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Abstract
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structure, and how these mutually affect each other. In methodolog-
ical terms, this means that behavior of individuals – indicators of
performance and success, attitudes and other cognitions, behavioral
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1. Introduction: The Joint Dynamics of Networks and Behavior

Social networks are representations of patterns of relations between actors
(individuals, companies, countries, etc.); see Wasserman and Faust (1994),
Carrington et al. (2005). Such networks are not static but evolve over time.
Friendship ties form and dissolve again over the life course, trade relations be-
tween business partners typically cover only a limited time period – indeed,
change over time occurs naturally for most social relations that are com-
monly studied, like trust, social support, communication, even web links and
co-authorship ties. Such change can be due to purely structural, network-
endogenous mechanisms like reciprocity (Sahlins, 1972), transitivity (friends
of friends tend to be friends) (Rapoport, 1953a,b, Davis, 1970), or structural
competition (Burt, 1987). However, also mechanisms related to individual
characteristics of the network actors can be among the determinants of net-
work change. Best-known among these are patterns of homophily (i.e., pref-
erence for similarity) in friendship selection (McPherson et al., 2001), and a
large variety of determinants of attractiveness as relational partner (e.g., the
strong market position of a company as a determinant for strategic alliances,
or the sociability of a classmate as a determinant for party invitations).

On the other side, actors’ characteristics – indicators of performance and
success, attitudes and other cognitions, behavioral tendencies – can depend
on the social network the actor is situated in. It is well-known that in many
social situations, behavior and attitudes of individuals follow patterns of
assimilation to others to whom they are tied. Examples are the diffusion of
innovations in a professional community (Valente, 1995), pupils’ copying of
‘chic’ behavior of their friends at school, or traders on a market copying the
allegedly successful behavior of their competitors.

The change of network structure is often referred to as selection (Lazars-
feld and Merton, 1954), and the change of individual characteristics of social
actors depending on the characteristics of others to whom they are tied is
called influence (Friedkin, 1998). It is assumed here that the group of actors
under study has been delineated in such a way that it is meaningful to inves-
tigate the selection and influence processes in this group without considering
ties to others outside the group. The necessity of studying selection and in-
fluence processes in networks simultaneously was discussed both in detailed
network investigations (e.g., Padgett and Ansell, 1993) and in theoretical dis-
cussion essays (Emirbayer and Goodwin, 1994, Doreian and Stokman, 1997).
A concrete example is smoking initiation among adolescents, where it has
been established in the literature that friends tend to have similar patterns
of smoking behavior, but where it is unknown to which extent this is a mat-
ter of selection of friends on the basis of common behavior, or adaptation of

2



behavior towards that of one’s friends (Bauman and Ennett, 1996).
This chapter proposes a statistical method for investigating network struc-

ture together with relevant actor attributes as joint dependent variables in a
longitudinal framework, assuming that data have been collected according to
a panel design. This is a more detailed exposition of the proposals sketched
in Steglich et al. (2010). In the stochastic model, the network structure and
the individual attributes evolve simultaneously in a dynamic process. The
method is illustrated by an example on the dynamics of alcohol consumption
among adolescent friends.

1.1. Overview

The principles of actor-driven, or actor-oriented, modeling were proposed in
Snijders (1996). The model for dynamics of only networks, without behav-
ior, was formulated in Snijders (2001, 2005). In Steglich et al. (2010), the
sociological aspects of the model for dynamics of networks and behavior are
discussed, with an extensive example about the interrelationship of the de-
velopment of friendship networks and the dynamics in smoking and drinking
behavior, on the basis of data from a Scottish high school. This chapter
gives an overview of the specification of the stochastic model for dynamics
of networks and behavior and then proceeds to parameter estimation and
model selection.

The chapter is structured as follows. In Section 2, the data structure in-
vestigated is formalized. Section 3 formulates the family of stochastic models
by which we propose to model and analyze network–behavioral co-evolution.
Section 4 is about parameter estimation. Goodness-of-fit issues and model
selection are addressed in Section 5. These methods are illustrated by an
example in Section 6. The final Section 7 gives a discussion of the main
points raised in the article and some further developments.

2. Notation and Data Structure

A relation on a set X is defined mathematically as a subsetR of the Cartesian
product X × X ; if (i, j) ∈ R, we say that there is a tie, or link, from i
to j. When X is a set of social actors (e.g., individuals or companies),
such a mathematical relation can represent a social relation like friendship,
esteem, collaboration, etc. An introduction to the use of this type of model
is given in Wasserman and Faust (1994), more recent developments in this
area are presented in Carrington et al. (2005). This chapter is concerned
with data structures consisting of one relation defined on a given set of n
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actors, changing over time, along with H ≥ 1 changing actor attributes. The
relation will be referred to as the network, the attributes as behavior or actor
characteristics. The relation R is assumed to be nonreflexive, i.e., for all i we
have (i, i) 6∈ R, and directed, i.e., it is possible that (i, j) ∈ R but (j, i) 6∈ R.
The relation is represented by the n×n adjacency matrix X =

(
Xij

)
, where

Xij = 0, 1, respectively, represents that there is no tie (i.e., (i, j) 6∈ R),
or there is a tie (i.e., (i, j) ∈ R), from actor i to actor j (i, j = 1, ..., n) .
The relation can also be regarded as a directed graph, or digraph, and the
existence of a tie from i to j is represented by the figure i → j. The actor
attributes are assumed to be ordered discrete, each having a finite interval
of integer values as its range, and Zhi denotes the value of actor i on the
hth attribute. Time dependence is indicated by denoting X = X(t) and
Zh = Zh(t), where t denotes time and Zh is the column containing the Zhi
values.

