasses of LMGs that use m-separation and have been discussed in the literature are
summary graphs [30], ancestral graphs [24], acyclic directed mixed graphs [23,28], undirected
or concentration graphs [6,19], bidirected or covariance graphs [5,9,15,31], and the class of di-
rected acyclic graphs [11,16,21]. In papers on summary graphs and regression chain graphs,
dashed undirected edges (without arrowheads) have often been used in place of bi-directed
edges. Using the latter as we have done here makes the idea of a collider more immediate so
m-separation can be used directly and the relation between the various types of graphs becomes
transparent.

The use of some of the above graphs are motivated by representing independence models
obtained by marginalisation over and conditioning on subsets of the node set of a DAG. For
those graphs, arcs indicate marginalisation and lines indicate conditioning.

The diagram in Figure 5 illustrates the hierarchy of subclasses of LMGs and their associated
independence models generated by m-separation. For example, it can be seen from the diagram
that bidirected graphs are also ancestral graphs, since they form a subclass of multivariate regres-
sion chain graphs, which again form a subclass of ancestral graphs. Notice that the associated
classes of independence models are all distinct except for ancestral, summary, and ribbonless
graphs, which are alternative representations of the same class of independence models.

5. Maximal ribbonless graphs

Among the independence models over the node set V of a graph G, those that are of interest
to us conform with G, meaning that i ∼ j in G implies 〈i, j | C〉 /∈ J for any C ⊆ V \ {i, j}.
Henceforth, we assume that independence models J conform with G, unless otherwise stated.
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Figure 5. The hierarchy of subclasses of LMGs.

For example, the independence model J = {〈i, l | j〉, 〈i, k | ∅〉} conforms with the graph G in
Figure 6, whereas J = {〈i, l | j〉, 〈i, j | ∅〉} does not conform with G because of the indepen-
dence statement 〈i, j | ∅〉.

A ribbonless graph G is called maximal if by adding any edge to G, the independence model
induced by m-separation changes. Note that in [30] a graph that is maximal is called an indepen-
dence graph.

The independence models on RGs induced by m-separation conform with the graphs; hence
for maximal graphs, adding an edge to the graph makes the independence model smaller. There-
fore, we have the lemma below.

Lemma 4. A graph G = (V ,E) is maximal if and only if for every pair of non-adjacent nodes i

and j of V , there exists a subset C of V \ {i, j} such that i ⊥m j | C.

Figure 6. The independence model J = {〈i, l | j〉, 〈i, k | ∅〉} conforms with G whereas
J = {〈i, l | j〉, 〈i, j | ∅〉} does not.
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Figure 7. A non-maximal RG.

Proof. The result follows directly from the definition of maximality. �

RGs are not maximal in general. To see this consider the RG in Figure 7. There is no C such
that i ⊥m j | C. This is because if k ∈ C, the path i  k ≺  j is m-connecting given C, and
if k /∈ C, i  k  j is m-connecting given C.

To characterise maximal RGs, we need the following notion: A path 〈j, q1, q2, . . . , qp, i〉 is a
primitive inducing path between i and j if and only if for every n, 1 ≤ n ≤ p,

(i) qn is a collider on the path; and
(ii) qn ∈ an({i} ∪ {j}).

This definition is a trivial extension of a primitive inducing path as defined for ancestral graphs
in [24]. Note in particular that we consider any edge between i and j to be a primitive inducing
path. In Figure 7, 〈i, k, j 〉 is a primitive inducing path.

Next, we need the following lemmas. These also establish a pairwise Markov property for
maximal RGs.

Lemma 5. A non-collider node k on a path π between i and j in a ribbonless graph G is either
in ant(i) ∪ ant(j) or an anterior of a collider node h on π . Moreover, the relevant subpath of π

between k and i, j or h is an anterior path in G∗.

Proof. Let k = im be a non-collider node on a path π = 〈i = i0, i1, . . . , in = j〉 in G. Then from
at least one side (say from im−1) there is no arrowhead on π pointing to k. By moving towards i

on the path as long as ip , 1 ≤ p ≤ m−1, is non-collider on the path, we obtain that k ∈ ant(ip−1).
This implies that if no ip is a collider then k ∈ ant(i) and hence the lemma follows. �

Lemma 6. For nodes i and j in an RG that are not connected by any primitive inducing paths
(and hence i �∼ j ), it holds that i ⊥m j | (ant(i) ∪ ant(j)) \ {i, j}.

