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a b s t r a c t

This article provides a tutorial reviewof some fundamental ideas and importantmethods for themodeling
of empirical social network data. It describes basic concepts from graph theory and central elements from
social network theory. It presents models for the network degree distribution and for network roles and
positions, as well as algebraic approaches, before reviewing recent work on statistical methods to analyze
social networks, including boot-strap procedures for testing the prevalence of network structures, basic
edge- and dyad-independent statistical models, and more recent statistical network models that assume
dependence, exponential random graph models and dynamic stochastic actor oriented models. Network
social influencemodels are reviewed. The article concludeswith a summary of newdevelopments relating
to models for time-ordered transactions.
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1. Introduction

It is nowwidely argued that human social networks are central
to the structure and dynamics of our contemporary social world
(Barabási, 2012). In keeping with this new enthusiasm, ‘‘network
science’’ is claimed as a distinctive, emerging research discipline.
Brandes, Robins, McCranie, and Wasserman (2013), in the first
editorial of a new journal Network Science, pointed to familiar
statements that ‘‘networks are everywhere’’, but argued that a
science requires more than this. Rather, network science is based
on a conceptual unity across many disciplines: an ontological
commitment to the primary importance of relationships between
entities. The encroaching disciplinary spread of network science
is very wide indeed, with networks given increasing notice in,
for instance, information and computer science, mathematics,
communication, engineering, management and organizational
science, economics, political science, psychology, anthropology,
public health, medicine, physics, statistics, sociology, animal
behavior, biology and history.

Social science disciplines feature prominently on this list,
psychology among them. Network perspectives are perhaps most
relevant to social, organizational, developmental and educational
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psychology. Yet, as noted below, there was something of a divorce
between network and psychological research in the 1970s. This
historical gap – related to differences between individualized and
system-based research designs – is only just being bridged.

It is certainly the case that in a globalized world, connected
by the internet and social media, it is easier than in the past
to accept a paradigm that emphasizes social systems and social
connections. Examples abound. Different types of networks serve
as channels through which knowledge is diffused, opportunities
are recognized, influence is exerted, support is offered, stereotypes
are formed, disease is spread, and actions are coordinated.
Networks of organizations govern our environmental systems
and respond to human and physical disasters. Organizations
structure and restructure internally to obtain efficiencies, building
new formal systems at the same time that they inadvertently
create informal networks through which collaboration actually
occurs. Health behaviors spread across social systems, crime is
conducted through illicit networks, and community movements
are prompted by social media. Social connections are crucial to
each of these phenomena.
Human social systems

Yet these examples also illustrate the inherent complexity of
social systems: themacro-level behavior of a social system, such as
an organization or a community, critically depends on the precise
nature of self-organizing network-based social processes occurring
at local levels of interaction. In order to understand and manage
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Fig. 1. A friendship network of undergraduate students.

such social systems, we need a precise appreciation of the nature
of these local interactions and of the ways in which they cumulate
to determine system-level properties. We need to do this in ways
that fully take into account important features of observed human
social systems.

Social systems – whether large scale communities or smaller
scale organizations – are arenas of cooperation, coordination and
conflict that necessarily involve relationships among individuals.
These relationships structure into regularities and patterns that
can be understood in terms of networks. But once we take this
conceptual step, it becomes more difficult to pull apart the system
and study aspects of it in isolation. This is a picture of complexity,
not of reductionism (Barabási, 2012).

This has led to tensions with traditions in psychological
research based on individualized research designs that include
randomized control, random sampling and general linear models.
Robins and Kashima (2008) argued that this tension can be
resolved, but there needs to be a recognition that networks require
different methods.

To illustrate the complexity that network analysis can present,
consider the two network visualizations in Figs. 1 and 2. Fig. 1
depicts empirical data from a study of 102 undergraduate students
in a university college. The nodes represent participants and
the links between them are friendships. The size of each node
reflects the strength of alcohol usage. A typical network-based
research question would be whether alcohol usage is associated
with friendship among these students. With longitudinal data,
one can proceed further to ask whether participants choose their
friends based on common alcohol usage, or whether participants
are influenced by their friends to increase their alcohol intake (or
both). Fig. 2, on the other hand, represents social connections in
a suburb of 5000 inhabitants. This data is a simulated network
derived from a statistical model with parameters estimated from a
snowball sample of participants in that community (Daraganova
et al., 2012). The primary research question was to understand
the precursors of urban unemployment and to determine to what
extent the relevant factors were social, geographic or individual
phenomena. Another applicationwould be to understand the likely
spread of a highly infectious disease such as bird flu across an urban
community. As can be seen from the figures, it is not possible to
address these different issues simply by inspecting the network
visualizations, nor is it obvious how they would be analyzed with
standard statistical approaches commonly used in psychology.

So, it is important that the network-based modeling of social
systems is making rapid progress. We have reached the method-
ological point where we can construct network models that re-
produce a very wide range of important local and global features
of a network: for instance, variations in local connectivity of each
network actor, the degree of local clustering among actors, and
the general distribution of connectivity (e.g. Goodreau (2007)).
Fig. 2. A simulated network of social contacts for a community of 5000 derived
from a snowball sample.

Models for social network processes are now embedded within
time (Snijders, van de Bunt, & Steglich, 2010), social settings
(Schweinberger, 2003) and space (adams, Faust, & Lovasi, 2012).
Analyses that include local interactions between network pro-
cesses and individual characteristics (including psychological
variables such as beliefs and attitudes) are standard. There are
exciting new advances in event modeling involving social rela-
tionships (e.g. systems of email or social media exchanges), some
of which are in articles in this special issue. Methodologically, net-
work science is flourishing.
Networks and psychology

Empirical social network research goes back at least to the
1930s with the ground-breaking introduction of sociometry by
Moreno (e.g. Moreno and Jennings (1938)). In his history of
social network analysis, Freeman (2004) observed that, although
sociology and anthropology drove many of the early methods,
psychological researchers were prominent. For instance, the 1930s
Hawthorne studies (Roethlisberger & Dickson, 1939), famous
in organizational psychology, included a network analysis of
the Bank wiring room, a major component in the Hawthorne
research program but one that eludes description in most modern
psychology texts discussing the Hawthorne effect. This gap reflects
the theoretical and methodological tensions described by Robins
and Kashima (2008), tensions that led to fading interest in social
network methods with the rise of social cognition studies in
the 1970s. Even today, the dramatic growth in network-based
research andmethods, including new ideas from physics and other
disciplines (Freeman, 2011), does not always receive attention in
psychology (Mason, Conrey, & Smith, 2007). So it is timely for a
special issue of the Journal of Mathematical Psychology to review
social network methods and to give a flavor of the most recent
methodological developments.

It is important to understand why the standard analytic
approaches typically used in psychology are not always applicable
in network-based research. There are a variety of reasons but
the most fundamental lies in the nature of dependence in social
network data. Brandes et al. (2013) argued that dependence was
at the heart of the network paradigm. A standard assumption
of general linear model techniques, on the other hand, is that
observations are independent. A network perspective overtly
assumes complex dependence among observations. In particular,
as Brandes et al. point out, it is a structuring among the domain
of a variable that is different. In individualized designs, a variable
can be seen as a function that assigns a set of numbers (the
range) to a set of entities (the domain); and while the range
may be structured (e.g. by different measurement scales), it is
expressly assumed that the domain is not. Networks, however,
place a complex dependence among the entities in the domain.
The importance of this dependence assumption is not just that
it has methodological implications; more to the point, it is a
basic theoretical claim about appropriate ways to aggregate or
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combine socially-based observations (Robins & Kashima, 2008;
White, Boorman, & Breiger, 1976). Analytic methods that attempt
to ‘compensate’ for observational dependence miss the point.
A network-based social system has dependence at its heart. To
wish away dependence in order to apply standard techniques is
to undermine the theoretical basis of a network conceptualization.

