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Abstract

SIENA (for Simulation Investigation for Empirical Network Analysis) is a computer program that
carries out the statistical estimation of models for the evolution of social networks according
to the dynamic actor-oriented model of Snijders (2001, 2005) and Snijders, Steglich, and
Schweinberger (2007). It also carries out MCMC estimation for the exponential random graph
model according to the procedures described in Snijders (2002) and Snijders, Pattison, Robins,
and Handcock (2006).

1



Contents

1 General information 5

I Minimal Intro 7

2 General remarks for StOCNET. 7
2.1 Operating StOCNET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Using SIENA 8
3.1 Steps for estimation: Choosing SIENA in StOCNET. . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Steps for looking at results: Executing SIENA. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Giving references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II User’s manual 11

4 Program parts 11

5 Input data 12
5.1 Digraph data files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 Structurally determined values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Dyadic covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Individual covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Interactions and dyadic transformations of covariates . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Dependent action variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.7 Composition change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.8 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Model specification 20
6.1 Important structural effects for network dynamics . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Effects for network dynamics associated with covariates . . . . . . . . . . . . . . . . . . . . 23
6.3 Effects on behavior evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 Exponential Random Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4.1 Effects associated with covariates for ERGMs . . . . . . . . . . . . . . . . . . . . . 26
6.5 Model Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.5.1 Model Type: directed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5.2 Model Type: non-directed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.6 Additional interaction effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6.1 Interaction effects for network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6.2 Interaction effects for behavior dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.6.3 Interaction effects in the ERGM case . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.7 Random effects models: unobserved actor heterogeneity . . . . . . . . . . . . . . . . . . . . 32

7 Estimation 34
7.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Maximum Likelihood and Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.4 Supplementing R functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Other remarks about the estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.5.1 Changing initial parameter values for estimation . . . . . . . . . . . . . . . . . . . . 39
7.5.2 Fixing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5.3 Automatic fixing of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



7.5.4 Conditional and unconditional estimation . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5.5 Required changes from conditional to unconditional estimation . . . . . . . . . . . . 41

8 Standard errors 41

9 Tests 41
9.1 Score-type tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 Example: one-sided tests, two-sided tests, and one-step estimates . . . . . . . . . . . . . . . 42

9.2.1 Multi-parameter tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2.2 Testing homogeneity assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.3 Alternative application: convergence problems . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Simulation 46
10.1 Conditional and unconditional simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Exponential random graph models 48

12 Options for model type, estimation and simulation 50

13 Getting started 52
13.1 Model choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.1.1 Exploring which effects to include . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.2 Convergence problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.3 Composition change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

14 Multilevel network analysis 56
14.1 Multi-group Siena analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14.2 Meta-analysis of Siena results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

15 Formulas for effects 60
15.1 Network evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

15.1.1 Network evaluation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
15.1.2 Network endowment function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.3 Network rate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.1.4 Network rate function for Model Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . 67

15.2 Behavioral evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
15.2.1 Behavioral evaluation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
15.2.2 Behavioral endowment function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
15.2.3 Behavioral rate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

15.3 Exponential random graph model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

16 Parameter interpretation 74
16.1 Longitudinal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16.1.1 Ego – alter selection tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.1.2 Ego – alter influence tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

16.2 Exponential random graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

17 Running Siena outside of StOCNET 82
17.1 Siena04: implementing internal effect parameters . . . . . . . . . . . . . . . . . . . . . . . . 83
17.2 Siena04: copying model and option definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 84

18 Command line changes in parameters and options 85

19 Limitations and time use 88

20 Changes compared to earlier versions 88

3



III Programmer’s manual 91

21 SIENA files 91
21.1 Basic information file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21.2 Definition files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

21.2.1 Model specification through the MO file . . . . . . . . . . . . . . . . . . . . . . . . . 94
21.2.2 Specification of simulations through the SI file . . . . . . . . . . . . . . . . . . . . . . 98

21.3 Data files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
21.4 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
21.5 Other information files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

22 Units and executable files 101
22.1 Executable files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
22.2 Running SIENA in console mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

23 Starting to look at the source code 102
23.1 Sketch of the simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
23.2 Remarks about the likelihood algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

24 Parameters and effects 107
24.1 Effect definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
24.2 Changing or adding definitions of effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

25 Statistical Monte Carlo Studies 112

26 Constants 113

27 References 114

4



1 General information

SIENA1, shorthand for Simulation Investigation for Empirical Network Analysis, is a computer pro-
gram that carries out the statistical estimation of models for repeated measures of social networks
according to the dynamic actor-oriented model of Snijders and van Duijn (1997), Snijders (2001),
and Snijders, Steglich, and Schweinberger (2007); also see Steglich, Snijders, and Pearson (2010).
A tutorial for this method is given in Snijders, van de Bunt and Steglich (2010). Some examples
are presented, e.g., in van de Bunt (1999); van de Bunt, van Duijn, and Snijders (1999); and
van Duijn, Zeggelink, Stokman, and Wasseur (2003); and Steglich, Snijders, and West (2006). A
website for SIENA is maintained at http://stat.gamma.rug.nl/snijders/siena.html . Introductions in
French and Spanish are given in de Federico de la Rúa (2004, 2005) and Jariego and de Federico
de la Rúa (2006).

The program also carries out MCMC estimation for the exponential random graph model
(abbreviated to ERGM or ERG model), also called p∗ model, of Frank and Strauss (1986), Frank
(1991), Wasserman and Pattison (1996), and Snijders, Pattison, Robins, and Handcock (2006).
The algorithm is described in Snijders (2002). A good introduction is Robins, Snijders, Wang,
Handcock, and Pattison (2007).

This is a provisional manual for SIENA version 3.2 (which has not been released yet, but of which
beta versions are obtainable from the SIENA website). Changes of this version compared to earlier
versions are in Section 20. Official releases of the program and the manual can be downloaded
from the web sites, http://stat.gamma.rug.nl/stocnet/ and http://www.stats.ox.ac.uk/siena/. One
way to run SIENA is as part of the StOCNET program collection (Boer, Huisman, Snijders, Steglich,
Wichers & Zeggelink, 2006), which can be downloaded from the same website. For the operation of
StOCNET, the reader is referred to the corresponding manual. If desired, SIENA can be operated
also independently of StOCNET, as is explained in Section 17.

This manual consists of two parts: the user’s manual and the programmer’s manual. It can be
viewed and printed with the Adobe Acrobat reader. The manual is updated rather frequently, and
it may be worthwhile to check now and then for updates.

The manual focuses on the use of SIENA for analysing the dynamics of directed networks. The
case of non-directed networks is very similar, and at various points this case is described more
in particular. Sections on data requirements, general operation, etc., apply as well to parameter
estimation in the ERGM. Some sections are devoted specifically to this model.

For getting started, there are various options:

1. One excellent option is to read the User’s Manual from start to finish (leaving
aside the Programmer’s Manual).

2. A second option is to read the Minimal Introduction contained in Sections 2
3, together with the table of contents to have an idea of what can be looked
up later.

3. Another option is first to read the Minimal Introduction and further to focus
on Sections 6 for the model specification, 7 to get a basic insight in what
happens in the parameter estimation, 7.2 to understand the output file (which
is meant to be as self-explanatory as possible), and 13 for the basis of getting
started.

1This program was first presented at the International Conference for Computer Simulation and the Social
Sciences, Cortona (Italy), September 1997, which originally was scheduled to be held in Siena. See Snijders & van
Duijn (1997).
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Part I

Minimal Intro
The following is a minimal cookbook-style introduction for getting started with SIENA as operated
from within StOCNET.

2 General remarks for StOCNET.

1. Ensure that the directories in Options - Directories are existing, and that these are the direc-
tories where your data are stored, and where the output is to be stored.

2. Always keep in mind that, when the green sign is visible, StOCNET
expects you to press this button in order to confirm the most recent commands and to
continue.

(You can choose to Cancel if you do not wish to confirm.)

3. The output file which you see in Results is the file, with extension .out, that is stored in the
directory specified in Options - Directories as the Directory of session files.

2.1 Operating StOCNET.

1. Start by choosing to enter a new session or open a previous session.

2. You have to go sequentially through the various steps:
Data – Transformation (optional) – Selection (optional) – Model – Results.

3. When starting a new session, you must select one or more network data sets as dependent
variable(s), and optionally one or more network data sets as dyadic covariates (independent
variables).
In addition, you can optionally select one or more files with actor-level covariates (‘actor
attributes’) (as independent variables). If you do this, StOCNETwill determined the number
of variables in the data set and it is advisable to edit the names of the variables (which have
the not very helpful default names of Attribute1, etc.).

4. After selecting the data files and clicking Apply, you are requested to save the session, and
give it a name which serves later to identify this session.

5. If necessary, transform the data and indicate missing data values. This is self-explanatory
(consult the StOCNETmanual if you need help). You have to note yourself how you trans-
formed the variables. But it is recorded also in the session-tree on the right hand side of the
StOCNETscreen.
It is also advisable to save the session (Session - Save session) after having transformed the
data.
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3 Using SIENA

3.1 Steps for estimation: Choosing SIENA in StOCNET.

1. In the Model step, select SIENA.
Then select Data Specification, where the dependent network variable(s) must go to Digraphs
in seq. order and the dyadic covariates (if any) to the box with that name.
If you specify one file as dependent network variable, then the ERGM (p∗) model is applied.
If you specify more than one file as dependent network variables, then the (longitudinal)
actor-oriented model is applied, and the ordering of the files in the Digraphs in seq. order box
must be the correct order in time.

2. If you are analyzing only a network as the dependent variable, then the actor covariates (if
any) must go to the box Constant covariates or Changing covariates; the ‘changing’ refers to
change over time, and can be used only for the longitudinal option.

3. Next go to the Model specification and select the effects you wish to include in the model.
When starting, choose a small number (e.g., 1 to 4) effects.

4. After clicking OK, you can then continue by estimating parameters: the Estimation option
must be selected (which contrasts with Simulation), and the estimation algorithm then is
started by clicking the Run button.

5. It will depend on the size of the data set and the number of parameters in the model, how
long the estimation takes. The output file opens automatically in the Results step.

6. Below you see some points about how to evaluate the reliability of the results. If the con-
vergence of the algorithm is not quite satisfactory but not extremely poor, then you can
continue just by Running the estimation algorithm again.

7. If the parameter estimates obtained are very poor (not in a reasonable range), then it usually
is best to start again, with a simpler model, and from a standardized starting value. The
latter option must be selected in the Model specification – Options screen.

SIENA estimates parameters by the following procedure:

1. Certain statistics are chosen that should reflect the parameter values;
the finally obtained parameters should be such, that the expected values of the statistics are
equal to the observed values.
Expected values are approximated as the averages over a lot of simulated networks.
Observed values are calculated from the data set. These are also called the target values.

2. To find these parameter values, an iterative stochastic simulation algorithm is applied.
This works as follows:

(a) In Phase 1, the sensitivity of the statistics to the parameters is roughly determined.

(b) In Phase 2, provisional parameter values are updated:
this is done by simulating a network according to the provisional parameter values,
calculating the statistics and the deviations between these simulated statistics and the
target values, and making a little change (the ‘update’) in the parameter values that
hopefully goes into the right direction.
(Only a ‘hopefully’ good update is possible, because the simulated network is only a
random draw from the distribution of networks, and not the expected value itself.)
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(c) In Phase 3, the final result of Phase 2 is used, and it is checked if the average statistics
of many simulated networks are indeed close to the target values. This is reflected in
the so-called t statistics for deviations from targets.

3.2 Steps for looking at results: Executing SIENA.

1. Look at the start of the output file for general data description (degrees, etc.), to check your
data input.

2. When parameters have been estimated, first look at the t ratios for deviations from

targets. These are good if they are all smaller than 0.1 in absolute value, and reasonably
good if they are all smaller than 0.2.
We say that the algorithm has converged if they are all smaller than 0.1 in absolute value,
and that it has nearly converged if they are all smaller than 0.2.
These bounds are indications only, and may be taken with a grain of salt.

For well converged estimates, you can interpret the estimates and standard errors as explained
later in this manual.

If the estimates are not good enough, just estimate once again, using the previously obtained
values as the new starting values; this use of previous values is the default. However, if the
estimates you obtained are way off, then it is better to start from clean slate and use so-called
standard initial values – which is one of the estimation options. Turn this option off after
one estimation job.

Items 3–4 apply only to the ERGM (non-longitudinal) case and to estimation for longitudinal
data using the ML (Maximum Likelihood) method.

3. In the ERGM (non-longitudinal) case and when using the ML (Maximum Likelihood) method
for longitudinal data, it is often harder to obtain good convergence. This means that it may
take several runs of the estimation algorithm, and that it may be necessary to fiddle with
two parameters in the Model Specification – Options: the Multiplication factor and the Initial
value of gain parameter.

4. (This item is of interest only for the ERGM and ML cases).
The Multiplication factor determines for these cases the number of Metropolis-Hastings steps
taken for simulating each new network. When this is too low, the sequentially simulated
networks are too similar, which will lead to high autocorrelation in the generated statistics.
This leads to poor performance of the algorithm. These autocorrelations are given in the
output file. When some autocorrelations are more than 0.1, it is good to increase the Multi-
plication factor.
When the Multiplication factor is unnecessarily high, computing time will be unnecessarily
high.

5. (This item also is of interest mainly for the ERGM and ML cases).
The Initial value of gain parameter determines the step sizes in the parameter updates in the
iterative algorithm. A too low value implies that it takes very long to attain a reasonable
parameter estimate when starting from an initial parameter value that is far from the ‘true’
parameter estimate. A too high value implies that the algorithm will be unstable, and may
be thrown off course into a region of unreasonable (e.g., hopelessly large) parameter values.
In the longitudinal case using the Method of Moments (the default estimation procedure),
it usually is unnecessary to change this. In the ERGM case, when the autocorrelations are
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smaller than 0.1 but the t statistics for deviations from targets are relatively small
(less than, say, 0.3) but do not all become less than 0.1 in absolute value in repeated runs of
the estimation algorithm, then it will be good to decrease the Initial value of gain parameter.
Do this by dividing it by, e.g., a factor 2 or a factor 5, and then try again a few estimation
runs.

6. If all this is of no avail, then the conclusion may be that the model specification is incorrect
for the given data set.

7. Further help in interpreting output is in Section 7.2 of this manual.

3.3 Giving references

When using SIENA, it is appreciated that you refer to this manual and to one or more relevant
references of the methods implemented in the program. The reference to this manual is the
following.

Snijders, Tom A.B., Christian E.G. Steglich, Michael Schweinberger, and Mark Huisman. 2008.
Manual for SIENA version 3.2. Groningen: University of Groningen, ICS. Oxford: University of
Oxford, Department of Statistics. http://www.stats.ox.ac.uk/siena/

A basic reference for the network dynamics model is Snijders (2001) or Snijders (2005). Basic
references for the model of network-behavior co-evolution are Snijders, Steglich, and Schweinberger
(2007) and Steglich, Snijders, and Pearson (2010). A tutorial is Snijders, van de Bunt, and Steglich
(2010).

Basic references for the non-longitudinal (Exponential Random Graph) model are Frank and
Strauss (1986); Wasserman and Pattison (1996); Snijders (2002); and Snijders, Pattison, Robins,
and Handcock (2006). A more didactic reference here is Robins, Snijders, Wang, Handcock, and
Pattison (2007).

More specific references are Schweinberger (2005) for the score-type goodness of fit tests;
Schweinberger and Snijders (2007) for the calculation of standard errors of the Method of Moments
estimators; and Snijders, Koskinen and Schweinberger (2010) for maximum likelihood estimation.
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Part II

User’s manual
The user’s manual gives the information for using SIENA. It is advisable also to consult the user’s
manual of StOCNET because normally, the user will operate SIENA from within StOCNET.

4 Parts of the program

The operation of the SIENA program is comprised of four main parts:

1. input of basic data description,

2. model specification,

3. estimation of parameter values using stochastic simulation,

4. simulation of the model with given and fixed parameter values.

The normal operation is to start with data input, then specify a model and estimate its pa-
rameters, and then continue with new model specifications followed by estimation or simulation.
For the comparison of (nested) models, statistical tests can be carried out.

The program is organized in the form of projects. A project consists of data and the current
model specification. All files internally used in a given project have the same root name, which
is called the project name, and indicated in this manual by pname. (In view of its use for special
simulation purposes, it is advised not to use the project name sisim; also avoid to use the name
siena, which is too general for this purpose.)

The main output is written to the text file pname.out, auxiliary output is contained in the text
files pname.log and pname.eff.
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5 Input data

The main statistical method implemented in SIENA is for the analysis of repeated measures of
social networks, and requires network data collected at two or more time points. It is possible
to include changing actor variables (representing behavior, attitudes, outcomes, etc.) which also
develop in a dynamic process, together with the social networks. As repeated measures data on
social networks, at the very least, two or more data files with digraphs are required: the observed
networks, one for each time point. The number of time points is denoted M .

The other statistical method implemented in SIENA if the parameter estimation for the ex-
ponential random graph model (‘ERGM ’). For this method, one observed network data set is
required.

In addition, various kinds of variables are allowed:

1. actor-bound or individual variables, also called actor attributes, which can be symbolized as
vi for each actor i; these can be constant over time or changing;
the changing individual variables can be dependent variables (changing dynamically in mu-
tual dependence with the changing network) or independent variables (exogenously changing
variables; then they are also called individual covariates).

2. dyadic covariates, which can be symbolized as wij for each ordered pair of actors (i, j); they
are allowed only to have integer values.

All variables must be available in ASCII (‘raw text’) data files, described in detail below. It is
best to use the ‘classical’ type of filenames, without embedded blanks and not containing special
characters. These files, the names of the corresponding variables, and the coding of missing data,
must be made available to SIENA. In the StOCNET environment, files and variable names are
entered in the Data dialog window, while missing data are identified in the Transformation dialog
window. In the Model dialog window, network data and additional variables subsequently can
be selected for SIENA analyses. This is done by first choosing SIENA from the list of available
statistical methods, and then pushing the Data specification button.

Names of variables must be composed of at most 11 characters. This is because they are used
as parts of the names of effects which can be included in the model, and the effect names should
not be too long. The use of the default variable and file names proposed by StOCNET is not
recommended.

5.1 Digraph data files

Each digraph must be contained in a separate input file. Two data formats are allowed. For large
number of nodes (say, larger than 100), the Pajek format is preferable to the adjacency matrix
format. For more than a few hundred nodes,

1. Adjacency matrices.
The first is an adjacency matrix, i.e., n lines each with n integer numbers, separated by
blanks or tabs, each line ended by a hard return. The diagonal values are meaningless but
must be present.

Although this section talks only about digraphs (directed graphs), it is also possible that all
observed adjacency matrices are symmetric. This will be automatically detected by SIENA,
and the program will then utilize methods for non-directed networks.

The data matrices for the digraphs must be coded in the sense that their values are converted
by the program to the 0 and 1 entries in the adjacency matrix. A set of code numbers is
required for each digraph data matrix; these codes are regarded as the numbers representing
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a present arc in the digraph, i.e., a 1 entry in the adjacency matrix; all other numbers will
be regarded as 0 entries in the adjacency matrix. Of course, there must be at least one such
code number. All code numbers must be in the range from 0 to 9, except for structurally
determined values (see below).

This implies that if the data are already in 0-1 format, the single code number 1 must be
given. As another example, if the data matrix contains values 1 to 5 and only the values 4
and 5 are to be interpreted as present arcs, then the code numbers 4 and 5 must be given.

2. Pajek format.
If the digraph data file has extension name .net, then the program assumes that the data file
has Pajek format. This can not yet be done when using StOCNET, and therefore this option
is available only when running SIENA outside of StOCNET, as described in Section 17.
The keywords Arcs*, Edges*, Arcslist*, and Edgeslist* are allowed, followed by data
lines according to the Pajek rules. These keywords must be in lines that contain no further
characters. All of these keywords may be used in one input file. The Edges* and Edgeslist*

keywords announce that mutual ties are following. Note that the Arcslist* and Edgeslist*

formats produce binary data. Tie values different from 1, which are used to indicate missings,
structurally determined values, or valued data, can only be input in the Pajek format by using
the keywords Arcs* and Edges*.
An example of such input files is given in the s50 data set that is distributed on the SIENA
website.

Code numbers for missing numbers also must be indicated – in the case of either input data
format. These codes must, of course, be different from the code numbers representing present arcs.

Although this section talks only about digraphs (directed graphs), it is also possible that all
observed ties (for all time points) are mutual. This will be automatically detected by SIENA, and
the program will then utilize methods for non-directed networks.

If the data set is such that it is never observed that ties are terminated, then the network
dynamics is automatically specified internally in such a way that termination of ties is impossible.
(In other words, in the simulations of the actor-based model the actors have only the option to
create new ties or to retain the status quo, not to delete existing ties.)

5.1.1 Structurally determined values

It is allowed that some of the values in the digraph are structurally determined, i.e., deterministic
rather than random. This is analogous to the phenomenon of ‘structural zeros’ in contingency
tables, but in SIENA not only structural zeros but also structural ones are allowed. A structural
zero means that it is certain that there is no tie from actor i to actor j; a structural one means
that it is certain that there is a tie. This can be, e.g., because the tie is impossible or formally
imposed, respectively.

Structural zeros provide an easy way to deal with actors leaving or joining the network between
the start and the end of the observations. Another way (more complicated but it gives possibilities
to represent actors entering or leaving at specified moments between observations) is described in
Section 5.7.

Structurally determined values are defined by reserved codes in the input data: the value 10
indicates a structural zero, the value 11 indicates a structural one. Structurally determined values
can be different for the different time points. (The diagonal of the data matrix always is composed
of structural zeros, but this does not have to be indicated in the data matrix by special codes.)
The correct definition of the structurally determined values can be checked from the brief report
of this in the output file, and by looking at the file pname.s01 (for the first time point), pname.s02
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(second time point), etc. In these files, the structurally determined positions (structural zeros as
well as structural ones) are indicated by the value 1, all others (i.e., the positions where ties are
random) by the value 0.

Structural zeros offer the possibility of analyzing several networks simultaneously under the
assumption that the parameters are identical. Another option to do this is given in Section 14.
E.g., if there are three networks with 12, 20 and 15 actors, respectively, then these can be integrated
into one network of 12 + 20 + 15 = 47 actors, by specifying that ties between actors in different
networks are structurally impossible. This means that the three adjacency matrices are combined
in one 47×47 data file, with values 10 for all entries that refer to the tie from an actor in one network
to an actor in a different network. In other words, the adjacency matrices will be composed of
three diagonal blocks, and the off-diagonal blocks will have all entries equal to 10. In this example,
the number of actors per network (12 to 20) is rather small to obtain good parameter estimates,
but if the additional assumption of identical parameter values for the three networks is reasonable,
then the combined analysis may give good estimates.

In such a case where K networks (in the preceding paragraph, the example had K = 3) are
combined artificially into one bigger network, it will often be helpful to define K − 1 dummy
variables at the actor level to distinguish between the K components. These dummy variables can
be given effects in the rate function and in the evaluation function (for “ego”), which then will
represent that the rate of change and the out-degree effect are different between the components,
while all other parameters are the same.

It will be automatically discovered by SIENA when functions depend only on these components
defined by structural zeros, between which tie values are not allowed. For such variables, only
the ego effects are defined and not the other effects defined for the regular actor covariates and
described in Section 6.2. This is because the other effects then are meaningless. If at least one
case is missing (i.e., has the missing value data code for this covariate), then the other covariate
effects are made available.

When SIENA simulates networks including some structurally determined values, if these values
are constant across all observations then the simulated tie values are likewise constant. If the
structural fixation varies over time, the situation is more complicated. Consider the case of two
consecutive observations m and m + 1, and let Xsim

ij be the simulated value at the end of the
period from tm to tm+1. If the tie variable Xij is structurally fixed at time tm at a value xij(tm),
then Xsim

ij also is equal to xij(tm), independently of whether this tie variable is structurally fixed
at time tm+1 at the same or a different value or not at all. This is the direct consequence of the
structural fixation. From SIENA version 3.17s onward, the following rule is also used. If Xij is
not structurally fixed at time tm but it is structurally fixed at time tm+1 at some value xij(tm+1),
then in the course of the simulation process from tm to tm+1 this tie variable can be changed as
part of the process in the usual way, but after the simulation is over and before the statistics are
calculated it will be fixed to the value xij(tm+1).

The target values for the algorithm of the Method of Moments estimation procedure are cal-
culated for all observed digraphs x(tm+1). However, starting from SIENA version 3.17s, for tie
variables Xij that are structurally fixed at time tm, the observed value xij(tm+1) is replaced by
the structurally fixed value xij(tm). This gives the best possible correspondence between target
values and simulated values in the case of changing structural fixation.

5.2 Dyadic covariates

As the digraph data, also each measurement of a dyadic covariate must be contained in a separate
input file with a square data matrix, i.e., n lines each with n integer numbers, separated by blanks
or tabs, each line ended by a hard return. The diagonal values are meaningless but must be present.
Pajek input format is currently not possible for dyadic covariates.
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A distinction is made between constant and changing dyadic covariates, where change refers to
changes over time. Each constant covariate has one value for each pair of actors, which is valid
for all observation moments, and has the role of an independent variable. Changing covariates, on
the other hand, have one such value for each period between measurement points. If there are M
waves of network data, this covers M − 1 periods, and accordingly, for specifying a single changing
dyadic covariate, M − 1 data files with covariate matrices are needed.

The StOCNET interface requires the user to enter these in blocks of M − 1, and within each
block in sequential order. This is done in the Data specification menu of the SIENA model page. For
each such block, also a name must be provided to identify the changing dyadic covariate. For data
sets with only two waves, the specification of changing dyadic covariates is meaningless, because
there is only one period, hence there is no change over periods possible. Constant dyadic covariates
can be selected in the respective section of the Data specification menu. They are identified by the
name given to them in the initial Data step in StOCNET.

The mean is always subtracted from the covariates. See the section on Centering .

5.3 Individual covariates

Individual (i.e., actor-bound) variables can be combined in one or more files. If there are k variables
in one file, then this data file must contain n lines, with on each line k numbers which all are read
as real numbers (i.e., a decimal point is allowed). The numbers in the file must be separated by
blanks and each line must be ended by a hard return. There must not be blank lines after the last
data line.

Also here, a distinction is made between constant and changing actor variables. Each constant
actor covariate has one value per actor valid for all observation moments, and has the role of an
independent variable.

Changing variables can change between observation moments. They can have the role of de-
pendent variables (changing dynamically in mutual dependence with the changing network) or
of independent variables; in the latter case, they are also called ‘changing individual covariates’.
Dependent variables are treated in the section below, this section is about individual variables in
the role of independent variables – then they are also called individual covariates.

When changing individual variables have the role of independent variables, they are assumed
to have constant values from one observation moment to the next. If observation moments for
the network are t1, t2, ..., tM , then the changing covariates should refer to the M − 1 moments
t1 through tM−1 , and the m-th value of the changing covariates is assumed to be valid for the
period from moment tm to moment tm+1 . The value at tM , the last moment, does not play a
role. Changing covariates, as independent variables, are meaningful only if there are 3 or more
observation moments, because for 2 observation moments the distinction between constant and
changing covariates is not meaningful.

Each changing individual covariate must be given in one file, containing k = M − 1 columns
that correspond to the M −1 periods between observations. It is not a problem if there is an M ’th
column in the file, but it will not be read.

The mean is always subtracted from the covariates. See the section on Centering .
When an actor covariate is constant within waves, or constant within components separated

by structural zeros (which means that ties between such components are not allowed), then only
the ego effect of the actor covariate is made available. This is because the other effects then are
meaningless. This may cause problems for combining several data sets in a meta-analysis (see
Section 14). If at least one case is missing (i.e., has the missing value data code), then the other
covariate effects are made available. When analysing multiple data sets in parallel, for which the
same set of effects is desired to be included in the .MO file, it is therefore advisable to give data
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sets in which a given covariate has the same value for all actors one missing value in this covariate;
purely to make the total list of effects in the MO file independent of the observed data.

5.4 Interactions and dyadic transformations of covariates

For actor covariates, two kinds of transformations to dyadic covariates are made internally in
SIENA. Denote the actor covariate by vi, and the two actors in the dyad by i and j. Suppose that
the range of vi (i.e., the difference between the highest and the lowest values) is given by rV . The
two transformations are the following:

1. dyadic similarity, defined by 1−
(
|vi−vj |/rV

)
, and centered so the the mean of this similarity

variable becomes 0;
note that before centering, the similarity variable is 1 if the two actors have the same value,
and 0 if one has the highest and the other the lowest possible value;

2. same V , defined by 1 if vi = vj , and 0 otherwise (not centered) (V is the name of the
variable). This can also be referred to as dyadic identity with respect to V .

Dyadic similarity is relevant for variables that can be treated as interval-level variables; dyadic
identity is relevant for categorical variables.

In addition, SIENA offers the possibility of user-defined two- and three-variable interactions
between covariates; see Section 6.6.

5.5 Dependent action variables

SIENA also allows dependent action variables, also called dependent behavior variables. This can be
used in studies of the co-evolution of networks and behavior, as described in Snijders, Steglich, and
Schweinberger (2007) and Steglich, Snijders, and Pearson (2010). These action variables represent
the actors’ behavior, attitudes, beliefs, etc. The difference between dependent action variables and
changing actor covariates is that the latter change exogenously, i.e., according to mechanisms not
included in the model, while the dependent action variables change endogenously, i.e., depending on
their own values and on the changing network. In the current implementation only one dependent
network variable is allowed, but the number of dependent action variable can be larger than one.
Unlike the changing individual covariates, the values of dependent action variables are not assumed
to be constant between observations.

Dependent action variables must have nonnegative integer values; e.g., 0 and 1, or a range of
integers like 0,1,2 or 1,2,3,4,5. Each dependent action variable must be given in one file, containing
k = M columns, corresponding to the M observation moments.

5.6 Missing data

SIENA allows that there are some missing data on network variables, on covariates, and on de-
pendent action variables. Missing data in changing dyadic covariates are not yet implemented.
Missing data must be indicated by missing data codes (this can be specified in StOCNET, if SIENA
is operated through StOCNET ), not by blanks in the data set.

Missingness of data is treated as non-informative. One should be aware that having many
missing data can seriously impair the analyses: technically, because estimation will be less stable;
substantively, because the assumption of non-informative missingness often is not quite justified.
Up to 10% missing data will usually not give many difficulties or distortions, provided missingness
is indeed non-informative. When one has more than 20% missing data on any variable, however,
one may expect problems in getting good estimates.
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In the current implementation of SIENA, missing data are treated in a simple way, trying to
minimize their influence on the estimation results. This method is further explained in Huisman
and Steglich (2008), where comparisons are also made with other ways of dealings with the missing
information.