Proof. Suppose, for contradiction, there is an m-connecting path between i and j given (ant(i)∪
ant(j)) \ {i, j} and denote a shortest such path by π . If there is a non-collider node k on π then,
by Lemma 5, k is either in ant(i)∪ ant(j) or it is an anterior of a collider node on π . But since π

is m-connecting given (ant(i) ∪ ant(j)) \ {i, j}, collider nodes are in ant(i) ∪ ant(j) themselves.
Hence, k ∈ ant(i)∪ant(j), which contradicts the fact that π is m-connecting. Therefore, all inner
nodes of π must be colliders.

Now we know that all inner nodes of π are in ant(i) ∪ ant(j) and i �∼ j . If, for a collider
tripath 〈r, l, s〉 on π , l ∈ (ant(i) ∪ ant(j)) \ (an(i) ∪ an(j)) then, by Lemma 2 and since the
graph is ribbonless, there is an endpoint-identical rs-edge to the tripath, which contradicts π

being shortest. Therefore, l ∈ an(i) ∪ an(j), which implies that π is primitive inducing, again a
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contradiction. Therefore, there is no m-connecting path between i and j given (ant(i)∪ ant(j))\
{i, j}, and hence i ⊥m j | (ant(i) ∪ ant(j)) \ {i, j}. �

Next, in Theorem 2 we give a necessary and sufficient condition for an RG to be maximal.
The analogous result for ancestral graphs was proved in Theorem 4.2 of [24].

Theorem 2. A ribbonless graph G is maximal if and only if G does not contain any primitive
inducing paths between non-adjacent nodes.

Proof. Let π = 〈i = i0, i1, . . . , in = j〉 be a primitive inducing path between i and j in H , and
let C be a subset V \ {i, j}, where V is the node set of H . We need to show that there is an
m-connecting path between i and j given C.

This is immediate if each internal node, that is, each of i1, . . . , in−1, is in C ∪ an(C) by just
using π , so assume that this is not the case. Thus there is an internal node of π not in C ∪ an(C),
and we may assume that there is one in an(i). Pick such a node iq , 1 ≤ q < n, as far along the
path to j as possible. Consider a direction-preserving path from iq to i, and let P1 denote the
reverse of this path. Note that no internal node in P1 is in C ∪ an(C). Let π1 be the part of π from
iq to j . If each internal node in this path is in C ∪ an(C) then we are done by taking the path P1
followed by π1 (note that no node can be repeated since each internal node in π1 is in C ∪ an(C)

and each internal node in P1 is outside C ∪ an(C)). So suppose not. Let ip be the first node in
π1 that is not in C ∪ an(C). Then ip /∈ an(i) (by the way iq was chosen), so ip ∈ an(j). Let π2
be the part of π from iq to ip , and let P2 be a direction-preserving path from ip to j . Note that
no internal node in P2 is in C ∪ an(C). If P1 and P2 have no intersection, then much as above
we obtain an m-connecting path given C by taking P1 followed by π2, followed by P2. If P1 and
P2 do intersect, then we obtain an m-connecting path as required by following P1 up to the first
node on P2 and then following P2.

By letting C = (ant(i) ∪ ant(j)) \ {i, j} for every non-adjacent nodes i and j , the other direc-
tion follows from Lemmas 4 and 6. �

For other special types of graphs that are subclasses of RGs, the condition for maximality of
RGs may get further simplified. Among the subclasses of RGs that have been mentioned in this
paper, summary graphs, ancestral graphs, and acyclic directed mixed graphs are not necessarily
maximal, while all others are maximal. This can be seen by checking whether primitive inducing
paths are permissible in each subclass.

A Markov equivalent maximal graph can be generated from a non-maximal graph by adding
endpoint-identical edges to a primitive inducing path between a pair of non-adjacent nodes. We
refer the reader to [27] for details. The following lemma establishes that anterior graphs of max-
imal graphs are themselves maximal.

Lemma 7. Let G be a ribbonless graph and G∗ its anterior graph. Then if G is maximal, so is
G∗.