As Robins and Kashima point out, the gap between psychology
and network is two-way: network analysts have been a little too
reluctant to accord motivations and other psychological features
to the nodes in their graphs. So, social network research often
under-theorizes individuals; while social psychological research
often under-theorizes social contexts, structures and systems. Yet,
there is no need for psychologists and network researchers to
abandon what they already do so well. Rather, there needs to a
richer intersection of psychology andnetworks in productiveways.
Hence, this special issue of the Journal ofMathematical Psychology.
This tutorial

This article provides a tutorial review of some fundamental
ideas and important methods for the modeling of empirical
social network data. The emphasis is on the analysis of data, so
the article does not focus on the extensive work on simulation
and other models not specifically designed for data fitting.
Given the frequency of new analytic developments, this review
concentrates on selected major methodological themes in current
social network research and does not aim to cover everything
in this rapidly growing field. Motivated readers will find much
detail of interest in the older text by Wasserman and Faust (1994)
and in more recent volumes such as Carrington and Scott (2011),
Carrington, Scott, andWasserman (2005), Jackson (2010), Kolaczyk
(2009), and Newman (2010). Butts (2008a), Snijders (2011) and
Wasserman and Robins (2012) provide shorter reviews of current
social network methodologies.

The article begins with a review of some basic network
terminology and concepts. Lists of definitions can be a little dry,
but thosewishing to undertake network studies need to be familiar
with these fundamental ideas, so they are included for the sake of
completeness. I go on to describe a number of popular methods
specific to different types of network data.

1.1. Terminology and notation

Social network
A social network comprises a set of social entities, called actors,

and at least one but possibly several social relationships of differ-
ent types among them. A relational tie is a social connection of a
particular type between two actors (two actors and the possible tie
between them are referred to as a dyad). The types of relationship
studied in social network research vary enormously: communi-
cation, collaboration, enmity, friendship, acquaintanceship, trust,
business partnerships, marriage, kinship, and so on.
Graphs

A social network can be represented and visualized as a graph.
Network and graph terminology is frequently used interchange-
ably.

A graph G(N, E) is a mathematical object with a node set N =

{1, 2, . . . , n} and an edge set E comprising edges between pairs
of nodes. Sometimes nodes are called vertices. An edge may be
undirected in which case it is a property of an unordered pair of
nodes {i, j}; or directed, in which case the edge is a property of the
ordered pair and is directed from the sender node i to the receiver
node j. For a directed graph, the term edge is usually replaced by
arc. An induced subgraph of a graph G comprises a subset of node
set N and the edges that exist in G among those nodes.

A graph can also be represented as an n × n adjacency matrix
with a cell representing the presence or absence of an edge
by 1 or 0, respectively. By convention, in much social network
analysis the diagonal entries are forced to be zero, representing
that actors do not have relational ties with themselves. For
undirected and directed graphs, the adjacencymatrix is symmetric
and asymmetric, respectively. The adjacency matrix may also be
valued, representing the strength of a social relationship. For the
most part, this article will concentrate on binary edges.

A convenient statistical notation is to specify binary variables
Xij to denote the presence or absence of a tie between i and j
(undirected) or from i to j (directed). An instantiation is denoted
xij. The full set of variables may be denoted X with instantiation x.
Attributes

Actors may have attributes of various types to represent
individual-level properties. In this article, we use the notation Yi
to denote a variable pertaining to the attribute Y of node i with
an instantiation yi. An attribute variable may be binary, categorical
or continuous. Of course, in any one study, a number of different
attribute variables may be measured.
Other types of social network data

The description above pertains to a unipartite network which
has one type of node and (usually) one type of relational tie.
A bipartite network has two types of node with ties possible
between nodes of different types but not between nodes of the
same type. A bipartite network can represent membership or
participation (for instance, persons participating in events). In
this case, the adjacency matrix is rectangular rather than square.
There are a range of methods for analyzing bipartite networks (see
Latapy, Magnien, and Vecchio (2008) and Wang, Sharpe, Robins,
and Pattison (2009)), many of them analogues of methods used
for unipartite networks. In this article, we will concentrate on
unipartite methods.

We refer to a multiple network as having one type of node but
with more than one type of relational tie, so that dyads may have
different types of relationships among them.When different types
of relational tie occur simultaneously in a dyad, the dyad is said to
have amultiplex tie.

Recent attention has been directed to multilevel networks with
a bipartite network structure (i.e. two types of nodes) but with
relational ties (usually of different types) possible within the two
sets of nodes (e.g. Lazega, Jourda, Mounier, and Stofer (2008) and
Wang et al., (in press)—see Iacobucci and Wasserman (1990) and
Wasserman and Iacobucci (1991), for earlier work).
Dynamics

Longitudinal network data is typically collected in a panel
design on the same set of nodes. Theremay be some small changes
to the node set, butmost of the nodes are assumed to remain active
in the network across the time period of data collection.

In some cases, the network is fixed across time and the
diffusion of attribute change through processes of social influence
is studied dynamically. This approach is often taken in studying the
spread of disease through contagion. Of course, attributes and ties
frequently co-evolve so the assumption of fixed network may be
inappropriate. Again both attribute and tie data may be collected
on the one set of nodes.

These approaches assume that the relational tie is the
appropriate concept. A relational tie is viewed as changeable but
of indefinite duration, possibly long-term. A relational transaction,
on the other hand, refers to a time-delimited exchange within
a dyad. A transaction is time-stamped, of relatively short-term
duration, with a specific beginning and an end. Examples include a
purchase, an email, and a specific contact thatmight permit disease
transmission. One of the exciting new areas in network analysis is
the study of systems of relational transactions. This is the focus of
several of the articles in this special issue.
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2. Social network concepts and theories

2.1. Some basic graph and network concepts

In this section, a number of simple graph and network concepts
are defined.
Network activity and substructures

Density: The density of a (binary) network is the proportion of
observed to possible edges. For directed and undirected graphs, the
density is calculated as L/n(n − 1) and 2L/n(n − 1), respectively,
where L is the number of arcs/edges in the observed graph. A graph
is complete if all possible edges are present (density = 1), and is
empty if no edges are present (density = 0).

Degrees: In an undirected graph, the degree of a node is the
number of edges incident to it (i.e. the degree of i is


j xij). For

a directed graph, the outdegree of a node is the number of ties
directed away from the node, and the indegree the number of ties
directed to it (


j xij and


j xji, respectively). For a social network,

the outdegree and indegree of a node are sometimes termed the
activity and the popularity of the actor.

The degree distribution for an undirected graph is the distribu-
tion of counts of nodes with given degrees across all nodes in the
graph: that is, (d0, d1, d2, . . . , dn−1), where dk is the number of
nodes with degree k. For directed graphs, there are both indegree
and outdegree distributions.

A k-star is a network subgraph centered on one node i, with k
edges from i to k other nodes. (The degree of imay be greater than
k, as a star is only a subgraph, not a maximal subgraph.)

In an undirected graph, a triangle is a complete subgraph of
three nodes. In a directed graph, a cyclic triad is a cycle of length
three (a subgraph on three nodes, i, j and k, such that Xij = Xjk =

Xki = 1). A transitive triad is a subgraph on three nodes, i, j and k,
such that Xij = Xjk = Xik = 1.