The basic idea is the following. A brief sketch of the procedure is that missing values are
imputed to allow meaningful simulations; for the calculation of the target statistics in the Method
of Moments, tie variables and actor variables with missings are not used. More in detail, the
procedure is as follows.

The simulations are carried out over all variables, as if they were complete. To enable this,
missing data are imputed. In the initial observation, missing entries in the adjacency matrix are
set to 0, i.e., it is assumed that there is no tie; this is done because normally data are sparse,
so ‘no tie’ is the modal value of the tie variable. In the further observations, for any variable, if
there is an earlier observed value of this variable then the last observed value is used to impute
the current value (the ‘last observation carry forward’ option, cf. Lepkowski, 1989); if there is no
earlier observed value, the value 0 is imputed. For the dependent behavior variables the same
principle is used: if there is a previous observation of the same variable then this value is imputed,
if there is none then the observationwise mode of the variable is imputed. Missing covariate data
are replaced by the variable’s average score at this observation moment. In the course of the
simulations, however, the adjusted values of the dependent action variables and of the network
variables are allowed to change.

In order to ensure a minimal impact of missing data treatment on the results of parameter
estimation (method of moments estimation) and/or simulation runs, the calculation of the target
statistics used for these procedures uses only non-missing data. When for an actor in a given
period, any variable is missing that is required for calculating a contribution to such a statistic,
this actor in this period does not contribute to the statistic in question. For network and dependent
action variables, the tie variable or the actor variable, respectively, must provide valid data both
at the beginning and at the end of a period for being counted in the respective target statistics.

5.7 Composition change

SIENA can also be used to analyze networks of which the composition changes over time, because
actors join or leave the network between the observations. This can be done in two ways: using the
method of Huisman and Snijders (2003), or using structural zeros. (For the maximum likelihood
estimation and multi-group options, the Huisman-Snijders method is not implemented, and only
the structural zeros method can be used.) Structural zeros can specified for all elements of the
tie variables toward and from actors who are absent at a given observation moment. How to do
this is described in subsection 5.1.1. This is straightforward and not further explained here.2 This
subsection explains the method of Huisman and Snijders (2003), which uses the information about
composition change in a somewhat more efficient way.

For this case, a data file is needed in which the times of composition change are given. For
networks with constant composition (no entering or leaving actors), this file is omitted and the
current subsection can be disregarded.

Network composition change, due to actors joining or leaving the network, is handled separately
from the treatment of missing data. The digraph data files must contain all actors who are part of
the network at any observation time (denoted by n) and each actor must be given a separate (and
fixed) line in these files, even for observation times where the actor is not a part of the network

2In the Siena01 program there is an option to automatically convert data with a file of composition change into
a SIENA project with the composition change treated as structural zeros. This is option 4 in the basic information
file; see the end of this subsection.
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(e.g., when the actor did not yet join or the actor already left the network). In other words, the
adjacency matrix for each observation time has dimensions n× n.

At these times, where the actor is not in the network, the entries of the adjacency matrix can
be specified in two ways. First as missing values using missing value code(s). In the estimation
procedure, these missing values of the joiners before they joined the network are regarded as 0
entries, and the missing entries of the leavers after they left the network are fixed at the last
observed values. This is different from the regular missing data treatment. Note that in the
initial data description the missing values of the joiners and leavers are treated as regular missing
observations. This will increase the fractions of missing data and influence the initial values of the
density parameter.

A second way is by giving the entries a regular observed code, representing the absence or
presence of an arc in the digraph (as if the actor was a part of the network). In this case, additional
information on relations between joiners and other actors in the network before joining, or leavers
and other actors after leaving can be used if available. Note that this second option of specifying
entries always supersedes the first specification: if a valid code number is specified this will always
be used.

For joiners and leavers, crucial information is contained in the times they join or leave the
network (i.e., the times of composition change), which must be presented in a separate input file.
This data file must contain n lines, each line representing the corresponding actor in the digraph
files, with on each line four numbers. The first two concern joiners, the last two concern leavers:
1) the last observation moment at which the actor is not yet observed, 2) the time of joining
(expressed as a fraction of the length of the period), 3) the last observation moment at which the
actor is observed, 4) the time of leaving (also expressed as a fraction). Also actors who are part of
the network at all observation moments must be given values in this file. In the following example,
the number of observation moments is considered to be M = 5, which means there are four periods;
period m starts at observation moment m and ends at m+ 1 for m = 1, 2, ..., 4 = M − 1.

Example of file with times of composition change

Present at all five observation times 0 1.0 5 0.0
Joining in period 2 at fraction 0.6 of length of period 2 0.6 5 0.0
Leaving in period 3 at fraction 0.4 of length of period 0 1.0 3 0.4
Joining in per. 1 (0.7) and leaving in per. 4 (0.2) 1 0.7 4 0.2
Leaving in per. 2 (0.6) and joining in per. 3 (0.8) 3 0.8 2 0.6

Note that for joining, the numbers 0 1.0 have a different meaning than the numbers 1 0.0.
The former numbers indicate that an actor is observed at time 1 (he/she joined the network right
before the first time point), the latter indicate that an actor is not observed at observation time
1 (he/she joined just after the first time point). The same holds for leavers: 5 0.0 indicates that
an actor is observed at time point 5, whereas 4 1.0 indicates that an actor left right before he/she
was observed at time point 5.

From the example it follows that an actor is only allowed to join, leave, join and then leave,
or leave and then join the network. The time that the actor is part of the network must be an
uninterrupted period. It is not allowed that an actor joins twice or leaves twice. When there is no
extra information about the time at which an actor joins or leaves (in some known period), there
are three options: set the fraction equal to 0.0, 0.5, or 1.0. The second option is thought to be
least restrictive.

The following special options are available for treatment of composition change by indicating
this in the corresponding line in the basic information file (see Section 21.1):
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2. The values of the joiners before joining are replaced by the value 0 (no ties), and the values
of the leavers after leaving are treated as regular missing data.

3. The values of the joiners before joining and the values of the leavers after leaving are treated
as regular missing data.

4. Before joining and after leaving, actors are treated as structural zeros.

Option 4 has the same effect as specifying the data for the absent actors as structural zeros; this
option is useful for users who have a data set ready with joiners and leavers and wish to transform
it automatically to a data set with structural zeros, e.g., because they wish to use the maximum
likelihood estimation procedure.

5.8 Centering

Individual as well as dyadic covariates are centered by the program in the following way.
For individual covariates, the mean value is subtracted immediately after reading the variables.

For the changing covariates, this is the global mean (averaged over all periods). The values of
these subtracted means are reported in the output.

For the dyadic covariates and the similarity variables derived from the individual covariates, the
grand mean is calculated, stored, and subtracted during the program calculations. (Thus, dyadic
covariates are treated by the program differently than individual covariates in the sense that the
mean is subtracted at a different moment, but the effect is exactly the same.)

The formula for balance is a kind of dissimilarity between rows of the adjacency matrix. The
mean dissimilarity is subtracted in this formula and also reported in the output. This mean
dissimilarity is calculated by a formula given in Section 15.

The dependent network variable is not centered.

19



6 Model specification

After defining the data, the next step is to specify a model. In the StOCNET environment, this is
done by clicking the Model specification button that is activated after a successful Data specification
in StOCNET ’s Model menu, provided that SIENA was selected from the list of available models.

The model specification consists of a selection of ‘effects’ for the evolution of each dependent
variable (network or behavior). A list of all available effects for a given SIENA project is given in
the secondary output file pname.log. A list of all effects in the objective function is given in the
file pname.eff.

For the longitudinal case, three types of effects are distinguished (see Snijders, 2001; Steglich,
Snijders and Pearson, 2010):

• rate function effects
The rate function models the speed by which the dependent variable changes; more precisely:
the speed by which each network actor gets an opportunity for changing her score on the
dependent variable.
Advice: in most cases, start modeling with a constant rate function without additional rate
function effects. Constant rate functions are selected by exclusively checking the ‘basic rate
parameter’ (for network evolution) and the main rate effects (for behavioral evolution) on
the model specification screen. (When there are important size or activity differences between
actors, it is possible that different advice must be given, and it may be necessary to let the
rate function depend on the individual covariate that indicates this size; or on the out-degree.)

• evaluation function effects
The evaluation function3 models the network actors’ satisfaction with their local network
neighborhood configuration. It is assumed that actors change their scores on the dependent
variable such that they improve their total satisfaction – with a random element to represent
the limited predictability of behavior. In contrast to the endowment function (described
below), the evaluation function evaluates only the local network neighborhood configuration
that results from the change under consideration. In most applications, the evaluation func-
tion will be the main focus of model selection.
The network evaluation function normally should always contain the ‘density’, or ‘out-degree’
effect, to account for the observed density. For directed networks, it mostly is also advisable
to include the reciprocity effect, this being one of the most fundamental network effects. Like-
wise, behavior evaluation functions should normally always contain the shape parameter, to
account for the observed prevalence of the behavior, and (unless the behavior is dichotomous)
the quadratic shape effect, to account more precisely for the distribution of the behavior.

• endowment function effects
The endowment function4 is an extension of the evaluation function that allows to distinguish
between new and old network ties (when evaluating possible network changes) and between
increasing or decreasing behavioral scores (when evaluating possible behavioral changes).
The function models the loss of satisfaction incurred when existing network ties are dissolved
or when behavioral scores are decreased to a lower value (hence the label ‘endowment’).
For a number of effects, the endowment function is implemented not for the Method of
Moments estimation method, but only for Maximum Likelihood and Bayesian estimation.
This is indicated in Section 15.
Advice: start modeling without any endowment effects, and add them at a later stage. Do
not use endowment effects for behavior unless the behavior variable is dichotomous.

3The evaluation function was called objective function in Snijders, 2001.
4The endowment function is similar to the gratification function in Snijders, 2001.
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The estimation and simulation procedures of SIENA operate on the basis of the model spec-
ification which comprises the set of effects included in the model as described above, together
with the current parameter values and the Model Type (see Section 6.5). After data input, the
constant rate parameters and the density effect in the network evaluation function have default
initial values, depending on the data. All other parameter values initially are 0. The estimation
process changes the current value of the parameters to the estimated values. Values of effects not
included in the model are not changed by the estimation process. It is possible for the user to
change parameter values and to request that some of the parameters are fixed in the estimation
process at their current value.

6.1 Important structural effects for network dynamics

For the structural part of the model for network dynamics, the most important effects are as
follows. The mathematical formulae for these and other effects are given in Section 15. Here we
give a more qualitative description.

1. The out-degree effect which always must be included.

2. The reciprocity effect which practically always must be included.

3. There is a choice of four network closure effects. Usually it will be sufficient to express
the tendency to network closure by including one or two of these. They can be selected by
theoretical considerations and/or by their empirical statistical significance. Some researchers
may find the last effect (distances two) less appealing because it expresses network closure
inversely.

a. The transitive triplets effect, which is the classical repre-
sentation of network closure by the number of transitive
triplets. For this effect the contribution of the tie i → j
is proportional to the total number of transitive triplets
that it forms – which can be transitive triplets of the type
{i→ j → h; i→ h} as well as {i→ h→ j; i→ j};
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b. The balance effect, which may also be called structural equivalence with respect to out-
going ties. This expresses a preference of actors to have ties to those other actors who
have a similar set of outgoing ties as themselves. Whereas the transitive triplets effect
focuses on how many same choices are made by ego (the focal actor) and alter (the
other actor) — the number of h for which i → h and j → h, i.e., xih = xjh = 1 where
i is ego and j is alter — , the balance effect considers in addition how many the same
non-choices are made — xih = xjh = 0.

c. The transitive ties effect is similar to the transitive triplets effect, but instead of con-
sidering for each other actor j how many two-paths i → h → j there are, it is only
considered whether there is at least one such indirect connection. Thus, one indirect tie
suffices for the network embeddedness.

d. The number of actors at distance two effect expresses network closure inversely: stronger
network closure (when the total number of ties is fixed) will lead to fewer geodesic
distances equal to 2. When this effect has a negative parameter, actors will have a
preference for having few others at a geodesic distance of 2 (given their out-degree,
which is the number of others at distance 1); this is one of the ways for expressing
network closure.
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4. The three-cycles effect, which can be regarded as generalized reci-
procity (in an exchange interpretation of the network) but also as
the opposite of hierarchy (in a partial order interpretation of the
network). A negative three-cycles effect, together with a positive
transitive triplets or transitive ties effect, may be interpreted as a
tendency toward local hierarchy. The three-cycles effect also con-
tributes to network closure.
In a non-directed network, the three-cycles effect is identical to the
transitive triplets effect.
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5. Another triadic effect is the betweenness effect, which represents brokerage: the tendency for
actors to position themselves between not directly connected others, i.e., a preference of i for
ties i→ j to those j for which there are many h with h→ i and h 6→ j.⊙
Degree-related effects may be important especially for networks where degrees are theoreti-
cally important and represent social status or other features important for network dynamics;
and/or for networks with high dispersion in in- or out-degrees (which may be an empirical
reflection of the theoretical importance of the degrees). Include them if there are theoretical
reasons for doing so, but only in such cases.

6. The in-degree popularity effect (again, with or without ‘sqrt’, with the same considerations
applying) reflects tendencies to dispersion in in-degrees of the actors; or, tendencies to actors
with high in-degrees attracting extra incoming ties ‘because’ of their high current in-degrees.

7. The out-degree popularity effect (again, with or without ‘sqrt’, with the same considerations
applying) reflects tendencies to actors with high out-degrees attracting extra incoming ties
‘because’ of their high current out-degrees. This leads to a higher correlation between in-
degrees and out-degrees.

8. The in-degree activity effect (with or without ‘sqrt’) reflects tendencies to actors with high
in-degrees to send out extra outgoing ties ‘because’ of their high current in-degrees. This
leads to a higher correlation between in-degrees and out-degrees. The in-degree popularity
and out-degree activity effects are not distinguishable in Method of Moments estimation;
then the choice between them must be made on theoretical grounds.

9. The out-degree activity effect (with or without ‘sqrt’) reflects tendencies to actors with high
out-degrees to send out extra outgoing ties ‘because’ of their high current out-degrees. This
also leads to dispersion in out-degrees of the actors.

10. The in-in degree assortativity effect (where parameter 2 is the same as the sqrt version, while
parameter 1 is the non-sqrt version) reflects tendencies to actors with high in-degrees to
preferably be tied to other actors with high in-degrees.

11. The in-out degree assortativity effect (with parameters 2 or 1 in similar roles) reflects tenden-
cies to actors with high in-degrees to preferably be tied to other actors with high out-degrees.

12. The out-in degree assortativity effect (with parameters 2 or 1 in similar roles) reflects tenden-
cies to actors with high out-degrees to preferably be tied to other actors with high in-degrees.

13. The out-out degree assortativity effect (with parameters 2 or 1 in similar roles) reflects tenden-
cies to actors with high out-degrees to preferably be tied to other actors with high out-degrees.
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6.2 Effects for network dynamics associated with covariates

For each individual covariate, there are several effects which can be included in a model specifi-
cation, both in the network evolution part and in the behavioral evolution part (should there be
dependent behavior variables in the data).

• network rate function

1. the covariate’s effect on the rate of network change of the actor;

• network evaluation and endowment functions

1. the covariate-similarity effect; a positive parameter implies that actors prefer ties to oth-
ers with similar values on this variable – thus contributing to the network-autocorrelation
of this variable not by changing the variable but by changing the network;

2. the effect on the actor’s activity (covariate-ego); a positive parameter will imply the
tendency that actors with higher values on this covariate increase their out-degrees
more rapidly;

3. the effect on the actor’s popularity to other actors (covariate-alter); a positive parameter
will imply the tendency that the in-degrees of actors with higher values on this covariate
increase more rapidly;

4. the effect of the squared variable on the actor’s popularity to other actors (squared
covariate-alter) (included only if the range of the variable is at least 2). This normally
makes sense only if the covariate-alter effect itself also is included in the model. A
negative parameter implies a unimodal preference function with respect to alters’ values
on this covariate;

5. the interaction between the value of the covariate of ego and of the other actor (covari-
ate ego × covariate alter); a positive effect here means, just like a positive similarity
effect, that actors with a higher value on the covariate will prefer ties to others who
likewise have a relatively high value; when used together with the alter effect of the
squared variable this effect is quite analogous to the similarity effect, and for dichoto-
mous covariates, in models where the ego and alter effects are also included, it even is
equivalent to the similarity effect (although expressed differently), and then the squared
alter effect is superfluous;

6. the ‘same covariate’, or covariate identity, effect, which expresses the tendency of the
actors to be tied to others with exactly the same value on the covariate; whereas the
preceding four effects are appropriate for interval scaled covariates (and mostly also for
ordinal variables), the identity effect is suitable for categorical variables;

7. the interaction effect of covariate-similarity with reciprocity;

8. the effect of the covariate of those to whom the actor is indirectly connected, i.e., through
one intermediary but not with a direct tie; this value-at-a-distance can represent effects
of indirectly accessed social capital.

The usual order of importance of these covariate effects on network evolution is: evaluation effects
are most important, followed by endowment and rate effects. Inside the group of evaluation effects,
it is the covariate-similarity effect that is most important, followed by the effects of covariate-ego
and covariate-alter.

When the network dynamics is not smooth over the observation waves — meaning that the
pattern of ties created and terminated, as reported in the initial part of the output file under the
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heading Initial data description – Change in networks – Tie changes between subsequent observa-
tions, is very irregular across the observation periods — it can be important to include effects of
time variables on the network. Time variables are changing actor covariates that depend only on
the observation number and not on the actors. E.g., they could be dummy variables, being 1 for
one or some observations, and 0 for the other observations.

For actor covariates that are constant within observation waves, or – in the case that there are
structurally determined values – constant within connected components, only the ego effects are
defined, because only those effects are meaningful. This exclusion of the alter, similarity and other
effects for such actor variables applies only to variables without any missing values.

For each dyadic covariate, the following network evaluation effects can be included in the model
for network evolution:

• network evaluation and endowment functions

1. main effect of the dyadic covariate;

2. the interaction effect of the dyadic covariate with reciprocity.

The main evaluation effect is usually the most important. In the current version of SIENA, there
are no effects of dyadic covariates on behavioral evolution.

6.3 Effects on behavior evolution

For models with one or more dependent behavior variables, i.e., models for the co-evolution of
networks and behavior, the most important effects for the behavior dynamics are the following.
In these descriptions, with the ‘alters’ of an actor we refer to the other actors to whom the focal
actor has an outgoing tie. The dependent behavior variable is referred to as Z.

1. The shape effect, expressing the basic drive toward high values on Z. A zero value for the
shape will imply a drift toward the midpoint of the range of the behavior variable.

2. The effect of the behavior Z on itself, or quadratic shape effect, which is relevant only if the
number of behavioral categories is 3 or more. This can be interpreted as giving a quadratic
preference function for the behavior. When the coefficient for the shape effect is βZ1 and for
the effect of Z on itself, or quadratic shape effect, is βZ2 , then the contributions of these two
effects are jointly βZ1 (zi− z̄) + βZ2 (zi− z̄)2. With a negative coefficient βZ2 , this is a unimodal
preference function, with the maximum attained for zi = z̄−2βZ1 /β

Z
2 . (Of course additional

effects will lead to a different picture; but as long as the additional effects are linear in zi –
which is not the case for similarity effects! –, this will change the location of the maximum
but not the unimodal shape of the function.) This can also be regarded as negative feedback,
or a self-correcting mechanism: when zi increases, the further push toward higher values of
zi will become smaller and when zi decreases, the further push toward lower values of zi will
become smaller. On the other hand, when the coefficient βZ2 is positive, the feedback will
be positive, so that changes in zi are self-reinforcing. This can be an indication of addictive
behavior.

3. The average similarity effect, expressing the preference of actors to being similar with respect
to Z to their alters, where the total influence of the alters is the same regardless of the number
of alters.

4. The total similarity effect, expressing the preference of actors to being similar to their alters,
where the total influence of the alters is proportional to the number of alters.
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5. The average alter effect, expressing that actors whose alters have a higher average value of
the behavior Z, also have themselves a stronger tendency toward high values on the behavior.

6. The indegree effect, expressing that actors with a higher indegree (more ‘popular’ actors)
have a stronger tendency toward high values on the behavior.

7. The outdegree effect, expressing that actors with a higher outdegree (more ‘active’ actors)
have a stronger tendency toward high values on the behavior.

Effects 1 and 2 will practically always have to be included as control variables. (For dependent
behavior variables with 2 categories, this applies only to effect 1.) When the behavior dynamics
is not smooth over the observation waves — meaning that the pattern of steps up and down, as
reported in the initial part of the output file under the heading Initial data description – Dependent
actor variables – Changes, is very irregular across the observation periods — it can be important
to include effects of time variables on the behavior. Time variables are changing actor covariates
that depend only on the observation number and not on the actors. E.g., they could be dummy
variables, being 1 for one or some observations, and 0 for the other observations.

The average similarity, total similarity, and average alter effects are different specifications of
social influence. The choice between them will be made on theoretical grounds and/or on the basis
of statistical significance.

For each actor-dependent covariate as well as for each of the other dependent behavior variables,
the effects on Z which can be included are the following.

1. The main effect: a positive value implies that actors with a higher value on the covariate will
have a stronger tendency toward high Z values.

2. An interaction effect, which is a choice among three, dependent on the internal parameter
for this effect:

value 1: interaction of actor variable with average similarity;
value 2: interaction of actor variable with total similarity;
value 3: interaction of actor variable with average alter.
See Section 15.2.1.

3. Interactions between two or three actor variables, see Section 6.6.

6.4 Exponential Random Graph Models

For the non-longitudinal (‘ERGM’) case, default advice is given in Snijders et al. (2006) and in
Robins et al. (2007). The basic structural part of the model is comprised, for directed networks,
by the following effects. For their mathematical definition, see Section 15.3.

1. The reciprocity effect.

2. The alternating k-out-stars effect to represent the distribution of the out-degrees.

3. The alternating k-in-stars effect to represent the distribution of the in-degrees.

4. For alternating transitive k-triangles effect to represent the tendency to transitivity.

5. The alternating independent two-paths effect to represent the preconditions for transitivity,
or alternatively, the association between in-degrees and out-degrees.

6. The number of three-cycles to represent cyclicity, or generalized reciprocity, or the converse
of hierarchy.
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For nondirected networks. the basic structural part is comprised by the following, smaller, set.

1. The alternating k-stars effect to represent the distribution of the degrees.

2. For alternating transitive k-triangles effect to represent the tendency to transitivity.

3. The alternating independent two-paths effect to represent the preconditions for transitivity,
or alternatively, the association between in-degrees and out-degrees.

Other effects can be added to improve the fit.
To obtain good convergence results for the ERGM case, it will usually be necessary to increase

the default value of the multiplication factor; see Sections 3.2 and 11.

6.4.1 Effects associated with covariates for ERGMs

For each individual covariate, there are several effects which can be included in a model specification
for an Exponential Random Graph Model. The main of these are the following.

1. the covariate-similarity effect; a positive parameter implies that actors prefer ties to others
with similar values on this variable – thus contributing to the network-autocorrelation of this
variable;

2. the effect on the actor’s activity (covariate-ego); a positive parameter will imply the tendency
that actors with higher values on this covariate have higher out-degrees;

3. the effect on the actor’s popularity to other actors (covariate-alter); a positive parameter will
imply the tendency that actors with higher values on this covariate have higher in-degrees;

4. the ‘same covariate’, or covariate identity, effect, which expresses the tendency of the actors
to be tied to others with exactly the same value on the covariate; whereas the preceding four
effects are appropriate for interval scaled covariates (and mostly also for ordinal variables),
the identity effect is suitable for categorical variables.

For each dyadic covariate, the following network evaluation effects can be included in the ERG
model:

1. main effect of the dyadic covariate.

6.5 Model Type

When the data is perfectly symmetric, this will be detected by SIENA. Then the analysis options
for nondirected networks will be followed.

6.5.1 Model Type: directed networks

For directed networks, the Model Type distinguishes between the model of Snijders (2001) (Model
Type 1), that of Snijders (2003) (Model Type 2), and the tie-based model described in Snijders
(2006) (Model Type 3). Model Type 1 is the default model and is described in the basic publications
on Stochastic Actor-Oriented Models for network dynamics.

Model type 2 is at this moment not implemented in SIENA version 3.

In Model Type 2, the ‘decisions’ by the actors consist of two steps: first a step to increase or
decrease their out-degree; when this step has been taken, the selection of the other actor towards
whom a new tie is extended (if the out-degree rises) or from a an existing tie is withdrawn (if the
out-degree drops). The decision by an actor to increase or decrease the number of outgoing ties
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is determined on the basis of only the current degree; the probabilities of increasing or decreasing
the out-degree are expressed by the distributional tendency function ξ (indicated in the output as
xi) and the volatility function ν (indicated as nu). Which new tie to create, or which existing tie
to withdraw, depends in the usual way on the evaluation and endowment functions. Thus, the
outdegree distribution is governed by parameters that are not connected to the parameters for the
structural dynamics. The use of such an approach in statistical modeling minimizes the influence
of the observed degrees on the conclusions about the structural aspects of the network dynamics.
This is further explained in Snijders (2003).

For Model Type 2, in the rate function, effects connected to these functions ξ and ν are
included. On the other hand, effects in the evaluation function that depend only on the out-
degrees are canceled from the model specification, because they are not meaningful in Model
Type 2. To evaluate whether Model Type 1 or Model Type 2 gives a better fit to the observed
degree distribution, the output gives a comparison between the observed out-degrees and the fitted
distribution of the out-degrees (as exhibited by the simulated out-degrees). For Model Type 2 this
comparison is always given. For Model Type 1, this comparison is given by adding 10 to the Model
Code in the advanced options. (For LATEX users: the log file contains code that can be used to
make a graph of the type given in Snijders, 2003).

For using Model Type 2, it is advised to first estimate some model according to Model Type
1 (this may be a simple model containing a reciprocity effect only, but it could also include more
effects), and then – using the parameters estimated under Model Type 1 – change the specification
to Model Type 2, and use the unconditional estimation method (see Section 7.5.4) (instead of the
conditional method which is the default). It is likely that the very first model estimated under
Model Type 2 will have results with poor convergence properties, but in such cases it is advised
just to estimate the same model another time, now using the parameter values obtained under the
previous Model Type 2 run as the initial values for the estimation.

To obtain a good model specification with respect to the rates of change in dependence of the
out-degrees, three effects can be included:

1. the out-degrees effect

2. the factorial out-degree effect

3. the logarithmic out-degree effect.

These are the effects defined in formula (18) of Snijders (2003b) and indicated with the parameters
α1, α2, and α3, respectively. The user has to see from the estimation results which, or which two,
out of these effects should be included to yield a good fit for the out-degrees.

In addition these types, there is Model Type 6 which implements the reciprocity model of
Wasserman (1979) and Leenders (1995) (also see Snijders, 1999, 2005) — provided that no other
effects are chosen than the outdegree effect, the reciprocity effect and perhaps the reciprocity
endowment effect, and possible also effects of actor covariates or dyadic covariates. This model
is meaningful only as a “straw man” model to provide a test of the null hypothesis that the
dynamics of the dyads are mutually independent, against the alternative hypothesis that there
do exist network effects (which make the dyad processes mutually dependent). For this purpose,
Model Type 6 can be chosen, while for one or more network effects such as the effects representing
transitivity, the null hypothesis is tested that their coefficients are zero (see Section 9).

The Model Type is specified in the model options as (part of) the Model Code.

6.5.2 Model Type: non-directed networks

Non-directed networks are an undocumented option (there currently only is the presentation Snij-
ders 2007), and therefore mentioned here reluctantly for those users who want to use this option
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anyway.
SIENA detects automatically when the networks all are non-directed, and then employs a model

for this special case. For non-directed networks, the Model Type has seven possible values, as
described in Snijders (2007).

1. Forcing model:
one actor takes the initiative and unilaterally imposes that a tie is created or dissolved.

2. Unilateral initiative and reciprocal confirmation:
one actor takes the initiative and proposes a new tie or dissolves an existing tie; if the actor
proposes a new tie, the other has to confirm, otherwise the tie is not created; for dissolution,
confirmation is not required.

3. Tie-based model:
a random pair of actors is chosen (actor-specific rate functions are not used here), and the
average change in objective function (1) for toggling (i, j) and (j, i) is the log-odds of the
probability of changing the tie variable.

4. Pairwise conjunctive model:
a pair of actors is chosen and reconsider whether a tie will exist between them; the tie will
exist if both agree, it will not exist if at least one does not choose for it.

5. Pairwise disjunctive (forcing) model:
a pair of actors is chosen and reconsider whether a tie will exist between them; the tie will
exist if at least one of them chooses for the tie, it will not exist if both do not want it.

6. Pairwise compensatory (additive) model:
a pair of actors is chosen and reconsider whether a tie will exist between them; this is based
on the sum of their utilities for the existence of this tie.

In Models 1-2, where the initiative is one-sided, the rate function is comparable to the rate function
in directed models. In Models 4-6, however, the pair of actors is chosen at a rate which is the product
of the rate functions λi and λj for the two actors. This means that opportunities for change of
the single tie variable xij occur at the rate λi × λj . The numerical interpretation is different from
that in Models 1-2.

6.6 Additional interaction effects

It is possible for the user to define additional interaction effects for the network and the behavior.
This applies both to longitudinal and non-longitudinal (ERG) modeling. The basis is provided by
the initial definition, by SIENA, of “unspecified interaction effects”. Modifying the internal effect
parameters of these effects allows the definition of two-way or three-way interactions.

6.6.1 Interaction effects for network dynamics

The following kinds of user-defined interactions are possible for the network dynamics.

• For longitudinal models:
a. Ego effects of actor variables can interact with all effects.
b. Further, interaction effects are permitted which are combinations of actor variables, dyadic
variables, and reciprocity.
c. The transitive triplets effect can interact with the reciprocity effect in two ways, in four
ways with similarity between actor variables, and in four ways with dyadic covariates.
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d. The transitive triplets, 3-cycles, and transitive ties effects can be restricted to triplets
having the same value on an actor covariate; or triplets in which all pairs have the value 1
on a dyadic covariate.

• For non-longitudinal (ERG) models:
Actor covariates and dyadic covariates can interact with each other and with reciprocity.

The specification is made by changing the internal effect parameter for the interaction effects.
The values of these internal parameters can be changed in the pname.mo file described in Sec-
tion 21.2.1. In StOCNET, they are accessible as the “par.” column in the Advanced Options
screen of the Model Specification.