Proof. If, for contradiction, G∗ is not maximal, then Theorem 2 implies that there is a primitive
inducing path in G∗ between non-adjacent nodes i and j . Consider a shortest primitive inducing
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path between i and j and denote it by π . We know that all inner nodes of π are colliders in G∗.
This trivially implies that all inner nodes of π are colliders in G too. In addition, each inner node
k on π is in an({i, j}) in G∗. In G, k ∈ an({i, j}) unless an arrow on the direction-preserving
path from k to i or j is an arc turning into an arrow in G∗. In this case, k is an ancestor of a
node that is the endpoint of a line. Hence the tripath 〈h, k, l〉 on π is a ribbon unless there is an
endpoint-identical hl-edge to the tripath, which contradicts the fact that π is shortest. Therefore,
π is a primitive inducing path in G, a contradiction. Hence, G∗ is maximal. �

6. Markov properties for ribbonless graphs

In this section, we give a precise definition of the global and pairwise Markov properties for
an independence model J defined over the node set of a ribbonless graph. Further we show
that these two Markov properties are equivalent for a maximal ribbonless graph if J is also a
compositional graphoid. This result is a direct generalisation of the similar result of [21] for
undirected graphs and graphoids.

6.1. Global and pairwise Markov properties

For a ribbonless graph G = (V ,E), an independence model J defined over V satisfies the global
Markov property w.r.t. G if it holds for A, B , and C disjoint subsets of V that

A ⊥m B | C �⇒ 〈A,B | C〉 ∈ J .

Similarly, an independence model J defined over V satisfies the pairwise Markov property
w.r.t. G if it holds for any nodes i and j that

i �∼ j �⇒ 〈
i, j | (ant(i) ∪ ant(j)

) \ {i, j}〉 ∈ J .

For example, for the graph in Figure 8, the pairwise Markov property would imply that 〈i,m |
{k, l, h}〉 as ant(i) = {k, l, h,m} and ant(m) = {l, h}. It would also imply that 〈l, p | {h,m}〉.

Clearly, the independence model Jm(G) induced by m-separation always satisfies the global
Markov property w.r.t. G. By Lemma 4, Lemma 6, and Theorem 2, Jm(G) satisfies the pairwise
Markov property if and only if G is maximal.

Figure 8. The pairwise Markov property for this RG implies, for example, 〈i,m | {k, l, h}〉. The global
Markov property would for example imply 〈{i, k}, j | l〉.
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6.2. Equivalence of pairwise and global Markov properties

Before establishing the main result of this section, we need two lemmas.

Lemma 8. Let J be a compositional graphoid over a set V and M and C be disjoint subsets of
V . It then holds that the marginal independence model

α(J ,M) = {〈A,B | C〉: 〈A,B | C〉 ∈ J and (A ∪ B ∪ C) ∩ M = ∅
}
,

which is defined over V \ M , is a compositional graphoid.

Proof. All the six compositional graphoid properties for α(J ,M) follow trivially from the facts
that for A, B , and C such that (A ∪ B ∪ C) ∩ M = ∅, 〈A,B | C〉 ∈ α(J ,M) if and only if
〈A,B | C〉 ∈ J , and J satisfies the six properties. �

Notice that the notion of a marginal independence model α(J ,M) is identical to the notion
formally defined in [24] with a different notation; it was also discussed in [26] with the same
notation as in this paper.

The following lemma gives sufficient conditions for the combination of two m-connecting
paths in anterior graphs to be m-connecting.

Lemma 9. Let G∗ be the anterior graph of a ribbonless graph G and suppose that there are
paths π1 = 〈i = i0, i1, . . . , in, h〉 between i and h and π2 = 〈h, jm, jm−1, . . . , j0 = j〉 between h

and j which are m-connecting given C. The combination π12 = π1 ◦ π2 is then an m-connecting
path between i and j given C in each of the following mutually exclusive situations:

(a1) 〈in, h, jm〉 is a collider and h ∈ C ∪ an(C);
(a2) in = jm with an arrowhead pointing to h on the inh-edge and h ∈ C ∪ an(C);
(b1) 〈in, h, jm〉 is a non-collider and h /∈ C;
(b2) in = jm with no arrowhead pointing to h on the inh-edge.

Proof. Let π12 = π1 ◦ π2 = 〈i, . . . ip−1, k, jq−1, . . . , j〉 be the combination of π1 and π2. If
k = h and either (a1) or (b1) holds then the conclusion is obvious. The cases (a2) or (b2) are only
relevant when k �= h.