This chapter presents models and methods for the dynamics of the stochas-
tic process

(
X(t), Z1(t), . . . , ZH(t)

)
. In addition to the relation X and the

attributes Zh there can be other variables, called covariates, on which the
distribution of this stochastic process depends; these can be individual (i.e.,
actor-dependent) covariates denoted by the letter v and dyadic covariates
(depending on a pair of actors) denoted by w.

It is supposed that observations on
(
X(t), Z1(t), . . . , ZH(t)

)
are available

for discrete observation moments t1 < t2 < ... < tM . The number M of
time points is at least 2. In the discussion of the stochastic model, random
variables are denoted by capital letters. E.g., X(tm) denotes the random
digraph of which x(tm) is the outcome.

The individual covariates vh = (vh1, . . . , vhn) and the dyadic covariates
wh =

(
whij

)
1≤i,j≤n may depend on the observation moments tm or be con-

stant. When covariates are time-dependent it is assumed that they are ob-
served for all observation moments tm, and their effect on the transition
kernel of the stochastic process

(
X(t), Z1(t), . . . , ZH(t)

)
is determined by the

most recently observed value, observed at time max{tm | tm ≤ t}. Since co-
variates are treated as deterministic, non-stochastic variables, they will often
be treated implicitly and skipped in the notation.

To prevent an overload of notation, the stochastic process(
X(t), Z1(t), . . . , ZH(t)

)
together with the covariate data (if any), will be

represented by the symbol Y (t). Thus, the totality of available data is rep-
resented by y(t1), . . . , y(tM).
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3. Model Definition

The process of network-behavioral co-evolution is regarded here as an emer-
gent group level result of the network actors’ individual decisions. These
decisions are modeled as being the results of myopic optimization by each
actor of an objective function that contains terms reflecting systematic ten-
dencies and preferences, and also a random term representing non-systematic
(‘unexplained’) change. This approach implies that the constituents of the
actors’ objective functions are the central model components; the myopic
nature of the optimization implies that the objective functions represent the
dynamic tendencies that actors have in the short term. Building on earlier
work (Snijders, 1996, 2001, 2005), we denote this approach by the term actor-
driven modeling. Each actor i is assumed to have, in principle, control over
his/her outgoing ties Xij (j = 1, . . . , n; j 6= i) and over her/his characteris-
tics Zhi (h = 1, . . . , H). These ties and characteristics have in this model,
however, a great deal of inertia and it will be assumed that they change only
by small steps.

To formulate a model containing separate causal processes of social in-
fluence (where an actor’s characteristics are influenced by network structure
and the properties of other network actors) and of social selection (where
actor characteristics affect tie formation and tie dissolution), we make four
reasonable simplifying assumptions. These simplifications provide a natural
first choice for modeling the co-evolution processes of networks and individual
attributes in a host of applications.

The first of these assumptions is that the observations at the discrete
time points t1 < t2 < ... < tM are the outcomes of an underlying process
Y (t) =

(
X(t), Z1(t), . . . , ZH(t)

)
that is a Markov process with continuous

time parameter t. Such an assumption was already proposed by Holland
and Leinhardt (1977a,b) and Wasserman (1977) as a basis for longitudinal
network modeling. Thus, changes in network ties and behavior happen in
continuous time, at stochastically determined discrete moments, and the to-
tal difference between two consecutive observations y(tm) and y(tm+1) is re-
garded as the result of usually many unobserved changes that occur between
these observation moments. The Markov assumption means that given the
current state Y (t), the conditional distribution of the future Y (t′) for t′ > t
is independent of the history before time t. In other words, the current state
Y (t) contains all information determining the future dynamics. The Markov
assumption sets limits to the domain of applicability of these models: they
are meaningful especially if the network X(t) and the vector of behavioral
variables Zh(t) together can be regarded as a state which together with the
covariates determines, in a reasonable approximation, the endogenous dy-
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namics of these variables themselves. This excludes applications to ephemeral
phenomena or brief events for which a dependence on latent variables would
be plausible. Examples where such a Markov model could be applied are the
dynamics of friendship and health-related or lifestyle-related behavior (Steg-
lich et al., 2010) or strategic alliances and ownership ties between companies
and their market performance (Pahor, 2003). Examples where such a model
would be less suitable are ephemeral ties, or events, like going to a movie or
email exchange.