For interaction effects, this parameter represents a code for the two or three interacting effects.
Each effect is represented by its index number in three digits (including leading zeros) as reported
in the file called pname.eff (recall that pname stands for your project name). Thus, two-way
interactions are represented by twice three digits: e.g., the code 020003 refers to the interaction
between the effects numbered 20 and 3, where the numbers are the rank numbers in this list of
all effects. Leading zeros of the total parameter can be skipped, so that the code 020003 can also
be represented by 20003 (but not by 203!). The order does not matter, so that the codes 020003,
003020, 20003, and 3020 all are equivalent. Three-way interactions similarly are represented by
thrice three digits. For example, the code 020028003 represents the interaction effects between
the effects numbered 20, 28, and 3. E.g., to implement the interaction effect between the effects
numbered 20 and 3, in the pname.mo file the lines that initially are

unspecified interaction effect

0 0 0 0 0.000000 0

0 0 0 0 0.000000 0

0 0 0 0 0.000000 0

must be changed into

unspecified interaction effect

0 0 0 0 0.000000 020003

0 0 0 0 0.000000 0

0 0 0 0 0.000000 0

After this is done, SIENA will automatically replace the name by the suitable interaction effect
name. (This is done by Siena04; and also when successfully exiting Siena03 and Siena07.)

One of the uses of interaction effects is non-homogeneity in time: interactions with an actor
variable that depends only on time (the observation number).

For example, if there are four observations, two cumulative dummy variables could be used for
the periods, defined by one data file with all rows equal to
0 1 1 1

and another data file with all rows equal to
0 0 1 1

where these data files are used as changing actor covariates, called, e.g., dum1 and dum2. For
the detailed interpretation, it is important to realize that all covariates are centered internally in
SIENA. To avoid misinterpretation, one can look up in the file pname.dac (see Section 21.3) what
are the values used by SIENA. If there are no other time-changing actor covariates, then in this
example all lines in the .dac files are
-0.6667 0.3333 0.3333 -0.3333 -0.3333 0.6667

Now suppose that the model specification includes a parameter βr for reciprocity, βr1 for the
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interaction of reciprocity with dummy variable dum1, and βr2 for the interaction of reciprocity
with dum2. Then the total effect of reciprocity is given by

βr + βr1 dum1 + βr2 dum2 ;

this is then equal to
βr − 0.6667βr1 − 0.3333βr2
for period 1 (from observation 1 to observation 2),
βr + 0.3333βr1 − 0.3333βr2
for period 2, and
βr + 0.3333βr1 + 0.6667βr2
for period 3.

The *.dac file made internally by Siena stores the values of time-changing covariates (see Siena
manual section 21.3). Here the variables have been centered, and they are as used internally by
Siena. For four observations / three periods, the number of elements of each row is three times
the number of changing actor covariates. The order of the variables is the same as the order in
the output file (initial section). This means that, if for the network process, the interaction with
dum1, and the interaction with dum2, I get parameter estimates bn, bnd1, bnd2, then the resulting
values for the network process are bn - 0.6667*bnd1 - 0.3333*bnd2 for period 1 bn + 0.3333*bnd1
- 0.3333*bnd2 for period 2 bn + 0.3333*bnd1 + 0.6667*bnd2 for period 3.

Interactions are also possible between reciprocity and transitive triplets. Here it must be taken
into account that several ways are possible for such an interaction. The two following interactions
are available.

• •

•

i j

h

........................................................................................................... ...............
..........................................................................................................................

.....................................................................................................
......
.......
.......
.

........
........
........
........
........
........
........
........
........
........
........
...................
...............

Interaction reciprocity ×
transitive triplets, type 1.

Parameter 1002003.
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Interaction reciprocity ×
transitive triplets, type 2.

Parameter 2002003.

To interpret these interactions, keep in mind that the existence of the tie i→ j is the ‘dependent
variable’. The usual condition for this tie in the transitive triplets effect is the number of two-paths
i→ h→ j. For the type 1 interaction, this condition is extended with the extra requirement that
the ‘dependent’ tie is already reciprocated, i.e., there already is the tie j → i. For the type 2
interaction, the condition on each two-path is extended with the extra requirement that the two-
path is reciprocated, i.e., the two-path j → h→ i also exists. To specify these interaction effects,
simply change the internal effect parameter into 1002003 or 2002003, respectively.
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×
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type 1.

Parameter 1003def.
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Interaction similarity
×

transitive triplets,
type 2.

Parameter 2003def.
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Interaction similarity
×

transitive triplets,
type 3.

Parameter 3003def.
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Interaction similarity
×

transitive triplets,
type 4.

Parameter 4003def.

In addition, interaction effects can be specified between transitive triplets and (1) similarity
between actor variables and (2) dyadic covariates. Here the variables are represented by the
number 001 for the first variable, 002 for the second variable, etc., so the numbers are not from
the pname.eff file but just the order in which the variables occur in all of the files. Generally, def
stands for the 3-digit representation (with leading zeros) of the number of the actor variable and
also the number of the dyadic covariate; these sets of variables are numbered separately, so the
first dyadic covariate is represented also by 001.

The parameter 1003def, 2003def, 3003def, and 4003def, specifies transitive triplet effects
where the transitive triplet is weighted by the similarity between two actors on actor variable
number def: for code 1003def between actors i and j, for 2003def between actors i and h, for
3003def between actors j and h, and for 4003def by the product of the similarity between actors i
and h and the similarity between actors j and h. Analogously, the parameter 11003def, 12003def,
13003def, and 14003def, specifies transitive triplet effects where the transitive triplet is weighted
by dyadic variable number def: for code 11003def for actors i and j, for 12003def for actors i and
h, and for 13003def for actors j and h, and for 14003def by the product of the dyadic variable for
actors i and h and for actors j and h. The dyadic variables here are not centered!! For example,
for the first actor variable, code 1003001 will define the transitive triplets effect weighted by the
similarity between actors i and j on the first actor variable.

Further, three triadic effects: transitive triplets, 3-cycles, and transitive ties, can be restricted
to triplets which all have the same value of an actor variable; or triplets in which all pairs have
the value 1 on a dyadic covariate. This is achieved by the following codes:

8003def : transitive triplets restricted to triplets of actors having the same value on actor
covariate number def;

8005def : 3-cycles restricted to triplets of actors having the same value on actor covariate number
def;

8006def : transitive ties restricted to triplets of actors having the same value on actor covariate
number def;

18003def : transitive triplets restricted to triplets of actors where all pairs have the value 1 on
dyadic covariate number def;

18005def : 3-cycles restricted to triplets of actors where all pairs have the value 1 on dyadic
covariate number def;

18006def : transitive ties restricted to triplets of actors where all pairs have the value 1 on
dyadic covariate number def.
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The calculation of user-defined effects is slightly more time-consuming than the calculation of
internally defined effects. Therefore, when there is the choice between two equivalent effects – e.g.,
in longitudinal modeling, interactions of actor covariates with reciprocity – it is advisable to use
the predefined interaction effects.

6.6.2 Interaction effects for behavior dynamics

For behavior dynamics, interaction effects can be defined by the user, for each dependent behavior
variable separately, as interactions of two or three actor variables. The actor variables (changing
and non-changing) are numbered in the order in which they appear in the pname.mo file: first
the dependent variables, then the non-changing actor variables, then the other changing actor
variables. For the internal effect parameter defining the interaction effect, each actor variable is
represented by its index number in this order, in two digits (including leading zero if the number
is less than 10). E.g., the parameter 0203 represents the interaction between variables number 2
and number 3, and parameter 010404 represents the interaction between variables 1, 4 and 4. The
interactions are represented by products of the centered variables.

In addition, there are interactions available between actor variables and influence, as described
in Section 15.2.1.

6.6.3 Interaction effects in the ERGM case

In the ERGM case, covariates can interact with each other and also with reciprocity. In the case
that there are structurally determined values, variables that are constant within connected com-
ponents can interact with any other effects. Other interaction effects are currently not supported.

Interaction effects in the ERGM case are defined simply by the change statistic given by the
product of the change statistics of the two or three components. This does not work for interactions
between two or more structural effects, and only to a limited extent for interactions involving
covariates. The reason is that the product of two change statistics is not necessarily a change
statistic again.

In cases where this simple rule does not apply, the program will run but an error message
will be given only at the end of the estimations or simulations. The error message includes the
diagnosis ‘An incorrect change statistic has been used’. The results then are meaningless.

6.7 Random effects models: unobserved actor heterogeneity

The network (and behavior) evolution may be affected by the fact that actors are heterogeneous.
If all relevant actor heterogeneity is observed in the form of actor covariates, then actor hetero-
geneity can be taken into account by including covariates in the model. If not all relevant actor
heterogeneity is observed, then more complex models are required, such as random effects models.
Random effects models (see Schweinberger and Snijders, 2007a) allow to take unobserved actor
heterogeneity into account by assuming that the network (and behavior) evolution is affected by
unobserved outcomes of actor-dependent random variables (random effects), which represent the
combined effect of the unobserved actor heterogeneity on the network (and behavior) evolution.

These models can be estimated only using the maximum likelihood estimation option, see
Sections 7 and 12. The maximum likelihood estimation of random effects models requires MCMC-
based data imputation of the unobserved random effects (which can be regarded as missing data).
SIENA supplies three alternative MCMC algorithms for the MCMC-based data imputation of the
random effects:

(1) random walk M-H,
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(2) autoregressive M-H,

(3) independence sampler (default).

The algorithms require the determination of the scale factor of the so-called proposal distribution,
which may affect the efficiency of the algorithms and the accuracy of the results (for a given number
of iterations). It is recommended to choose the default algorithm (3); and to choose as scale factor
of the proposal distribution 0—which would be a pointless scale factor, but which communicates to
SIENA that the user wishes to leave the determination of the scale factor to the defaults within the
algorithm, which features an adaptive method for determining suitable scale factors. In the ideal
case, the choice of algorithm does not affect the parameter estimates—though the efficiency of the
algorithms and the accuracy of the results (for a given number of iterations) may be affected.

The estimation of random effects models (i.e., the estimation of the parameters, including the
variances of the random effects) may be done by either Maximum Likelihood or Bayesian estimation
(see Section 7.3).

The interpretation of the parameter estimates is straightforward; the estimates of the variances
of the random effects indicate the magnitude of the unobserved actor heterogeneity.
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7 Estimation

The model parameters are estimated under the specification given during the model specification
part, using a stochastic approximation algorithm. Three estimation procedures are implemented:
the Method of Moments (MoM) (Snijders, 2001; Snijders, Steglich, and Schweinberger, 2007);
the Method of Maximum Likelihood (ML) (Snijders, Koskinen and Schweinberger, 2010); and
a Bayesian method (Koskinen, 2005; Koskinen and Snijders, 2007; Schweinberger and Snijders,
2007). For non-constant rate functions, currently only MoM estimation is available. The Method
of Moments is the default; the other two methods require much more computing time. Given the
greater efficiency but longer required computing time for the ML and Bayesian methods, these
can be useful especially for smaller data sets and relatively complicated models (networks and
behavior; endowment effects).

In the following, the number of parameters is denoted by p. The algorithms are based on
repeated (and repeated, and repeated...) simulation of the evolution process of the network. These
repetitions are called ‘runs’ in the following. The MoM estimation algorithm is based on comparing
the observed network (obtained from the data files) to the hypothetical networks generated in the
simulations.

Note that the estimation algorithm is of a stochastic nature, so the results can vary! This is of
course not what you would like. For well-fitting combinations of data set and model, the estimation
results obtained in different trials will be very similar. It is good to repeat the estimation process
at least once for the models that are to be reported in papers or presentations, to confirm that
what you report is a stable result of the algorithm.

The initial value of the parameters normally is the current value (that is, the value that the
parameters have immediately before you start the estimation process); as an alternative, it is
possible to start instead with a standard initial value. Usually, a sequence of models can be fitted
without problems, each using the previously obtained estimate as the starting point for the new
estimation procedure. Sometimes, however, problems may occur during the estimation process,
which will be indicated by some kind of warning in the output file or by parameter estimates
being outside a reasonably expected range. In such cases the current parameter estimates may be
unsatisfactory, and using them as initial values for the new estimation process might again lead to
difficulties in estimation. Therefore, when the current parameter values are unlikely and also when
they were obtained after a divergent estimation algorithm, it is advisable to start the estimation
algorithm with a standard initial value. The use of standard initial values is one of the model
options. If this has successfully led to a model with convergent parameter estimates and model
fitting is continued, then the option can be reset to the current initial values.

7.1 Algorithm

During the estimation process, StOCNET transfers control to the SIENA program. The estimation
algorithm is an implementation of the Robbins-Monro (1951) algorithm, described in Snijders
(2001, 2002), and has for both the MoM and ML method three phases:

1. In phase 1, the parameter vector is held constant at its initial value. This phase is for having
a first rough estimate of the matrix of derivatives.

2. Phase 2 consists of several subphases. More subphases means a greater precision. The
default number of subphases is 4. The parameter values change from run to run, reflecting
the deviations between generated and observed values of the statistics. The changes in the
parameter values are smaller in the later subphases.
The program searches for parameter values where these deviations average out to 0. This
is reflected by what is called the ‘quasi-autocorrelations’ in the output screen. These are
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averages of products of successively generated deviations between generated and observed
statistics. It is a good sign for the convergence of the process when the quasi-autocorrelations
are negative (or positive but close to 0), because this means the generated values are jumping
around the observed values.

3. In phase 3, the parameter vector is held constant again, now at its final value. This phase is
for estimating the covariance matrix and the matrix of derivatives used for the computation
of standard errors.
The default number of runs in phase 3 is 1000. This requires a lot of computing time,
but when the number of phase 3 runs is too low, the standard errors computed are rather
unreliable.

The number of subphases in phase 2, and the number of runs in phase 3, can be changed in
the model options.

There is an additional possibility (since version 3.181) of requesting extra estimation runs if
the maximum t-ratio for convergence is higher than 0.15. This is obtained formally by specifying
more than 10 subphases; the maximum additional number of repeated estimation runs then is the
rounded value of number of subphases divided by 10; the real number of subphases is the remainder
in this division.

The user can break in and modify the estimation process in three ways:

1. it is possible to terminate the estimation;

2. in phase 2, it is possible to terminate phase 2 and continue with phase 3;

3. in addition, it is possible to change the current parameter values and restart the whole
estimation process.

For the ML estimation option and for the non-longitudinal case, tuning the ‘multiplicaton
factor’ and the ‘initial gain parameter’ can be important for getting good results; for Bayesian
estimation the ‘multiplicaton factor’ can likewise be important; this is briefly described in Sec-
tion 3.2.

7.2 Output

There are three output files. All are ASCII (‘text’) files which can be read by any text editor. The
main output is given in the pname.out file (recall that pname is the project name defined by the
user). A brief history of what the program does is written to the file pname.log. The latter file also
contains some supplementary output that usually is disregarded but sometimes is helpful. Some
diagnostic output containing a history of the estimation algorithm which may be informative when
there are convergence problems is written to the file pname.cck (for ‘check’). This file is overwritten
for each new estimation. Normally, you only need to look at pname.out.

The output is divided into sections indicated by a line @1, subsections indicated by a line @2,
subsubsections indicated by @3, etc. For getting the main structure of the output, it is convenient
to have a look at the @1 marks first.

The primary information in the output of the estimation process consists of the following three
parts. Results are presented here which correspond to Table 2, column “t1, t3” of Snijders (2001).
The results were obtained in an independent repetition of the estimation for this data set and
this model specification; since the repetition was independent, the results are slightly different,
illustrating the stochastic nature of the estimation algorithm.

1. Convergence check
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In the first place, a convergence check is given, based on Phase 3 of the algorithm. This check
considers the deviations between simulated values of the statistics and their observed values (the
latter are called the ‘targets’). Ideally, these deviations should be 0. Because of the stochastic
nature of the algorithm, when the process has properly converged the deviations are small but
not exactly equal to 0. The program calculates the averages and standard deviations of the
deviations and combines these in a t-ratios (in this case, average divided by standard deviation).
For longitudinal modeling, convergence is excellent when these t-ratios are less than 0.1 in absolute
value, good when they are less than 0.2, and moderate when they are less than 0.3. For published
results, it is suggested that estimates presented come from runs in which all t-ratios for convergence
are less than 0.1 in absolute value – or nearly so. (These bounds are indications only, and are not
meant as exact limitations.) The corresponding part of the output is the following.

Total of 1954 iterations.

Parameter estimates based on 954 iterations,

basic rate parameter as well as

convergence diagnostics, covariance and derivative matrices based on 1000 iterations.

Information for convergence diagnosis.

Averages, standard deviations, and t-ratios for deviations from targets:

1. -0.236 7.006 -0.034

2. 0.204 7.059 0.029

3. -1.592 22.242 -0.072

Good convergence is indicated by the t-ratios being close to zero.

In this case, the t-ratios are -0.034, -0.029, and -0.072, which is less than 0.1 in absolute value,
so the convergence is excellent. In data exploration, if one or more of these t-ratios are larger in
absolute value than 0.3, it is advisable to restart the estimation process. For results that are to be
reported, it is advisable to carry out a new estimation when one or more of the t-ratios are larger
in absolute value than 0.1. Large values of the averages and standard deviations are in themselves
not at all a reason for concern.

For the exponential random graph (or p∗) model, the convergence of the algorithm is more
problematic than for longitudinal modeling. A sharper value of the t-ratios must be found before
the user may be convinced of good convergence. It is advisable to try and obtain t-values which are
less than 0.15. If, even with repeated trials, the algorithm does not succeed in producing t-values
less than 0.15, then the estimation results are of doubtful value.

2. Parameter values and standard errors

The next crucial part of the output is the list of estimates and standard errors. For this data
set and model specification, the following result was obtained.

@3

Estimates and standard errors

0. Rate parameter 5.4292 ( 0.6920)

Other parameters:

1. eval: outdegree (density) -0.7648 ( 0.2957)

2. eval: reciprocity 2.3071 ( 0.5319)

3. eval: number of actors at distance 2 -0.5923 ( 0.1407)

The rate parameter is the parameter called ρ in section 15.1.3 below. The value 5.4292 indicates
that the estimated number of changes per actor (i.e., changes in the choices made by this actor, as
reflected in the row for this actor in the adjacency matrix) between the two observations is 5.43
(rounded in view of the standard error 0.69). Note that this refers to unobserved changes, and that
some of these changes may cancel (make a new choice and then withdraw it again), so the average
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observed number of differences per actor will be somewhat smaller than this estimated number of
unobserved changes.

The other three parameters are the weights in the evaluation function. The terms in the
evaluation function in this model specification are the out-degree effect defined as si1 in Section
15.1.1, the reciprocity effect si2, and the number of distances 2 (indirect relations) effect, defined
as si5. Therefore the estimated evaluation function here is

− 0.76 si1(x) + 2.31 si2(x) − 0.59 si5(x) .

The standard errors can be used to test the parameters. For the rate parameter, testing the
hypothesis that it is 0 is meaningless because the fact that there are differences between the two
observed networks implies that the rate of change must be positive. The weights in the evaluation
function can be tested by t-statistics, defined as estimate divided by its standard error. (Do not
confuse this t-test with the t-ratio for checking convergence; these are completely different although
both are t ratios!) Here the t-values are, respectively, -0.7648/0.2957 = -2.59, 2.3071/0.5319 =
4.34, and -0.5923/0.1407 = -4.21. Since these are larger than 2 in absolute value, all are significant
at the 0.05 significance level. It follows that there is evidence that the actors have a preference for
reciprocal relations and for networks with a small number of other actors at a distance 2. The value
of the density parameter is not very important; it is important that this parameter is included to
control for the density in the network, but as all other statistics are correlated with the density,
the density is difficult to interpret by itself.

When for some effects the parameter estimate as well as the standard error are quite large, say,
when both are more than 2, and certainly when both are more than 5, then it is possible that this
indicates poor convergence of the algorithm: in particular, it is possible that the effect in question
does have to be included in the model to have a good fit, but the precise parameter value is poorly
defined (hence the large standard error) and the significance of the effect cannot be tested with the
t-ratio. This can be explored by estimating the model without this parameter, and also with this
parameter fixed at some large value (see section 13.1) – whether the value is large positive or large
negative depends on the direction of the effect. For the results of both model fits, it is advisable to
check the fit by simulating the resulting model and considering the statistic corresponding to this
particular parameter. (The indicative sizes of 2 and 5 result from experience with network effects
and with effects of covariates on usual scales with standard deviations ranging between, say, 0.4
and 2. These numbers have to be modified for covariates with different standard errors.)

3. Collinearity check

After the parameter estimates, the covariance matrix of the estimates is presented. In this case
it is

Covariance matrix of estimates (correlations below diagonal):

0.087 -0.036 0.003

-0.230 0.283 -0.033

0.078 -0.440 0.020

The diagonal values are the variances, i.e., the squares of the standard errors (e.g., 0.087 is the
square of 0.2957). Below the diagonal are the correlations. E.g., the correlation between the esti-
mated density effect and the estimated reciprocity effect is -0.230. These correlations can be used
to see whether there is an important degree of collinearity between the effects. Collinearity means
that several different combinations of parameter values could represent the same data pattern, in
this case, the same values of the network statistics. When one or more of the correlations are very
close to -1.0 or +1.0, this is a sign of near collinearity. This will also lead to large standard errors
of those parameters. It is then advisable to omit one of the corresponding effects from the model,
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because it may be redundant given the other (strongly correlated) effect. It is possible that the
standard error of the retained effect becomes much smaller by omitting the other effect, which can
also mean a change of the t-test from non-significance to significance.

However, correlations between parameter estimates close to -1.0 or +1.0 should not be used too
soon in themselves as reasons to exclude effects from a model. This is for two reasons. In the first
place, network statistics often are highly correlated (for example, total number of ties and number
of transitive triplets) and these correlations just are one of the properties of networks. Second, near
collinearity is not a problem in itself, but the problem (if any) arises when standard errors are high,
which may occur because the value of the parameters of highly correlated variables is very hard to
estimate with any precision. The problem resides in the large standard errors, not in itself in the
strong correlation between the parameter estimates. If for both parameters the ratio of parameter
estimate to standard error, i.e., the t-ratio, is larger than 2 in absolute value, in spite of the high
correlations between the parameter estimates, then the significance of the t-test is evidence anyway
that both effects merit to be included in the model. In other words, in terms of the ‘signal-to-noise
ratio’: the random noise is high but the signal is strong enough that it overcomes the noise.

As a rule of thumb for parameter correlations, usually for correlations of estimated structural
network effects there is no reason for concern even when these correlations are as strong as .9.

7.3 Maximum Likelihood and Bayesian estimation

SIENA can estimate models by three estimation methods: the (unconditional or conditional)
Method of Moments (‘MoM’, the default; Snijders, 2001; Snijders, Steglich, and Schweinberger
2007), the Maximum Likelihood method (‘ML’, see Snijders, Koskinen, and Schweinberger, 2010),
and Bayesian methods (see Koskinen, 2005; Koskinen and Snijders, 2007; Schweinberger and Snij-
ders, 2007b). In nice situations (relatively small and large network data sets, and large network
and behavior data sets), the three methods tend to agree and there seems not to be no reason
to use the more time-consuming ML or Bayesian methods. In not-so-nice situations (very small
network data sets, small network and behavior data sets in combination with complex models),
however, ML and Bayesian methods tend to produce more accurate results than MoM. Statistical
theory suggests that ML is a more efficient estimation method than MoM in the sense of producing
estimates with smaller standard errors. But in the ‘nice situations’ the efficiency advantage of ML
is very small. Bayesian estimation is based on a different statistical paradigm, and assumes and
requires that the uncertainty about parameters is expressed itself in a probability distribution.

SIENA supplies three alternative MCMC algorithms for the Bayesian estimation of the objective
function parameters:

(1) random walk M-H (default),

(2) autoregressive M-H,

(3) independence sampler.

The algorithms require the determination of the scale factor of the so-called proposal distribution,
which may affect the efficiency of the algorithms and the accuracy of the results (for a given number
of iterations). It is recommended to make a short run with the default algorithm (1), and then to
make a longer run with algorithm (3); and to choose as scale factor of the proposal distribution
0—which would be a pointless scale factor, but which communicates to SIENA that the user wishes
to leave the determination of the scale factor to the defaults provided in the algorithm, which
features an adaptive method for determining suitable scale factors. In the ideal case, the choice
of algorithm does not affect the results of primary interest, the parameter estimates—though the
efficiency of the algorithms and the accuracy of the results (for a given number of iterations) may
be affected.
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Bayesian estimation gives rise to more results than the parameter estimates printed in the
output file. The additional results can be best inspected by using R and the R function siena bayes

written by Michael Schweinberger (see Section 7.4).

7.4 Supplementing R functions

To examine the MCMC output of SIENA for Maximum Likelihood (ML) and Bayesian estimation,
the R functions siena mle and siena bayes can be used, respectively, which were programmed by
Michael Schweinberger. The R functions input files generated by Siena and output, among other
things, trace plots and MCMC lag 1, . . . , 100 autocorrelations of sampled entities (see Schwein-
berger and Snijders, 2007a,b), and, in the Bayesian case, in addition 95% posterior intervals,
histograms, and Gaussian kernel density estimates of the marginal posterior densities of the pa-
rameters.

The R functions siena mle and siena bayes can be downloaded from the website
http://stat.gamma.rug.nl/stocnet, and can be used in R as follows:

(1) Load the R function:

— ML estimation: source("siena_mle.r").

— Bayesian estimation: source("siena_bayes.r").

(2) Call the R function:

— ML estimation: siena_mle(project_name, full_output,

no_random_effects, no_actors).

— Bayesian estimation: siena_bayes(project_name, full_output,

no_random_effects, no_actors).

The arguments are:

— project_name (string): the name of the Siena project that is to be examined; note that call-
ing siena mle or siena bayes presumes that Siena carried out ML or Bayesian estimation
of the project project_name, respectively.

— full_output (0 or 1): 1 indicates that the full output is desired, while 0 indicates that
selected output is desired.

— no_random_effects (non-negative integer): the number of actor-dependent weights (param-
eters) in the model.

— no_actors (positive integer): the number of actors.

Examples are provided by siena_mle("alcohol", 1, 3, 50) and
siena_bayes("alcohol", 1, 3, 50).

7.5 Other remarks about the estimation algorithm

7.5.1 Changing initial parameter values for estimation

When you wish to change initial parameter values for running a new estimation procedure, this
can be done in StOCNET as one of the model options. It can also be done by ‘breaking in’ into
the SIENA program.
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7.5.2 Fixing parameters

Sometimes an effect must be present in the model, but its precise numerical value is not well-
determined. E.g., if the network at time t2 would contain only reciprocated choices, then the
model should contain a large positive reciprocity effect but whether it has the value 3 or 5 or 10
does not make a difference. This will be reflected in the estimation process by a large estimated
value and a large standard error, a derivative which is close to 0, and sometimes also by lack of
convergence of the algorithm. (This type of problem also occurs in maximum likelihood estimation
for logistic regression and certain other generalized linear models; see Geyer and Thompson (1992,
Section 1.6), Albert and Anderson (1984), Hauck and Donner (1978).) In such cases this effect
should be fixed to some large value and not left free to be estimated. This can be specified
in the model specification under the Advanced button. As another example, when the network
observations are such that ties are formed but not dissolved (some entries of the adjacency matrix
change from 0 to 1, but none or hardly any change from 1 to 0), then it is possible that the density
parameter must be fixed at some high positive value.

7.5.3 Automatic fixing of parameters

If the algorithm encounters computational problems, sometimes it tries to solve them automatically
by fixing one (or more) of the parameters. This will be noticeable because a parameter is reported
in the output as being fixed without your having requested this. This automatic fixing procedure
is used, when in phase 1 one of the generated statistics seems to be insensitive to changes in the
corresponding parameter.

This is a sign that there is little information in the data about the precise value of this parameter,
when considering the neighborhood of the initial parameter values. However, it is possible that the
problem is not in the parameter that is being fixed, but is caused by an incorrect starting value of
this parameter or one of the other parameters.

When the warning is given that the program automatically fixed one of the parameter, try to
find out what is wrong.

In the first place, check that your data were entered correctly and the coding was given correctly,
and then re-specify the model or restart the estimation with other (e.g., 0) parameter values.
Sometimes starting from different parameter values (e.g., the default values implied by the model
option of “standard initial values”) will lead to a good result. Sometimes, however, it works better
to delete this effect altogether from the model.

It is also possible that the parameter does need to be included in the model but its precise
value is not well-determined. Then it is best to give the parameter a large (or strongly negative)
value and indeed require it to be fixed (see Section 13.1).

7.5.4 Conditional and unconditional estimation

SIENA has two methods for MoM estimation and simulation: conditional and unconditional. They
differ in the stopping rule for the simulations of the network evolution. In unconditional estimation,
the simulations of the network evolution in each time period (and the co-evolution of the behavioral
dimensions, if any are included) carry on until the predetermined time length (chosen as 1.0 for
each time period between consecutive observation moments) has elapsed.

In conditional estimation, in each period the simulations run on until a stopping criterion
is reached that is calculated from the observed data. Conditioning is possible for each of the
dependent variables (network, or behavior), where ‘conditional’ means ‘conditional on the observed
number of changes on this dependent variable’.

Conditioning on the network variable means running simulations until the number of different
entries between the initially observed network of this period and the simulated network is equal
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to the number of entries in the adjacency matrix that differ between the initially and the finally
observed networks of this period.

Conditioning on a behavioral variable means running simulations until the sum of absolute
score differences on the behavioral variable between the initially observed behavior of this period
and the simulated behavior is equal to the sum of absolute score differences between the initially
and the finally observed behavior of this period.

Conditional estimation is slightly more stable and efficient, because the corresponding rate pa-
rameters are not estimated by the Robbins Monro algorithm, so this method decreases the number
of parameters estimated by this algorithm. Therefore, it is the default for models that do not
include any dependent behavior variables. For models including dependent behavior variables, the
default estimation type is unconditional (because in most applications, there will be no straight-
forward choice for the conditioning variable). The possibility to choose between unconditional and
the different types of conditional estimation is one of the model options.

If there are changes in network composition (see Section 5.7), only the unconditional estimation
procedure is available.

7.5.5 Required changes from conditional to unconditional estimation

Even though conditional estimation is slightly more efficient than unconditional estimation, there
is one kind of problem that sometimes occurs with conditional estimation and which is not en-
countered by unconditional estimation.

It is possible (but luckily rare) that the initial parameter values were chosen in an unfortunate
way such that the conditional simulation does not succeed in ever attaining the condition required
by its stopping rule (see Section 7.5.4). The solution is either to use standard initial values or to
to unconditional estimation.

8 Standard errors

The estimation of standard errors of the MoM estimates requires the estimation of derivatives,
which indicate how sensitive the expected values of the statistics (see Section 7.1) are with respect
to the parameters. The derivatives can be estimated by three methods:

(0) finite differences method with common random numbers,

(1) score function method 1 (default),

(2) score function method 2.

Schweinberger and Snijders (2006) point out that the finite differences method is associated with a
bias-variance dilemma, and proposed the unbiased and consistent score function methods. These
methods demand less computation time than method (0). It is recommended to use at least 1000
iterations (default) in phase 3. For published results, it is recommended to have 2000 or 4000
iterations in phase 3.