In a directed graph, if Xij = Xji = 1, the tie xij reciprocates the
tie xji (and vice versa) and the dyad is mutual (M); if Xij ≠ Xji, the
dyad is asymmetric (A); and if Xij = Xji = 0, the dyad is null (N).
The count of M , A and N dyads constitutes the dyad census. There
is also a triad census based on the counts of different types of triads
in both undirected and directed graphs.
Network connectivity

Paths: A path is a connected sequence of edges across a number
of nodes (e.g. edges between nodes i1 and i2, i2 and i3, i3 and i4, and
so on). The number of ties is the length of the path. A path of length k
is sometimes referred to as a k-path. For a directed network, a path
requires that the directionality is consistent across all ties (that
is, there is an arc from i1 to i2, from i2 to i3, from i3 to i4, and so
on). In a directed network, a semipath is such a sequence of arcs
linking two nodes but disregarding directionality, so inconsistent
directionality is possible.

A cycle is a path of length greater than two for which the first
and last nodes are the same.

A geodesic is the shortest length path between two nodes, and
the geodesic distance is the path length of the geodesic. If there
is no path between the two nodes (i.e. they are not connected or
reachable), the geodesic distance is said to be infinite.
Centrality

The centrality of a node is its prominence in the network. There
are several types of centrality (Freeman, 1979), themost familiar of
which is degree centrality, simply measured by the degree of each
node.

However, degree centrality focuses on the activity of a node,
not necessarily on how important a given node might be in
maintaining the connectivity of the network. Closeness and
betweenness centrality are measures relating to connectivity and
involve, in different ways, the presence of the node on geodesics.
Closeness centrality of node i is the reciprocal of the sum of the
lengths of geodesics from i to all other nodes in the network.
In this case, closeness is best used for a connected graph with
no infinite geodesics. An alternative definition is the sum of
reciprocated geodesic distances whereby infinite geodesics count
as zero. Betweenness centrality is a measure of how frequently a
node sits on geodesics between other nodes. If gjk is the number of
geodesics between nodes j and k, and if gjk(i) is the number of those
geodesics that pass through i, then the betweenness centrality of i
is the sum over j and k of gjk(i)/gjk.
Cohesive subsets of nodes

A cohesive subset of nodes is a subset of nodes whose induced
subgraph has substantially greater density than other parts of the
graph. The basic idea is to determine a graph-theoretic concept that
can be interpreted as a distinct group in a social network, hence the
notion of cohesion. There are a number of ways to implement this
idea.

A clique is a complete subgraph. However, for empirical
purposes, the definition of a clique is often seen as too restrictive,
so there have been a number of generalizations proposed as a
better representation of cohesive subgroups within the social
network. Some of these have included notions of connectivity, not
just density, in their definition, and so do not require that the
induced subgraph be complete. For instance, an n-clique (Luce,
1950) is amaximal subset of nodes, each pair ofwhich is connected
by a path of length two or less. For further generalizations, see
Wasserman and Faust (1994, chapter 7).

These various notions of cohesive subsets of nodes are not too
commonly used in analysis, despite the appealing nature of the
general concept. However, they lead into an important idea, that
a network may be modeled by aggregating subsets of nodes into
various categories based on graph-theoretic ideas. Some methods
based on network position are summarized below.

2.2. Important elements in social network theory

This section briefly outlines some important elements in social
network theory that motivate some of the methods described
below.
Closure

A feature of many social networks is a tendency toward
triangulation (Cartwright & Harary, 1956; Davis, 1970). This is
often termed network closure where a 2-path tends to close
with the addition of an extra edge into a triangle. Other terms
that have been used to describe triangulation include network
clustering, transitivity or balance (following Heider (1946)—see
Cartwright andHarary (1956)). Simmel (1908) observed that triads
of individuals had distinctive properties that could not just be
derived from their constituent dyads. Granovetter (1973) argued
that strong social ties tended to close into clique-like structures,
but weak ties did not, so that weak ties provided connectivity
across the system. Burt (1992), drawing on Simmel, proposed
structural hole theory, whereby an individual in a non-closed triad
(e.g. at the center of a non-closed 2-star) was in a position to obtain
advantage by acting as a network entrepreneur or broker.
Small worlds

Milgram (1967) originated small world research by studying
the connectivity of individuals in the United States. He conducted
an experiment whereby he asked participants to forward letters
to acquaintances in order to locate a stranger with certain
characteristics. When these paths reached the desired destination,
the median path length was six, hence the popular attribution of
six degrees of separation. Most popular descriptions ignore the fact
that the majority of paths did not reach the desired destination.
There was some follow-up work (Kochen, 1989; Pool & Kochen,
1978) but the idea attracted renewed attention when Watts and
Strogatz (1998) investigated small world issues with computer
simulations. Watts’s (1999) definition of a small world was a
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graph with low density, highly clustered (high closure) but with
short average geodesic lengths, where low clustering and short
average geodesics were defined relative to a simple random graph
(see below). Watts conducted simulation studies to show that
the addition of a small number of randomly generated ties to a
highly clustered graph with long geodesics could result in a phase
transition to a small world graph. In other words, the addition (or
‘‘re-wiring’’) of ties to a long-path graph reaches a point whereby
there are sufficient ‘‘short-cuts’’ to shorten average geodesics
dramatically and suddenly, while the strong clustering is retained.
It is only with further rewiring that the clustering in the graph is
considerably reduced.

Small world ideas focus attention on the nexus between closure
and connectivity, between clustering and geodesic length. The
extensive subsequent work, particular in the physics literature, is
reviewed by Schnettler (2009). He argues that future directions in
this area might focus more on processes of diffusion and search
on network structures. This could even affect the definition of
‘‘smallness’’. As Schnettler (p. 177) concludes, ‘‘with regard to
infectious diseases, the whole world could be small—but with
regard to solidarity, and mutual support, six degrees might be a
whole universe apart’’.
Selection

Social selection occurs when individuals select certain network
partners based on individual attributes. A commonly considered
selection process is homophily whereby individuals form a
relational tie because they share one or more individual qualities,
such as age, sex, attitudes or interests (McPherson, Smith-Lovin, &
Cook, 2001). It is also possible that individual factors might lead
to individuals obtaining certain social positions, irrespective of the
attributes of partners. For instance, certain individual attributes
might predispose individuals to greater activity or popularity,
or individuals with certain motivations or personality traits may
choose to occupy structural holes (Kalish & Robins, 2006).
Influence

For social selection, ties come into existence due to individual-
level factors: that is, attribute values affect the presence of ties.
Social influence, on the other hand, occurs when individuals might
change some of their individual attributes (e.g. attitudes) because
of influence from their network partners (Mason et al., 2007).
The paradigmatic case is of network-based disease transmission
(Morris, 2004), so this process is also referred to as network
contagion or diffusion. In influence processes, ties do not change but
attribute variables do. In contrast to selection, the presence of ties
affects the distribution of attribute values across the nodes.

There has been considerable work on influence and contagion
in health behaviors, such as smoking (Ennett & Bauman, 1993)
and, more recently, obesity (Christakis & Fowler, 2007; De la Haye,
Robins, Mohr, & Wilson, 2010). Diffusion of innovations (Valente,
1995) and attitude agreement (Goel, Mason, & Watts, 2010) have
also been of research interest.

Of course, individuals occupying certain network positionsmay
also experience effects on attributes irrespective of the attributes
of network partners. This is one of Burt’s (1992) principal ideas
in terms of network brokerage, that individuals who occupy
structural holes will gain individual advantage, a form of network
social capital.
Network self organization

Social selection leads to the formation of network ties because
of the distribution of attributes across actors. However, network
ties may also occur because of the presence of other network ties.
The simplest example is reciprocity where the presence of a tie
from i to jmay increase the chances of a tie from j to i, irrespective
of nodal attributes. Network closure is another example: as noted
above, Granovetter’s (1973) argument was that closure could
occur because of the nature of ties (i.e. that they were strong),
irrespective of attributes. Of course, the presence of homophily
among a triple of nodes may also lead to the formation of ties, so
it is not always a simple matter to determine whether a triangular
structure arises due to triadic closure processes themselves or to
dyadic attribute homophily.