The second assumption is that at any given moment t, all actors act
conditionally independently of each other, given the current state Y (t) of the
process. This way, the possibility of simultaneous changes by two or more
actors has probability zero. An example for such simultaneous changes would
be binding contracts of the type “I’ll start going out with you once you stop
going out with that other person”. Although such bargaining indeed may
happen in real life, it would be modeled here as two subsequent decisions by
the two actors involved, the connection of which cannot be enforced.

The third assumption is that the changes which an actor applies at time t
to his/her network ties (thus, the changes in Xi) and the changes made about
his/her behavioral characteristics (changes in Zhi) all are conditionally inde-
pendent of each other – again, given the current state of the process. This
implies that simultaneous changes in network ties and actor behavior have
probability zero. Thus the co-evolution process is separated into a network
change process (social selection) and a behavior change process (social influ-
ence), mutually linked because the transition distribution of each process is
determined not only by its own current state but also by the current state
of the other process; they are not linked by a joint choice process where an
actor determines simultaneously a change in a network tie and a change in
behavior.

The fourth assumption is that, when an actor makes a change in either
the vector of outgoing tie variables Xij (j = 1, . . . , n; j 6= i) or in the behavior
vector (Z1i, . . . , ZHi), not more than one variable Xij or Zhi can be changed
at one instant, and in the value of Zhi only increases or decreases by one unit
are permitted – recall that these variables are integer valued; larger changes
are modeled as the result of several of these small steps. Thus, a change
by actor i is either the creation of one new tie (Xij changes from 0 to 1),
the dissolution of one existing tie (Xij goes from 1 to 0), or an increase or
decrease in one behavior variable Zhi by one unit.

The general principle of these assumptions is to specify the co-evolution
of the network and the behavior as a Markov process constructed from the
smallest possible steps. This is proposed because it leads to a parsimonious
and relatively simple model that in many applications seems a plausible first
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approximation to the co-evolution process of network and behavior. Since
only panel data are assumed to be available, perhaps collected at a quite
limited number of moments like two or three, there is not much information
available for a detailed check of this type of assumptions, which underlines
the requirement of parsimony. Depending on the application at hand, these
assumptions may make more or less sense, which should be checked before
applying these models as well as later, using the observed data.

The stochastic process is assumed to be a left-continuous function of time,
i.e.,

lim
t′↑t

Y (t′) = Y (t) .

As will be elaborated below, at randomly determined moments t, one of the
actors i is assumed to have the opportunity to change either a tie variable Xij

or a behavioral variable Zhi, and when the actor takes such a decision this
leads to a new value of this variable valid immediately after time t. When the
actor has such an opportunity, it is also permitted not to change anything –
which will happen if the actor is ‘satisfied’ with the current situation, as will
be explained below. These small changes will be referred to as micro steps.
The often complex compound change between two consecutive observations
y(tm) and y(tm+1) thus is decomposed into many small, stochastically spaced
micro steps that occur between observation moments. Altogether, this set
of assumptions provides a simple way of expressing the feedback processes
inherent in the dynamic process, where the currently reached state Y (t) is
always the initial state for further developments.

The first observation y(t1) is not modeled but conditioned upon, i.e., the
starting values of the network and the initial behavior are taken for granted.
This implies that the evolution process is modeled without contamination by
the contingencies leading to the initial state, and that no assumption of a
dynamic equilibrium needs to be invoked.

3.1. Rate functions

The moments when any given actor i has the opportunity to make a decision
to change the vector of outgoing tie variables (Xi1, . . . , Xin) or a behavior
variable Zhi are randomly determined and follow Poisson processes, the wait-
ing times being modeled by exponential distributions with parameters given
by so-called rate functions λ. For each actor i, there is one rate function for
the network (denoted λ

[X]
i ) and one for each behavioral dimension (denoted

λ
[Zh]
i ). The rate functions are allowed to depend on the time period m, but

also on actor characteristics vhi and Zhi and on network characteristics (like
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indegree or outdegree of the actors). The latter two determinants can be ex-
pressed by calculating actor-dependent one-dimensional statistics aki

(
Y (t)

)
.

The rate functions during the time period tm < t < tm+1 then are given by

λ
[X]
i (Y,m) = ρ[X]

m exp

(∑
k

α
[X]
k a[X]ki

(
Y (t)

))
(1)

for the timing of network decisions and

λ
[Zh]
i (Y,m) = ρ[Zh]

m exp

(∑
k

α
[Zh]
k a[Zh]ki

(
Y (t)

))
(2)

for the timing of behavioral decisions. The rate functions depend on pa-
rameters ρ indicating period-dependence and α indicating dependence on
the statistics aki

(
Y (t)

)
. The ‘forgetfulness property’ of the exponential dis-

tribution used for modeling the rate function is a crucial condition for the
Markov property of the stochastic process Y (t). Multiplying the time scale by
some amount will lead to an inversely proportional change in the multiplica-
tive constants ρm. This implies that the numerical values of the durations
tm+1− tm are immaterial for modeling, and it is no restriction to assume that
all time intervals have a unit duration, which will make the ‘real’ durations
be absorbed in the ρm parameters.