9 Tests

Three types of tests are available in SIENA.

1. t-type tests of single parameters can be carried out by dividing the parameter estimate by
its standard error. Under the null hypothesis that the parameter is 0, these tests have
approximately a standard normal distribution.
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2. Score-type tests of single and multiple parameters are described in the following section.

3. In the maximum likelihood estimation methods (both the ERGM case and the longitudinal
case provided, for the latter, that the maximum likelihood option has been chosen) it is
possible to request likelihood ratio tests. The log likelihood ratio is computed by bridge
sampling (Gelman and Meng, 1998; Handcock and Hunter, 2006). This can be requested (a
bit deviously) by the number of runs in phase 3 (defined in the specification options):

(a) If the number of phase 3 runs is a multiple of 100 plus 1 (e.g., 101, 501, etc.), then the
log likelihood ratio is calculated comparing the estimates obtained with the standard
initial values.

(b) If the number of phase 3 runs is a multiple of 100 plus 2 (e.g., 102, 502, etc.), then
the log likelihood ratio is calculated comparing the estimates obtained with the initial
values used in the current estimation procedure.

The first option will be the most frequently useful, because it yields log likelihood ratios
which, for different models fitted to a given data set, all are comparable.

9.1 Score-type tests

A generalized Neyman-Rao score test is implemented for the MoM estimation method in SIENA
(see Schweinberger, 2005). For the ML estimation method (including the ERGM case), following
the same steps produces the Rao (1947) efficient score test.

Most goodness-of-fit tests will have the following form: some model is specified and one or
more parameters are restricted to some constant, in most cases 0. Such restrictions on parameters
can be imposed in the StOCNET program collection by pressing the Model specifications button
on the main SIENA interface, selecting the parameter of interest, pressing the Advanced button,
checking the box in the column with label t corresponding to the parameter of interest, and
specifying the value to which the parameter is restricted. Outside the StOCNET program collection,
parameters can be restricted by opening the pname.MO file, going to the parameters of interest
and setting the values in the fourth column equal to 1. The goodness-of-fit test proceeds by simply
estimating the restricted model (not the unrestricted model, with unrestricted parameters) by the
standard SIENA estimation algorithm. No more information needs to be communicated. When
the model is restricted, SIENA by default assumes that the restricted model is to be tested against
the unrestricted model, and by default SIENA evaluates the generalized Neyman-Rao score test
statistic.

9.2 Example: one-sided tests, two-sided tests, and one-step estimates

Suppose that it is desired to test the goodness-of-fit of the model restricted by the null hypothesis
that the reciprocity parameter is zero. The following output may be obtained:

@2

Generalised score test <c>

--------------------------

Testing the goodness-of-fit of the model restricted by

(1) eval: reciprocity = 0.0000

________________________________________________
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c = 3.9982 d.f. = 1 p-value = 0.0455

one-sided (normal variate): 1.9996

________________________________________________

One-step estimates:

l: constant network rate (period 1) 6.3840

l: constant network rate (period 2) 6.4112

eval: outdegree (density) 0.9404

eval: reciprocity 1.2567

To understand what test statistic <c> is about, consider the case where the network is observed
at two time points, and let R be the number of reciprocated ties at the second time point. Then
it can be shown that the test statistic is some function of

Expected R under the restricted model − observed R.

Thus, the test statistic has some appealing interpretation in terms of goodness-of-fit: when re-
ciprocated ties do have added value for the firms—which means that the reciprocity parameter is
not 0, other than the model assumes—then the deviation of the observed R from the R that is
expected under the model will be large (large misfit), and so will be the value of the test statistic.
Large values of the test statistic imply low p-values, which, in turn, suggests to abandon the model
in favor of models incorporating reciprocity.

The null distribution of the test statistic c tends, as the number of observations increases, to
the chi-square distribution, with degrees of freedom equal to the number of restricted parameters.
The corresponding p-value is given in the output file.

In the present case, one parameter is restricted (reciprocity), hence there is one degree of
freedom d.f. = 1. The value of the test statistic c = 3.9982 at one degree of freedom gives p

= 0.0455. That is, it seems that reciprocity should be included into the model and estimated as
the other parameters.

The one-sided test statistic, which can be regarded as normal variate, equals 1.9996 indicating
that the value of the transitivity parameter is positive.

The one-step estimates are approximations of the unrestricted estimates (that is, the estimates
that would be obtained if the model were estimated once again, but without restricting the reci-
procity parameter). The one-step estimate of reciprocity, 1.2567, hints that this parameter is
positive, which agrees with the one-sided test.

9.2.1 Multi-parameter tests

In the case where K > 1 model parameters are restricted, SIENA evaluates the test statistic with
K degrees of freedom. A low p-value of the joint test would indicate that the goodness-of-fit of the
model is intolerable. However, the joint test with K degrees of freedom gives no clue as to what
parameters should be included into the model: the poor goodness-of-fit could be due to only one of
the K restricted parameters, it could be due to two of the K restricted parameters, or due to all of
them. Hence SIENA carries out, in addition to the joint test with K degrees of freedom, additional
tests with one degree of freedom that test the single parameters one-by-one. The goodness-of-fit
table looks as follows:

@2

Generalised score test <c>

--------------------------
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Testing the goodness-of-fit of the model restricted by

(1) eval: covariate_ij (centered) = 0.0000

(2) eval: covariate_i alter = 0.0000

(3) eval: covariate_i similarity = 0.0000

________________________________________________

Joint test:

-----------

c = 92.5111 d.f. = 3 p-value [ 0.0001

(1) tested separately:

----------------------

- two-sided:

c = 62.5964 d.f. = 1 p-value [ 0.0001

- one-sided (normal variate): 7.9118

(2) tested separately:

----------------------

- two-sided:

c = 16.3001 d.f. = 1 p-value [ 0.0001

- one-sided (normal variate): 4.0373

(3) tested separately:

----------------------

- two-sided:

c = 23.4879 d.f. = 1 p-value [ 0.0001

- one-sided (normal variate): 4.8464

________________________________________________

One-step estimates:

l: constant network rate (period 1) 7.4022

l: constant network rate (period 2) 6.4681

eval: outdegree (density) -0.4439

eval: reciprocity 1.1826

eval: transitive triplets 0.1183

eval: covariate_ij (centered) 0.4529

eval: covariate_i alter 0.1632

eval: covariate_i similarity 0.4147

In the example output, three parameters are restricted. The joint test has test statistic c, which
has under the null hypothesis a chi-squared distribution with d.f. = 3. The p-value corresponding
to the joint test indicates that the restricted model is not tenable. Looking at the separate tests, it
seems that the misfit is due to all three parameters. Thus, it is sensible to improve the goodness-
of-fit of the baseline model by including all of these parameters, and estimate them.
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9.2.2 Testing homogeneity assumptions

SIENA by default assumes that the parameter values are constant across actors and periods. Such
assumptions are sometimes hardly credible in the light of substantive insight and empirical data,
and it may be desired to test them by including suitable dummy variables. See Schweinberger
(2005) for examples.

9.3 Alternative application: convergence problems

An alternative use of the score test statistic is as follows. When convergence of the estimation
algorithm is doubtful, it is sensible to restrict the model to be estimated. Either ”problematic” or
”non-problematic” parameters can be kept constant at preliminary estimates (estimated parame-
ters values). Though such strategies may be doubtful in at least some cases, it may be, in other
cases, the only viable option besides simply abandoning ”problematic” models. The test statistic
can be exploited as a guide in the process of restricting and estimating models, as small values of
the test statistic indicate that the imposed restriction on the parameters is not problematic.
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10 Simulation

The simulation option simulates the network evolution for fixed parameter values. This is meaning-
ful mainly at the point that you have already estimated parameters, and then either want to check
again whether the statistics used for estimation have expected values very close to their observed
values, or want to compute expected values of other statistics. The statistics to be simulated can
be specified in a special screen in StOCNET. For running the simulations using Siena05.exe outside
of StOCNET, they are specified in the file pname.si, as documented in Section 21.2.2.

The number of runs is set at a default value of 1,000, and can be changed in the simulation
options. The user can break in and terminate the simulations early. When only 1 run is requested,
an entire data set is generated and written to file in SIENA format and also in Pajek format. When
exactly 10 runs are requested and the maximum likelihood option is chosen, then the sequence of
changes from each observation to the next is written to file pname.cha in the format described in
Section 23.2.

The output file contains means, variances, covariances, and correlations of the selected statistics.
The output file also contains t-statistics for the various statistics; these can be regarded as tests
for the simple null hypothesis that the model specification with the current parameter values is
correct.

For simulating networks and behavior, the output includes the autocorrelation statistics known
as Moran’s I and Geary’s c. For formulae and interpretation see, e.g., Ripley (1981, 98–99). These
measure the extent to which the value of the variable in question is similar between tied actors.
This similarity is expressed by relatively high values for Moran’s I and by relatively low values for
Geary’s c. The null values, which are the expected values for variables independent of the network,
are given by −1/(n− 1) for Moran’s I and by 1 for Geary’s c.

(The output of the descriptive statistics, which can be obtained from the ‘Descriptives’ in
StOCNET and from Siena02 outside of StOCNET, also contains Moran’s I and Geary’s c, computed
for the observed data, together with their null means and standard deviations.)

The simulation feature can be used in the following way. Specify a model and estimate the
parameters. After this estimation (supposing that it converged properly), add a number of potential
effects. This number might be too large for the estimation algorithm. Therefore, do not Estimate
but choose Simulate instead. The results will indicate which are the statistics for which the largest
deviations (as measured by the t-statistics) occurred between simulated and observed values. Now
go back to the model specification, and return to the specification for which the parameters were
estimated earlier. The effects corresponding to the statistics with large t-values are candidates for
now being added to the model. One should be aware, however, that such a data-driven approach
leads to capitalization on chance. Since the selected effects were chosen on the basis of the large
deviation between observed and expected values, the t-tests, based on the same data set, will tend
to give significant results too easily. The tests described in Section 9 do not have this problem of
chance capitalization.

The generated statistics for each run are also written to the file pname.sdt (‘sdt’ for ‘simulation
data’), so you can inspect them also more precisely. This file is overwritten each time you are
simulating again. A brief history of what the program does is again written to the file pname.log.

10.1 Conditional and unconditional simulation

When doing simulations, use the same options as in the method of moments estimation (which is
the default anyway), as this will produce a selection from among the statistics that are potentially
used by the method of moments procedure.

The distinction between conditional and unconditional simulation also applies here; this is the
same as for the estimation option of SIENA, described in Section 7.5.4. The unconditional option
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simulates with a fixed time duration implying a random number of differences between consecutive
observations; whereas the conditional option simulates until the same number of differences is
simulated as observed in the data set.

If the conditional simulation option was chosen (which is the default) and the simulations
do not succeed in achieving the condition required by its stopping rule (see Section 7.5.4), then
the simulation is terminated with an error message, saying This distance is not achieved for this
parameter vector. In this case, you are advised to change to unconditional simulation.
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11 One observation: exponential random graph models

By choosing only one observation moment, the user specifies that not a model for network evolution
is studied, but an exponential random graph model (‘ERGM ’), also called a p∗ model (Frank &
Strauss, 1986; Frank, 1991; Wasserman & Pattison, 1996; Snijders, Pattison, Robins, and Hand-
cock, 2006; Snijders, 2002; Robins, Snijders, Wang, Handcock, and Pattison, 2007). In this model,
the probability of observing the graph is given by (5). A good introduction to current knowledge
about this model is Robins et al. (2007).

SIENA carries out Markov chain Monte Carlo (MCMC) estimation for this model, as described in
Snijders (2002). This algorithm computes a Monte Carlo approximation of the maximum likelihood
estimate. However, if the model specification is not well in accordance with the data set, then the
algorithm will not converge properly. This is discussed in Snijders (2002) and Handcock (2002).
How to specify the model is discussed in Snijders, Pattison, Robins and Handcock (2006), focusing
on how to specify transitivity. To model this concept more complicated effects are required than
the traditional transitive triplet count. Also when the model specification is good, however, it may
require repeated SIENA runs, each using the previously obtained estimate as the new starting value,
to obtain satisfactory convergence of the algorithm. This means in practice that (1) great care is
required for the model specification, (2) the user may have to tune two constants for the algorithm,
called the multiplication factor and the initial gain parameter, which are discussed below. In any
case, it is advisable always to choose the conditional estimation/simulation option, which means
here that the total number of ties is kept fixed. For unconditional estimation, the total number of
ties is a random variable. The choice between these two is made in the advanced options.

If there are structural zeros (see Section 5.1.1) and the elements of the adjacency matrix that are
not structurally determined split the network into two or more components (which will happen in
the case where several smaller networks are artificially combined into one network with structural
zeros between the original smaller networks), then the conditional estimation option keeps the total
number of ties constant within each component.

The program recognizes automatically if the data set is symmetric (a non-directed graph, with
xij = xji for all i, j) or anti-symmetric (a tournament, with xij 6= xji for all i 6= j). In such cases,
this is respected by the Metropolis-Hastings algorithm (numbers 6 or 7 in the list below) chosen
by SIENA for the MCMC estimation, and the exponential random graph model is considered only
on the set of all symmetric or all antisymmetric graphs, respectively.

The program has the following possibilities for the definition of the steps in the MCMC proce-
dure (cf. Snijders, 2002):

1. Gibbs steps for single tie variables xij ;

2. Gibbs steps for dyads (xij , xji);

3. Gibbs steps for triplets (xij , xjh, xih) and (xij , xjh, xhi);

4. Metropolis Hastings steps for single tie variables xij , version A;

5. Metropolis Hastings steps for single tie variables xij , version B;

6. Metropolis Hastings steps for single tie variables xij , version A, for non-directed graphs;

7. Metropolis Hastings steps for single tie variables xij , for antisymmetric graphs (‘tourna-
ments’);

8. Metropolis Hastings steps keeping the in-degrees and out-degrees fixed; see Snijders and van
Duijn (2002);
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9. Metropolis Hastings steps for pairs of tie variables xij , xik, keeping the out-degrees fixed,
version A;

10. Metropolis Hastings steps for pairs of tie variables xij , xik, keeping the out-degrees fixed,
version B;

11. to all of these, the number 10 is added to represent a continuous chain (see below) which is
more efficient and which is the default.

The choice between these types of steps is made in the model options. The default for directed
networks is step type 4, which is represented by code 14 because of the necessity to use a continuous
chain (see below). Some other options are available by modifying the pname.MO file as indicated
in Section 21.2.1 below. When there are structurally determined positions, options 6 and 7 should
be used only if these positions also are placed symmetrically.

Since version 3.181, the special option 26, available only for non-directed graphs, conditions
additionally on the connectedness of the network, provided that the observed graph is connected.

The options with fixed out-degrees can be useful in cases where the observed out-degrees depart
strongly from what would be observed in a random draw from the ERGM – which will occur when
all out-degrees are equal or almost equal (as in the case of data collection using a fixed-choice
design) and also when the out-degrees have a very skewed distribution. In the latter case , option
10 will usually be more efficient than option 9.

In the conditional option (where the number of arcs is fixed), options 1 and 4–6 exchange values
of arcs xij and xhk with (i, j) 6= (h, k) with probabilities defined by the Gibbs and Metropolis-
Hastings rules, respectively; option 2 changes values of dyads (xij , xji) and (xhk, xkh) with (i, j) 6=
(h, k), keeping xij + xji + xhk + xkh constant; and option 3 changes the value of one triplet
(xij , xjh, xih) or (xij , xjh, xhi), keeping the sum xij + xjh + xih or xij + xjh + xhi constant.

The number of steps, or run length, for generating one exponential random graph is r n2/2d(1−
d), where r is a constant which can be changed in the model options, and called multiplication
factor in the model and estimation options screen; n is the number of actors; and d is the density of
the graph, truncated to lie between 0.05 and 0.95. The default value of r can be increased when it
is doubted that the run length is sufficient to achieve convergence of the MCMC algorithm. It can
be helpful to start the estimation on a given data set by specifying a very simple model, with only
the out-degree and the reciprocity effects – for non-directed networks, only the degree effect. Then
by some trial and error determine the multiplication factor so that the autocorrelations reported in
the SIENA output are less than .4. This will presumably be a suitable value of the multiplication
factor also for other, more complicated models. If later on the largest reported autocorrelations
become much smaller or larger, then tune the multiplication factor such that the largest reported
autocorrelation is smaller than 0.4.

The algorithm uses by default a continuous chain to make successive draws from the ERGM,
even for different parameter values. This is in order to improve convergence speed. For this
purpose, the possibilities 1–8 mentioned above should be communicated in the model options (see
p. 97) by the values 11–18.

When convergence (as evidenced by all t-ratios for convergence being less than 0.1 in absolute
value) is not easy to obtain, then one can try to improve convergence in repeated runs of SIENA,
with the following options, When some autocorrelations are markedly higher than 0.1, then it
can help to increase the multiplication factor. When the provisional parameter estimate (used as
initial value for the estimation algorithm) seems to be reasonably close to a satisfactory value,
then decrease the initial gain parameter (see Section 12), e.g., to the value 0.001 or 0.0001. Some
guidance for how to do this is also given in Section 3.2.
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12 Options for model type, estimation and simulation

There are several options available in SIENA. The main options concern the model type and the
estimation procedure used.

Options concerning model type and estimation procedure can be accessed in the StOCNET
environment via the Model specification screen’s ‘option’ page. More detailed information is given
starting at page 96.

1. There is a choice between conditional (1) and unconditional (0) Method of Moments esti-
mation. If there are dependent action variables, the default for conditional estimation is to
condition on the observed distance for the network variable; but it then is possible also to
condition on the distances observed for the dependent action variables.
In addition, there are options for maximum likelihood (2) and Bayesian (3) estimation; these
are beginning to be documented.

2. The Model Code.
This defines the Model Type and an associated output option.
In the longitudinal case, the meaning of this code is as follows.
Model Codes 10 or more give extra output for evaluating the fit of the out-degree distribution
and for the explained variation (Snijders, 2004);
the integer Model Code in the unit position (i.e., Model Code itself if it is less than 10, and
Model Code - 10 if the code is more than 10) defines the Model Type defined in Section 6.5.

In the ERGM (non-longitudinal) case, the Model Code defines the kind of steps made in the
MCMC algorithm. It is advised to use one of the values 11-16, because these generate a
continuous chain which yields much better convergence.

3. The number of subphases in phase 2 of the estimation algorithm.
This determines the precision of the estimate. Advice: 3 for quick preliminary investigations,
4 or 5 for serious estimations.
There is an additional possibility (since version 3.181) of requesting extra estimation runs
if the maximum t-ratio for convergence is higher than 0.15. This is obtained formally by
specifying more than 10 subphases; the maximum additional number of repeated estimation
runs then is the rounded value of number of subphases divided by 10; the real number of
subphases is the remainder in this division.

4. The number of runs in phase 3 of the estimation algorithm.
This determines the precision of the estimated standard errors (and covariance matrix of the
estimates), and of the t-values reported as diagnostics of the convergence. Advice: 200 for
preliminary investigations when precise standard errors and t-values are not important, 1000
for serious investigations, 2000 to 4000 for estimations of which results are to be reported in
publications.
(These numbers can be twice as low if, instead of the new (from Version 2.3) default option
of estimation by the Score Function method, the older method of Finite Differences is used.
The latter method has runs that take more time, but needs fewer runs.)

5. A constant used in other estimation procedures.
In the ERGM (non-longitudinal) case, this is the multiplication factor r for the run length
used in the MCMC algorithm.

6. The initial gain value, which is the step size in the starting steps of the Robbins-Monro
procedure, indicated in Snijders (2001) by a1 .
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7. The choice between standard initial values (suitable estimates for the density and reciprocity
parameters and zero values for all other parameters) or the current parameter values as initial
values for estimating new parameter values.

8. The selection of the period for which a goodness-of-fit on period homogeneity is to be carried
out.

9. The selection of the effect for which a goodness-of-fit on actor homogeneity is to be carried
out (1 for the out-degree effect, 2 for the reciprocity effect); if this is selected, a list of actors
also has to be supplied.

10. A random number seed. If the value 0 is chosen, the program will randomly select a seed.
This is advised to obtain truly random results. If results from an earlier run are to be exactly
replicated, the random number seed from this earlier run can be used.

11. The method to estimate derivatives; 0 is the older finite differences method (this is the
method used in SIENA versions 1 and 2, which has a bias); 1 and 2 are the more efficient and
unbiased methods proposed by Schweinberger and Snijders (2007); the preferred method is
number 1. See Section 8.

Options about the simulation runs can be accessed in the StOCNET environment via the simu-
lation specification button on the SIENA model’s main screen. This button only is activated when
‘simulation’ is chosen as the ‘Run model’. There is one option for simulations that can be chosen
here.

5. The number of runs in the straight simulations.
Advice: the default of 1000 will usually be adequate.

Depending on the choice for conditional or unconditional estimation in the estimation options, also
the simulations are run conditionally or unconditionally.
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13 Getting started

For getting a first acquaintance with the model, one may use the data set collected by Gerhard
van de Bunt, discussed extensively in van de Bunt (1999), van de Bunt, van Duijn, and Snijders
(1999), and used as example also in Snijders (2001) and Snijders (2005). The data files are provided
with the program and at the SIENA website. The digraph data files used are the two networks
vrnd32t2.dat, vrnd32t4.dat. The networks are coded as 0 = unknown, 1 = best friend, 2 = friend,
3 = friendly relation, 4 = neutral, 5 = troubled relation, 6 = item non-response, 9 = actor non-
response. In the Transformations screen of StOCNET, choose the values ‘1 2 3’ as the values to be
coded as 1 for the first as well as the second network. Choose ‘6 9’ as missing data codes.

The actor attributes are in the file vars.dat. Variables are, respectively, gender (1 = F , 2 =
M), program, and smoking (1 = yes, 2 = no). See the references mentioned above for further
information about this network and the actor attributes.

Specify the data in StOCNET by using subsequently the Data and Transformation menus (do
not forget to click Apply when finishing each of these parts), then select SIENA in the Model menu
and click the Data specification button. Select the network data, in temporal sequence, on the left
side of the Data specification screen, then click on OK. Back on the SIENA main screen, now click
on the Model specification button.

You will be requested to make some choices for the specification, the meaning of which should
be clear given what is explained above. On the left hand side of the Model specification screen, you
can specify evaluation and endowment effects, indicated by two columns of checkboxes marked ’u’
and ’e’, respectively. In the specification of the evaluation function, choose the out-degree effect,
the reciprocity effect, and one other effect. In the specification of the endowment function, choose
no effects at all. On the right hand side of the screen, you can specify rate function effects. At
first, leave the specification of the rate function as it is (see Section 6, in which it was advised to
start modeling with a constant rate function).

Then let the program estimate the parameters. You will see a screen with intermediate re-
sults: current parameter values, the differences (‘deviation values’) between simulated and ob-
served statistics (these should average out to 0 if the current parameters are close to the correct
estimated value), and the quasi-autocorrelations discussed in Section 7.

It is possible to intervene in the algorithm by clicking on the appropriate buttons: the current
parameter values may be altered or the algorithm may be restarted or terminated. In most cases
this is not necessary.

Some patience is needed to let the machine complete its three phases. How this depends on
the data set and the number of parameters in the model is indicated in Section 19. After having
obtained the outcomes of the estimation process, the model can be respecified: non-significant
effects may be excluded (but it is advised always to retain the out-degree and the reciprocity
effects) and other effects may be included.

13.1 Model choice

For the selection of an appropriate model for a given data set it is best to start with a simple model
(including, e.g., 2 or 3 effects), delete non-significant effects, and add further effects in groups of
1 to 3 effects. Like in regression analysis, it is possible that an effect that is non-significant in a
given model may become significant when other effects are added or deleted!

When you start working with a new data set, it is often helpful first to investigate the main
endogenous network effects (reciprocity, transitivity, etc.) to get an impression of what the network
dynamics looks like, and later add effects of covariates. The most important effects are discussed
in Section 6; the effects are defined mathematically in Section 15.
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13.1.1 Exploring which effects to include

The present section describes an exploratory approach to model specification. A more advanced
approach to testing model specifications is described in Section 9.

For an exploration of further effects to be included, the following steps may be followed:

1. Estimate a model which includes a number of basic effects;

2. Simulate the model for these parameter values but also include some other relevant statistics
among the simulated statistics;

3. Look at the t-values for these other statistics; effects with large t-values are candidates for
inclusion in a next model.

It should be kept in mind, however, that this exploratory approach may lead to capitalization on
chance, and also that the t-value obtained as a result of the straight simulations is conditional on
the fixed parameter values used, without taking into account the fact that these parameter values
are estimated themselves.

It is possible that for some model specifications the data set will lead to divergence, e.g., because
the data contains too little information about this effect, or because some effects are ‘collinear’
with each other. In such cases one must find out which are the effects causing problems, and leave
these out of the model. Simulation can be helpful to distinguish between the effects which should
be fixed at a high positive or negative value and the effects which should be left out because they
are superfluous.

When the distribution of the out-degrees is fitted poorly (which can be investigated by the extra
output requested by selecting Model Code larger than 10 in the model options), an improvement
usually is possible either by including non-linear effects of the out-degrees in the evaluation function,
or by changing to Model Type 2 (see Section 6.5).

13.2 Convergence problems

If there are convergence problems, this may have several reasons.

• The data specification was incorrect (e.g., because the coding was not given properly).

• The starting values were poor. Try restarting from the standard initial values (a certain
non-zero value for the density parameter, and zero values for the other parameters); or from
values obtained as the estimates for a simpler model that gave no problems. The initial
default parameter values can be obtained by choosing the model option “standard initial
values”.
When starting estimations with Model Type 2 (see Section 6.5), there may be some problems
to find suitable starting values. For Model Type 2, it is advised to start with unconditional
estimation (see the model options) and a simple model, and to turn back to conditional
estimation, using the current parameter values as initial estimates for new estimation runs,
only when satisfactory estimates for a simple model have been found.

• The model does not fit well in the sense that even with well-chosen parameters it will not
give a good representation of the data.

This can be the case, e.g., when there is a large heterogeneity between the actors which is not
well represented by effects of covariates. The out-degrees and in-degrees are given in the begin
of the SIENA output to be able to check whether there are outlying actors having very high
in- or out-degrees, or a deviating dynamics in their degrees. Strong heterogeneity between
the actors will have to be represented by suitable covariates; if these are not available, one
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may define one or a few dummy variables each representing an outlying actor, and give this
dummy variable an ego effect in the case of deviant out-degrees, and an alter effect in the
case of deviant in-degrees.

Another possibility is that there is time heterogeneity. Indications about this can be gathered
also from the descriptives given in the start of the output file: the number of changes upward
and downward, in the network and also – if any – in the dependent behavioral variable. If
these do not show a smooth or similar pattern across the observations, then it may be useful
to include actor variables representing time trends. These could be smooth – e.g., linear
– but they also could be dummy variables representing one or more observational periods;
these must be included as an ego effect to represent time trends in the tendency to make ties
(or to display higher values of the behavior in question).

• Too many weak effects are included. Use a smaller number of effects, delete non-significant
ones, and increase complexity step by step. Retain parameter estimates from the last (sim-
pler) model as the initial values for the new estimation procedure, provided for this model
the algorithm converged without difficulties.

• Two or more effects are included that are almost collinear in the sense that they can both
explain the same observed structures. This will be seen in high absolute values of correlations
between parameter estimates. In this case it may be better to exclude one of these effects
from the model.

• An effect is included that is large but of which the precise value is not well-determined (see
above: section on fixing parameters). This will be seen in estimates and standard errors
both being large and often in divergence of the algorithm. Fix this parameter to some large
value. (Note: large here means, e.g., more than 5 or less than -5; depending on the effect, of
course.)

If the algorithm is unstable, with parameter values (the left hand list in the SIENA window)
changing too wildly, or with the algorithm suddenly seeming stuck and not moving forward, the a
solution may be to simplify the model (perhaps later on making it more complex again in forward
parameter estimation steps); another solution may be to decrease the initial gain parameter (see
Section 12).

If there are problems you don’t understand, but you do know something about the operation
of SIENA , you could take a look at the file pname.log; and, if the problems occur in the estimation
algorithm, at the file pname.cck. These files give information about what the program did, which
may be helpful in diagnosing the problem. E.g., you may look in the pname.cck file to see if some of
the parameters are associated with positive values for the so-called quasi-autocorrelations. If this
happens from subphase 2.2 onward for some parameters, these may be the parameters that led to
problems in the estimation algorithm (e.g., because the corresponding effect is collinear with other
effects; or because they started from unfortunate starting values; or because the data set contains
too little information about their value).

13.3 Composition change

Example data files for a network of changing composition are also provided with the program.
These files are called vtest2.dat, vtest3.dat, and vtest4.dat. They contain the same network data
as the friendship data files of van de Bunt (for these three observation times and with the same
coding), except that in these data some joiners and leavers were artificially created. These actors
were given the code ‘9’ for the observation moment at which they were not part of the network.
The attribute file vtestexo.dat contains the times at which the network composition changes (see
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also the example in Section 5.7). This file is necessary for the program to correctly include the
times at which actors join or leave the network. For example, the first line of the file contains the
values

1 0.7 3 0.0

which indicates that the first actor joins the network at fraction 0.7 of period 1 (the period between
the first and second observation moments) and leaves the network right after the beginning of the
third period, i.e., he/she does not leave the network before the last observation at the third time
point. Thus, the first actor joins the network and then stays in during the whole period being
analyzed.
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14 Multilevel network analysis

For combining SIENA results of several independent networks, there are three options. (‘Inde-
pendent’ networks here means that the sets of actors are disjoint, and it may be assumed that
there are no direct influences from one network to another.) The first two options assume that the
parameters of the actor-based models for the different networks are the same – except for the basic
rate parameters and for those differences that are explicitly modeled by interactions with dummy
variables indicating the different networks. The first and third options require that the number
of observations is the same for the different networks. This is not required for the second option.
These methods can be applied for two or more networks.

The three options are:

1. Combining the different networks in one large network, indicating by structural zeros that
ties between the networks are not permitted. This is explained in Section 5.1.1. This can be
executed inside or outside StOCNET.
The special effort to be made here is the construction of the data files for the large (combined)
network.

2. Combining different sub-projects, each defined by its own .in file (see Section 21.1), into one
multi-group project. The ‘sub-projects’ are the same as the ‘different networks’ mentioned
here. This is explained in Section 14.1. This can be executed only outside StOCNET.
If .in files are available, the only effort here is to run SIENA outside of StOCNET as explained
in Section 17.
A difference between options 1 and 2 is that the use of structural zeros (option 1) will lead
to a default specification where the rate parameters are equal across networks (this can
be changed by making the rate dependent upon dummy actor variables that indicate the
different networks) whereas the multi-group option yields rate parameters that are distinct
across different networks.