Next consider the situation where k �= h. Since π1 and π2 are m-connecting, for π12 to be
m-connecting we only need to check the tripath 〈ip−1, k, jq−1〉. We have to deal with two cases:

Case 1: 〈ip−1, k, jq−1〉 is a non-collider.
In this case there is no arrowhead pointing to k from at least one of ip−1 or jq−1. This means

that 〈ip−1, k, ip+1〉 on π1 or 〈jq−1, k, jq+1〉 on π2 is a non-collider, and since π1 and π2 were
both m-connecting we have k /∈ C. Hence π12 is m-connecting.

Case 2: 〈ip−1, k, jq−1〉 is a collider. We need to consider the following two subcases:
Case 2.1. If 〈ip−1, k, jq−1〉 is a collider and any of 〈ip−1, k, ip+1〉 or 〈jq−1, k, jq+1〉 is also a

collider then k ∈ C ∪ an(C) and π12 is m-connecting.
Case 2.2. If 〈ip−1, k, jq−1〉 is a collider but 〈ip−1, k, ip+1〉 and 〈jq−1, k, jq+1〉 are both non-

colliders then by Lemma 5, the subpath of π1 from k to a collider node l1 or to h is an anterior
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path and similarly for π2, l2, and h. However, since G∗ is an anterior graph and there are arrow-
heads pointing to k, these anterior paths must be direction-preserving and thus k ∈ an(l1)∪ an(h)

and k ∈ an(l2) ∪ an(h). Now we have the two following further subcases:
Case 2.2.1: One of the subpaths of π1,π2 from k to l1, l2 is direction-preserving. Because

π1 and π2 are m-connecting we must have l1 or l2 in C ∪ an(C). Thus, k ∈ an(C) and π12 is
m-connecting.

Case 2.2.2: Both subpaths of π1 and π2 from k to h are direction-preserving. Then 〈in, h, jm〉
is collider or in = jm with an arrowhead pointing to h on the inh-edge and (b1) and (b2) are
impossible. If (a1) or (a2) holds π12 is m-connecting since then h ∈ C ∪ an(C). �

We are now ready to establish the main result of this paper.

Theorem 3. Let G be a maximal ribbonless graph. If an independence model J over the node
set of G is a compositional graphoid, then J satisfies the pairwise Markov property w.r.t. G if
and only if it satisfies the global Markov property w.r.t. G.

Proof. (⇐) If J is a compositional graphoid and satisfies the global Markov property it follows
from Theorem 2 and Lemma 6 that it satisfies the pairwise Markov property.

(⇒) Now suppose that J satisfies the pairwise Markov property and compositional graphoid
axioms. For subsets A, B , and C of the node set of G, we should prove that A ⊥m B | C implies
〈A,B | C〉 ∈ J . By composition, it is sufficient to show this when A and B are singletons, that
is, that i ⊥m j | C implies 〈i, j | C〉 ∈ J .

Further we observe that it is sufficient to establish the result in the case when G = G∗ is itself
an anterior graph. Proposition 1 gives that A ⊥m B | C in G, which implies A ⊥m B | C in G∗.
In addition, by Lemma 7, G∗ is a maximal graph. Moreover, G and G∗ have the same anterior
sets, and therefore the same pairwise Markov property. Thus in the following, we assume that
G = G∗ is an anterior graph.

We prove the result in two main parts. In part I, we prove the result for the case that C ⊆
ant(i) ∪ ant(j). In part II, we use the result of part I to establish the general case.

Part I. Suppose that C ⊆ ant(i) ∪ ant(j). We use induction on the number of nodes of the
graph. The induction base for a graph with two nodes is trivial. Thus, suppose that the result
holds for all anterior graphs with fewer than n nodes and assume that G∗ has n nodes.

Let D = {i}∪ {j}∪ ant(i)∪ ant(j) and M = V \D, where V is the node set of the graph. First
in case I.1 we suppose that M �= ∅, and then in case I.2 we suppose that M = ∅.