3.2. Objective functions

While the rate functions model the timing of the different actors’ different
types of decisions, the objective functions model which changes are made. It
is assumed that actors i, once it is their turn to make a decision, myopically
optimize an objective function over the set of possible micro steps they can
make. This objective function is further assumed to be decomposable into
three parts: the evaluation function f , the endowment function g, and a
random term ε capturing residual noise, i.e., unexplained influences. For
network decisions taken by actor i, starting from the current state Y (t) and
optimizing the new state y under the constraints defined by the type of micro
step, the objective function optimized is

f
[X]
i

(
β[X], y

)
+ g

[X]
i

(
γ[X], y | Y (t)

)
+ ε

[X]
i (y) , (3)

while for behavioral decisions, it is the function

f
[Zh]
i

(
β[Zh], y

)
+ g

[Zh]
i

(
γ[Zh], y | Y (t)

)
+ ε

[Zh]
i (y) . (4)
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The myopic optimization means that the actor chooses the change maximiz-
ing the value of the objective function that will be obtained by making the
contemplated change, without taking into account the consequences later on.

The evaluation function fi measures the satisfaction of actor i with a
given network-behavioral configuration, independently of how this configu-
ration is arrived at. The endowment function gi, on the other hand, measures
a component of the satisfaction with a given network-behavioral configura-
tion that will be lost when the value of a variable Xij or Zhi is changed,
but which was obtained without ‘cost’ when this value was obtained. (The
model of Snijders (2001) uses a so-called gratification function. This is math-
ematically equivalent to the model with the endowment function; the current
formulation with the endowment function allows a more easily structured ex-
position.) The evaluation function depends only on the new state y whereas
the endowment function depends both on the hypothetical new state y and
the current state Y (t) that is the immediate precursor of y.

By including network endowment effects into a model specification, it be-
comes possible to assess systematic differences between the creation and the
dissolution of ties that cannot be captured by the evaluation function. An
example is the phenomenon that the cost in loosing a reciprocal friendship
tie is greater than the gain in establishing such a tie – one could say that
the existence of a reciprocated tie gives a reward without cost; theoretical
and empirical support for the endowment inherent in reciprocated friend-
ships is given by Van de Bunt (1999) and Van de Bunt et al. (1999). By
including behavioral endowment effects, it becomes possible to assess similar
asymmetries between moving upwards on a behavioral dimension and mov-
ing downwards (e.g., the empirical phenomenon that some behaviors like
smoking or drug consumption are started more easily than abandoned later
on). The endowment effect is defined in microeconomics (Thaler, 1980) as
the difference between ‘selling prices’ and ‘buying prices’: it is an empiri-
cal regularity that for most economic goods, the former are higher than the
latter; related concepts of loss aversion and framing are discussed, e.g., in
Kahneman et al. (1991) and Lindenberg (1993).

Both functions are modeled as weighted sums, the weights being statisti-
cal parameters in the model. The evaluation function is expressed as

f
[X]
i

(
β[X], y

)
=
∑
k

β
[X]
k s

[X]
ik (y) (5)

for the evaluation of the network and

f
[Zh]
i

(
β[Zh], y

)
=
∑
k

β
[Zh]
k s

[Zh]
ik (y) (6)
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for the evaluation of behavior variable Zh .
The endowment function gives the opportunity to entertain models where

the gain in establishing a tie differs from the loss in breaking the same tie;
and the gain in increasing a behavioral variable differs from the loss in de-
creasing it by the same amount. The parts of these gains and losses that
perfectly compensate each other can be put into the evaluation function.
Therefore it is assumed here that the satisfaction associated with increasing
values of tie variables Xij and behavior variables Zhi is totally represented by
the evaluation functions, while the endowment function represents only the
satisfaction lost when decreasing these variables. Thus, for increases of the
tie and behavior variables, only the evaluation function needs to be taken
into account, while for decreases both the evaluation and the endowment
functions must be reckoned with.

The endowment function for network changes is written, for the change
from y0 to y, as

g
[X]
i

(
γ[X], y | y(0)

)
=
∑
k

∑
j 6=i

γ
[X]
k I{xij < x

(0)
ij } s

[X]
ijk (y(0)) (7)

where γ
[X]
k s

[X]
ijk (y(0)) is the endowment value of the tie x

(0)
ij = 1, which will be

lost when this tie is withdrawn (xij = 0). I{A} is the indicator function of
the condition A, defined as 1 if the condition is satisfied, and 0 otherwise.