3. Analyzing the different networks separately, without any assumption that parameters are
the same but using the same model specification, and post-processing the output files by a
meta-analysis using Siena08. This is explained in Section 14.2.

The first and second options will yield nearly the same results, with the differences depending
on the basic rate (and perhaps other) parameters that are allowed to differ between the different
networks, and of course also depending on the randomness of the estimation algorithm. The
second option is more ‘natural’ given the design of SIENA and will normally run faster than the
first. Therefore the second option seems preferable to the first.

The third option makes much less assumptions because parameters are not constrained at all
across the different networks. Therefore the arguments usual in statistical modeling apply: as
far as assumptions is concerned, option 3 is safer; but if the assumptions are satisfied (or if they
are a good approximation), then options 1 and 2 have higher power and are simpler. However,
option 3 requires that each of the different network data sets is informative enough to lead to
well-converged estimates; this will not always be the case for small data sets, and then options 1
or 2 are preferable.

When the data sets for the different networks are not too small individually, then a middle
ground might be found in the following way. Start with option 3. This will show for which param-
eters there are important differences between the networks. Next follow option 2, with interactions
between the sub-project dummies and those parameters for which there were important between-
network differences. This procedure may work less easily when the number of different networks
is relatively high, because it may then lead to too many interactions with dummy variables.
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14.1 Multi-group Siena analysis

The multi-group option ‘glues’ several projects (further referred to as sub-projects) after each other
into one larger multi-group project. These sub-projects must have the same sets of variables of
all kinds: that is, the list of dependent networks, dependent behavioral variables, actor covariates,
and dyadic covariates must be the same for the various sub-projects. The number of actors and
the number of observations can be different, however. These sub-projects then are combined into
one project where the number of actors is the largest of the number of actors of the sub-projects,
and the number of observations is the sum of the observations of the sub-projects. As an example,
suppose that three projects with names sub1, sub2, and sub3 are combined. Suppose sub1 has
21 actors and 2 observations, sub2 has 35 actors and 4 observations, and sub3 has 24 actors with
5 observations. Then the combined multi-group project has 35 actors and 11 observations. The
step from observation 2 to 3 switches from sub-project sub1 to sub-project sub2, while the step
from observation 6 to 7 switches from sub-project sub2 to sub3. These switching steps do not
correspond to simulations of the actor-based model, because that would not be meaningful.

The different sub-projects are considered to be unrelated except that they have the same model
specification and the same parameter values.

Given the potentially large number of periods that can be implied by the multi-group option, it
probably is advisable, when using Method of Moments estimation, to use the conditional estimation
option.

The multi-group option can be executed only outside of StOCNET. Execution of SIENA outside
of StOCNET is generally explained in Section 17. The following is required for the multi-group
option.

1. For each of the sub-projects, a correct .in file must be available, as described in Section 21.1.
These .in files and the corresponding data files must all be together in one directory.
The names of the .in files should not contain spaces or any of the following list of characters:

! " # $ % & ’ ( ) * + ,

The total number of observations should not exceed 99.

2. This directory must also the data files (unless differently indicated by the pathnames in the
.in files).

3. In addition, this directory must contain a file with extension name .min (for ‘multi-project
input’). The root name of this file will be the project name of the multi-group project. This
file must contain the project names of the sub-projects, each one at a separate line.
If this file includes also a line with the symbol ‘+’, then the multi-group project will also
include dummy variables indicating the sub-projects. In contrast to other actor variables,
these variables are not centered.
An example thus would be a file multip.min with contents

sub1

sub2

sub3

+

if projects with basic information files sub1.in, sub2.in, and sub3.in are available.
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4. The multi-project is used just like any other projects by the programs Siena01, ..., Siena07
as indicated in Section 17.
Currently, Siena02 does not yet operate in the correct way for multi-group projects.

14.2 Meta-analysis of Siena results

The program Siena08.exe is a relatively simple multilevel extension to SIENA. This program must be
run independently, i.e., not through StOCNET, after having obtained estimates for a common model
estimated for several data sets. Siena08 combines the estimates in a meta-analysis or multilevel
analysis according to the methods of Snijders and Baerveldt (2003), and according to a Fisher-
type combination of one-sided p-values. This combination method of Fisher (1932) is described
in Hedges and Olkin (1985) and (briefly) in Snijders and Bosker (1999, Chapter 3). Some more
information is at the SIENA website.

All SIENA output files to be used must already exist, and the last estimation results in these
output files will be used. It is required that all these last estimation runs have the same set of
estimated parameters, and of parameters tested by score tests. The program does not check that
the score tests (if any) in the output files refer to the same parameters. It is also required that
the decimal separator is a point, not a comma. (This depends on your Windows settings; if your
output files have commas, just change all commas into points using an editor.) The Siena08 project
is the collection of output files to be combined, which is defined in the project .mli file.

An easy way to operate Siena08 is to make a batch file containing the single line

Siena08 ABC

where ABC is the projectname.
E.g., suppose the projectname is ABC. Then there must be a project file with the name ABC.mli

(the root name “ABC” can be chosen by the user, the extension name “mli” is prescribed.) If the
number of network evolution projects combined in this Siena08 run is given by K, e.g. the K = 3
projects with names A, B and C, then the file ABC.mli must give the project names on separate
lines and in addition the options, as indicated in the following example file:

[This file contains specifications for the meta-analysis of Siena projects.]

[It serves as input for the Siena08 program.]

@1 [general information about the Siena project list ]

10 [number of projects, names follow:]

A

B

C

@2 [options for estimation of projects]

5 [upper bound for standard error in meta-analysis]

1 [code 0=estimate, 1=aggregate from .out-files, 2=generate .dsc-file]

1 [code 1=extra output]

0 [number of score tests]

Executing the batch file (e.g. by double clicking) will execute Siena08. To get started, try this out
with a small data set. Some further explanation and example data are provided on the SIENA
website.

When working with SIENA for many projects, it can be useful to operate with the executable
programs in batch files, as explained in Section 17. The main programs then will be Siena01.exe
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for starting up the projects and Siena07.exe for the estimation. The model specification can be
changed by modifying the pname.MO file with an editor, or by using the siena03.exe program.
Model and option specifications can be copied from one SIENA project to another by siena04.exe,
see 17.2.
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15 Mathematical definition of effects

Here, the mathematical formulae for the definition of the effects are given. In Snijders (2001, 2005)
and Steglich, Snijders and Pearson, (2010), further background to these formulae can be found. The
effects are grouped into effects for modelling network evolution and effects for modelling behavioral
evolution (i.e., the dynamics of dependent actor variables). Within each group of effects, the effects
are listed in the order in which they appear in SIENA.

Some of the effects contain a number which is denoted in this section by c, and called in this
manual an internal effect parameter. (These are totally different from the statistical parameters
which are the weights of the effects in the objective function.) These numbers can be determined
by the user as the “par.” column in the advanced model specification options of StOCNET, or by
changing the pname.mo file described in Section 21.2.1.

15.1 Network evolution

The model of network evolution consists of the model of actors’ decisions to establish new ties
or dissolve existing ties (according to evaluation and endowment functions) and the model of the
timing of these decisions (according to the rate function). The objective function of the actor is
the sum of the network evaluation function and the network endowment function

unet(x) = fnet(x) + gnet(x) , (1)

and a random term; where the evaluation function fnet(x) and the endowment function gnet(x)
are as defined in the following subsections.

For some effects (those for which the function f1i in Section 24.1 is non-zero) the endowment
function is implemented not for estimation by the Method of Moments but only by the Maximum
Likelihood or Bayesian method; this is indicated below by “endowment effect only likelihood-
based”.

(It may be noted that the network evaluation function was called objective function, and the
endowment function was called gratification function, in Snijders, 2001.)

15.1.1 Network evaluation function

The network evaluation function for actor i is defined as

fnet(x) =
∑
k

βnet
k snet

ik (x) (2)

where βnet
k are parameters and snet

ik (x) are effects as defined below.
The potential effects in the network evaluation function are the following. Note that in all

effects where a constants c occurs, this constant can be chosen and changed by the user; this is
the internal effect parameter mentioned above. Also note that the evaluation effects which are
a function only of the out-degree of actor i are excluded for Model Type 2. For non-directed
networks, the same formulae are used, unless a different formula is given explicitly.

1. out-degree effect or density effect, defined by the out-degree
snet
i1 (x) = xi+ =

∑
j xij ,

where xij = 1 indicates presence of a tie from i to j while xij = 0 indicates absence of this
tie;

2. reciprocity effect, defined by the number of reciprocated ties
snet
i2 (x) =

∑
j xij xji;
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3. transitive triplets effect, defined by the number of transitive patterns in i’s relations (ordered
pairs of actors (j, h) to both of whom i is tied, while also j is tied to h),
for directed networks, snet

i3 (x) =
∑
j,h xij xih xjh ;

and for non-directed networks, snet
i3 (x) =

∑
j<h xij xih xjh ;

there was an error here until version 3.17p, which amounted to combining the transitive
triplets and transitive mediated triplets effects;

4. transitive mediated triplets effect, defined by the number of transitive patterns in i’s relations
where i has the mediating position (ordered pairs of actors (j, h) for which j is tied to i and
i to h, while also j is tied to h), which is different from the transitive triplets effect only for
directed networks,
snet
i4 (x) =

∑
j,h xji xih xjh ;

this cannot be used together with the transitive triplets effect in Method of Moments esti-
mation, because of perfect collinearity of the fit statistics;

5. number of 3-cycles,
snet
i5 (x) =

∑
j,h xij xjh xhi ;

6. transitive ties effect (earlier called (direct and indirect ties) effect), defined by the number of
actors to whom i is directly as well as indirectly tied,
snet
i6 (x) =

∑
j xij maxh(xih xhj);

7. betweenness count,
snet
i7 (x) =

∑
j,h xhi xij (1− xhj) ;

8. balance, defined by the similarity between the outgoing ties of actor i and the outgoing ties
of the other actors j to whom i is tied,

snet
i8 (x) =

n∑
j=1

xij

n∑
h=1
h6=i,j

(b0− | xih − xjh |) ,

where b0 is a constant included to reduce the correlation between this effect and the density
effect, defined by

b0 =
1

(M − 1)n(n− 1)(n− 2)

M−1∑
m=1

n∑
i,j=1

n∑
h=1
h6=i,j

| xih(tm)− xjh(tm) | .

(In SIENA versions before 3.17w, this was divided by n− 2, which for larger networks tended
to lead to quite large estimates and standard errors. Therefore in version 3.17w, the division
by n− 2 – which had not always been there – was dropped.)

9. number of distances two effect, defined by the number of actors to whom i is indirectly tied
(through at least one intermediary, i.e., at sociometric distance 2),
snet
i9 (x) = #{j | xij = 0, maxh(xih xhj) > 0};

endowment effect only likelihood-based;

10. number of doubly achieved distances two effect, defined by the number of actors to whom i
is not directly tied, and tied through twopaths via at least two intermediaries,
snet
i10(x) = #{j | xij = 0,

∑
h(xih xhj) ≥ 2};

endowment effect only likelihood-based;
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11. number of dense triads, defined as triads containing at least c ties,
snet
i11(x) =

∑
j,h xij I{xij + xji + xih + xhi + xjh + xhj ) ≥ c} ,

where the ‘indicator function’ I{A} is 1 if the condition A is fulfilled and 0 otherwise, and
where c is either 5 or 6;
(this effect is superfluous and undefined for symmetric networks);

12. number of (unilateral) peripheral relations to dense triads,
snet
i12(x) =

∑
j,h,k xij(1− xji)(1− xhi)(1− xki)I{(xjh + xhj + xjk + xkj + xhk + xkh ) ≥ c} ,

where c is the same constant as in the dense triads effect;
for symmetric networks, the ‘unilateral’ condition is dropped, and the definition is
snet
i12(x) =

∑
j,h,k xij(1− xhi)(1− xki)I{(xjh + xhj + xjk + xkj + xhk + xkh ) ≥ c} ;

13. in-degree related popularity effect (earlier called popularity or popularity of alter effect), de-
fined by the sum of the in-degrees of the others to whom i is tied,
snet
i13(x) =

∑
j xij x+j =

∑
j xij

∑
h xhj ;

until version 3.17p, this effect was multiplied by a factor 1/n;

14. in-degree related popularity (sqrt) effect (earlier called popularity of alter (sqrt measure) ef-
fect), defined by the sum of the square roots of the in-degrees of the others to whom i is tied,
snet
i14(x) =

∑
j xij

√
x+j =

∑
j xij

√∑
h xhj ;

this often works better in practice than the raw popularity effect; also it is often reasonable to
assume that differences between high in-degrees are relatively less important than the same
differences between low in-degrees;

15. out-degree related popularity effect (earlier called activity or activity of alter effect), defined
by the sum of the out-degrees of the others to whom i is tied,
snet
i15(x) =

∑
j xij xj+ =

∑
j xij

∑
h xjh;

until version 3.17p, this effect was multiplied by a factor 1/n;

16. out-degree related popularity (sqrt) effect (earlier called activity of alter (sqrt measure) effect),
defined by the sum of the square roots of the out-degrees of the others to whom i is tied,
snet
i16(x) =

∑
j xij

√
xj+ =

∑
j xij

√∑
h xjh;

this often works better in practice than the raw activity effect for the same reasons as men-
tioned above for the sqrt measure of the popularity effect;⊙
for non-directed networks, the popularity and activity effects are taken together as “degree
effects”, since in-degrees and out-degrees are the same in this case;

17. in-degree related activity effect, defined as the cross-product of the actor’s in- and out-degrees,
snet
i17(x) = xi+ x+i;

endowment effect only likelihood-based;

18. in-degree related activity (sqrt) effect, defined by
snet
i18(x) = xi+

√
x+i ;

19. out-degree related activity effect, defined as the squared out-degree of the actor, snet
i19(x) = x2

i+;
endowment effect only likelihood-based;

20. out-degree related activity (sqrt) effect (earlier called out-degree (̂1.5)), defined by
snet
i20(x) = x1.5

i+ = xi+
√
xi+

endowment effect only likelihood-based;
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21. out-degree up to c, where c is some constant (internal effect parameter, see above), defined
by
snet
i21(x) = max(xi+ , c);

this is left out in later versions of SIENA;

22. square root out-degree, defined by
snet
i22(x) =

√
xi+;

this is left out in later versions of SIENA;

23. squared (out-degree – c), where c is some constant, defined by
snet
i23(x) = (xi+ − c)2,

where c is chosen to diminish the collinearity between this and the density effect;
this is left out in later versions of SIENA;

24. sum of (1/(out-degree + c), where c is some constant, defined by
snet
i24(x) = 1/(xi+ + c);

endowment effect only likelihood-based;

25. sum of (1/(out-degree + c)(out-degree + c+ 1)), where c is some constant, defined by
snet
i25(x) = 1/(xi+ + c)(xi+ + c+ 1);

endowment effect only likelihood-based.

26. out-out degree (̂1/c) assortativity, which represents the differential tendency for actors with
high out-degrees to be tied to other actors who likewise have high out-degrees,

snet
i26(x) =

∑
j xij x

1/c
i+ x

1/c
j+ ;

c can be 1 or 2 (the latter value is the default);

27. out-in degree (̂1/c) assortativity, which represents the differential tendency for actors with
high out-degrees to be tied to other actors who have high in-degrees,

snet
i27(x) =

∑
j xij x

1/c
i+ x

1/c
+j ;

c can be 1 or 2 (the latter value is the default);

28. in-out degree (̂1/c) assortativity, which represents the differential tendency for actors with
high in-degrees to be tied to other actors who have high out-degrees,

snet
i28(x) =

∑
j xij x

1/c
+i x

1/c
j+ ;

c can be 1 or 2 (the latter value is the default);

29. in-in degree (̂1/c) assortativity, which represents the differential tendency for actors with
high in-degrees to be tied to other actors who likewise have high in-degrees,

snet
i29(x) =

∑
j xij x

1/c
+i x

1/c
+j ;

c can be 1 or 2 (the latter value is the default);

The effects for a dyadic covariate wij are

30. covariate (centered) main effect,
snet
i30(x) =

∑
j xij (wij − w̄)

where w̄ is the mean value of wij ;

31. covariate (centered) × reciprocity,
snet
i31(x) =

∑
j xijxji (wij − w̄).⊙

Three different ways can be modeled in which a triadic combination can be made between
the dyadic covariate and the network. In the explanation, the dyadic covariate is regarded
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as a weighted network (which will be reduced to a non-weighted network if wij only assumes
the values 0 and 1). By way of exception, the dyadic covariate is not centered in these three
effects (to make it better interpretable as a network). In the text and the pictures, an arrow
with the letter W represents a tie according to the weighted network W .

32. WW => X closure of covariate,
snet
i32(x) =

∑
j 6=h xij wih whj ;

this refers to the closure of W − W two-paths; each W − W two-

path i
W→ h

W→ j is weighted by the product wihwhj and the sum of
these product weights measures the strength of the tendency toward
closure of these W −W twopaths by a tie. • •

•

i j

h

W W

........................................................................................................... ...............
........
........
........
........
........
........
........
........
........
........
........
...................
...............
.....................................................................................................

......
.......
.......
.

Since the dyadic covariates are represented by square arrays and not by edgelists, this will
be a relatively time-consuming effect if the number of nodes is large.

33. WX => X closure of covariate,
snet
i33(x) =

∑
j 6=h xij wih xhj ;

this refers to the closure of mixed W − X two-paths; each W − X
two-path i

W→ h→ j is weighted by wih and the sum of these weights
measures the strength of the tendency toward closure of these mixed
W −X twopaths by a tie;

• •

•

i j

h

W

........................................................................................................... ...............
........
........
........
........
........
........
........
........
........
........
........
...................
...............
.....................................................................................................

......
.......
.......
.

34. XW => X closure of covariate,
snet
i34(x) =

∑
j 6=h xij xih whj ;

this refers to the closure of mixed X −W two-paths; each X −W
two-path i→ h

W→ j is weighted by whj and the sum of these weights
measures the strength of the tendency toward closure of these mixed
X −W twopaths by a tie.

• •

•

i j

h

W

........................................................................................................... ...............
........
........
........
........
........
........
........
........
........
........
........
...................
...............
.....................................................................................................

......
.......
.......
.

For actor-dependent covariates vj (recall that these are centered internally by SIENA) as well as
for dependent behavior variables (for notational simplicity here also denoted vj ; these variables
also are centered), the following effects are available:

35. covariate-alter or covariate-related popularity, defined by the sum of the covariate over all
actors to whom i has a tie,
snet
i35(x) =

∑
j xij vj ;

36. covariate squared - alter or squared covariate-related popularity, defined by the sum of the
squared centered covariate over all actors to whom i has a tie, (not included if the variable
has range less than 2)
snet
i36(x) =

∑
j xij vj ;

37. covariate-ego or covariate-related activity, defined by i’s out-degree weighted by his covariate
value,
snet
i37(x) = vi xi+;
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38. covariate-related similarity, defined by the sum of centered similarity scores simv
ij between i

and the other actors j to whom he is tied,

snet
i38(x) =

∑
j xij(sim

v
ij − ŝimv),

where ŝimv is the mean of all similarity scores, which are defined as simv
ij =

∆−|vi−vj |
∆ with

∆ = maxij |vi − vj | being the observed range of the covariate v (this mean is given in the
output file just before the “initial data description”);

39. covariate-related similarity × reciprocity, defined by the sum of centered similarity scores for
all reciprocal dyads in which i is situated,

snet
i39(x) =

∑
j xijxji(sim

v
ij − ŝimv);

40. same covariate, which can also be called covariate-related identity, defined by the number of
ties of i to all other actors j who have exactly the same value on the covariate,
snet
i40(x) =

∑
j xij I{vi = vj},

where the indicator function I{vi = vj} is 1 if the condition {vi = vj} is satisfied, and 0 if it
is not;

41. same covariate × reciprocity, defined by the number of reciprocated ties between i and all
other actors j who have exactly the same value on the covariate,
snet
i41(x) =

∑
j xijxji I{vi = vj};

42. covariate-ego × alter, defined by the product of i’s covariate and the sum of those of his
alters,
snet
i42(x) = vi

∑
j xij vj ;

43. covariate-ego × alter × reciprocity, defined by the product of i’s covariate and the sum of
those of his reciprocated alters,
snet
i43(x) = vi

∑
j xij xji vj ;

44. ego > alter for covariate, defined by the number of ties where i’s covariate is larger than
alter’s, while equality counts for half,
snet
i44(x) =

∑
j xij dsign(vi − vj),

where dsign(d) = 0 for d < 0, 0.5 for d = 0, and 1 for d > 0.

45. covariate of indirect ties, defined by the sum of the covariate over the actors to whom i is
tied indirectly (at a geodesic distance of 2),
snet
i45(x) =

∑
j(1− xij)

(
maxh xihxhj

)
vj .

46. user-defined interaction effects as described in Section 6.6. The internal effect parameter
is decomposed by SIENA into its two or three constituents, see in the mentioned section.
The interaction is defined on a tie basis: if two interacting effects are defined by snet

ia (x) =∑
j s
a
ij(x) and snet

ib (x) =
∑
j s
b
ij(x) (where a and b are calculated from the internal effect

parameter c), then the interaction is defined by
snet
i46(x) =

∑
j s
a
ij(x)sbij(x) .

Additional possible effects are documented in Steglich, Snijders and Pearson (2010) and for Model
Type 2 in Snijders (2003).

15.1.2 Network endowment function

The network endowment function is the way of modeling effects which operate in different strengths
for the creation and the dissolution of relations. The network endowment function is zero for
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creation of ties, and is given by

gnet(x) =
∑
k

γks
net
ik (x) (3)

for dissolution of ties. In this formula, the γk are the parameters for the endowment function.
The potential effects snet

ik (x) in this function, and their formulae, are the same as in the evaluation
function; except that not all are available, as indicated in the preceding subsection. For further
explication, consult Snijders (2001, 2005; here, the ‘gratification function’ is used rather than the
endowment function), Snijders, Steglich, and Schweinberger (2007), and Steglich, Snijders and
Pearson (2010).

15.1.3 Network rate function

The network rate function λnet (lambda) is defined for Model Type 1 (which is the default Model
Type) as a product

λnet
i (ρ, α, x,m) = λnet

i1 λnet
i2 λnet

i3

of factors depending, respectively, on period m, actor covariates, and actor position (see Snijders,
2001, p. 383). The corresponding factors in the rate function are the following:

1. The dependence on the period can be represented by a simple factor

λnet
i1 = ρnet

m

for m = 1, ...,M − 1. If there are only M = 2 observations, the basic rate parameter is called
ρnet.

2. The effect of actor covariates with values vhi can be represented by the factor

λnet
i2 = exp(

∑
h

αh vhi) .

3. The dependence on the position of the actor can be modeled as a function of the actor’s out-
degree, in-degree, and number of reciprocated relations, the ‘reciprocated degrees’. Define
these by

xi+ =
∑
j

xij , x+i =
∑
j

xji, xi(r) =
∑
j

xijxji

(recalling that xii = 0 for all i).

The contribution of the out-degrees to λnet
i3 is a factor

exp(αh xi+) ,

if the associated parameter is denoted αh for some h, and similarly for the contributions of
the in-degrees and the reciprocated degrees.

Also an exponential dependence on reciprocals of out-degrees can be specified; this can be
meaningful because the rate effect of the out-degree becoming a value 1 higher might become
smaller and smaller as the out-degree increases. Denoting again the corresponding parameter
by αh (but always for different index numbers h), this effect multiplies the factor λnet

i3 by

exp(αh/xi+) .
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15.1.4 Network rate function for Model Type 2

For Model Type 2 (see Section 6.5), the network rate function is defined according to Snijders
(2003) by

ρm λi+(s) = ρm
ν(s) ξ(s)

1 + ξ(s)
,

ρm λi−(s) = ρm
ν(s− 1)

1 + ξ(s− 1)
,

where ρm λi+(s) and ρm λi−(s) represent, respectively, the rate at which an actor of current out-
degree s increases, or decreases, his out-degree by 1. The parameter ρm is a multiplicative effect
of the observation period.

Function ξ (xi) is called the distributional tendency function and is represented according to
Snijders (2003, formula (17)) by

ξ(s) = exp

(
α1 − α2 log(s+ 1)− α3

s+ 1

)
.

where the names given in SIENA are

• α1 : out-degrees effect;

• α2 : logarithmic out-degree effect;

• α3 : factorial out-degree effect.

The reasons for these names and interpretation of the effects can be found in Snijders (2003). To
the exponent also effects of actor covariates can be added.

The so-called volatility function ν (nu) is defined as

ν(s) =

(
1 + α4

1

s+ 1

)
.

Also to this exponent effects of actor covariates can be added.

15.2 Behavioral evolution

The model of the dynamics of a dependent actor variable consists of a model of actors’ decisions
(according to evaluation and endowment functions) and a model of the timing of these decisions
(according to a rate function), just like the model for the network dynamics. The decisions now do
not concern the creation or dissolution of network ties, but whether an actor increases or decreases
his score on the dependent actor variable by one, or keeps it as it is.

15.2.1 Behavioral evaluation function

Effects for the behavioral evaluation function ubeh can be selected from the following. Here the
dependent variable is transformed to have an overall average value of 0; in other words, z denotes
the original input variable minus the overall mean, which is given in the output file under the
heading Reading dependent actor variables.

1. behavioral shape effect,
sbeh
i1 (x) = zi ,

where zi denotes the value of the dependent behavior variable of actor i;
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2. average similarity effect, defined by the average of centered similarity scores simz
ij between i

and the other actors j to whom he is tied,

sbeh
i2 (x) = x−1

i+

∑
j xij(sim

z
ij − ŝimz);

(and 0 if xi+ = 0) ;

3. total similarity effect, defined by the sum of centered similarity scores simz
ij between i and

the other actors j to whom he is tied,

sbeh
i3 (x) =

∑
j xij(sim

z
ij − ŝimz);

4. indegree effect,
sbeh
i4 (x) = zi

∑
j xji;

5. outdegree effect,
sbeh
i5 (x) = zi

∑
j xij ;

6. isolate effect, the differential attractiveness of the behavior for isolates,
sbeh
i6 (x) = ziI{x+i = 0},

where again I{A} denotes the indicator function of the condition A;

7. average similarity × reciprocity effect, defined by the sum of centered similarity scores simz
ij

between i and the other actors j to whom he is reciprocally tied,

sbeh
i7 (x) = x−1

i(r)

∑
j xijxji(sim

z
ij − ŝimz);

(and 0 if xi(r) = 0) ;

8. total similarity × reciprocity effect, defined by the sum of centered similarity scores simz
ij

between i and the other actors j to whom he is reciprocally tied,

sbeh
i8 (x) =

∑
j xijxji(sim

z
ij − ŝimz);

9. average similarity × popularity alter effect, defined by the sum of centered similarity scores
simz

ij between i and the other actors j to whom he is tied, multiplied by their indegrees,

sbeh
i9 (x) = x−1

i+

∑
j xijx+j(sim

z
ij − ŝimz);

(and 0 if xi+ = 0) ;

10. if the parameter for this effect is equal to 1:
popularity alter effect, defined by the average in-degrees of the other actors j to whom i is
tied,
sbeh
i10 (x) = zix

−1
i+

∑
j xijx+j ;

(and 0 if xi+ = 0) ;
if the parameter for this effect is not equal to 1:
total similarity × popularity alter effect, defined by the sum of centered similarity scores simz

ij

between i and the other actors j to whom he is tied, multiplied by their indegrees,

sbeh
i10 (x) =

∑
j xijx+j(sim

z
ij − ŝimz);

11. average similarity × reciprocity × popularity alter effect, defined by the sum of centered
similarity scores simz

ij between i and the other actors j to whom he is reciprocally tied,
multiplied by their indegrees,

sbeh
i11 (x) = x−1

i(r)

∑
j xijxjix+j(sim

z
ij − ŝimz);

(and 0 if xi(r) = 0) ;

12. total similarity × reciprocity × popularity alter effect, defined by the sum of centered similar-
ity scores simz

ij between i and the other actors j to whom he is reciprocally tied, multiplied
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by their indegrees,

sbeh
i12 (x) =

∑
j xijxjix+j(sim

z
ij − ŝimz);

13. average alter effect, defined by the product of i’s behavior multiplied by the average behavior
of his alters (a kind of ego-alter behavior covariance),
sbeh
i13 (x) = zi

(∑
j xij zj

)
/
(∑

j xij
)

(and the mean behavior, i.e. 0, if the ratio is 0/0) ;

14. average reciprocated alter effect, defined by the product of i’s behavior multiplied by the
average behavior of his reciprocated alters,
sbeh
i14 (x) = zi

(∑
j xij xji zj

)
/
(∑

j xij xji
)

(and 0 if the ratio is 0/0) ;

15. effect of the behavior upon itself, which is like a quadratic shape effect, where the attractive-
ness of further steps up the behavior ‘ladder’ depends on where the actor is on the ladder:
sbeh
i15 (x) = z2

i

16. dense triads effect, defined by the number of dense triads in which actor i is located,
sbeh
i16 (x) = zi

∑
j,h I{xij + xji + xih + xhi + xjh + xhj ) ≥ c} ,

where c is either 5 or 6;
this is currently not correctly implemented in SIENA 3 ;

17. peripheral effect, defined by the number of dense triads to which actor i stands in a unilateral-
peripheral relation,
sbeh
i17 (x) = zi

∑
j,h,k xij(1− xji)(1− xhi)(1− xki)I{xij + xji + xih + xhi + xjh + xhj ) ≥ c} ,

where c is the same constant as in the dense triads effect;
for directed networks, the unilateral condition is dropped, and the effect is
sbeh
i17 (x) = zi

∑
j,h,k xij(1− xhi)(1− xki)I{xij + xji + xih + xhi + xjh + xhj ) ≥ c} ;

this is currently not correctly implemented in SIENA 3 ;

18. reciprocated degree effect,
sbeh
i18 (x) = zi

∑
j xij xji;

19. average similarity × popularity ego effect, defined by the sum of centered similarity scores
simz

ij between i and the other actors j to whom he is tied, multiplied by ego’s indegree,

sbeh
i19 (x) = x+i x

−1
i+

∑
j xij(sim

z
ij − ŝimz);

(and 0 if xi+ = 0) ;
because of collinearity, under the Method of Moments this cannot be estimated together with
the average similarity × popularity alter effect.