The formation of ties due to the presence of other ties can
only arise if there is dependence among the network tie variables.
Below we describe several theories of tie dependence. With tie
dependence, the network takes on the features of a complex
systemwith feedback effects among the tie variables. In this sense
the network self organizes through endogenous structural processes
(Wasserman & Robins, 2012) to create certain patterns of ties that
can give clues to the underlying social processes. This theoretical
argument is an important motivator in several of the modeling
approaches outlined below.

3. Probability models for the degree distribution

Let K be the degree of a randomly chosen person in the network.
Then a statistical model for the degree distribution is represented
by: P(K = k) = f (k) where f (k) is a probability distribution.

3.1. Degree distributions for simple random graphs

Simple random graph distributions (i.e. Erdös–Renyi graphs or
Bernoulli graphs—see below), where edges occur independently
with a fixed probability, produce graphswith approximate Poisson
degree distributions. Unfortunately, these graph models do not fit
empirical social network data well: social networks often exhibit
a high level of closure (triangulation) and positive skew on the
degree distribution.

3.2. Positively skewed degree distributions

Positively skeweddegree distributions imply a greater variation
of activity of actors in the network than would be expected
by chance. For instance, in directed networks, it is not unusual
to see some actors who are highly popular (indegree) and/or
highly active (sometimes referred to as expansive—outdegree).
Sometimes, but certainly not universally, empirical networks may
exhibit outliers in the degree distribution with particularly high
degree, often referred to as hubs. Such degree distributions indicate
high centralization in the network, with network activity centered
on a few high-degree nodes.
Inverse power law degree distributions (‘‘scale free’’)

Barabási and Albert (1999) proposed the following degree
model for networks with highly skewed degree distributions.

P(K = k) is proportional to k−ρ(at least for large k)

where ρ is a scaling parameter (greater than 1). Newman, Strogatz,
and Watts (2001) argue that an exponential cut-off for the degree
distribution is more typical, and so prefer:

P(K = k) is proportional to k−ρe−k/κ

where ρ and κ are constants and k ≥ 1.
Networks with such a degree distribution are referred to as

scale free networks. Albert and Barabási (2002) proposed that scale
free networks could be the outcome of the preferential attachment
model. New nodes are added to an existing network with the
probability of a new connection related to the degree of the
existing nodes. In this way hubs are created as popular nodes
become more popular. The preferential attachment model was
originally proposed by Simon (1955) and is represented by the
Yule distribution (Yule, 1924). The intuition behind preferential
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attachment is that popularity itself may attract further popularity,
so that nodes with high degrees are most likely to obtain ties from
new nodes. The notion is that popularity may arise from structural
position (in this case high degree centrality), irrespective of any
characteristic of the nodes.

Whether a network is scale free is often assessed by checking
linearity through a simple plot on a log–log scale, with ρ estimated
using ordinary least squares regression. Handcock and Jones
(2003) criticized this simple approach as statistically unsound and
recommended likelihood-based approaches (Handcock & Jones,
2004).

A critique of claims about scale-free networks has been
presented by Li, Alderson, Tanaka, Doyle, and Willinger (2005),
who argued that scale free networks did not even apply to
the supposed paradigm case of the internet. Li et al. proposed
some firm definitions and a systematic approach to this body
of research. The supposed universality of scale free networks is
not supported. Some networks may be scale free but in each
case this is an empirical question that needs to be investigated
rather than presumed. Handcock and Jones (2003) have shown
that careful fitting of the degree distribution against a variety of
possible statistical models shows that scale free networks are not
always the best fitting model. It is also sometimes claimed that
degree distributions determine all other features of the network,
so that only knowledge of the degree distribution is necessary
to understand the properties of the network. This claim does not
stand in the face of plenty of counter-examples (Goodreau, 2007;
Li et al., 2005; Robins, Pattison, & Woolcock, 2005; Snijders & van
Duijn, 2002).

In short, the scale-free idea is appealing in its relatively
simple model of the degree distribution. It directs attention to
the importance of nodal degrees and the frequent observation
of long-tailed distributions. However, when precision is required,
there should always be an understanding that scale-free degree
distributions imply a very specific shape to the distribution and
simply observing some high degree nodes or some apparent
linearity on a log–log plot is not sufficient. The data can be
tested against a number of different distributions, as shown by
Handcock and Jones (2003), to check whether scale-free is indeed
the preferred inference.
Controlling for degree distributions

Newman et al. (2001) developed an approach to calculate a
variety of graph properties for graph distributions that are random
except for an arbitrary degree distribution. This is an approach that
takes the degree distribution into account, rather than models it
and follows a long traditionwithin social network analysis of using
uniform graph distributions controlling for certain graph features
as null models, as discussed below.

4. Models for social position

An important theme in social network research is that nodes
may be categorized into subsets that reflect structural positions. If
this can be achieved, then the network structure may be collapsed
into a simpler representation, so there is a long history in such
methods.

4.1. Equivalence

Structural equivalence
In order to categorize nodes on the basis of structure, the

general notion of equivalent positions in a network needs to be
defined. Lorrain and White (1971) essentially defined structural
equivalent nodes as a pair or subset of nodes connected to the same
other nodes. Put simply, in an undirected network, nodes i and j
are structurally equivalent if Xik = Xjk for all k (see Borgatti and
Everett (1992), for a more detailed definition). A position is a set of
structurally equivalent actors. Obviously under this definition, an
actor can be in one and only one position. Note that a position may
be different from a cohesive subset of nodes (see above), for there
is no requirement that the equivalent nodes need be linked directly
to each other. However, there are some important properties of
structural equivalence that do relate to cohesive subsets (Borgatti
& Everett, 1992). Lorrain and White (1971) noted that structural
equivalence is a purely local property, in that the equivalence for
a pair of actors can be determined simply from their ties to others.
Moreover, as Borgatti and Everett (1992) pointed out, two nodes
cannot be structurally equivalent if they are more than two ties
apart, that is, structurally equivalent nodes are part of a 2-clique.

The idea of structural equivalence is useful empirically when
the n actors can be categorized into a substantially smaller
number of m positions, each preferably containing several actors.
As it is rare in most empirical social networks to find strict
structural equivalence classes, there has been a search for good
methods to find approximately structural equivalent subsets of
nodes. Basically, this approach is achieved by some form of
clustering applied to a distancemeasure derived frompairs of rows
(and columns for directed graphs) in the adjacency matrix. For
instance, in an undirected adjacencymatrix, the Euclidean distance
or correlation (or some other distance or proximity measure)
between rows i and j can be taken as the ‘‘distance’’ between i
and j and the matrix of distances clustered to produce categories
of approximately structurally equivalent nodes. An early version
of such a technique based on correlation, still often used, is
the CONCOR algorithm (Breiger, Boorman, & Arabie, 1975). More
recent clustering methods can of course be utilized, including
methods based on optimization procedures such as the TABU
search algorithm implemented in the network software suite
UCINET (Borgatti, Everett, & Freeman, 2002).
Generalizations of equivalence

Structural equivalence has been generalized in several ways.
Two nodes are automorphically equivalent (Everett, 1985) if there
exists a mapping of the node set onto itself which preserves the
network structure (i.e., an automorphism), such that one node
is mapped onto the other. Regular equivalence partitions nodes
into classes whereby nodes of the one class are connected in the
same way to other classes of nodes (for a formal mathematical
definition, seeWhite and Reitz (1983); for algorithms to determine
regular equivalence classes, see Borgatti and Everett (1993)).
Because these generalizations step away from the local nature
of structural equivalence, they do not carry with them the
proximity/cohesion implications. Borgatti and Everett (1992)
argued that these different versions implied quite different notions
of position: position in structural equivalence is based on the
identity of network partners, whereas in the other forms it is
based on the way in which actors are connected. Regular and
automorphic equivalence are well suited to extracting what are
called role systemswhere actors in different positions are assumed
to take different social roles derived from the pattern of network
connections within and between positions.