For the endowment function for the behavior variable Zh, again for the
change from y0 to y, a slightly more complicated expression is used, because
this variable may have an arbitrary number of integer values. The endowment
function is

g
[Zh]
i

(
γ[Zh], y | y(0)

)
=
∑
k

γ
[Zh]
k I{zhi < z

(0)
hi }

(
s
[Zh]
ik (y(0))− s[Zh]

ik (y)
)
. (8)

Here, s
[Zh]
ik (y(0)) is the satisfaction with the behavior variable Zhi that is

diminished to s
[Zh]
ik (y) when decreasing this variable, but that does not play

a role for actor i when increasing it.
The third component of the objective function is defined by the random

residuals ε, which are assumed to be independent and to follow a type-I
extreme value distribution (also known as standard Gumbel distribution).
This is a common and convenient choice in random utility modeling, which
allows us to write the resulting choice probabilities for the possible micro
steps in a multinomial logit form (Maddala, 1983, McFadden, 1974).
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For network decisions the resulting choice probabilities are

Pr
(
x(i; j) | x(t), z(t)

)
=

exp
(
[f + g]

[X]
i (β[X], γ[X], x(i; j)(t), z(t))

)∑
k exp

(
[f + g]

[X]
i (β[X], γ[X], x(i; k)(t), z(t))

) (9)

where [f+g]
[X]
i is defined in a self-evident way, x(i; j) denotes for j 6= i the

network resulting from a micro step in which actor i changes the tie variable
to actor j (from 0 to 1, or vice versa), and x(i; i) is defined to be equal to
x. Thus, for i 6= j, x(i ; j)ij = 1− xij while all other elements of x(i ; j)
are equal to those of x.

For behavioral decisions the formula is

Pr
(
z(i lh δ) | x(t), z(t)

)
=

exp
(
[f + g]

[Zh]
i (β[Zh], γ[Zh], x(t), z(i lh δ)(t))

)∑
τ∈{−1,0,1} exp

(
[f + g]

[Zh]
i (β[Zh], γ[Zh], x(t), z(i lh τ)(t))

) (10)

where z(i lh δ) denotes the behavioral configuration resulting from a micro
step in which actor i changes the score on behavioral variable Zh by δ. Thus,
z(i lh δ)hi = zhi + δ, while all other elements of z(i lh δ) are equal to those
of z.

3.3. Model components

Possible components s
[X]
ik in the network evaluation function (5) are presented

and discussed in Snijders (2001, 2005). A limited number of such components
is the following; more examples and interpretation can be found in the cited
references.

1. Outdegree effect, the number of outgoing ties
si1(x) = xi+ =

∑
j xij ;

2. reciprocity effect, the number of reciprocated ties
si2(x) = xi(r) =

∑
j xij xji ;

3. transitivity effect, the number of transitive patterns in i’s ties. A tran-
sitive triplet for actor i is an ordered pairs of actors (j, h) for which
i → j → h and also i → h, as indicated in Figure 1. The transitivity
effect is defined by
si3(x) =

∑
j,h xij xih xjh ;
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Figure 1: Transitive triplet

4. number of geodesic distances two effect, or indirect relations effect, de-
fined by the number of actors to whom i is indirectly tied (through one
intermediary, i.e., at geodesic distance 2),
si4(x) = ]{j | xij = 0, maxh(xih xhj) > 0} ;

5. attribute-related similarity, sum of similarities with respect to variable
Zh between i and those to whom i is tied
si5(x, z) =

∑
j xij

(
1− |zih − zjh|/Rh

)
, (11)

where Rh is the range of variable Zh ;

6. main effect of a dyadic covariate w, defined by the sum of the values
of wij for all others to whom i is tied,
si6(x) =

∑
j xij wij .

Possibilities for components s
[X]
ijk of the endowment function (7) for the net-

work are given by the same formulae but skipping the summation over j.
Many possibilities for components s

[Zh]
ik in the behavior evaluation func-

tion (6) are discussed in Steglich et al. (2010). The foremost examples are
listed here.

1. Tendency indicating the preference for high values,
si1(x, z) = zih.

2. attribute-related similarity, the sum of similarities with respect to vari-
able Zh between i and those to whom this actor is tied,
si2(x, z) =

∑
j xij

(
1− |zih − zjh|/Rh

)
, (12)

where again Zh has range Rh.

3. dependence on other behaviors h′ (h 6= h′) ,
si3(x, z) = zih zih′ .

These formulae are also possibilities for components s
[Zh]
ik for the behavior

endowment function (8).
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Note that components si5(x, z) for the network evaluation function and
si2(x, z) for the behavior evaluation function are the same formulae. This is
basic to the difficulties in distinguishing these two effects: positive values of
the parameters for either component will contribute to positive correlations
between the behavior values of actors with the behavior values of those to
whom they are tied: network autocorrelation (Doreian, 1989).

3.4. Transition intensities

The model described thus far amounts to a continuous-time Markov process
Y (t). Such a process is fully described by its starting value (here the first
observation y(t1)) and its matrix of transition intensities between the states
at any moment t. This matrix of transition intensities has the following
elements, where y = (x, z) is the current and ŷ the next outcome:

q(y; ŷ) =



λ
[X]
i (y) Pr

(
x(i; j) | x, z

)
if ŷ =

(
x(i; j), z

)
,

λ
[Zh]
i (y) Pr

(
z(i lh δ) | x, z

)
if ŷ =

(
x, z(i lh δ)

)
,

−
∑

i

{∑
j 6=i q

(
y; (x(i; j), z)

)
+∑

δ∈{−1,1} q
(
y; (x, z(i lh δ))

)}
if ŷ = y,

0 otherwise

(13)

(dropping the dependence on parameters ρ, α, β, γ, as well as on time t).
Integration over this infinitesimal generator gives transition probabilities for
the process Y from one given time point to another, later moment.