For each actor-dependent covariate vj (recall that these are centered internally by SIENA) as well
as for each of the other dependent behavior variables (for notational simplicity here also denoted
vj), there is one main effect and one interaction effect, the latter of which is a choice among three,
dependent on the internal parameter for this effect:

20. covariate effect,
sbeh
i20 (x) = zivi ;

here too, the other dependent behavioral variables are centered so that they have overall
mean 0;

21. depending on the parameter value (1, 2, or 3):
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value 1: interaction of actor variable with average similarity,

sbeh
i21 (x) = (vi/xi+)

∑
j xij(sim

z
ij − ŝimz);

(and 0 if xi+ = 0) ;

value 2: interaction of actor variable with total similarity,

sbeh
i21 (x) = vi

∑
j xij(sim

z
ij − ŝimz);

value 3: interaction of actor variable with average alter,
sbeh
i21 (x) = vi zi

(∑
j xij zj

)
/
(∑

j xij
)

(and the mean behavior, i.e. 0, if the ratio is 0/0) ;

22. There are also user-defined interaction effects between actor variables, defined as the product
of two or three grand mean centered variables. (If these include the dependent variable itself,
special formulae are used for the change statistic.) How to specify these is described in
Section 6.6.2.

Additional possible effects are documented in Steglich, Snijders and Pearson (2010).

15.2.2 Behavioral endowment function

Also the behavioral model knows the distinction between evaluation and endowment effects. The
formulae of the effects that can be included in the behavioral endowment function ebeh are the
same as those given for the behavioral evaluation function. However, they enter calculation of
the endowment function only when the actor considers decreasing his behavioral score by one unit
(downward steps), not when upward steps (or no change) are considered. For more details, consult
Snijders, Steglich, and Schweinberger (2007) and Steglich, Snijders and Pearson (2010).

The statistics reported as dec. beh. (decrease in behavior) are the sums of the changes in
actor-dependent values for only those actors who decreased in behavior. More precisely, it is

M−1∑
m=1

n∑
i=1

I{zi(tm+1) < zi(tm)}
(
sbeh
ik (x(tm+1))− sbeh

ik (x(tm))
)
, (4)

where M is the number of observations, x(tm) is the observed situation at observation m, and the
indicator function I{A} is 0 if event A is true and 0 if it is untrue.

15.2.3 Behavioral rate function

The behavioral rate function λbeh consists of a constant term per period,

λbeh
i = ρbeh

m

for m = 1, ...,M − 1.

15.3 Exponential random graph model

The exponential random graph model, which is used if there is only one observation (i.e., for the
non-longitudinal case), is defined by the probability function

Pθ{X = x} = exp
(
θ′u(x)− ψ(θ)

)
, (5)

where u(x) is a vector of statistics. The following statistics are available. The selection of statis-
tics is discussed extensively in Snijders, Pattison, Robins, and Handcock (2006), with attention
especially to statistics 16–19.
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Note that SIENA will note whether the observed graph (xij) is symmetric or not, and choose
accordingly between the statistics for undirected and directed graphs.

Also not that, as earlier, c is a constant that can be set by the user.

1. For undirected graphs, the number of edges
∑
i<j xij ;

for directed graphs, the number of arcs
∑
i 6=j xij .

2. The number of reciprocated relations
∑
i<j xij xji .

3. For undirected graphs, the number of transitive triads 1
6

∑
i,j,h xij xih xjh ;

for directed graphs, the number of transitive triplets
∑
i,j,h xij xih xjh .

4. The number of three-cycles given for undirected graphs by 1
6

∑
i,j,h xij xjh xhi

and for directed graphs by 1
3

∑
i,j,h xij xjh xhi .

5. The number of out-twostars
∑
i

∑
h<k xih xik .

6. The number of in-twostars
∑
i

∑
h<k xhi xki .

7. The number of two-paths (mixed twostars) given for undirected graphs by 1
2

∑
i

∑
h6=k xhi xik

and for directed graphs by
∑
i

∑
h 6=k xhi xik .

8. The number of c-instars, for c to be chosen by the user,
∑
i

(
xi+

c

)
;

starting from version 3.17t this was changed to
∑
i

(
xi+

c

)
/(c!) to let parameters be less small

for larger c;

9. The number of c-outstars, for c to be chosen by the user,
∑
i

(
x+i

c

)
;

starting from version 3.17t this was changed to
∑
i

(
x+i

c

)
/(c!) ;

10. The sum of reciprocal out-degrees
∑
i 1/(xi+ + c) for some constant c.

11. The sum of transformed out-degrees
∑
i 1/[(xi+ + c)(xi+ + c+ 1)] for some constant c.

12. The alternating k-out-stars combination

c2
n∑
i=1

{(
1 − 1

c

)xi+

+
xi+
c
− 1

}
,

for some value c.

13. The alternating k-in-stars combination

c2
n∑
i=1

{(
1 − 1

c

)x+i

+
x+i

c
− 1

}
for some value c.

14. The number of pairs directly and indirectly connected,
i.e., tied pairs (i, j) for which there exists at least one h such that xih = xhj = 1,
i.e., tied pairs for which there is at least one twopath from i to j;
for undirected graphs this is

∑
i<j xij maxh6=i,j{xih xhj}, for directed graphs it is

∑
i 6=j xij maxh6=i,j{xih xhj}.
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15. The number of indirectly connected pairs, i.e., pairs (i, j) for which there is at least one
twopath from i to j;
for undirected graphs this is

∑
i<j maxh 6=i,j{xih xhj}, for directed graphs it is

∑
i 6=j maxh6=i,j{xih xhj}.

16. The number of four-cycles given by
∑
i,j,h,k;all distinct xij xjh xhk xki .

17. The 3-parallel two-paths statistic, given by∑
i,j,k1,k2,k3;all distinct

{xik1 xk1j xik2 xk2j xik3 xk3j} .

(Just for the sake of it: the 2-parallel two-paths are not included, because they are the same
as the four-cycles.)

18. The alternating independent two-paths statistic, given for undirected graphs by

c
∑
i<j

{
1 −

(
1− 1

λ

)L2ij
}

which formula is replaced for directed graphs by

c
∑
i,j

{
1 −

(
1− 1

λ

)L2ij
}

.

19. The 2-triangles statistic, given by
∑
i,j,h,k xij xjh xhk xki xih .

20. The 3-triangles statistic, given by
∑
i,j,k1,k2,k3;all distinct xij xik1 xjk1 xik2 xjk2 xik3 xjk3 .

21. The alternating k-triangles statistic, given for undirected graphs by

c
∑
i<j

xij

{
1 −

(
1− 1

c

)L2ij
}

for some value c, where L2ij is the number of two-paths from i to j, L2ij =
∑
h xihxhj ; for

directed graphs, the formula is

c
∑
i,j

xij

{
1 −

(
1− 1

c

)L2ij
}

,

with the same definition of L2ij .

22. For non-directed graphs, the number of coathangers given by
∑
i,j,h,k;all distinct xij xjh xhi xhk.

23. The number of three-paths given by
∑
i,j,h,k;all distinct xij xjh xhk.

24. The number of cliques of order c, for c to be chosen by the user.

25. For each dyadic covariate wij , the sum
∑
i,j xij wij .

26. For each dyadic covariate wij , the associated reciprocity effect defined by
∑
i,j xij xji wij .

27. For each individual covariate vi (changing or constant; recall that all covariates are centered),
four effects are included.
The first is the vi-related popularity effect

∑
i x+i vi ;
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28. next is the vi-related activity effect
∑
i xi+ vi ;⊙

for non-directed networks, these together are replaced by the single covariate effect
∑
i x+i vi =∑

i xi+ vi ;

29. the vi-related similarity effect, defined by the sum of centered similarity scores∑
i,j xij(sim

v
ij − ŝimv),

where ŝimv is the mean of all similarity scores, which are defined as simv
ij =

∆−|vi−vj |
∆ with

∆ = maxij |vi − vj | being the observed range of the covariate v;

30. and fourth the same vi effect is defined by
∑
i,j xij I{vi = vj},

where the indicator function I{vi = vj} is 1 if the condition {vi = vj} is satisfied, and 0 if it
is not; this can also be called the ‘same V ’ effect;

31. user-defined interaction effects are possible as described in Section 6.6. The internal effect
parameter is decomposed by SIENA into its two or three constituents, as described in the
mentioned section. The change statistic for the interaction is the product of the change
statistics of the two or three components.
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16 Parameter interpretation

This section still is in development.

16.1 Longitudinal models

The main ‘driving force’ of the actor-oriented model is the evaluation function (in earlier publi-
cations called objective function, see Snijders, 2001, 2005) given in formula (2) (for the network)
as

fnet(x) =
∑
k

βnet
k snet

ik (x) .

The objective function can be regarded as the “attractiveness” of the network (or behavior, respec-
tively) for a given actor. For getting a feeling of what are small and large values, is is helpful to
note that the objective functions are used to compare how attractive various different tie changes
are, and for this purpose random disturbances are added to the values of the objective function
with standard deviations equal5 to 1.28.

An alternative interpretation is that when actor i is making a ‘ministep’, i.e., a single change in
his outgoing ties (where no change also is an option), and xa and xb are two possible results of this
ministep, then fnet(xb)−fnet(xa) is the log odds ratio for choosing between these two alternatives
– so that the ratio of the probability of xb and xa as next states is

exp(fnet(xb)− fnet(xa)) .

Note that, when the current state is x, the possibilities for xa and xb are x itself (no change), or
x with one extra outgoing tie from i, or x with one fewer outgoing tie from i. Explanations about
log odds ratios can be found in texts about logistic regression and loglinear models.

The evaluation function is a weighted sum of ‘effects’ snet
ik (x). Their formulae can be found in

Section 15.1.1. These formulae, however, are defined as a function of the whole network x, and in
most cases the contribution of a single tie variable xij is just a simple component of this formula.
The contribution to snet

ik (x) of adding the tie i→ h minus the contribution of adding the tie i→ j
is the log odds ratio comparing the probabilities of i sending a new tie to h versus sending the tie to
j, if all other effects snet

ik (x) yields the same values for these two hypothetical new configurations.
For example, suppose that actors j and h, actual or potential relation partners of actor i, have

exactly the same network position and the same values on all variables included in the model,
except that for some actor variable V for which only the popularity (alter) effect is included in the
model, actor h is one unit higher than actor j: vh = vj + 1. It can be seen in Section 15.1.1 that
the popularity (alter) effect is defined as

snet
ik (x) =

∑
j

xij vj .

The contribution to this formula made by a single tie variable, i.e., the difference made by filling
in xij = 1 or xij = 0 in this formula, is just vj . Let us denote the weight of the V -alter effect by
βk. Then, the difference between extending a tie to h or to j that follows from the V -alter effect
is βk × (vh − vj) = βk × 1 = βk.

Thus, in this situation, βk is the log odds ratio of the probability that h is chosen compared to
the probability that j is chosen. E.g., if i currently has a tie neither to j nor to h, and supposing
that βk = 0.3, the probability for i to extend a new tie to h is e0.3 = 1.35 times as high as the
probability for i to extend a new tie to j.

5More exactly, the value is
√
π2/6, the standard deviation of the Gumbel distribution; see Snijders (2001).
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16.1.1 Ego – alter selection tables

When some variable V occurs in several effects in the model, then its effects can best be understood
by considering all these effects simultaneously. For example, if in a network dynamics model the
ego, alter, and similarity effects of a variable V are specified, then the formulae for their contribution
can be obtained from the components listed in Section 15.1.1 as

βego vi xi+ + βalter

∑
j

xij vj + βsim

∑
j

xij(sim
v
ij − ŝimv) , (6)

where the similarity score is simv
ij = 1 − |vi−vj |∆V

, with ∆V = maxij |vi − vj | being the observed

range of the covariate v and where ŝimv is the mean of all similarity scores. The superscript net is
left out of the notation for the parameters in order not to clutter the notation.

Similarly to how it was done above, the contribution to (6) of the tie from i to j, represented by
the single tie variable xij – i.e., the difference between the values of (6) for xij = 1 and xij = 0 –
can be calculated from this formula. It should be noted that all variables are internally centered by
SIENA, and that the mean values used for the centering are given near the beginning of the input
file. This is made explicit in the following by the subtraction of the mean v̄. The contribution of

βego (vi − v̄) + βalter (vj − v̄) + βsim (simv
ij − ŝimv)

= βego (vi − v̄) + βalter (vj − v̄) + βsim

(
1− |vi − vj |

∆V
− ŝimv

)
. (7)

From this equation a table can be made that gives the outcome of (7) for some values of vi and vj .
This can be concretely carried using the data set s50 which is an excerpt of 50 girls in the data

set used in Pearson and Michell (2000), Pearson and West (2003), Steglich et al. (2006) and Steglich
et al. (2007). We refer to any of these papers for a further description of the data. The friendship
network data over 3 waves are in the files s50-network1.dat, s50-network2.dat, and s50-network3.dat.
We also use the attribute data for alcohol use, s50-alcohol.dat, as a dependent variable. It can be
seen from the SIENA output file using these data that the alcohol use variable assumes values from

1 to 5, with overall mean equal to v̄ = 3.113, and mean of the similarity variable ŝimv = 0.6983.
Drug use is used as a changing actor variable, with range 1–4, average v̄ = 1.5 and average dyadic

similarity ŝimv = 0.7533.
Suppose that we fit a model of network-behavior co-evolution to this data set with for the

network evolution the effects of outdegree, reciprocity, transitive ties, number of distances two, the
ego, alter, and similarity effects of alcohol use, as well as the ego, alter, and similarity effects of
drug use; and for the behavior (i.e., alcohol) dynamics the shape effect, the effect of alcohol on
itself (quadratic shape effect), and the average similarity effect.

The results obtained are given in the following part of the output file.

Network Dynamics

1. rate: constant network rate (period 1) 8.2357 ( 1.6225)

2. rate: constant network rate (period 2) 5.6885 ( 0.8434)

3. eval: outdegree (density) -2.1287 ( 0.1565)

4. eval: reciprocity 2.3205 ( 0.2132)

5. eval: transitive ties 0.2656 ( 0.2025)

6. eval: number of actors at distance 2 -0.9947 ( 0.2173)

7. eval: drink alter 0.0899 ( 0.1184)

8. eval: drink ego -0.0100 ( 0.1087)

9. eval: drink similarity 0.8994 ( 0.5864)

10. eval: drug use alter -0.1295 ( 0.1282)
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11. eval: drug use ego 0.1362 ( 0.1253)

12. eval: drug use similarity 0.6650 ( 0.3381)

Behavior Dynamics

13. rate: rate drink period 1 1.3376 ( 0.3708)

14. rate: rate drink period 2 1.8323 ( 0.4546)

15. eval: behavior drink shape 0.3618 ( 0.1946)

16. eval: behavior drink average similarity 3.9689 ( 2.2053)

17. eval: behavior drink: effect from drink -0.0600 ( 0.1181)

We interpret here the parameter estimates for the effects of drinking behavior and drug use without
being concerned with the significance, or lack thereof. For the drinking behavior, formula (7) yields
(rounded to two decimals)

−0.01 (vi − v̄) + 0.09 (vj − v̄) + 0.90
(

1 − |vi − vj |
∆V

− 0.70
)
.

The results can be tabulated as follows.

zi \ zj 1 2 3 4 5

1 0.10 –0.03 –0.17 –0.30 –0.44
2 –0.13 0.18 0.05 –0.09 –0.22
3 –0.37 –0.05 0.26 0.13 –0.01
4 –0.60 –0.29 0.03 0.34 0.21
5 –0.84 –0.52 –0.21 0.11 0.42

This table shows the preference for similar alters: in all rows, the highest value is at the diagonal
(vj = vi). The ego and alter parameters are close to 0, therefore the similarity effect is dominant.
However, note that the formula uses raw values for vi and vj but divides the values for the absolute
difference |vi−vj | by ∆V which here is 5−1 = 4. Therefore the weight of 0.09 for the alter effect is
not completely negligible compared to the weight of 0.90 for the similarity effect. The positive alter
effect leads to a preference for ties to alters with a high vj value which goes against the similarity
effect for vi = 1 but strengthens the similarity effect for vi = 5. The table shows that the net
resulting preference for similar others is strongest for actors (egos) high on drinking behavior, and
weakest for actors in the middle and low range of drinking behavior.

For drug use, the formula yields

0.14 (vi − v̄) − 0.13 (vj − v̄) + 0.67
(

1 − |vi − vj |
∆V

− 0.7533
)
,

which leads to the following table.

zi \ zj 1 2 3 4

1 0.16 –0.19 –0.54 –0.89
2 0.08 0.17 –0.18 –0.53
3 –0.01 0.08 0.17 –0.18
4 –0.10 –0.00 0.09 0.18
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In each row the highest value is at the diagonal, which shows that indeed everybody prefers to be
friends with similar others also with respect to drug use. The negative alter effect supports this for
low vi values and counteracts it for high vi values. This is seen in the table in the strong preference
of low drug users (vi = 1) for others who are low on drug use, and the very weak preference for
high drug users (vi = 4) for others also high on drug use.

An alternative specification uses the drink ego × drink alter interaction together with the drink
squared alter effect in the network dynamics model, and similarly for drug use; for the behavior
dynamics, an alternative specification uses the average alter effect. This leads to the following
table of results.

Network Dynamics

1. rate: constant network rate (period 1) 8.0978 ( 1.5118)

2. rate: constant network rate (period 2) 5.7781 ( 0.9474)

3. eval: outdegree (density) -2.1333 ( 0.2196)

4. eval: reciprocity 2.3033 ( 0.2184)

5. eval: transitive ties 0.2430 ( 0.2059)

6. eval: number of actors at distance 2 -1.0011 ( 0.2275)

7. eval: drink alter 0.1041 ( 0.1348)

8. eval: drink squared alter 0.0141 ( 0.1329)

9. eval: drink ego 0.0078 ( 0.1157)

10. eval: drink ego x drink alter 0.1655 ( 0.1095)

11. eval: drug use alter -0.2603 ( 0.2436)

12. eval: drug use squared alter -0.0249 ( 0.1945)

13. eval: drug use ego -0.0214 ( 0.1454)

14. eval: drug use ego x drug use alter 0.1976 ( 0.1146)

Behavior Dynamics

15. rate: rate drink period 1 1.3218 ( 0.3632)

16. rate: rate drink period 2 1.7884 ( 0.5053)

17. eval: behavior drink shape 0.3820 ( 0.2421)

18. eval: behavior drink average alter 1.1414 ( 0.6737)

19. eval: behavior drink: effect from drink -0.5428 ( 0.2839)

For this specification, the formulae in Section 15.1.1 imply that the components in the network
objective function corresponding to the effects of variable V are

βego (vi−v̄)xi+ + βalter

∑
j

xij (vj−v̄) + βsq. alter

∑
j

xij (vj−v̄)2 + βe×a

∑
j

xij (vi−v̄) (vj−v̄) . (8)

The contribution of the single tie variable xij to this formula is equal to

βego (vi − v̄) + βalter (vj − v̄) + βsq. alter (vj − v̄)2 + βe×a (vi − v̄) (vj − v̄) . (9)

Filling in the estimates for the effects of drinking behavior yields

0.01 (vi − v̄) + 0.10 (vj − v̄) + 0.01 (vj − v̄)2 + 0.17(vi − v̄) (vj − v̄) .

and this gives the following table.
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vi \ vj 1 2 3 4 5

1 0.54 0.27 0.01 –0.23 –0.45
2 0.20 0.09 0.00 –0.07 –0.13
3 –0.15 –0.09 –0.01 0.08 0.19
4 –0.49 –0.26 –0.02 0.24 0.51
5 –0.83 –0.44 –0.03 0.39 0.83

For drug use we obtain the formula

−0.02 (vi − v̄) − 0.26 (vj − v̄) − 0.02 (vj − v̄)2 + 0.20(vi − v̄) (vj − v̄) .

and the following table.

vi \ vj 1 2 3 4

1 0.18 –0.18 –0.58 —1.04
2 0.06 –0.10 –0.31 –0.57
3 –0.06 –0.02 –0.03 –0.10
4 –0.18 0.06 0.24 0.38

The fact that we are using three variables involving alter (alter, alter squared, interaction)
instead of two (alter and similarity) leads to greater freedom in the curve that is fitted: the top
(or, in the rare case of a reversed pattern, bottom) of the attractiveness of alters is not necessarily
obtained at the diagonal, i.e., at ego’s value. Straightforward calculus shows us that (9) is a
quadratic function and obtains its extreme value (a maximum if βsq. alter is negative, a minimum
if it is positive – the latter is, in general, less likely) for

vj = v̄ − βalter + βe×a (vi − v̄)

2βsq. alter
. (10)

If the effect βsq. alter of the squared alter’s value is negative and the interaction effect βe×a is
positive, then this location of the maximum increases with ego’s own value, vi. Of course the
number given by (10) will usually not be an integer number, so the actual value of vj for which
attractiveness is maximized is the integer in the range of V closest to (10).

For drinking there is a weak positive effect of squared drinking alter; the effect of squared drug
use alter is weak negative. For drinking we see that the most attractive value for egos with vi = 1
or 2 is no drinking, vj = 1, whereas for egos with vi ≥ 3 the most attractive alters are those
who drink most, vj = 5. We also see that egos with the highest drinking behavior are those who
differentiate most strongly depending on the drinking behavior of their potential friends.

For drug use the situation is different. Actors with vi = 1 or 2 prefer friends with drug use
vj = 1; for actors with vi = 3 the difference is hardly discernible, but if we consider the differences
even though they are tiny, then they are most attracted to others with vj = 2; actors with the
highest drug use (vi = 4) differentiate most strongly, and are attracted most to others with also
the highest drug use.

The differences between the results with the similarity effects and the interaction effects are
minor. The extra degrees of freedom of the latter model gives a slightly closer fit to the data.
However, the differences between the two fits are not significant, as can be shown e.g. by score-
type tests.
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16.1.2 Ego – alter influence tables

In quite a similar way as in the preceding section, from the output tables and the formulae for the
effects we can construct tables indicating how attractive various different values of the behavior
are, depending on the behavior of the actor’s friends.

In the first model, the estimated coefficients in the behavior evaluation function are as follows.

15. eval: behavior drink shape 0.3618 ( 0.1946)

16. eval: behavior drink average similarity 3.9689 ( 2.2053)

17. eval: behavior drink: effect from drink -0.0600 ( 0.1181)

The dependent behavior variable now is indicated Z. (In the preceding section the letter V was
used, but this referred to any actor variable predicting network dynamics, whether it was also a
dependent variable or not.) The formulae in Section 15.2.1 show that the evaluation function for
this model specification is

ubeh = βtrend (zi − z̄) + βdrink (zi − z̄)2 + βav. sim
1

xi+

∑
j

xij(sim
z
ij − ŝimz) . (11)

In the second model, the table gave the following results.

17. eval: behavior drink shape 0.3820 ( 0.2421)

18. eval: behavior drink average alter 1.1414 ( 0.6737)

19. eval: behavior drink: effect from drink -0.5428 ( 0.2839)

Here the evaluation function is

ubeh = βtrend (zi − z̄) + βdrink (zi − z̄)2 + βav. alter (zi − z̄)(z̄(i) − z̄) , (12)

where z̄(i) is the average Z value of i’s friends6,

z̄(i) =
1

xi+

∑
j

xij zj .

Equation (12) is simpler than equation (11), because (12) is a quadratic function of zi, with
coefficients depending on the Z values of i’s friends as a function of their average, whereas (11)
depends on the entire distribution of the Z values of i’s friends.

Suppose that, in model (11), the similarity coefficient βav. sim is positive, and compare two
focal actors, i1 all of whose friends have zj = 3 and i2 who has four friends, two of whom with
zj = 2 and the other two with zj = 4. Both actors are then drawn toward the preferred value of
3; but the difference between drinking behavior 3 on one hand and 2 and 4 on the other hand will
be larger for i1 than for i2. In model (12), on the other hand, since the average is the same, both
actors would be drawn equally strongly toward the average value 3.

For model (11), consider actors in the extreme situation that all their friends have the same
behavior zij . For the parameters given above, the behavior objective function then reads

ubeh = 0.36 (zi − z̄) − 0.06 (zi − z̄)2 + 3.97 (simz
ij − ŝimz) .

This can be tabulated as follows.

6If i has no friends, i.e., xi+ = 0, then z̄(i) is defined to be equal to z̄.
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z̄(i) \ zi 1 2 3 4 5

1 –0.05 –0.82 –1.71 –2.72 –3.84
2 –1.38 0.50 –0.39 –1.39 –2.52
3 –2.70 –0.82 0.94 –0.07 –1.20
4 –4.02 –2.14 –0.39 1.25 0.13
5 –5.35 –3.47 –1.71 –0.07 1.45

For the other model, filling in the estimated parameters in (12) yields

ubeh = 0.38 (zi − z̄) − 0.54 (zi − z̄)2 + 1.14 (zi − z̄)(z̄(i) − z̄) .

For a given average Z values of i’s friends, this is a quadratic function of zi. The following table
indicates the behavior objective function for zi (columns) as a function of the average drinking
behavior of i’s friends (rows).

z̄(i) \ zi 1 2 3 4 5

1 1.87 1.59 0.22 –2.23 –5.76
2 –0.55 0.32 0.09 –1.22 –3.61
3 –2.96 –0.95 –0.04 –0.20 –1.46
4 –5.37 –2.22 –0.16 0.81 0.70
5 –7.78 –3.49 –0.29 1.82 2.85

We see that, even though the squared function does not necessarily draw the actors toward the
average of their friends’ behavior, for these parameters the highest values of the behavior objective
function are obtained indeed when the focal actor (i) behaves just like the average of his friends.
It should be noted that no between-ego comparisons are made, so comparisons are meaningful
only within rows. The values far away from the maximum contrast in this case more strongly
than in the case of the model with the average similarity effect, but these differences here are not
significant.

Another way to look at the behavior objective function is to consider the location of its maxi-
mum. This function here can be written also as

ubeh =
(
0.38 + 1.14(z̄(i) − z̄)

)
(zi − z̄) − 0.54 (zi − z̄)2 .

This function is maximal for

zi = z̄ + 0.35 + 1.05 (zi − z̄) .

16.2 Exponential random graph models

The definition of the exponential random graph model is given by the probability function

Pθ{X = x} = exp
(∑

k

(
θkuk(x)

)
− ψ(θ)

)
, (13)

given above as (5). The parameter values can be interpreted by considering the conditional prob-
ability for a tie to exist from i to j, conditional on the rest of the graph. Let us, for a given graph
x, denote by x̃(1)(i, j) the graph with all ties as x but with an tie from i to j, i.e., x possibly
changed so that

(
x̃(1)(i, j)

)
ij

= 1; by x̃(0)(i, j) the graph with all ties as x but without a tie from

i to j, so that
(
x̃(0)(i, j)

)
ij

= 0; and by x̃(i, j) the graph x but without the information about the
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existence of this particular tie. Then it follows from this probability function that the conditional
probability of a tie to exist from i to j, given the rest of the graph, is given by

Pθ{Xij = 1 | x̃(i, j)} = exp
(∑

k

(
θk(uk(x̃(1)(i, j))− uk(x̃(0)(i, j))

))
. (14)

For any of the elements uk of the vector u, the quantity

uk
(
x̃(1)(i, j)

)
− uk

(
x̃(0)(i, j)

)
(15)

is called the change statistic (Wasserman and Pattison, 1996). In words: this is the increase in the
function uk obtained by changing xij from 0 to 1. Formula (14) implies that parameter θk, which
is the weight of uk in the exponential function used in (5), is the log odds ratio for the conditional
probability (14) of the tie from i to j, associated to a one unit increase in the change statistic (15).
The functions uk can be found in Section 15.3. Further explanation about log odds ratios can be
found in texts about logistic regression and loglinear models.

E.g., for the reciprocity effect, where the statistic is the number of reciprocated ties

u2(x) =
∑
i<j

xij xji ,

the change statistic is the increase in the number of reciprocated ties when increasing xij from 0
to 1; this is equal to xji, the indicator of a tie from j to i. Hence the reciprocity parameter θ2 is
the log odds ratio for the probability of the tie from i to j due to the existence of the tie from j to
i. The existence of the latter tie will multiply the odds for the tie from i to j to exist by the factor
exp(θ2). E.g., if the value of this parameter is θ2 = 2, then this factor is e2 = 7.4. This is quite a
usual value for the reciprocity parameter, which indicates that tie reciprocation indeed has a very
strong effect.
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17 Running Siena outside of StOCNET

The SIENA program consists of a basic computation part, which is associated with the StOCNET
windows shell. The computational part can be used both directly and from StOCNET. The StOC-
NET windows shell is easy for data specification and model definition. However, especially for
frequent users it can be more convenient to run SIENA outside of the StOCNET environment. How
to do this, is explained in this section.

The computational part of SIENA is composed of seven executable programs. These programs
are:

1. Siena01.exe for the basic data input, using an existing basic information file (see below);

2. Siena02.exe for data description;

3. Siena03.exe for command line changes in parameters; see Section 18;

4. Siena04.exe for redefining the names of the effects after changes have been made in the preset
(non-estimated) internal effect parameters;
and for copying the model definition from one project to another;

5. Siena05.exe for simulations with fixed parameter values;

6. Siena07.exe for parameter estimation;

7. Siena08.exe for multilevel analysis, which is a stand-alone program anyway, and not discussed
here (see Section 14).

The mainly used programs are Siena01.exe for initiating the project, which only needs to be done
once; and Siena07.exe for parameter estimation.

These programs can be used also independently of StOCNET. To run them, the project name
must be given in a command line, e.g.

Siena01 bunt

if bunt is the name of the project, and there exists a bunt.in file. This bunt is called a command
line parameter. There are the following four ways to specify a command with a command line
parameter in Windows:

1. The command line can be given at the DOS prompt (in a Windows environment);

2. it can be given in the Windows “Run” command (for Windows 98 and higher);

3. a batch file with extension BAT can be created, e.g., with filename SIE1.BAT, containing
the single line

Siena01 bunt

so that the program Siena01 will be executed when the batch file is called (it may be necessary
to close the DOS window after the program is ready);

4. or a shortcut to the executable file can be made, where the project name is indicated in the
“target” in the “properties” of the shortcut.

The third and fourth ways are the most straightforward in Windows. I (T.S.) prefer the use of the
batch file. Note that a shortcut is made by opening Windows Explorer, giving a right mouse-click
on the executable file, and then giving a left mouse-click on “Create Shortcut”. When the shortcut
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has been made, the project name of the SIENA project must be added to the shortcut as follows:
give a right mouse-click on the shortcut, then give a left mouse-click on “properties”, and in the
“Target” field add a space and the project name after the path-plus-filename of the executable file.

To run SIENA outside of StOCNET, the steps taken are the following.

1. Write the basic information file pname.IN which describes the data files and variable names,
according to Section 21.1. This file must be in ASCII (text) format.
It is also possible to run SIENA once through StOCNET, which will produce the basic informa-
tion file (recognizable from the extension name .in), instead of writing the basic information
file oneself.

2. Make shortcuts or batch files as indicated above for each of the programs Siena01 and Siena07;
and, if desired, also for Siena02, Siena04, and Siena05.

3. Give the session name (indicated here as pname) as the command line parameter in the
shortcuts or batch files.

4. Click on the shortcut or batch file for Siena01. (This should be done only once to create the
project, because calling Siena01 for an existing project will overwrite the output file!)