Case I.1. Consider G∗[D] to be the subgraph induced by D. Consider the marginal indepen-
dence model α(J ,M) = {〈A,B | C〉: 〈A,B | C〉 ∈ J and (A ∪ B ∪ C) ∩ M = ∅} defined over
D. By Lemma 8, α(J ,M) is a compositional graphoid. In addition, it satisfies the pairwise
Markov property: This is because two non-adjacent nodes l1 and l2 in G∗[D] are non-adjacent
in G∗ and by the pairwise Markov property for J , 〈l1, l2 | (antG∗(l1) ∪ antG∗(l2)) \ {l1, l2}〉 ∈ J ,
where antG∗ is the anterior set in G∗. We know that antG∗(l1) ∪ antG∗(l2) ⊆ D and hence
antG∗(l1)∪antG∗(l2)∩M = ∅. In addition, for a node l in G∗[D], antG∗(l) = antG∗[D](l). There-
fore, 〈l1, l2 | (antG∗[D](l1) ∪ antG∗[D](l2)) \ {l1, l2}〉 ∈ α(J ,M).

We also know that i ⊥m j | C in G∗ implies i ⊥m j | C in G∗[D] since there is no m-
connecting path between i and j given C in G∗ and by removing nodes and edges from G∗
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no new m-connecting paths are generated. Therefore, by the induction hypothesis 〈i, j | C〉 ∈
α(J ,M). This implies that 〈i, j | C〉 ∈ J .

Case I.2. Now suppose that M = ∅ and thus the node set of G∗ is D = {i} ∪ {j} ∪ ant(i) ∪
ant(j). We prove the result by reverse induction on |C|: For the base, C = V \ {i, j} = (ant(i) ∪
ant(j)) \ {i, j} and the result follows trivially from the pairwise Markov property.

For the inductive step, consider a node h /∈ C. We want to show that h is not simultaneously
m-connected to both i and j : Suppose, for contradiction, there are m-connecting paths π1 =
〈i, i1, . . . , in, h〉 and π2 = 〈h, jm, jm−1, . . . , j0 = j〉 given C. If (b1) or (b2) of Lemma 9 hold
then i and j are m-connected given C which contradicts i ⊥m j | C. So we need only consider
the cases where 〈in, h, jm〉 is collider or in = jm with an arrowhead pointing to h on the inh-
edge. However, we know that h ∈ ant(i) or h ∈ ant(j). Because of symmetry between i and j

suppose that h ∈ ant(i). Since G∗ is an anterior graph and there is an arrowhead pointing to h we
have h ∈ an(i). Hence, there is a direction-preserving path π from h to i. If no node on π is in C

then (b1) or (b2) of Lemma 9 implies that the combination of π and π2 is an m-connecting path
between i and j , again a contradiction. If there is a node on π that is in C then h ∈ an(C) and
again, by (a1) and (a2) of Lemma 9, i and j are m-connected given C, again a contradiction.

We conclude that, given C, h is not m-connected to both i and j . By symmetry, suppose that
i ⊥m h | C.

We also have that i ⊥m j | C. Since Jm(G∗) is a compositional graphoid (Theorem 1) the
composition property gives that i ⊥m {j,h} | C. By weak union for ⊥m we obtain i ⊥m j |
{h} ∪ C and i ⊥m h | {j} ∪ C. By the induction hypothesis, we obtain 〈i, j | {h} ∪ C〉 ∈ J and
〈i, h | {j} ∪ C〉 ∈ J . By intersection, we get 〈i, {j,h} | C〉 ∈ J . By decomposition we finally
obtain 〈i, j | C〉 ∈ J .

Part II. We now prove the result in the general case by induction on |C|. The base, that is,
the case that |C| = 0, follows from part I. To prove the inductive step, we can assume that
C � ant(i) ∪ ant(j), since otherwise part I implies the result.

We first show that if C � ant(i) ∪ ant(j) then there is a node l in C such that i ⊥m j | C \ {l}:
Let first l′ ∈ C \ (ant(i) ∪ ant(j)) be arbitrary. If there is an l′′ ∈ C \ (ant(i) ∪ ant(j)) so that
l′ ∈ ant(l′′) and l′′ /∈ ant(l′) then replace l′ by l′′, and repeat this process until it terminates, the
latter being ensured by transitivity of ant (Lemma 1) and the finiteness of C. Thus, we eventually
obtain an l so that if l ∈ ant(l̃) for l̃ ∈ C \ (ant(i) ∪ ant(j)) then we also have l̃ ∈ ant(l).