4.2. Blockmodels

Given that the network nodes are partitioned into a set of
positions, then the set of all ties from actors in one position to
those in another forms a block. A blockmodel simplifies the network
into an image matrix containing only positions and blocks (White
et al., 1976). The image matrix can be determined in various ways,
by using the density of the blocks or various approximations or
numerical summaries. In this way, a simplified version of the
empirical network structure can be developed, further analyzed
and interpreted. The basic idea is that the blockmodel describes
an underlying fundamental structure compared to the ‘‘surface
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structure’’ of the observed networks (Ferligoj, Doreian, & Batagelj,
2011).
Generalized blockmodeling

Doreian, Batagelj, and Ferligoj (2005) proposed a method
of generalized blockmodeling whereby there is a comparison of
an ideal blockmodel based on structural equivalence with an
empirical blockmodel with the same number of positions (Ferligoj
et al., 2011). Inconsistencies between the two are minimized
through an optimization criterion. Regular equivalence blocksmay
also be incorporated into the generalized blockmodels.
Stochastic blockmodels

Statistical methods for blockmodeling have been proposed as
stochastic blockmodels. Here the positions are taken to be latent
classes for the nodes, referred to as the colors of the nodes. The
conditional distribution of dyads is assumed to be independent
conditional on the node colorings and the goal is to determine the
latent classes, and thereby to define the blockmodel. This approach
was first proposed by Holland, Laskey, and Leinhardt (1983) and
further developed by Nowicki and Snijders (2001) who presented
an algorithm for node classification. Airoldi, Blei, Feinberg, and
Xing (2008) extended this approach tomixedmembershipmodels.

Other latent space approaches
These latent class models suggest a natural extension to

continuous latent spaces, even though the latter are not strictly
a blockmodeling approach. The basic idea is that the network
nodes are embedded in a latent space where the probability of
a tie decreases with distance between nodes in the latent space.
Both Euclidean (Hoff, Raftery, & Handcock, 2002) and ultrametric
(Freeman, 1992) spaces have been proposed but these methods
have not been frequently adopted to date in empirical work. See
Snijders (2011) for a review of these models.

4.3. Community structure

More recently, approaches have been developed principally
among physics researchers to identify community structure.
Newman and Park (2003) proposed that social networks differed
from many other types of networks in having denser regions
of the network that may be interpreted as social communities.
Girvan and Newman (2002) presented a well-known algorithm to
allocate nodes to communities determined from the data, but since
then a large number of other algorithms have been proposed as
extensions. For a summary of these and associated methods, see
Newman (2010).

5. Algebraic approaches

Relation algebras arose in part from the analysis of kinship
systems (e.g. Boyd (1969) and White (1963)). An algebraic system
was considered a good representation of the quite strict familial
rules that can exist in complex kinship structures. Subsequently,
such algebraic methods were applied to more general social
networks, with a goal of representing regularities in network
structure. For instance, Boorman and White (1976) built on the
then new concept of blockmodels to represent role systems in
algebraic form.

Pattison (2011) noted that algebraic constructions can provide
a language for expressing regularities in social forms, and thereby
assist with their identification in empirical data. For instance, re-
ciprocation and triangulation can be represented within a relation
algebra. Pattison summarized some basic algebraic operations that
would provide for these network features, establishing conditions
for a partial order and axioms that would constitute a proper alge-
bra. These axioms reflect properties that are familiar from standard
algebraic systems, including appropriate commutativity, associa-
tivity and distributivity properties as well as the existence of an
identity.
Algebraic methods are not as commonly applied as in the
past. Pattison (2011) noted several ways that relation algebras
have been used in the literature. Firstly, for small networks, it is
feasible to analyze the full algebra, just as Boorman and White
(1976) proposed to do for blockmodels. Pattison (1993) developed
partially ordered semigroups derived from blockmodels. This
enables comparison of relation algebras across distinct sets of
actors to compare structural regularities.

Secondly, in larger empirical contexts where the full algebra
might itself be complex or difficult to determine, it may be helpful
to construct partial algebras that are subsets of full algebras with
restrictions placed on the number of times the operations may
be applied (see Pattison (2009)). Thirdly, approximate algebraic
representations may be obtained through statistical techniques,
thereby permitting statistical analysis of the structural properties
of relationships that can be expressed in algebraic form (Pattison
& Wasserman, 1995; Pattison, Wasserman, Robins, & Kanfer,
2000). This approach can indicate structural patterns that occur in
observed data.

6. Statistical methods for cross-sectional network structure

6.1. Conditional uniform graph distributions

The question of whether a particular network pattern might
be more prominent than expected in empirical data goes back
to the very beginnings of modern network analysis. For instance,
in many directed networks, we expect to see tendencies toward
reciprocation in ties. Moreno and Jennings (1938) calculated the
expected number of mutual ties for a graph with randomly
occurring arcs, to compare with the observed number of mutual
ties (


i,j XijXji/2) in a graph with the same node set, in order to

infer whether a distinctive reciprocity effect is present.
Of course, some network properties are not so readily

calculable, and especially their standard deviations for the
purposes of a significance test. Katz and Powell (1957) proposed
a number of conditional uniform graph distributions, where for a
fixed node set the ties are randomly generated conditional on some
other network property. The simplest andmost commonof these is
U|L, the uniform graph distribution conditional on a fixed number
of edges or arcs L. For a given node set, all graphswhere


i,j Xij = L

have equal probability and all other graphs have zero probability.
It is simple enough to simulate graphs with these properties and
so to obtain a sample of graphs from the distribution. For each
graph in the sample, the network property of interest (e.g. the
number ofmutual ties) can be calculated, providing a bootstrapped
null distribution against which to compare the observed data. If
the observed statistic is extreme in this distribution, then there
is evidence for a distinct effect (i.e. reciprocation) that cannot be
adequately explained by the conditioning (i.e. the presence of L
arcs).

Holland and Leinhardt (1976) showed how to condition on the
triadic properties of the network (see also Wasserman (1977)).
Snijders (1991) was the first to show how to condition on in-
and out-degree distributions but there have since been a number
of elaborations (McDonald, Smith, & Forster, 2007; Rao, Jana, &
Bandyopadhyay, 1996; Roberts, 2000; Verhelst, 2008). Pattison
et al. (2000) extended the general inferential approach to combine
it with conditioning on algebraic constraints (see above). The
general method was rediscovered in different contexts by Milo
et al. (2002).

In short, this approach provides a means to test hypotheses
about network data. One can select any graph property, simulate
a graph distribution conditioning on selected marginal properties
reflecting some social process, and then locate observeddata in this
distribution to seewhether it is extremeor not. If the observed data
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is extreme, then the inference is that the graph feature cannot be
explained by the processes embodied in the marginal properties.

Snijders (2011) noted that the method is not in much current
use for two reasons: conditioning on any but simple properties is
combinatorially complex, and the rejection of the null hypothesis
does not enable the construction of a model for the network being
studied. The first objection is not necessarily pertinent. Wang
et al. (2009) conditioned on an exponential random graph model
(ERGM) in order to infer further network effects that could not be
readily parameterized in the ERGM. But of course this approach
does require the development of a model for the network.

6.2. Quadratic assignment procedure

Quadratic assignment procedure (QAP) is another bootstrap-
ping approach, designed to make inferences comparing different
networks on the same set of nodes. Mantel (1967) originally used
QAP to investigate the geographical clustering of diseases. Hubert
and Schultz (1976) coined the phrase ‘‘quadratic assignment’’ and
proposed it for a number of different data analytic contexts (see
also Hubert (1987)). Basically, the idea is to test whether a pair
of matrices is correlated, so the network application follows nat-
urally (Krackhardt, 1987) to test multiplexity in observed multiple
network data.