4. Method of Moments Estimation

The likelihood function for this model cannot be computed explicitly in the
general case, which makes maximum likelihood or Bayesian estimation hard.
Several other estimation methods, however, are possible within the general
framework of Markov chain Monte Carlo (MCMC ) estimation. Snijders
(1995, 1996, 2001) proposed, for models with network evolution only, es-
timation procedures according to the Method of Moments (MoM ). MoM
estimators are specified here for the case of network-behavior co-evolution.
The elaboration of maximum likelihood estimators and the efficiency com-
parison between MoM and ML estimators is the topic of current work.

For a general statistical model with data Y and parameter θ, the MoM
estimator based on the statistic u(Y ) is defined as the parameter value θ̂ for
which the expected and observed values of u(Y ) are the same,

Eθ̂

(
u(Y )

)
= u(y) , (14)
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u(y) being the observed value. A review of the MoM is presented by Bowman
and Shenton (1985). Formula (14) is called the moment equation. Usually θ
and u(Y ) will be vectors with the same dimension, and the solution will be
locally unique and often globally unique. Using the delta method (Lehmann,
1999) and the implicit function theorem it can be proven under regularity
conditions that if θ̂ is a consistent solution to the Moment Equation (where
the dependence on the index n is left implicit), the asymptotic covariance
matrix of the moment estimator is

covθ
(
θ̂
)
≈ D−1θ ΣθD

′
θ
−1
, (15)

where Dθ is the matrix of partial derivatives,

Dθ =

(
∂Eθ

(
u(Y )

)
∂θ

)
, (16)

and Σθ is the covariance matrix

Σθ = covθ
(
u(Y )

)
.

This shows, at least in principle, how the efficiency of the MoM estimator
depends on the statistic u(Y ).

4.1. Statistics for Moment Estimation

This section gives statistics u(Y ) for the network-behavior co-evolution model
that are intuitively plausible and have been shown to give useful estimates.

The intuition behind statistics that are useful for the construction of MoM
estimators is that for each separate one-dimensional parameter θh in the to-
tal parameter vector θ, there must be a real-valued statistic included as a
component in u(Y ) that tends to become larger as θh increases; its distribu-
tion should preferably be a stochastically increasing function of θh when the
other components of the parameter θ are kept constant. The components of
θ in this model are the parameters indicated above by the letters ρ, α, β, γ.
Suitable statistics will be discussed separately for the constant factors ρm
in the rate functions; for the other parameters α in the rate functions; the
weights β in the evaluation functions; and the weights γ in the endowment
functions. The proposed statistics for the network evolution were mentioned
already in Snijders (2001).

The panel design, where observations on the stochastic process are avail-
able at several discrete time moments, together with the Markov property,
leads to a slightly adapted version of the moment equation (14). For parame-
ters that influence only the stochastic process as it evolves in the period from
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tm−1 to tm and have no effect before tm−1 or after tm, and that are estimated
on the basis of some statistic um

(
Y (tm−1), Y (tm)

)
, the moment equation is

Eθ

{
um
(
Y (tm−1), Y (tm)

)
|Y (tm−1) = y(tm−1)

}
= um

(
y(tm−1), y(tm)

)
. (17)

On the other hand, for parameters that are constant across all time periods
and thereby affect the distribution of the stochastic process from the first to
the last observation, and for which statistics um

(
Y (tm−1), Y (tm)

)
are relevant

for all m = 2 . . . ,M , the moment equation is

M∑
m=2

Eθ

{
um
(
Y (tm−1), Y (tm)

)
|Y (tm−1) = y(tm−1)

}
=

M∑
m=2

um
(
y(tm−1), y(tm)

)
. (18)

Rate function parameters

The basic parameters in the rate functions are the constant factors ρ
[X]
m for

the rate of change of the network and ρ
[Zh]
m for the rate of change of be-

havior variable Zh. Natural statistics for estimating these parameters are,
respectively,∑

i,j

∣∣Xij(tm)−Xij(tm−1)
∣∣ for estimating ρ[X]

m (19)

and ∑
i

∣∣Zhi(tm)− Zhi(tm−1)
∣∣ for estimating ρ[Zh]

m . (20)

These are the only statistics for which the stochastic monotonicity property
can be proved generally; for the statistics proposed below for other parame-
ters, this property is plausible but has not yet been proven.

When the rates of change for actors i depend on one-dimensional statis-
tics a

[X]
ki

(
Y (t)

)
and a

[Zh]
ki

(
Y (t)

)
, such as covariates or nodal degrees, relevant

statistics are∑
i,j

a
[X]
ki

(
Y (tm−1)

) ∣∣Xij(tm)−Xij(tm−1)
∣∣ (21)

for parameters α
[X]
k influencing network change, and∑

i

a
[Zh]
ki

(
Y (tm−1)

) ∣∣Zhi(tm)− Zhi(tm−1)
∣∣ (22)

15



for parameters α
[Zh]
k determining the rate of change in behavior Zh .