Suppose, for contradiction, that there is a shortest m-connecting path π between i and j given
C \ {l}. If l is not on π or is a collider on π then π is also m-connecting given C. Therefore, l is
a non-collider on π . This, together with l /∈ ant(i) ∪ ant(j), by using Lemma 5, implies that l is
an anterior of a collider node p on π . Since π is m-connecting, p ∈ C ∪ an(C). Thus, there is an

l̃ ∈ C so that p = l̃ or p ∈ an(l̃). Transitivity of anterior sets and the fact that l /∈ (ant(i)∪ ant(j))

now imply that l̃ ∈ C \ (ant(i) ∪ ant(j)). The construction of l implies l̃ ∈ ant(l) which again
implies that l̃ ∈ an(l) and l ∈ an(l̃) and thus the collider tripath containing p is a cyclic ribbon
unless its endpoints are adjacent with an endpoint-identical edge, which implies that π is not a
shortest m-connecting path, a contradiction.

We now have that either i ⊥m l | C \ {l} or j ⊥m l | C \ {l} since otherwise, by Lemma 9 there
is an m-connecting path between i and j given C \ {l} in the case that l is a non-collider or given
C in the case that l is a collider node. Because of symmetry suppose that i ⊥m l | C \ {l}. By
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the induction hypothesis, we have 〈i, j | C \ {l}〉 ∈ J and 〈i, l | C \ {l}〉 ∈ J . By the composition
property we get 〈i, {j, l} | C \ {l}〉 ∈ J . The weak union property implies 〈i, j | C〉 ∈ J . �

If we specialise Theorem 3 to the most common case of probabilistic independence models,
we get the following corollary.

Corollary 2. Let G be a maximal ribbonless graph. A probabilistic independence model that
satisfies the intersection and composition axioms satisfies the pairwise Markov property w.r.t. G

if and only if it satisfies the global Markov property w.r.t. G.

6.3. Necessity of compositional graphoid axioms

Theorem 3 states that, for equivalence of pairwise and global Markov properties, the six com-
positional graphoid axioms are sufficient. In fact, in general, for the mentioned equivalence, all
six axioms are also necessary. The graphs in Figure 9 show that the intersection and composition
properties are necessary for the equivalence of pairwise and global Markov properties.

For G1 = (V1,E1), if J1 defined over V1 satisfies the pairwise Markov property, then 〈i, k |
{j, l}〉, 〈i, l | {j, k}〉, and 〈k, l | {i, j}〉 are in J1. It can be seen that none of the compositional
semi-graphoid axioms can be used to imply 〈i, {k, l} | j〉 ∈ J1. The intersection property is the
only axiom that implies the result.

For G2 = (V2,E2), if J2 defined over V2 satisfies the pairwise Markov property then 〈i, k | ∅〉,
〈i, l | ∅〉, and 〈k, l | ∅〉 are in J2. It can be seen that none of the graphoid axioms can be used to
imply 〈i, {k, l} | ∅〉 ∈ J2. The composition property is the only axiom that implies the result.

For G3 = (V3,E3), if J3 defined over V3 satisfies the pairwise Markov property then 〈i, k | ∅〉,
〈i, l | {j, k}〉, and 〈k, l | {i, j}〉 are in J3. It can be seen that none of the compositional semi-
graphoid axioms can be used to imply 〈l, {i, k} | j〉 ∈ J3. The intersection property is the only
axiom that implies the result. See also for example, Example 3.26 of [19], showing that the pair-
wise Markov property does not imply the global Markov property for DAGs when intersection
is violated.

It is known that, for undirected graphs, the five graphoid axioms are necessary and sufficient
for equivalence of pairwise and global Markov properties; see [19]. For bidirected graphs, the
independence statement associated with a missing edge between nodes i and j is 〈i, j | ∅〉 and
only the five compositional semi-graphoid axioms are necessary for equivalence of pairwise and
global Markov properties. This can be inferred from the proof of Theorem 3, since part I of the

Figure 9. For the equivalence of pairwise and global Markov properties, (a) an undirected graph G1 that
shows that the intersection property is necessary; (b) a bidirected graph G2 that shows that the composition
property is necessary; (c) a directed acyclic graph G3 that shows that the intersection property is necessary.
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proof is not relevant for bidirected graphs unless C = ∅ and the intersection property is not used
in part II of the proof. We conclude by stating this as its own proposition.

Proposition 2. Let G = (V ,E) be a bidirected graph. If an independence model J defined over
V is a compositional semi-graphoid then J satisfies the pairwise Markov property w.r.t. G if and
only if it satisfies the global Markov property w.r.t. G.
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