5. Open the file pname.MO in a text editor, edit it to obtain the desired model specification
(see section 21.2.1), and save it as a text (ASCII, TXT) file. (Here it is more convenient to
use a light-weight text editor such as Notepad, Textpad or Wordpad, which do not have the
inbuilt preferences for formatting text that MS-Word has.)
Note that siena03 also can be used to modify the pname.MO file, see Section 18.

6. Click on the shortcut or batch file for Siena07.

The last two steps – modifying the pname.MO file and running Siena07 – can be repeated as much
as one likes.

If you are working on a computer with one processor and you would like to do other things
while Siena07 is plodding along, by changing the command in the batch file to something like

start /belownormal /w Siena07 bunt

you give the Siena07 a lower priority so that you can continue to work normally on other processes.
Other possibilities are:

7. Get some basic descriptive statistics by running Siena02.

8. Simulate the model for fixed parameter values by running Siena05. The statistics to be
simulated are indicated in the file pname.si, which can be modified to add to or delete from
the list of simulated statistics, see Section 21.2.2.

17.1 Siena04: implementing internal effect parameters

The program Siena04 is of minor importance. Some of the model-defining statistics in the SIENA
model contain numbers, or preset (non-changing)7 internal effect parameters, which can be set at
other values by the user. Examples are the value 3 in “out-degree up to 3” for the longitudinal
version of SIENA, and the value 2 in the linear combination of k-out-stars in the non-longitudinal
(“exponential random graph” or “p∗” model) version of SIENA. (These numbers should not be con-
fused with the statistical parameters that are estimated by Siena07.) These values are represented

7They are non-changing in the sense that they are not modified by the estimation algorithm, although they can
be modified by the user.
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in the pname.MO file by the last of the 6 values in the line for this effect. When these values are
modified, the change must be put into effect by calling Siena04. This will update the names of the
corresponding effects in the pname.MO file.

17.2 Siena04: copying model and option definitions

Another use of Siena04 is to call it with two parameters, e.g.,

Siena04 bunt bunthelp

if bunt is the name of the project, and there also exists a bunthelp.mo file. Then the model
definition for the bunt project, i.e., the effects included in the model as well their current parameter
values and the preset parameters, and all the options, are imported from the bunthelp.mo file.
This is useful, e.g., if one wishes to change a large number of projects to get an identical definition.
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18 Command line changes in parameters and options

Starting with SIENA version 3.2, the program Siena03 has been added which gives the possibility of
direct changes in parameter values and options, outside of StOCNET (see Section 17) and without
using an editor ‘by hand’ to change the pname.mo file which contains the model specification as
described in Section 21.2.1. The program operates on the pname.mo file, and reads its input from
the command line or from a file (which then has to be indicated in the command line – this is
option f below).

There are commands for the following changes.

p parameters: values and inclusion/exclusion;

st starting values;

est estimation method;

mc model code for longitudinal modeling, or kind of steps for Exponential Random Graph mod-
eling;

muf multiplication factor;

nsub2 number of subphases on phase 2 of the estimation algorithm;

nrun3 number of runs in phase 3 of the estimation algorithm;

seed random number seed;

ig initial gain parameter;

f read commands from a file.

Commands of type f use the other types of commands, which then must be communicated through
the file. The syntax for these commands is given below. When the program cannot interpret the
commands given, this will be mentioned in the log file.

Note that another way of changing model specifications is by copying model and option speci-
fications in their totality from one SIENA project to another by siena04.exe, see 17.2.

Parameters

The command (which can be given in a DOS window or in a batch file)

siena03 pname p x3 x4 x5

leads to the following changes in parameters. Here pname is the project name, the next p indicates
a change to a parameter, and depending on the strings x3 – x5 the following actions are carried
out.

• if x3 = r, this is about effect x4 in the rate function;
for x5 = + this is included, for x5 = - this is excluded;
for x5 equal to some number the effect is set to this number;

• if x3 = v, this is about effect x4 in the evaluation function;
for x5 = + this is included, for x5 = - this is excluded;
for x5 = t this parameter is fixed to its current value and tested by a score test;
for x5 = e it is estimated (not fixed) and not tested;
for x5 equal to some number the effect is set to this number;
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• if x3 = e, this is about effect x4 in the endowment function;
for x5 = + this is included, for x5 = - this is excluded;
for x5 = t this parameter is fixed to its current value and tested by a score test;
for x5 = e it is estimated (not fixed) and not tested;
for x5 equal to some number the effect is set to this number;

• if x3 = p, this is about the internal parameter of effect x4 in the evaluation and endowment
functions.
This is set equal to the value x5.

The numbers of the effects can be found in the list which is given for ERG models near the start
of the output file, for longitudinal models near the start of the log file. The evaluation/endowment
effects can be found also in the pname.eff file.

Some example are the following. All these examples presuppose that a SIENA project bunt
exists, on which the commands operate.
The command

siena03 bunt p v 2 0.2

changes the current value of the parameter of the 2’nd effect in the evaluation function to 0.2.
The command

siena03 bunt p v 3 -

excludes the 3’d effect from the evaluation function.
The commands

siena03 bunt p v 6 0.0

siena03 bunt p v 6 t

change the current value of the parameter of the 6’th effect in the evaluation function to 0.0 and
request to test this parameter by a score test.
The command

siena03 bunt p p 12 4

changes, for the SIENA project bunt, the value of the internal effect parameter of the 12’th effect
to 4.

Starting values

The command

siena03 pname st x3

changes the model option for the initial (‘starting’) values for parameter estimation into ‘current
starting values’ for x3 = 0, or ‘standard starting values’ for x3 = 1; see Section 7.

Estimation method

The command

siena03 pname est x3

changes the estimation method to the value x3, with codes as given in page 96.

Model code

The command
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siena03 pname mc x3

changes the model code for longitudinal modeling, or kind of steps for Exponential Random Graph
modeling, to the value x3.

Multiplication factor

The command

siena03 pname muf x3

changes the multiplication factor to x3. The multiplication factor is important to tune the MCMC
algorithm of the ERG model described in Section 11 and for the maximum likelihood and Bayesian
estimation of the longitudinal model.

Number of subphases in phase 2

The command

siena03 pname nsub2 x3

changes the number of subphases in phase 2 of the Robbins Monro algorithm to x3.
The default value is 4, and there usually is no reason to change this. Further explanation is found
in the Section on model options.

Number of runs in phase 3

The command

siena03 pname nrun3 x3

changes the number of runs in phase 3 of the Robbins Monro algorithm to x3. Explanation of this
parameter for the algorithm is found in the Section on model options.

Random number seed

The command

siena03 pname seed x3

changes the random number seed to x3.
When this value is 0, the computer determines its own random number seed (depending on the
clock). Further explanation is found in the Section on model options.

Initial gain parameter

The command

siena03 pname ig x3

changes the initial gain parameter to x3.
This determines the step sizes in the updates of the Robbins Monro algorithm. Further explanation
is found in the Section on model options.

Read commands from file

The command

siena03 pname f x3

reads commands from the file x3. Each line in this file must contain one command of the type

x2 x3 x4 x5

– in other words, the program name siena03 and the project name indicated above by pname must
not be repeated because they are already known from the siena03 f ... command.
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19 Limitations and time use

The estimation algorithm, being based on iterative simulation, is time consuming. The time needed
for the default way of running the program is approximately proportional to pnaC where p is the
number of parameters, n is the number of actors, the power a is some number between 1 and 2,
and C is the number of tie (and behavior) variables that changed between time m and time m+ 1,
summed over m = 1 to M −1. For data sets with 30 to 40 actors and something like 5 parameters,
the estimation process takes a minute or so on a fast PC. The number of actors n should not give
a problem up to, a few hundreds. For large data sets and models, the estimation process may take
more minutes up to several hours.

Section 26 indicates the constants in the program that define limitations for the data sets used.

20 Changes compared to earlier versions

There are a few as yet undocumented options that will be further disclosed when papers on these
methods will be available; e.g., Bayesian estimation procedures and models for signed digraphs.

Version 3.2 has the following extensions and improvements compared to version 3.1.

1. Compatibility with Lazarus, which will hopefully permit compilation also for Unix and Mac
platforms.

2. Implementation of behavioral endowment effects.

3. Introduction of the multi-group option.

4. A more consistent treatment of structurally determined values that are changing between
waves.

5. Correction of various bugs.

6. From version 3.14 onward: correction of an error in the “same covariate” (earlier called
“covariate identity”) effect.

7. User-defined interactions with actor variables for dependent behavior variables, and interac-
tions of transitivity with reciprocity and actor variables.

8. Various effects were added.

9. Change of some computations in the non-longitudinal (ERGM) case, allowing using the
program for larger networks.

10. The new option in the non-longitudinal (ERGM) case of conditioning on the out-degrees.

11. When running Siena01 the progress of the program is monitored in windows, which may put
the user at ease especially for larger data sets.

12. The program siena03 has been added, for command line changes in parameters and options.

Version 3 is a major overhaul of the program. It contains

1. an entirely different internal representation of graphs and digraphs, employing edge lists
instead of adjacency matrices to store them, which gives considerable speed increases for
large networks;
(input also is possible through edge lists in Pajek format);
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2. a faster algorithm for ERGM estimation;

3. a different internal representation of components of the objective function (‘effects’), which
should make it easier to add new effects to the program;

4. ML estimation procedures for network evolution models as described in Snijders, Koskinen
and Schweinberger (2010);

5. the possibility to use the program for a number of actors that is limited only by computing
time and available memory, not by constraints in the software;

6. a further improvement to the estimation of standard errors;

7. a corrected and expanded way of modeling longitudinal data of symmetric (i.e., non-directed)
networks — but this still needs to be documented;

8. the possibility to use changing dyadic covariates;

9. the option of user-defined interactions;

10. the option to use Pajek format for reading network data files;

11. various other innovations.

The main innovations in version 2.2 are

1. more efficient procedure for estimating standard errors, based on unbiased derivatives esti-
mators (Schweinberger and Snijders, 2007);

2. extension of model specification possibilities, especially for dependent behavior variables.

The main changes in version 2.1 compared to version 1.98 are

1. extension by allowing dependent actor variables, inclusion of effects related to group position
and an update of the similarity effects, implementing methods in Steglich, Snijders and
Pearson (2010), see Section 5.5;

2. the addition of Neyman-Rao goodness-of-fit tests according to Schweinberger (2005), see
Section 9;

3. the possibility to analyse dynamics of non-directed networks, according to Snijders (2007);

4. statistical Monte Carlo studies, see Section 25;

5. extension of the specifications of the exponential random graph (“p∗”) model in line with
Snijders, Pattison, Robins, and Handcock (2006), and slight modifications of the algorithm
for this case to increase efficiency;

6. missing data handling is extended to covariates and dependent actor variables;

7. addition of the program Siena08 for the multilevel analysis of multiple network evolution
processes, implementing methods in Snijders and Baerveldt (2003);

8. analysing the dynamics of non-directed networks (not yet documented);

9. possibility to specify structural (i.e., non-random) zeros and structural ones in the adjacency
matrices, see Section 5.1.1;

89



10. a new format for the project definition file pname.IN and the replacement of the internal
project files pname.mo1 through pname.mo4 by files pname.MO for model definition and
pname.SI for simulation directives (old project files still can be read);

11. correction of various errors.

The main changes in version 1.98 compared to version 1.95 are

1. the advanced option modeltype is added, implementing methods in Snijders (2003);

2. maximum number of actors increased to 500.

The main changes in version 1.95 compared to version 1.90 are

1. for the exponential random graph model some extra simulation options were added, and
inversion steps were added to the algorithm;

2. some effects (3-star and 4-star counts) added to the exponential random graph model;

3. for changing covariates, the global rather than the periodwise mean is subtracted;

4. the program Siena02 for data description was added.

The main changes in version 1.90 compared to version 1.70 are

1. possibility to use more than two observation moments;

2. inclusion of the exponential random graph (“p∗”) model, corresponding to one observation
moment;

3. possibility to have changes of composition of the network (actors leaving and/or entering);

4. changing actor covariates;

5. arbitrary codes allowed for missing data (instead of the automatic use of 6 and 9 as codes
for missing data, the user now has to supply these codes explicitly);

6. small improvements in the user interface.
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Part III

Programmer’s manual
The programmer’s manual will not be important for most users. It is intended for those who want
to look behind the screens.

The SIENA program consists of a basic computation part programmed by Tom Snijders, Chris-
tian Steglich, Michael Schweinberger, and Mark Huisman, in Turbo Pascal and Delphi; and (start-
ing with version 3.2) made compatible with Lazarus by Ruth Ripley. Lazarus is an open source set
of class libraries for Free Pascal that emulate Delphi. Associated to SIENA is the StOCNET win-
dows shell, programmed by Peter Boer and Rob de Negro in Delphi, with first Evelien Zeggelink,
then Mark Huisman, and later Christian Steglich as the project leader.

21 SIENA files

Internally the following files are used. Recall that pname is the name of the project, which the
user can choose at will. The extension file names cannot be changed.

21.1 Basic information file

The basic information file is called pname.IN, and contains the definition of the numbers of cases
and variables, the names of the files in which data are initially stored and their codes (including
missing data identification), and the names of the variables. The requirements for the input data
files are given in section 5. The data sets at the SIENA website are provided with some basic
information files which can serve as examples.

The basic information file is written by StOCNET when the data are defined, and can also be
written by any text editor that can produce ASCII (TXT) files; note that it must have extension
name .IN. Therefore it is also called the .in file. One way of writing the basic information file is to
let StOCNET do it. The basic information files written by StOCNET can be found in the directory
that is mentioned in the StOCNET options as the Sessions directory. Usually to employ the basic
information file produced by StOCNET one will have to alter the pathnames given for the data
files. How to do this will be evident for users who know how to work with directory structures and
with file and path names.

It is read by Siena01.exe. This file contains up to eight sections, each starting with a line
containing the section number (@1 through @8). These sections must have the following contents:

1. Section @1 contains basic information about type and amount of data. This section is required
for all SIENA projects. It must contain nine rows, each starting with an integer number:

• number of observations of the network (1 for exponential random graph modeling, 2 or
more for modeling network evolution over time; denoted by M);

• number of actors (denoted further by n);

• number of dependent network variables (must be equal to one in the current version of
SIENA). The network data are further specified in Section @2;

• number of dependent actor variables. Possible dependent actor variables are further
specified in Section @3;

• number of files with constant actor covariates (further specified in Section @4);

• number of files with changing actor variables (further specified in Section @5);
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• number of constant dyadic covariates (further specified in Section @6);

• number of exogenous changing dyadic covariates (from version 2.4 of SIENA onward).
Section @7 contains the specification of this type of covariate data;

• indicator of file with times of composition change (0 means no change of network compo-
sition; 1-4 mean composition change; 1 is the default treatment of composition change,
2-3 are alternatives using missing data, 4 effectively transforms the composition change
information to structural zeros). See Section 5.7. If there is composition change, the
file must be further specified in Section @8.

2. Section @2 contains information about the network data, as follows:

• for each of the M network observations, the following three lines:

– a line with the name of the data file;

– a line with the codes that are regarded as a present arc in the digraph;

– a line with the codes that are regarded as missing data;

• a line with the name of the network variable.

All codes should be in the range from 0 to 9.

3. Section @3 contains information about the dependent actor variables, in this format:

• for each dependent actor variable, the following three lines:

– a line with the name of the data file;

– a line with the code that is regarded as missing data;

– a line with the name of the variable.

4. Section @4 contains information about constant actor covariates, as follows:

• For each file containing such covariates, there must be the following lines:

– a line with the name of the data file;

– a line with the number of variables in this file;

– for each variable:

∗ a line with the code for missing data;

∗ a line with the name of the variable.

Note that this format differs from the one used in Sections @3 and @5 through @7 because
here, data files can potentially contain more than one covariate, while in these other sections,
only one variable is given per file.

5. Section @5 contains information about changing actor covariates, in the same format as the
dependent actor variables are given:

• for each changing actor covariate, the following three lines:

– a line with the name of the data file;

– a line with the code that is regarded as missing data.

– a line with the name of the covariate.

6. Section @6 contains information about constant dyadic covariates, in the same format:

• for each constant dyadic covariate, the following three lines:
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– a line with the name of the data file;

– a line with the code that is regarded as missing data.

– a line with the name of the covariate.

7. Section @7 refers to changing dyadic covariates, with for each changing dyadic covariate the
following lines:

• for each observation moment 1 to M − 1 (therefore not for the last!), the following two
lines:

– a line with the name of the data file;

– a line with the code that is regarded as missing data.

followed by

– a line with the name of the covariate.

E.g., if there are 2 changing dyadic covariates and M = 4 observation moments, this requires
a total of 2× (M − 1) = 6 data files.

8. Section @8 contains information about network composition change, namely:

• a line with the name of the file containing times of network composition change.

Whenever a certain type of data is not present, leave out the entire section in the file pname.IN
corresponding to this type. For example, if you do not have any files containing changing actor
covariates, leave out Section @5. If there are problems in reading the basic input file, try deleting
superfluous blanks and/or empty rows. See to it that the basic input file is an ASCII text file,
with numbers separated by blanks, lines separated by hard returns.

The variable names given in the input file will be used in the output files. If no names are
provided and SIENA is run in the StOCNET environment, SIENA uses the default variable names
generated by StOCNET in the StOCNET Data menu. This is not recommendable because it can
lead to identical names for different variables. If no names are provided and SIENA is run outside
of the StOCNET environment, SIENA uses its own default variable names, and this problem does
not occur.

An example for the basic input file is the following file bunt.IN. This refers to data files that are
included with the program, collected by Gerhard van de Bunt. This example, which contains a file
with three covariates, is used in van de Bunt (1999) and in van de Bunt, van Duijn, and Snijders
(1999).

@1[general information about SIENA project <bunt>:]

2 [number of waves]

32 [number of actors]

1 [number of dependent network variables]

0 [number of dependent actor variables]

1 [number of files with constant actor covariates]

0 [number of exogenous changing actor covariates]

0 [number of constant dyadic covariates]

0 [number of exogenous changing dyadic covariates]

0 [indicator for file with composition change directives]

@2[network files in temporal order; names follow:]

vrnd32t2.dat

1 2 3 [code for tie]

6 9 [code for missing]

vrnd32t4.dat

1 2 3 [code for tie]
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6 9 [code for missing]

friendship

@4[files with constant actor covariates:]

vars.dat

3 [number of covariates in this file; names follow:]

99 [code for missing]

gender

99 [code for missing]

program

99 [code for missing]

smoke

The basic data input is carried out by executing Siena01.exe. This programs reads the basic
information file. Some preliminary output is given in the files pname.out and pname.log.

21.2 Definition files

The program writes and reads for internal use the following two definition files:

• pname.MO defines model specification and options for model estimation,

• pname.SI defines statistics and number of runs for simulation.

These definition files are read in a format where certain lines are skipped entirely and other
lines are skipped after reading a certain number. These skipped parts are between square brackets
[...]. Their purpose is to give information to the human reader about the meaning of the lines.
Note, however, that SIENA does not check for the brackets, but skips information on the basis of
line numbers and reading numerical information.

The three files pname.IN, pname.MO and pname.SI must be compatible (as they contain some
overlapping information) for successfully running SIENA.

21.2.1 Model specification through the MO file

The model specification options were already discussed in Section 12. These can be changed outside
the StOCNET shell, by changing the pname.MO file by a text editor. They also can be changed
using the siena03.exe program. By operating directly on the pname.MO file is is also possible to
use advanced SIENA options which are not yet available through StOCNET; whether such options
exist, will depend on the versions of SIENA and StOCNET.

When looking at the pname.MO file, you can see that this file by and large contains the same
information as the screen opening up in StOCNET when clicking the Model specification button.
More precisely, the pname.MO file consists of several sections, marked by @-symbols, as follows:

• Section @1 contains general information about the project, such as data format, numbers
and names of variables. The information given in this section must be compatible to the
information provided in the file pname.IN.

• Sections starting @2.x contain the model specification for dependent network variables (in-
dexed by x). There are two subsections:

– Subsections @2.x.1 contain the specification of the network rate function, which looks
like this:

94



@2.1.1 [rate function effects for dependent network variable <#1>:]

11 [number of these effects :]

[each effect is given in two rows]

[first row contains label of the effect,]

[second row contains flags for inclusion, fixing and testing,]

[the starting value and potential extra parameters for effect calculation.]

basic network rate parameter

0 0 0 5.851107 0

outdegrees effect on rate

0 0 0 0.000000 0

[...]

The section must contain first a row with the number of effects, further down for each of
these effects two rows, one containing the effect name, the other containing a sequence
of numbers. These have the following meaning:

∗ a 0/1 entry denoting whether the effect is included (1) or excluded (0);

∗ a 0/1 entry denoting whether the effect is fixed (1) or not fixed (0) during the
estimation process;

∗ a 0/1 entry indicating whether a fixed effect shall be included (1) or excluded (0)
in goodness-of-fit calculations (see Section 9);

∗ the starting value of the parameter for the estimation procedure;

∗ an internal effect parameter (for modeling the constants c in the mathematical
definition of the effects, see Section 15.1.1.

– Subsections @2.x.2 contain the specification of the network decision rule (including the
evaluation endowment functions), and which has the following shape:

@2.1.2 [objective function effects for dependent network variable <#1>:]

46 [number of such effects :]

[first row contains label of the effect,]

[next three rows: functions in which effect can be included:]

[row 1: evaluation function, row 2: endowment function, row 3: reinforcement function,]

[columns correspond to: (a) inclusion, (b) random effects, (c) fixing, (d) testing,]

[(e) starting value, (f) potential extra parameters for effect calculation.]

density (outdegree)

1 0 0 0 -1.143698 0

0 0 0 0 0.000000 0

0 0 0 0 0.000000 0

reciprocity

1 0 0 0 1.467572 0

0 0 0 0 0.000000 0

0 0 0 0 0.000000 0

[...]

The section must contain first a row with the number of effects, further down for each of
these effects four rows, one containing the effect name, the other containing sequences
of numbers. These have the following meaning:

∗ a 0/1 entry denoting whether the effect is included;

∗ a 0/1 entry denoting whether a corresponding random effect effect is included;

∗ a 0/1 entry denoting whether the effect is fixed;

∗ a 0/1 entry indicating whether a fixed effect is included in goodness-of-fit calcula-
tions;

∗ the starting value of the parameter for the estimation procedure;

∗ an internal effect parameter.

Of the three rows that follow this pattern, the first row corresponds to the evaluation
function, the second row corresponds to the endowment function, and the third row
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is reserved for future model extensions that allow the modeling of adaptive learning
behavior.

In the current version of SIENA, but one dependent network variable can be analyzed at a
time, so there will only be sections @2.1.y.

• Sections starting @3.x contain the model specification for dependent action variables (again
indexed by x). as for the network variables, there are two subsections:

– Subsections @3.x.1 contain the specification of the behavioral rate function,

– Subsections @3.x.2 contain the specification of the behavioral decision rule (including
the evaluation endowment functions).

These subsections have the same format as the corresponding subsections for the network
evolution model.

• The final Section @4 contains specifications of various estimation options. Most of these
are accessible in StOCNET, e.g., through the model options mentioned in Section 12. The
consecutive options are the following. Some of these may not be accessible from StOCNET,
and be possible only when working with SIENA outside of StOCNET.

1. Estimation method:

– code 0 for unconditional estimation;

– code 1 or code 21 for estimation conditional on observed changes in the network;

– codes 21+k for estimation conditional on observed changes on the dependent action
variable k;

– code 2 for maximum likelihood estimation;

– code 3 for Bayesian estimation.

For exponential random graphs, another available option is to include incidental vertex
parameters:

– code 10 for unconditional estimation with incidental vertex parameters;

– code 11 for conditional estimation with incidental vertex parameters.

2. For estimation method 2 and 3, an indicator of whether initial estimates should be
computed:

– code 0: no;

– code 1: yes: unconditional estimates are computed and used as initial estimates.

3. For Bayesian estimation: Metropolis Hastings (M-H) algorithm for the fixed effects in
the evaluation and endowment functions:

– code 1: random walk M-H;

– code 2: independence sampler;

– code 3: first-order autoregressive M-H.

4. For Bayesian estimation: scale factor of the proposal distribution:

– code 0: scale factor is calibrated during burn-in;

– code c > 0 (positive, real number): c is used as scale factor.

5. For models with actor-dependent random coefficients: Metropolis Hastings (M-H) algo-
rithm for the random effects:
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– code 1: random walk M-H;

– code 2: independence sampler;

– code 3: first-order autoregressive M-H.

6. For models with actor-dependent random coefficients: scale factor of the proposal dis-
tribution:

– code 0: scale factor is calibrated during burn-in;

– code c > 0 (positive, real number): c is used as scale factor.

7. A code for the type of model.
For longitudinal data this is the Model Code described in the section on model options.
For exponential random graph models, this code defines the steps used in the one-
observation case for simulating a random (di)graph (see also the description above):

– code 1: Gibbs steps for single tie variables ;

– code 2: Gibbs steps for dyads;

– code 3: Gibbs steps for triplets;

– code 4: Metropolis Hastings steps for single tie variables, version A;
this is the default for directed networks;

– code 5: Metropolis Hastings steps for single tie variables, version B;

– code 6: Metropolis Hastings steps for single tie variables, version A, for non-directed
graphs;

– code 7: Metropolis Hastings steps for single tie variables for antisymmetric graphs
(‘tournaments’);

– code 8: Metropolis Hastings steps keeping the in-degrees and out-degrees fixed.

– code 9: Metropolis Hastings steps keeping the out-degrees fixed, version A;

– code 10: Metropolis Hastings steps keeping the out-degrees fixed, version B.

To each of these values, the number 10 may be added (so the values become 11–20).
In that case a continuous chain is used: i.e., the last generated graph is used as the
initial value in the MCMC sequence for simulating the next graph. Otherwise (i.e.,
for the values 1–10), the initial value is an independently generated random graph. For
practical purposes, one should always use a continuous chain – i.e., only use codes 11–20.

Since version 3.181, the special option 26, available only for non-directed graphs, con-
ditions additionally on the connectedness of the network, provided that the observed
graph is connected.

8. The number of subphases in phase 2 of the estimation algorithm (advice: 4). If the
number given here is higher than 10, this signifies the request for additional estimation
runs as long as the maximum t-ratio for convergence is higher than 0.15. The maximum
additional number of repeated estimation runs then is the rounded value of number of
subphases divided by 10; the real number of subphases is the remainder in this division.

9. The number of phase 3 iterations for the estimation algorithm (advice: 1000).

10. A number r proportional to the number of steps used for generating one graph in the
one-observation case. The number of steps is r n2/2d(1 − d) where n is the number of
actors and d is the observed density of the graph; if the observed density is less than
.05 or more than .95, the value d = .05 is used.

11. The initial value of the gain parameter in the estimation algorithm (advice: 0.2 for
longitudinal MoM, smaller for ERGM).

12. An indicator for the initial value used in the estimation algorithm:
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– code 0: current value as specified in the preceding sections,

– code 1: standardized starting value, meaning that a good starting value is chosen for
the density effect and in the one-observation (exponential random graph) case also
for the reciprocity effect. For still other configurations, also starting values for the
rate parameters and the shape effect for dependent action variables are internally
determined. All other effects then have a 0.0 starting value.

13. An indicator allowing for tests of temporal (between-period) homogeneity of parameters:

– code 0: no test,

– code m > 0: test for period m

14. An indicator allowing for tests of actor homogeneity of parameters:

– code 0: no test,

– code 1: test of the density (out-degree) effect,

– code 2: test of the reciprocity effect.

15. A space-separated list giving the row numbers of the actors for such an actor homo-
geneity test.

16. A value determining the use of random numbers during the estimation process:

– code 0: randomize seed,

– code c > 0 (positive integer): c is used as random seed.

17. An indicator for the method of estimating derivatives of expected values with respect
to parameters:

– code 0: Finite Differences (the older method of Snijders 2001);

– code 1: Score Function method I, see Schweinberger and Snijders (2007);
(not available for all models);

If you change anything in the pname.MO file, you must run Siena04.exe to let SIENA check (and if
necessary: censor or re-define) the model specification.

21.2.2 Specification of simulations through the SI file

For running simulations, SIENA needs to be told which statistics it should simulate. This is done
by manipulating the pname.SI file by an ASCII text editor before running the simulations. This
file consists of two sections, again marked by @-symbols, as follows:

• Section @1 contains the list of possible statistics that can be simulated. It looks as follows:

@1 [statistics that can be generated]

60 [number of these statistics :]

[each statistic is given in two rows]

[first row contains label of the statistic,]

[second row contains flag for inclusion]

Amount of change

1

Number of ties

1

Number of reciprocated ties

0

[...]

As can be seen, for each effect, there are two rows:
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– a row containing the statistic’s name;

– a row contining an indicator whether the statistic shall be simulated.

• Section @2 contains options for simulation. Currently, there is but one option:

– the default number of simulations for straight simulation (advice: 1000).

The file pname.SI by and large contains the same information as the screen opening up in StOCNET
when clicking the Statistics specification button (which is possible as soon as Simulation is selected
as the Run model).

If the number of simulations is specified as 1, then one complete data set is stored and written
both as adjacency matrices and in Pajek format. For larger number of simulations, only aggregate
information (means, standard deviations and covariance matrices of statistics) is reported.

21.3 Data files

After the initial project definition the original data files are not used any more, but the project
data files are used. These are the following.

• pname.d01 Network data file time 1.

• pname.d02, etc. Network data file time 2, etc.

• pname.m01, etc. Network missings file time 1, etc.

• pname.s01, etc. Fixed part of network structure period 1, etc.

• pname.dav Data file constant actor-dependent variables (centered).

• pname.miv Missings file actor-dependent variables.

• pname.dac Data file with changing actor-dependent variables.

• pname.mac Missings file changing actor-dependent variables.

• pname.z01, etc. Data files non-changing dyadic covariates.

• pname.c01, etc. Data files changing dyadic covariates.

• pname.n01, etc. Missings files dyadic covariates.

• pname.dex Data file times of composition change.

The user does not need to care about these data files (but should not delete them either).

21.4 Output files

The main output for the user goes to pname.out. In addition, some secondary output files are
generated.
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• pname.log An extra output file, which in the first place is
a log file of what the program did, and also contains
some further secondary information.

• pname.cck This file contains a more detailed report of the estimation algorithm.
It is overwritten with each new estimation procedure.

• pname.bof An excerpt of the estimation results for quick reference.

• pname.bos An even smaller excerpt of the estimation results:
only the parameter estimates and standard errors.

Some other output files may be written; this is then announced in the pname.out file.

21.5 Other information files

SIENA makes a few files with some additional information. One is for the user to facilitate the
construction of interaction effects. Others are designed for being used by StOCNET as a list of
options. These files are the following.

• pname.eff The numbered list of effects for help in constructing interaction effects.