The method can be described simply. For the cells of the two
matrices, a correlation or some other suitable association statistic
is calculated in the usual way. The issue is whether the value of
the statistic is significant. A permutation is applied to the node
labels of one of the twomatrices and the statistic recalculated. The
permutation produces a matrix with identical structure but the
node relabeling implies that any multiplex associations between
network ties of different types will be lost. If a large number of
permutations are applied, and the test statistic calculated in each
case, we have a distribution against which to test the observed
statistic.

QAP has been extended beyond the original form to a version
of network regression (MRQAP), whereby multiple matrices are
used to predict an outcome network (Krackhardt, 1988). The
regression coefficients are calculated in standard ways, using the
respective cells as data points. The significance of each regression
coefficient is determined by a QAP-like procedure between the
relevant matrix and the outcome network, conditioning on the
other matrices. This is a somewhat controversial method because
permutation within this multiple regression framework may be
problematic. Dekker, Krackhardt, and Snijders (2007) proposed
new permutation procedures for QAP to resolve some of these
issues, but concluded that further work was needed to establish
MRQAP using binary data.

6.3. Erdös–Renyi graphs

In terms of a model for an entire network, the simplest is of
course one where ties occur randomly. The most famous version
of this model is the simple random graph model of Erdös and Renyi
(1959), referred to as the Erdös–Renyi graph or Bernoulli graph
distribution (Frank & Nowicki, 1993). A similar model, akin to U|L,
was also proposed by Gilbert (1959), although as noted above,
ideas about random graphs go back to the beginnings of network
analysis. Erdös and Renyi suggested that for fixed N , network ties
occur independently andwith a fixedprobability p. For an observed
network, p is easily estimated as the density. The properties of
this model have been extensively examined, but as noted earlier
a model based solely on randomness is not a good representation
of empirical social networks. The model is still seen at times,
however, usually as a null model against which to compare more
complex effects, as with the discussion of conditional uniform
graph distributions above.
Very early on, Rapoport and colleagues understood that
‘‘biases’’ away from pure randomness were necessary to represent
empirical networks (Rapoport, 1953), especially biases toward
reciprocity and closure. The development of biased net theory
(Rapoport, 1957; Rapoport & Horvath, 1961) was limited by the
elusiveness of a complete mathematical treatment (Pattison &
Robins, 2008) but this can be seen as a forerunner of exponential
random graph models.

6.4. The p1 and p2 models

For directed networks, Holland and Leinhardt (1981) extended
simple random graphmodels by assuming independence between
dyads, rather than tie variables. This permitted the parameteriza-
tion of effects for reciprocity and for differential node-level activity
(out-degree) and popularity (in-degree). The dyad-independence
assumption enabled estimation through standard loglinear mod-
els. Holland and Leinhardt called this model p1, the subscripted
‘1’ implying a program of further research, with progressively en-
larged dependence assumptions (within arcs, within dyads, within
triads, etc.).

The p1 model is an important historical step in network model
development, but is seldom used nowadays. A more sophisticated
extension, the p2 model, still has dyadic independence at its heart,
but conditional on random node-level effects (van Duijn, Snijders,
& Zijlstra, 2004). When node variables are of principal research
interest, especially across multiple research contexts when the
multilevel random node-level effects come into play, the p2 model
can be a valuable method.

6.5. Dependence graphs

ExtendingHolland and Leinhardt’s (1981) dyadic independence
approach, Frank and Strauss (1986) took a crucial step in focusing
on conditional dependence (Dawid, 1979). All tie variables may be
dependent on each other, but only some pairs of tie variables may
be dependent after conditioning on the values of other ties. These
are ‘‘neighboring’’ ties. So, a tie variable Xij is a neighbor of Xkl if the
two variables still affect one another, given the state of all other tie
variables, that is, conditional on the rest of the network.

These notions are common in the graphical modeling literature
(e.g. Lauritzen (1996)). In a similar fashion to that literature, Frank
and Strauss (1986) introduced a dependence graph to represent
possible dependencies among network variables Xij. The nodes
of the dependence graph are the network variables Xij and an
edge between two nodes indicates a neighborhood relationship.
The cliques of the dependence graph can be thought of as local
social neighborhoods of the tie variables (Pattison & Robins, 2002).
If an edge in the dependence graph is absent, the two variables are
conditionally independent and their interaction is not included in
a model based on local social neighborhoods. (See Koskinen and
Daraganova (2013), and Robins et al. (2005), for a more detailed
description of dependence graphs.)

6.6. Exponential random graph models (ERGMs)

ERGMs are models for network structure and are underpinned
by the dependence graph literature. They are typically used
with cross-sectional network data, although longitudinal versions
exist. There are various classes of ERGMs, each with different
dependence assumptions. In all cases, however, the models are
parameterized in terms of patterns of network ties, termed
network configurations. For instance, a mutual tie may be a
configuration, or a triangle of ties. In this way, the model
represents a network as an accumulation of small local network
subgraphs that build the overall, global structure of the network.
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The parameter values indicate the relative force of the different
configurations in this accumulation. Because the configurations
may be indicators of network processes – for instance, a
triangle may indicate network closure – the parameters provide
information about the social processes that may underpin the
network.

So, while my exposition here follows the dependence graph
argument, much applied network research simply uses an ERGM
as a means to model the network in terms of configurations, while
eschewing mathematical antecedents and dependence graphs
(see, for instance, the first section of Lusher, Koskinen, and Robins
(2013), for a more intuitive, less statistical description of ERGMs).
Nevertheless, it is important to note that the use of any ERGM
implicitly carries assumptions about dependence between tie
variables. Even when used implicitly, a dependence assumption
amounts to network theory at a rather deep level (Brandes et al.,
2013).

The general ERGM form follows from the Hammersley–Clifford
theorem, first published by Besag (1974) in the context of
spatial statistics. Analogous models exist in statistical mechanics
(Park & Newman, 2004). The theorem states that the probability
distribution for a set of interacting variables relates solely to the
neighborhood structure (or clique structure) of the dependence
graph. For networks, the neighborhoods are in effect possible
configurations that could be observed in a graph x, so once we
start thinking in terms of configurations we can move away
from dependence graph considerations (although they are still
there implicitly). For a binary network on a given node set N ,
once a dependence hypothesis is specified, it follows from the
Hammersley–Clifford theorem that:

Pr(X = x) = (1/κ) exp{ΣAηAgA(x)} (1)

where:
(i) the summation is over all configurations A;
(ii) ηA is a parameter corresponding to the configuration A;
(iii) gA(x) =


xij∈A xij is the network statistic that defines

configuration A;
(iv) κ is a normalizing quantity to ensure that (1) is a proper

probability distribution.
Frank and Strauss (1986) proposed a homogeneity assumption

whereby parameters would be equated across configurations. In
that case, themodel retains the same form as in expression (1), but
now the parameters relate to the different types of configurations
and the sufficient statistics are counts of the configurations.