Evaluation function parameters

The evaluation functions f are specified in equations (5) and (6), and operate
uniformly through the period from t1 to tM . For both network and behavior,
higher values of βk will tend to lead to higher values of sik(Y ) — for all actors
i and for all observation moments later than t1. This reasoning leads to the
statistics

um
(
Y (tm)

)
=
∑
i

s
[X]
ik

(
Y (tm)

)
for estimating β

[X]
k , (23)

and

um
(
Y (tm)

)
=
∑
i

s
[Zh]
ik

(
Y (tm)

)
for estimating β

[Zh]
k , (24)

not depending explicitly on Y (tm−1).
However, these formulae do not distinguish between influence and se-

lection. If the same statistic sik(Y ) is used in the models for the network
dynamics and for the behavior dynamics of a variable Zh, then these two
formulae would lead to identical moment equations and hence be inadequate
for estimating two separate parameters.

The special property exploited to separate influence from selection is the
time order that is basic to causality. Selection means that an earlier configu-
ration of attributes leads later on to a change in ties; whereas influence means
that an earlier configuration of ties leads later on to a change in attributes.
Accordingly, writing the functions in (5) and (6) as

s
[X]
ik (y) = s

[X]
ik (x, z), s

[Zh]
ik (y) = s

[Zh]
ik (x, z) , (25)

the statistics used in the moment equations are

um
(
Y (tm−1), Y (tm)

)
=
∑
i

s
[X]
ik

(
X(tm), Z(tm−1)

)
(26)

for estimating the parameters β
[X]
k driving the network change, and

um
(
Y (tm−1), Y (tm)

)
=
∑
i

s
[Zh]
ik

(
X(tm−1), Z(tm−1), Z(tm)

)
(27)

for estimating the parameters β
[Zh]
k driving the change in behavioral variable

Zh . Here the statistic s
[Zh]
ik

(
X(tm−1), Z(tm−1), Z(tm)

)
is defined by employing
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for the behavioral variables the value at tm for Zh and the value at tm−1 for
Zh′ for all other h′. With some abuse of notation, this is expressed by

s
[Zh]
ik

(
X(tm−1), Z(tm−1), Z(tm)

)
= s

[Zh]
ik

(
X(tm−1), Z

∗) (28)

with

Z∗h′ =

{
Zh′(tm−1) if h′ = h
Zh′(tm) if h′ 6= h .

(29)

Also when the same components occur in the evaluation function for several
different behavioral variables, statistics (27) can be used to separate these
effects from one another.

Endowment function parameters

The endowment functions g are specified in Equations (7) and (8). These
functions are effective only for downward changes in the tie variables Xij or
the behavior variables Zhi. This implies that similar statistics can be used
for estimating the parameters in the endowment function, but these should
sum only over those indices where Xij or Zhi, respectively, decreases when
going from observation Y (tm−1) to Y (tm). A larger endowment value will
lead to a smaller tendency to decrease these variables, hence the minus signs
in the following definitions of statistics.

For estimating γ
[X]
k , the statistic sums the loss s

[X]
ijk only over those pairs

(i, j) where the tie Xij disappears when going from tm−1 to tm ,

um
(
Y (tm−1), Y (tm)

)
=

−
∑
i

∑
j 6=i

I{Xij(tm) < Xij(tm−1)} s[X]
ijk

(
Y (tm−1)

)
. (30)

For estimating γ
[Zh]
k the statistic sums over the individuals for whom the

value of the behavioral variable Zhi decreases in the time period,

um
(
Y (tm−1), Y (tm)

)
=

−
∑
i

I{Zhi(tm) < Zhi(tm−1)}
(
s
[Zh]
ik

(
Y (tm−1)

)
− s

[Zh]
ik

(
Y (tm)

))
.

(31)

4.2. Stochastic Approximation

The conditional expectations in the moment equations (17), (18) cannot be
calculated explicitly except for some trivially simple models. However, the
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stochastic process can be easily simulated. Therefore, stochastic approxi-
mation methods, in particular, versions of the Robbins and Monro (1951)
procedure (for recent treatments see, e.g., Pflug, 1996, or Kushner and Yin,
2003) can be used to solve the moment equations.

These methods are stochastic iterative algorithms using provisional values
θ̂N as tentative approximate solutions of (14). The basic iteration step in such
algorithms is

θ̂N+1 = θ̂N − aN D
−1
0 (UN − u(y)) , (32)

where UN is generated according to the probability distribution defined by
the parameter value θ̂N . For aN , a sequence is used that converges slowly to
0. In principle, the optimal choice of D0 might depend on the distribution
of UN and could be determined adaptively. However, Polyak (1990) and
Ruppert (1988) showed (also see Pflug, 1996, Section 5.1.3, and Kushner
and Yin, 2003) that if all eigenvalues of the matrix of partial derivatives (16)
have positive real parts and certain regularity conditions are satisfied, then
convergence at an optimal rate can be achieved when D0 is fixed, e.g., the
identity matrix, with aN a sequence of positive numbers converging to 0 at
the rate N−c, where 0.5 < c < 1. To obtain this optimal convergence rate,
the solution of (14) must be estimated not by the last value θ̂N itself, but
by the average of the consecutively generated θ̂N values. This algorithm is a
Markov chain Monte Carlo algorithm because the iteration rule (32) indeed
defines a Markov chain. The algorithm is further discussed and specified for
network dynamics models in Snijders (2001, 2005).