• pname.cdc List of model code options for the evolution model.

• pname.cdd List of options for the estimation of derivatives,
required for the estimation of standard errors.

• pname.cde List of estimation options.

The user does not need to look at these information files (but should not delete them either).
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22 Units and executable files

The basic computational parts of SIENA are contained in the following units.

First, there are six basic units.

1. S DAT contains the basic data structures together with some basics of the model definition;
it uses unit EIGHT for some lower-level data storage, and also DIGRAPH for definition of
network data and model ingredients.

2. S CONSTANTS contains definitions of maximal values of numbers of actors, numbers of
variables, etc.

3. S BASE contains the basic model definition and the basic simulation procedures.

4. S SIM is the unit for carrying out straight simulations.

5. S EST contains the procedure for estimation, using S TEST for goodness-of-fit tests.

6. S DESC contains procedures for data description.

Then there are some special-purpose units, of which the most important ones are:

7. S Start contains the procedure ReadWriteData to start a project by reading the pname.IN file
and the initial data files, and writing the internally used files. It uses only S DAT.
Procedure ReadWriteData from S START must be followed always by procedure BeforeFirst-
ModelDefinition from S BASE.

8. S ML contains procedures for maximum likelihood estimation.

9. S RE contains procedures for random effect models (as yet undocumented).

10. S signed contains procedures for models for signed digraphs (as yet undocumented).

11. S ChangeModel contains procedures for command-line driven changes in the .mo file.

Further there are five units containing specific kinds of utilities. Their names do not start with S
because they do not use the other units (except perhaps S CONSTANTS).

12. EIGHT is a unit for storing the data. Its name was chosen for historical reasons (in SIENA
version 1 a byte was used to store eight booleans). This unit also connects the procedures in
DIGRAPH to those in S BASE; this is necessary because DIGRAPH is defined independent of
the data.

13. DIGRAPH is a unit for defining network data types and effect data types.

14. CHAINS defines data types for use in data augmentation procedures employed in maximum
likelihood estimation.

15. SLIB is a library of various computational and input/output utilities.

16. RANGEN is a library for generation of random variables. It uses the URNS suite for random
numbers generation.
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22.1 Executable files

The basic data input is carried out by executing Siena01.exe. This program executes ReadWriteData
and BeforeFirstModelDefinition, thereby reading the basic information file.

Data description is carried out by Siena02.exe which executes Describe.

Changes in the .mo file, defined in the command line, can be carried out by siena03.exe.

In the StOCNET operation the model specification is carried out by StOCNET changing the .MO
file and then running Siena04.exe.

Siena04.exe is used for checking admissibility of a model specification, and for keeping consistency
between the different session files. It reads and updates the .MO file, and also writes the corre-
sponding .SI file. If you change pname.MO by an text editor outside of StOCNET, it is advisable
to run Siena04.exe before proceeding.
Siena04.exe can also be used to copy a model definition from one .mo file to another.

The simulation is carried out by Siena05.exe which executes Simulate.

The estimation is carried out by executing Siena07.exe which executes Estimate.
The multilevel combination of estimation runs for several data sets according to the same basic
model specification is done by Siena08.exe (see Section 14). This program is independent of the
other programs, and reads the output files produced by Siena07.exe.

22.2 Running SIENA in console mode

For various purposes, e.g., high-performance computing, it can be useful to have a version of
SIENA which runs in console mode without a Windows graphical user interface. This is possible by
compiling SIENA under Lazarus and, in the Project / Compiler options / Other screen of Lazarus,
add -dbatch to the Custom options. This yields versions of the SIENA executable files which run in
console mode, and have no opportunity for user interaction while the program is running. During
the program operation, some information about the progress of the computations is written to the
screen (i.e., the DOS window).

23 Starting to look at the source code

If you wish to start with understanding the structure of the source code, it may be helpful to take
the following tour of some essential ingredients.

1. Unit DIGRAPH defines network data types:

(a) TValuedDigraph, storing a valued directed graph, used as the basic network data struc-
ture;

(b) TDigraph, storing a valued directed graph, used for storing indicators of missing data
and structurally determined data.

Both data types store valued digraphs as doubly linked arc lists, allowing to search arcs both
from the sender node and from the receiver node, and using less memory space than the
adjacency matrices used in versions 1 and 2 of SIENA.
In addition, unit DIGRAPH defines types that allow to define the model components:

(a) TEffect, defining a component in the objective function for the longitudinal case, and a
component in the log-odds for the non-longitudinal (ERGM) case;

(b) TEffects, defining an array of TEffect and many operations on such arrays.
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2. Unit EIGHT contains the fundamental data structures, using the types defined in DIGRAPH.
(i) Functions starting with y represent dependent variables.

(a) yn is the adjacency matrix of the dependent network variable (current value):
yn(i,j) is the tie variable from i to j;

(b) ya is the vector of dependent individual variables (current value):
ya(i,h) is the h’th individual variable for actor i;

(c) ynm gives the adjacency matrices of the dependent network variable (all values):
ynm(i,j,m) is the tie variable from i to j at observation moment m.

(d) mis is the indicator matrix for missing values:
mis(i,j,m) = 0 if ynm(i,j,m) is an observed value and 1 if it is missing.

Note that yn and ya change dynamically during the simulation process; the variables con-
taining the data from which ynm and mis are calculated, are read in the input phase and
then are left unaltered.
For the sake of flexibility, the variables in the list above are implemented as functions, not
as arrays.

(ii) Variables starting with a single z represent individual variables.

(a) Array z contains the constant actor variables; the number of such variables is nz.

(b) Array zc contains the changing actor variables; their number is nzc.

(c) The number of dependent actor variables is nza; these variables are the first nza among
the nzc changing actor variables.

(iii) Variables starting with zz represent dyadic variables.

(a) Array zz contains the constant dyadic covariates; their number is nzz.

(b) Array zzc contains the changing dyadic covariates; their number is nzzc.

Further, unit EIGHT contains procedures linking the methods in DIGRAPH to the data struc-
tures available in EIGHT.

3. Unit S DAT contains the defining ingredients for the network models. The intended demar-
cation between S DAT and S BASE, is that the former contains the model definition and
the latter the operation of the model dynamics. This is not realized completely because of
various conflicting constraints.

4. Unit S BASE contains the simulation procedures.
The main procedures in this unit are the following.

(a) Function SimStats generates the required statistics and is called by procedure Simulate
in S SIM and (indirectly, through FRAN in unit S ML) by Estimate in S EST.
The procedure SimStats first simulates the network and behavior by the procedure
Runepoch and then calculates statistics by the procedures NetworkStatistics and Action-
Statistics; the values of these statistics are output arguments of SimStats.

(b) Procedures NetworkStatistics and ActionStatistics calculate the statistics from the gen-
erated network (or adjacency matrix) and behavior variables, and is called by SimStats.

(c) Procedure Runepoch generates a stochastic network and action variables for given pa-
rameter values and a given initial situation by simulating the dynamic model for one
period between two observations. This procedure is called by procedure SimStats. If
there are M observations (M ≥ 2), Runepoch is called M − 1 times.
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(d) Procedure Runstep makes one stochastic step according to the actor-oriented evolution
model, i.e., it either changes one entry (i, j) of the adjacency matrix to be changed,
or it changes the value of one action variable for one . The time variable time is also
increased by an amount depending stochastically on the rate functions. This procedure
is called by procedure Runepoch.

(e) Procedure ChangeTie is called at the end of procedure RunStep if a change in the network
is made, and carries out the required change of the network and the associated updates
of various statistics.

(f) Procedure ChangeBehavior is called at the end of procedure RunStep if a change in
behavior is made, and carries out the required change of the dependent action variable
and the associated updates of various statistics.

(g) Function NetworkLambda, which is the rate function for the network changes made by
each actor, and is used in procedure Runstep.
For Model Type 2, it uses functions ξ and ν.

(h) Function ActionLambda, which is the rate function for the behavior changes made by
each actor, and is used in procedure Runstep.

(i) Procedure ChoiceProbabilities, which defines the probabilities with which a given actor
i chooses to change the tie variable to actor j, for each of j = 1, . . . , n.

(j) Function contr fa, which defines the contribution sZih(x) of each given effect h to the
evaluation function for the behavior, and is used in procedure Runstep.

(k) Function contr ga, which defines the contribution of each given effect to the endowment
function for the behavior, and is used in procedure Runstep.

5. Unit S ML contains procedures for maximum likelihood estimation, including the ‘chain’ data
structure for the augmented data.
The main function computed here is Scores, the score function for the augmented data. This
unit includes the function FRAN (‘Function Random’), which is the basic function in the
equation solved by procedure POLRUP in unit S EST. Depending on the type of estimation
requested, FRAN calls function SimStats in unit S BASE, or function Scores in unit S ML.

6. In unit S EST, the Robbins-Monro algorithm is contained in the procedure POLRUP (for
Polyak-Ruppert, see Snijders, 2001). When parameters are to be tested by Neyman-Rao
tests, S EST calls the procedure TestStatistic in the unit S TEST.

7. Unit S SIM is used for simulations, and calls the function SimStats in S BASE.

8. The unit S ERGM EST and the file S ERGM.PAS which is an include file used in S BASE
contain procedures used only for the ERGM (non-longitudinal / 1 observation) case.

23.1 Sketch of the simulation algorithm

The simulation algorithm, used in the Method of Moments estimation as well as for straight
simulation, is explained here using the notation of Snijders (2005) and Snijders, Steglich and
Schweinberger (2007). It is formulated here only for the case of two observation moments t1
and t2, and no dependent behavior variables. The distinction between evaluation function and
endowment function is obscured here; both are jointly referred to as objective function.
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The following notation is used; in typewriter font are the symbols in the source code.

n number of actors) n

X dependent network (digraph) matyn

xij indicator variable of tie from i to j in digraph X yn(i,j)

x(i j) digraph x in which xij is replaced by 1− xij ,
and the other elements of x remain unchanged

λi rate function for network change networklambda

K ≥ 1 number of terms in the objective function
βk parameters in the objective function alpa f[k], alpa g[k], theta[k]

sik(x) components of the objective function
E(λ) exponential distribution with parameter λ

The schematic outline of the algorithm is as follows. In typewriter font the procedures and
variables are mentioned that are most important for this step in the algorithm; the outline is
followed by an indication of where these procedures and variables are defined. The algorithm as a
whole is implemented in the procedure SimStats in unit S Base.

Replacing a variable by the sign + means summation over this index.
”generate ∼” means to generate a random variable with the indicated distribution.
”choose random ∼” means to generate a discrete random variable with probabilities proportional
to the indicated values.

1. Initial conditions: network X = x(t1); Initialise y, matyn

time t = 0. time

2. Repeat RunEpoch, RunStep

3. generate ∆t ∼ E(λ+);
4. choose random i ∼ λi;
5. for all k = 1, . . . ,K and j = 1, . . . , n,

calculate sik
(
x(i j)

)
;

see (16), (17) in Section 24.1;
6. for all j = 1, . . . , n, calculate

fi
(
x(i j)

)
=
∑K
k=1 βksik

(
x(i j)

)
;

7. choose random j ∼ exp(fi
(
x(i j)

)
;

8. Set t := t+ ∆t;
9. Set xij := 1− xij ;



rs tau

NewRanp, i

UtilityComponents

or
Contrib n, Contrib fn

ChoiceProbabilities

NewRanp, j

ChangeTie

until 
10. a. if estimation method is conditional:∑

i,j |xij − xij(t1)|
=
∑
i,j |xij(t2)− xij(t1)|;

b. if est. method is unconditional:
t ≥ 1;


Distance

ObservedNetworkDistance

time

11. Replace tie variables which are structurally fixed
at the end but not the beginning of the period ForceNewStructurals

by the structurally fixed end values
12. Calculate statistics u(X). NetworkStatistics

The procedures and variables in this outline are defined in the following data types, procedures,
and units. The list is in the order of their occurrence in the outline.
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Procedure / variable Defined in type in unit
or procedure

Initialise y ModelSpecification S Base
matyn Eight
time ModelSpecification S Base
RunEpoch ModelSpecification S Base
RunStep ModelSpecification S Base
rs tau RunStep S Base
NewRanp RanGen
i RunStep S Base
UtilityComponents TEffects Digraph
Contrib n TEffects Digraph
Contrib fn TEffects Digraph
ChoiceProbabilities ModelSpecification S Base
NewRanp RanGen
j RunStep S Base
ChangeTie ModelSpecification S Base
Distance ModelSpecification S Base
ObservedNetworkDistance DataSpecification S Dat
time ModelSpecification S Base
NetworkStatistics ModelSpecification S Base

23.2 Remarks about the likelihood algorithm

The implementation of the likelihood algorithm (for maximum likelihood and Bayesian estimation)
is not documented yet, except for the general algorithm descriptions in Snijders, Koskinen and
Schweinberger (2010), (Koskinen, 2005), Koskinen and Snijders (2007), and Schweinberger and
Snijders (2007). This section currently is no more than a loose collection of remarks, that are
being written as the need arises.

If the boolean variable makechain (defined in S ML) is true and the maximum likelihood option is
chosen, then the sequence of changes from each observation to the next is written to file pname.cha.
This is coded in the following format.

• A line with the letter A. Then the parameter values used for the simulation.

• For each period:

– A line with the letter P and the number of the period.

– For each change a line;
if it is a network change, the format is
N i j v 0
where i and j are the actors for whom the tie is changed, and v is the number of the
network variable (currently always equal to 1). This line is interpreted as a change of
xij to 1− xij .
If it is a behavior change, the format is
B i 0 v d
where i is the actor who makes the change, v is the number of the behavior variable,
and d is the amount of change (which can be −1 or +1). This line is interpreted as a
change of zvi to zvi + d.

• A line with the letter L, followed by a line with the log-likelihood of this sequence of changes.

106



24 Parameters and effects

In the source code there are two kinds of parameters: alpha (α; in the source code: alpa l for the
rate function, alpa f for the evaluation function, alpa g for the endowment function) and theta (θ).
The alpha parameters are used in the stochastic model, and each alpha parameter corresponds to
one effect, independently of whether this effect is included in the current model specification. Their
values are stored in the pname.MO file, which also indicates (by 0-1 codes) whether these variables
are included in the model, and whether they are fixed at their current value in the estimation
process. The theta parameters are the statistical parameters that correspond to the effects in the
current model specification. Thus, the theta parameters are those elements of the alpha parameters
that are currently active.

Procedures SetAlpha and SetTheta in unit S BASE define the correspondence between the alpha
and theta parameters. This correspondence sets the order of the theta parameters as follows:

1. First the parameters for network dynamics:

(a) Rate parameters;

(b) evaluation function parameters;

(c) endowment function parameters;

2. Then the parameters for behavior dynamics (if there is a dependent behavior variable):

(a) Rate parameters;

(b) evaluation function parameters;

(c) endowment function parameters.

If there is more than one dependent behavior variable, then within these three categories the
parameters are ordered according to the dependent variable whose dynamics they influence.

The distinction between the theta and alpha parameters in principle also allows linear (or other)
restrictions between the alphas. In the present version, the possibility of such restrictions is not
implemented, but this possibility may be elaborated in a later version.

The effects for the evolution model, distinguishing between effects for the network dynamics
and effects for the behavior dynamics, are defined in several procedures, which of course must
correspond. To each effect corresponds one statistic used for estimating the parameter for this
effect. This is spelled out in Sections 24.1 and 24.2.

Originally unit S DAT contained the data definition and S BASE the model definition. This
distinction has been a bit blurred in version 3.0 by the construction work on the program, but the
plan is to reorganize the units again to make the distinction between the units more helpful.

In unit S DAT, the numbers of the various types of effects are defined:

1. NetworkEffects f, the number of effects in the evaluation function for the network dynamics;

2. NetworkEffects g, the number of effects in the endowment function for the network dynamics;

3. NetworkEffects l, the number of effects in the rate function for the network dynamics;

4. ActionEffects f, the number of effects in the evaluation function for the behavior dynamics;

5. ActionEffects g, the number of effects in the endowment function for the behavior dynamics;

6. ActionEffects l, the number of effects in the rate function for the behavior dynamics;
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7. NetworkFunctions, the number of statistics that can be calculated and which can be used
if there are no dependent behavior variables; this number is equal to NetworkEffects f +
NetworkEffects g + NetworkEffects l.

8. ActionFunctions, the number of statistics that can be used additionally to the statistics men-
tioned before, in case that there are dependent behavior variables.

In units S DAT and S BASE, the definitions of the effects and statistics are given. These use the
basic data and effect structures defined in unit DIGRAPH (which has a name not starting with S
because it is itself independent of the other SIENA units), which is described below.

• A. For the rate function:

1. Procedure DefineModel lnames defines the names of the effects and the index numbers
of the corresponding statistics;

2. function NetworkLambda defines the network change rate function;

3. procedure Transform l calculates some variables for more efficient calculations in Net-
workLambda;

4. for Model Type 2, the rate function for network change also depends on the functions
ξ and ν;

5. function ActionLambda defines the behavior change rate function.

• B. For the evaluation and endowment functions of the network dynamics:

1. Unit S BASE has an include file S EFFECTS which contains the basic definitions of
the available effects, i.e., components of the evaluation and endowment functions. The
effects are defined in the procedure DefineNetworkEffects. The effects in the evaluation
and endowment functions are defined conjointly (see below).

• C. For the evaluation and endowment functions of the behavior dynamics:

1. Procedure DefineModel fnames and DefineModel gnames define the names of the effects
in the evaluation and endowment functions, respectively;

2. function Contr fa and Contr ga give the contribution of each effect to the evaluation and
endowment functions, respectively.

• D. For the statistics:

1. Procedure DefineFunctionnames defines the names of the statistics; for the network statis-
tics, this uses the names defined in procedure DefineNetworkEffects in file S EFFECTS;

2. procedures NetworkStatistics and ActionStatistics calculate the statistics.

24.1 Effect definition

Unit DIGRAPH is used not only to define data types but also for defining effects:

1. type TEffect defines an effect, which is a term in the evaluation function, and possibly a
corresponding term in the endowment function;

2. type TEffects defines an array of effects.

The effects are defined by means of the arrays

108



1. ContributionWeight, giving weights for the contribution of this effect to the evaluation func-
tion;

2. ConfigWeight, giving weights for the definition of the corresponding statistic;

and the functions

3. f1ijc, defining a contribution of tie xij = 1 to the evaluation function; this function has ar-
guments (dg, i, j,m, t, par), where dg is the valued digraph, (i, j) indicates the tie variable,
m defines the period (observation number), t is shorthand for the current value of tie vari-
able xij of digraph dg (avoiding its unnecessary calculation), and par is a fixed parameter
incorporated in the effect;

4. f1ij, defining a contribution of tie xij = 1 to the statistic, with arguments (dg, i, j,m, par);
often f1ij is equal to f1ijc, but sometimes f1ij can be computed in a more simple way; there
can also be differences between these two functions in the way they deal with missing data;

5. f1i, defining an extra contribution of actor i to the statistic, with arguments (dg, i,m, par).

The parameter par is a parameter that can be used to modify the definition of the effect (e.g., par
could be the order k of a k-star), and which is given in the MO file as the last element of each line
corresponding to an effect.

In many cases ContributionWeight = ConfigWeight, f1ij(dg, i, j,m, par) = f1ijc(dg, i, j,m, 1, par),
and f1i = 0, but flexibility and possibilities for handling missing data are gained by this way of
specifying; which contains some redundancies for data sets without any missings.

The contribution of the effect to the evaluation function is defined as follows: if the effect has
weight α (a statistical parameter, to be distinguished from the preset parameter indicated by par),
then increasing tie variable xij from 0 to 1 will increase the evaluation function by α times

c1 + c2 xji + c3 xi+ + c4 x+i + c5 xj+ + c6 x+j

+ c7 TPij + c8OSij + c9 ISij + c10 TPji + f1ijc(dg, i, j,m, 0, par) , (16)

where ch = ContributionWeight[h]; decreasing tie variable xij from 1 to 0 will decrease the evaluation
function by α times

c0 + c1 + c2 xji + c3 xi+ + c4 x+i + c5 xj+ + c6 x+j

+ c7 TPij + c8OSij + c9 ISij + c10 TPji + f1ijc(dg, i, j,m, 1, par). (17)

Here TP , OS, and IS are the numbers of twopaths, outstars, and instars, respectively, defined by

TPij =
∑
h

xih xhj

OSij =
∑
h

xhi xhj

ISij =
∑
h

xih xjh ;

dg refers to the current network x, and m to the current period. Equations (16), (17) are (except
for the sign in the second case) equal to sik

(
x(i j)

)
−sik(x) in Snijders (2001, 2005) and Snijders,

Steglich and Schweinberger (2007), where k is the index of the effect.

Equations (16), (17) are calculated in either of two ways: in procedure UtilityComponents, and
in procedures Contrib n and Contrib fn, all in unit Digraph. (The procedures in Digraph are linked
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to unit S Base by means of procedures in unit Eight.) Procedure UtilityComponents calculates (16)
and (17) and makes them available directly. Procedures Contrib n and Contrib fn compute the
change in objective function, which is∑

k

αk
{
sik
(
x(i j)

)
− sik(x)

}
. (18)

This is calculated for changing tie variables from 0 to 1, using (16) and αk = alpa f[k], in
procedures Contrib n and Contrib n alpha in unit Digraph; for changing tie variables from 1 to
0 it is calculated, using (17) and αk = alpa f[k] + alpa g[k], in procedures Contrib fn and
Contrib fn alpha in unit Digraph. How these procedures are placed in the simulation algorithm is
indicated in Section 23.1.

The statistic used for estimating the weight α of the evaluation effect is given by∑
m

∑
i

f1i(dgm+1,m, par) +∑
i 6=j

xm+1
ij

(
c1 + c2 x

m+1
ji + c3 x

m+1
i+ + c4 x

m+1
+i + c5 x

m+1
j+ + c6 x

m+1
+j + c7 TP

m+1
ij

+ c8OS
m+1
ij + c9 IS

m+1
ij + c10 TP

m+1
ji + f1ij(dgm+1, i, j,m, par)

)
, (19)

where ch = ConfigWeight[h] and the superscript m+1 refers to the observation moment. This
statistic is calculated by procedure CalcFunctions f in unit DIGRAPH.

The endowment function is defined only if f1i = 0; then IncludeEndowment is true, else it is
false. The contribution of the effect to the endowment function (i.e., an extra component of the
loss incurred when changing tie variable xij from 1 to 0) is given by the corresponding statistical
parameter multiplied by (17). The statistic used for estimating the weight α of the endowment
effect is given by∑

i 6=j

(1− xm+1
ij )xmij

(
c1 + c2 x

m
ji + c3 x

m
i+ + c4 x

m
+i + c5 x

m
j+ + c6 x

m
+j

+ c7 TP
m
ij + c8OS

m
ij + c9 IS

m
ij + c10 TP

m
ji + f1ij(dgm, i, j,m, par)

)
, (20)

where ch = ConfigWeight[h] and the superscripts m and m+1 refer to the observation moments.
Note that the factor (1 − xm+1

ij )xmij means that the summation extends only over (i, j) for which
there was a tie at observation m which had disappeared at moment m + 1, while the subscripts m

between the parentheses imply that the “quantity lost” is calculated by reference to moment m.
This statistic is calculated by procedure CalcFunctions g in unit DIGRAPH.

24.2 Changing or adding definitions of effects

Objective function effects for the network dynamics are defined by the procedure AddEffect* de-
fined in unit DIGRAPH, and called in procedure DefineNetworkEffects in include file S Effects which
is part of unit S DAT. Procedure AddEffect* defines the name, the arrays ContributionWeight and
ConfigWeight, and the functions f1ijc, f1ij, and f1i, all described in Section 24.1. Note that var-
ious versions AddEffect1, AddEffect2, etc., are available for procedure AddEffect*, where omitted
arguments are 0 or nil. Usually when a new effect is defined, also new functions will have to be
defined that are then used in the roles of f1ijc, f1ij, and/or f1i. Many examples can be found in file
S Effects.

If new effects are added to the rate function for the network dynamics, these additions must
be made in a coherent way to each of the following procedures.
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1. Procedure DefineFunctionNames in unit S DAT, which contains the names of all the statistics
calculated from each simulation;

2. Procedure DefineModel lnames in unit S DAT, which contains the names of all effects in the
network change rate function;

3. Function NetworkLambda in unit S BASE, the network change rate function itself;

4. Procedure NetworkStatistics in unit S BASE, for the statistics used to estimate the parameters
by the Method of Moments.

(For the maximum likelihood estimation procedure, non-constant rate functions are not yet imple-
mented.)

If new effects are added to the model for the behavior dynamics, these additions must be made
coherently to each of the following procedures.

• For each kind of effect:

1. Procedure DefineFunctionNames in unit S DAT, which contains the names of all the
statistics potentially calculated from each simulation;

2. Function MaxFunctions in unit S DAT, which contains the number of these statistics
(more precisely, the functions called by MaxFunctions);

3. Procedure ActionStatistics in unit S BASE, which calculates these statistics.

• For effects in the rate function for behavior change, the analogous procedures have to be
changed as those for the rate function for network change:
function ActionEffects l in unit S DAT, procedure DefineModel lnames in unit S DAT, function
ActionLambda in unit S BASE, and procedure ActionStatistics in unit S BASE.

• For effects in the evaluation and endowment functions for behavior change, the following
procedures have to be changed:
function ActionEffects f in unit S DAT, procedure DefineModel fnames in unit S DAT, and
functions Contr fa and Contr ga in unit S BASE; the latter functions must be coordinated
with procedure CalcComponents fa in unit EIGHT.

The functions AddNoTies yn, SubtractTies yn, Contr fa, Contr ga, NetworkLambda, and Action-
Lambda are evaluated very frequently by the algorithm. Therefore these have been written so
that relatively few calculations are needed to evaluate them. Such calculations for a large part
are replaced by updating and storing the basic numerical information needed to compute them.
These updates are contained in the procedure ChangeTie in unit S BASE, and the initialisation is
contained in the procedure Initialise Running Statistics.
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25 Statistical Monte Carlo Studies

According to Sir Ronald A. Fisher, there are three main statistical problems, model specification,
model estimation, and problems of distribution. The last one concerns the distribution of statistics,
such as the distribution of parameter estimates around the true (data-generating) parameter value
or the distribution of test statistics, and can be studied by SIENA in various ways. One way is
to use Siena05 and Siena07 repeatedly in batch files. It can be useful to know that if Siena05 is
called with only one run, then one data set is simulated and also stored in the internal SIENA
format under the project name sisim. Further, Siena07 gives brief estimation reports in the files
pname.bof and pname.bos, which can be used more easily as summaries of repeated runs than the
normal output file.

This can be used, for example, as follows. It is assumed that the reader knows how to run
SIENA outside of StOCNET, see Section 17.

1. Make a directory which includes the files Siena01.exe, Siena05.exe, Siena07.exe and all the
data files of a basic project that will be emulated in the simulations.

2. Initialise a Siena project; for example, with project name sprj. Do this by constructing the
file sprj.in and running a batch file with the contents

siena01.exe sprj

copy sprj.* sisim.*

3. The second line in the batch file has also copied all files sprj.* to sisim.*.
This means that now, two identical projects are available. Of these, sprj.* will be used to
generate simulated data, and sisim.* to analyse these.

4. Specify the file sprj.mo to have the desired effects and parameter values. Copy this file to
sisima.mo.

5. In the file sprj.si, change the last line so that the number of simulation runs specified is 1.

6. Make a batch file which contains many repetitions of the lines

start /w siena05 sprj

copy sisima.mo sisim.mo

start /w siena07 sisim

For example, 1,000 repetitions, for 1,000 simulations.
The first line makes one simulation run with the specifications included in sprj.mo, and writes
the data files in internal SIENA format to files sisim.d*. The second line specifies the correct
model specification for the analysis. (If you wish to estimate parameters with a different
specification, the file sisima.mo should be defined accordingly.) The third line estimates the
model.

7. The directory should at this moment (before running the batch file) not contain a file called
sisim.bos or sisim.bof.
Run the batch file.

8. After the batch file is finished, the file sisim.bos now contains a summary of all the estimates
and standard errors produced. It gives first a heading, then for each simulation/estimation
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run a line with initial information, the estimates, and the standard errors. The initial infor-
mation is the estimation method; if the maximum absolute t-value for convergence is larger
than 0.1, then a letter t, else the sign ∗; if the maximum standard error is larger than 10.0,
then a letter s, else the sign ∗; and the maximum absolute t-value for convergence. The file
sisim.bof contains longer summaries of each estimation run, for reference purposes.
Note that the threshold of 0.1 for the t-ratios for convergence is very conservative, and some-
what larger values usually are acceptable.
To understand the contents of the file sisim.bos, it is good to compare some of the first lines
following the heading with the corresponding results summarized in sisim.bof.

Another way to do simulation studies using SIENA, if one has access to a Delphi or Lazarus
compiler, is as follows. Open the unit Siena 7 and go to the procedure TEstForm.FormActivate. The
first statement in the procedure is simulate := false. Set the global variable simulate to true.
SIENA will then simulate data sets according to the probability model specified in the pname.MO
file.

Then, manipulate the global constant sequences declared in unit Siena 7 by setting it to some
positive integer value k (the default is 1). The constant sequences gives the number of runs
(sequences).

The result is that running SIENA will generate k data sets according to the probability model
specified pname.MO file. From each data set, the parameters are estimated and test statistics are
evaluated.

Some Matlab source files are (by default) generated by SIENA. The source code, when inter-
preted by Matlab, produces histograms of some statistics, in particular histograms of the parameter
estimates and the test statistics.

It should be noted that SIENA generates networks with desired properties, but (by default)
no covariates. If covariates are desired, suitable code must be added at the beginning of the
procedure SimulateData in the unit S EST. Please note that both internal and external storage
(see Section 21.3) of generated covariates is required. Internal storage is difficult unless one knows
SIENA -it is advisable to contact the authors in such cases.

26 Constants

The program contains the following constants. Trying to use a basic information file that implies
a data set going beyond these constants leads to an error message in the output file and stops the
further operation of SIENA.

name meaning in unit

pmax maximum number p of included effects S Constants
ccmax maximum number of possible statistics S Constants
nzmax maximum number nz of individual variables EIGHT
nzzmax maximum number nzz of dyadic covariates EIGHT

Reasonable values for these constants are the following:
pmax = 70;
ccmax = 500; the maximum number of statistics depends on the number of available effects,
the number of dependent behavior variables, and the number of observations M , and is given by
MaxFunctions in unit S Dat; this should not be more than ccmax;
nzmax = 30;
nzzmax = 20.
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The number M of observations may not be higher than 99. Since the number of observations is
dealt with by a dynamic array, this is not reflected by some constant. The only reason for the
upper bound of 99 is that the index number of the observation is used in the internal data file
extension names and may not have more than two digits. But 99 seems quite a high upper bound
for practical data sets.
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2004, 5–39.
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