In short, the LHS of (1) states that this is a probability
distribution of graphs, with the RHS stating that the probability
of graph x in this distribution is determined by the linear sum
of configuration counts g(x) weighted by parameters, within the
exponential.
Bernoulli random graph models

With no dependencies within the network (an empty depen-
dence graph), we revert to simple random graphmodels, as above.
The cliques of the dependence graph are single nodes (i.e. single
tie variables). With parameters equated for single ties, Eq. (1) be-
comes:

Pr(X = x) = (1/κ) exp(Σi,jθxij) = (1/κ) exp θL(x)

where L(x) is the number of edges (arcs) in x and θ is a density
or edge parameter. This graph distribution is equivalent to an
Erdös–Renyi graph with p = exp θ/(1 + exp θ).
Dyadic independence models

For directed networks, dyadic independence requires edges be-
tween variables Xij and Xji in the dependence graphwith neighbor-
hoods in the form of single edges and dyadic pairs {Xij, Xji}. With
one density parameter θ for all single edge neighborhoods and one
reciprocity parameter ρ for all dyadic neighborhoods, Eq. (1) then
becomes:

Pr(X = x) = (1/κ) exp(θL(x) + ρM(x))

with L(x) the number of arcs andM(x) the number ofmutual dyads
(Xij = Xji = 1) in x. Slightlymore relaxed homogeneity constraints
result in the p1 model.
Markov random graphs

Frank and Strauss (1986) proposed Markov dependence, where
ties Xij and Xkl are conditionally independent if and only if
{i, j} ∩ {k, l} ≠ ∅, that is, two tie variables are conditionally
independent unless they share an actor. With this dependence
assumption, configurations for undirected graphs include single
edges, k-stars and triangles. There is a wider range of possibilities
for directed graph models (Wasserman & Pattison, 1996). An
undirected Markov graph model then has the form:

Pr(X = x) = (1/κ) exp(θL(x)Σr=2,n−1σrSr(x) + τT (x))

with θ a density parameter, and L(x) the number of edges in x, as
before; σr is a parameter for a star of size r , and Sr(x) is the number
of stars of size r in x; τ is a triangle or closure parameter and T (x)
is a count of the number of triangles in x. The expression θL(x) +

Σr=2,n−1σrSr(x) completely parameterizes the degree distribution,
so the τ parameter represents the strength of closure conditional
on the degree distribution of the graph. There are still toomany star
parameters in this model for it to be identified and it is common to
include only 2- and 3-star parameters. In that case, the θ , σ2 and
σ3 parameters control for the first three moments of the degree
distribution.

Wasserman and Pattison (1996) popularized Markov random
graphs as p∗ models. Extensions included models for multivariate
networks (Pattison & Wasserman, 1999), for valued networks
(Robins, Pattison, & Wasserman, 1999), and for bipartite networks
(Skvoretz & Faust, 1999). For a review of the general formulation of
ERGMs and of Markov random graphs, see Robins, Pattison, Kalish,
and Lusher (2007).
Model degeneracy

Despite the appeal of Markov random graph models, they are
frequently beset by problems of model degeneracy. Handcock
(2002) termed a graph distribution as near degenerate if only a very
few (possibly only one or two) distinct graphs had substantial non-
zero probabilities. Certain parameter values for Markov random
graph models place almost all of the probability mass on either
the empty or the full graph, or at least two quite separate regions
(one of low density and another of high density), with a phase
transition from one region to the other as parameter values change
very slightly. Such properties of Markov random graph models
have now been well studied (e.g. Handcock (2002), Jonasson
(1999), Park and Newman (2004), Robins et al. (2005) and Snijders
(2002)). Issues of degeneracy call into question whether Markov
random graph models can adequately represent most network
data. Intuitively, what happens to Markov graph models when
there are heterogeneities in the network (e.g. a long tailed degree
distribution or areas of greater density, i.e. many triangles) is that
the relatively simple Markov parameterization cannot deal with
theheterogeneitywell. For instance, one triangle parameter cannot
deal with regions of low and high triangulation simultaneously.
Social circuit dependence: partial conditional dependence

Pattison and Robins (2002) proposed partial conditional depen-
dence as an extension beyond Markov dependence, where depen-
dence was created by the presence of certain network ties, and
showed how to incorporate this type of dependence into the Ham-
mersley–Clifford theorem. Snijders, Pattison, Robins, and Hand-
cock (2006) used this approach to define social circuit dependence,
where two tie variables are conditionally dependent if their obser-
vation would lead to a 4-cycle.
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Fig. 3. A k-triangle (left panel) and a k-2path (right panel).

Theoretically, 4-cycles have been argued to be collaborative
structures in networks, leading to forms of generalized exchange
(Lazega & Pattison, 1999). Lusher and Robins (2013) provide an
intuitive explanation of social circuit dependencewith an example
of two couples meeting at a party. If one partner from each couple
(i and j) begin to talk, then the other pair (k and l) may also begin to
talk. Here, the presence of existing relationships (i and k, and j and
l) means that the presence of a tie across relationships (i, j) affects
the probability of the other tie (k, l) occurring.

Using both social circuit and Markov dependence assumptions,
Snijders et al. (2006) proposed three new ERGM statistics for
undirected networks: alternating k-stars, alternating k-triangles,
and alternating independent two-paths. These statistics used a non-
linear functional form to combine counts of related configurations
into the one statistic, the so-called alternating form. For instance,
all Markov star parameters are included in the model but with the
constraint that for all k ≥ 2, σ(k+1) = −σk/λ for some λ greater
than 1. It is common to set λ to a fixed value such as 2, but it
can also be estimated (Hunter & Handcock, 2006). Hunter (2007)
proposed a mathematically equivalent version of this parameter,
the geometrically weighted degree parameter, explicitly modeling
the degree distribution but with weights decreasing geometrically
as the degrees increase.

Snijders et al. (2006) showed that with both social circuit
and Markov dependence assumptions, configurations such as a
k-triangle and a k-2path are possible in the model (Fig. 3). The
alternating form of the statistics was also applied to counts of
these configurations. Hunter (2007) again proposed equivalent ge-
ometricallyweighted versions, the geometrically weighted edgewise
shared partner (GWESP) statistic and the geometrically weighted
dyadwise shared partner (GWDSP) statistic, modeling the distri-
butions of shared partners across dyads. The alternating trian-
gle/GWESP parameter captures closure effects, and the 2path/
GWDSP parameter relates to local connectivity, akin to structural
equivalence.

So for undirected networks, a standard social circuit ERGM
can be parameterized parsimoniously with edge, alternating star,
alternating triangle and possibly alternating 2path parameters.
For directed networks, the choice is larger, but the general
approach is the same (Robins, Pattison, & Wang, 2009). Social
selection effects can be included, for instance, with homophily
and sender/receiver effects. While social circuit models do not
entirely avoid degeneracy, the alternating statistics offer sufficient
control over the higher order stars and triangles so as to perform
dramatically better than Markov models.

Because of the complex dependence, estimation from data uti-
lizes Markov chain Monte Carlo Maximum Likelihood estimation
(Hunter & Handcock, 2006; Snijders, 2002). Earlier methods of
pseudo-likelihood estimation (Strauss & Ikeda, 1990) should be
avoided. Simulation from the parameter estimates to compare
non-fitted features of the observed graphs against the simulated
graphs provides information on howwell themodel explains these
additional features (Hunter, Goodreau, & Handcock, 2008).

Recent discussions of social circuit models include Lusher et al.
(2013) and Robins, Snijders, Wang, Handcock, and Pattison (2007).
ERGMs have been extended to other forms of relational data, such
as bipartite networks (Wang et al., 2009). Research on the use of
ERGMs to resolve issues of missing network data and on snowball
sampling of network data is very promising (Handcock & Gile,
2010; Koskinen, Robins, & Pattison, 2010).

7. Methods for network influence

Mason et al. (2007) noted that social psychologists have
studied the psychological processes involved in various forms
of social influence but typically in tightly controlled laboratory
settings, and without consideration of larger scale social contexts,
especially how influence processes develop with multiple sources
and multiple targets over time. Social network researchers have
been less interested in the specific cognitive processes involved in
social influence andmore about how influencemight spread across
a networked social system.

For influence processes on social networks, the structure of the
network x is typically taken as exogenous and fixed and the focus
of interest is on the distribution of attributes Y given that network.
The simple insight is that actors may be influenced by their
networkpartners, so that variableYi maydependon the interaction
effect Yj Xij (that is, the presence of a network tie between i and j
together with the attribute of j). But of course there is no reason to
privilege i or j, so similarly Yj may depend on the interaction effect
YiXij. This simple idea leads naturally to various autoregressive
and autologistic-type models. Autocorrelation approaches have a
long methodological background (e.g. Winsborough, Quarantelli,
and Yutzky (1963)), are familiar in spatial statistics (e.g., Anselin
(1982, 1984), Cliff and Ord (1973, 1981) and Ord (1975)), and were
introduced to network approaches through Doreian and others
(Doreian, 1982, 1989a,b; Doreian, Teuter, & Wang, 1984; Erbring
& Young, 1979; Leenders, 2002).

The network effects model (Doreian, 1982; Erbring & Young,
1979; Friedkin & Johnsen, 1990; Marsden & Friedkin, 1994) is one
such approach. The model is expressed as

Y = αYx + Zβ + ε

where, as above, Y is a vector of attribute variables, x the associ-
ation matrix for the observed network, Z a matrix of exogenous
attribute variables that may be influential in shaping the attitudes,
and ε a vector of residuals. Here α is a parameter for the effect of
the network in transmitting attitudes, and β a vector of parame-
ters for the effect of exogenous attributes on an individual’s at-
titude. Friedkin and Johnsen (1997) summarized a discrete time
version of this model and discuss the results emerging from differ-
ent balances between the network and exogenous variables. Fried-
kin (1998) developed these models further into what he termed a
structural theory of social influence. The association matrix x was
replaced by a weighting matrix w that can incorporate a number
of different effects, including effects derived from x.

Robins, Pattison, and Elliott (2001) introduced an autologistic
model using an exponential random graph approach. This has
recently been extended (Daraganova & Robins, 2013) as the
autologistic actor attribute model.

These autocorrelationmethods continue to be popular and have
been developed and applied in a variety of ways (Valente, 1995,
2005). Similar approaches have been studied in economics, where
influence processes are often referred to as peer effects (An, 2011;
Durlauf & Young, 2001; Jackson, 2010; Manski, 1993). There has
been growing interest in social influence effects in public health
(e.g. Christakis and Fowler (2007)).
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One of the difficulties, of course, is precisely identifying a social
influence effect as distinct from a social selection effect. Certainly,
it is not easy to distinguish causal direction without some form
of longitudinal data. A longitudinal version of network effects
model can be obtained with panel data where the attributes Y are
measured at various time points t while the network X is assumed
constant, so that:
Yt = αYt−1x + Zβ.

Friedkin and Johnsen (1990) showed that in equilibrium this can
be solved as:
Ye = (I − αx)−1Zβ
where Ye are the equilibrium attitudes.

In their extensive recent work on social influence, Christakis
and Fowler (2013) use a similar longitudinal approach, but typi-
cally with binary variables and a logistic link. They argue that in-
fluence effects can be parsed from selection effects if the direction
of ties is taken into account, but there has been considerable debate
about when and if this is possible (e.g. Lyons (2011)). Accordingly,
for suitable longitudinal data there is advantage in modeling both
selection and influence effects simultaneously.

8. Longitudinal modeling

8.1. Statistical methods for the coevolution of ties and attributes

Stochastic actor-orientedmodels (SAOM—also known as stochas-
tic actor based models) were originally designed for the dynamics
of network self organization (Snijders, 1996, 2001). Themodels use
panel network data, so that each network is measured at discrete
time points. The models assume that unobserved changes to net-
work ties occur one at a time between the measurement points
and that these changes arise because actors direct their ties to-
ward other actors to optimize their network environments. To do
this, the model includes an objective function whereby actors may
change their choices of other actors according to network struc-
tural statistics similar to those of exponential random graph mod-
els. For instance, if actors prefer reciprocated ties, then there will
be a positive parameter in the objective function expressing pref-
erences for tie choices that increase reciprocity in the graph. Pa-
rameter estimates are obtained by simulation. Based on a current
estimate, a chain of changes is simulated and the resulting new
graphs are compared to the observed data. The estimate is then
adjusted based on any discrepancy until all parameter estimates
converge. It should be noted that SAOMs condition on the first ob-
servation point, and so explicitlymodel only the process of change,
not the structure at a particular time point. There is a close rela-
tionship to ERGMs, with the equilibrium distribution of an SAOM
equivalent to a suitably specified ERGM (Snijders et al., 2010).

These actor-oriented models are now a major method to
model the co-evolution of network structures and individual
behaviors. The basic idea remains as before, but now the panel data
includes changeable network ties and actor attributes. Network
ties are assumed to affect attributes (influence) at the same
time that attributes affect ties (selection), and there are separate
objective functions for ties and attributes. So these models
provide a principledmethodwhereby both influence and selection
parameters are included in the one model at the same time
(Snijders, Steglich, & Schwienberger, 2007; Steglich, Snijders, &
West, 2006). Aswith ERGMs, SAOMs are computationally intensive
in estimation, so they are not readily applicable to very large
network networks. But, for many longitudinal network datasets,
they are now the preferred method and they are increasingly
popular in the social networks literature. A recent (2010) special
issue of the journal Social Networks covers the detail of these
models very well and we direct interested readers to the articles
therein (e.g. Snijders et al. (2010)). The popularity of thesemethods
resulted in the publication of a second special issue in 2012
(e.g. Snijders and Doreian (2012)).
8.2. Methods for time ordered transactions

Models for transactions or events on networks are starting to
be introduced. Unlike a long-standing relational tie of indefinite
duration, a transaction or event occurs at a specific time and so
together form a time-ordered sequence of events. Recent work
has focused on models to explain the structuring of events:
e.g. event-based actor orientedmethods (Stadtfeld&Geyer-Schulz,
2011); andmodels drawing on event history analysis including the
Relational Events Models (Butts, 2008b) and extensions by Brandes,
Lerner, and Snijders (2009) and de Nooy (2010).

These approaches are among the most interesting and novel
of recent social network methods. Notably, they provide a means
to model sequences of exchanges among individuals without
aggregating across time, so they are well suited to understanding
communication structures such as email. At the same time,
structural dependencies among communication exchanges can be
modeled (e.g. reciprocity in email exchanges).

Time sequencing complicates network analytic methods. To
represent the specific exchanges of diffusion and influence directly
it is necessary to take time into account, implying the static
analysis of network structure is not necessarily sufficient. Paths in
a network representation aggregated across timemay not properly
represent paths that do not violate the forward movement of time
(Moody, 2002).

One of the features of this special issue is a number of papers
that deal with time ordered transactions and the time sequencing
of network-based exchanges.

9. Conclusions

While this reviewhas focused on some important approaches in
the modeling of network data, it is not intended to be exhaustive.
There has been an enormous methodological development over
the last decade alone. Nevertheless, it will be obvious from
the work examined in this article that network methods have
developed to cover a wide range of distinctive data analytic
challenges. Moreover, methodological research continues at a fast
pace, even for approaches that have a long network analytic
tradition. There remain a number of difficult problems to be solved,
and many methods can be considered as at an early stage of
development. Given another decade, the field may well look quite
different in the sophistication and capability of what can be done,
although the basic directions of research interest are likely to
remain fairly constant.

There is a growing understanding that for certain important
social science questions, a social network perspective is central,
not just an add-on to previous theories and methods. This
implies that methodological development must not simply occur
in isolation of good social science. Good social network theory
(as a form of social science) needs to be associated closely with
methodological advance. As theory develops to produce novel
hypotheses, methods will follow. At the same time, new methods
open the possibility of examining new theories in novel ways.
The most fruitful approach will be a proper combination of
social network theory and method, and applied within specific
disciplinary domains to address specific empirical challenges.
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