The application to coordinates where the moment equation used is given
by (17) follows the general lines, because this equation has the form (14). For
the parameter coordinates where equation (18) is used, the corresponding
coordinate of statistic UN is defined as follows. For each m = 2, . . . ,M ,
the process Y (t) is simulated starting at time tm−1 with the observed value
Y (tm−1) = y(tm−1), letting time run from tm−1 to tm, for parameter value
θ̂N . The simulated value obtained for time tm is denoted Y sim(tm). The
coordinate of UN then is defined as

M∑
m=2

um
(
y(tm−1), Y

sim(tm)
)

(33)

and its observed outcome u(y) as

M∑
m=2

um
(
y(tm−1), y(tm)

)
. (34)
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This is precisely in accordance with (18).
The MoM estimator presented in this section is what is called in Snijders

(2001) the unconditional estimator. The conditional MoM estimator is simi-
lar except that it conditions on the outcome of exactly one of the sets of M−1
statistics (19) or (20) (h = 1, . . . , H); and the simulations of the process Y (t)
used to generate Y sim(tm) start with the value y(tm−1) and continue until the
first time point where the observed outcome of (19) or (20), respectively, is
exactly reproduced. Expressed informally, either the network or one of the
behaviors is chosen as the conditioning variable, and the condition consists
of the requirement that the simulated ‘distance’ on this variable – defined
by (19) for the network and (20) for behavior h – is equal to the observed
distance. This is further explained (for network dynamics only) in Snijders
(2001, 2005).

4.3. Standard Errors

The standard errors are obtained as the square roots of the diagonal elements
of the asymptotic covariance matrix (15).

The two ingredients to (15), the covariance matrix Σθ and the partial
derivatives matrix Dθ, can be estimated by Monte Carlo methods. Snijders
(1996) outlines Monte Carlo integration methods to estimate Σθ and Monte
Carlo-based finite-difference methods to estimate Dθ.

Schweinberger and Snijders (2007) elaborate an alternative method to
estimate Dθ, which is preferable on two grounds: (1) in contrast to the first
method it produces unbiased estimates of the partial derivatives, and (2) the
computational burden is reduced by the factor L + 1 compared to the first
method, where L is the dimension of θ. The latter argument is important
because in practice computation time is an important issue, and L is in most
applications larger than 5.

5. Forward Model Selection

It may be argued that in the present case forward model selection is prefer-
able to backward model selection. One reason is that the time required to
estimate these models is linear in L, the number of parameter coordinates.
Since computation time is an important practical issue, it is preferable to
start with simple models (as in forward model selection) and proceed to
more complicated and, in terms of estimation time, more expensive models
only when there is empirical evidence against the simple models. A sec-
ond reason is that the data and model structures under consideration are
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complicated even in the simplest cases, and thus, starting model selection in
high-dimensional parameter spaces (as in backward selection) may invalidate
the selection procedure due to convergence problems.

To derive test statistics suitable for forward model selection, the “holy
trinity” test statistics, being the Wald, the Likelihood Ratio, and the La-
grange multiplier / Rao efficient score (RS) tests, are of primary interest.
The RS test is a good choice for forward model selection, since only the
restricted model needs to be estimated, while the other two tests are com-
putationally more expensive.

As the likelihood function is in general intractable (leaving aside some
close-to-trivial cases), the RS test cannot readily be derived. Schweinberger
(2011) proposed generalised Neyman-Rao score tests which can be based on
estimators other than Maximum Likelihood estimators; in the present case,
MoM estimators. Let the L-dimensional parameter vector θ be partitioned
according to (θ′1, θ

′
2)
′, where θ1 represents nuisance parameters, and θ2 the

parameters of primary interest. Suppose that it is desired to test

H0 : θ2 = 0

against

H1 : θ2 6= 0 .

(Hypotheses concerning more general functions of θ can be tested in the same
way.) A test can be based on the quadratic form statistic

b′(θ̂0) Ĉ
−1 (θ̂0) b(θ̂0)

where b(θ) is some function of the estimating function Eθu(Y ) − u(y) (cf.
(14)), θ̂0 is a suitable estimator for θ under H0, and C is the asymptotic co-
variance matrix of b(θ). Given some regularity conditions, under H0 the test
statistic is asymptotically chi-square distributed with R degrees of freedom,
where R is the dimension of θ2.

The test statistic is associated with at least two appealing features. First,
since θ0 is estimated under H0, θ2 needs not be estimated, and thus only L−R
parameters are estimated compared to L under H1. Second, it turns out (see
Schweinberger, 2011) that b(θ̂0) is some function of Eθ̂0

u2(Y )− u2(y), where
the partition u = (u′1, u

′
2)
′ conforms with the partition of θ. In other words,

the test statistic is a function of the statistics corresponding to the tested
parameter coordinates. Hence, when the restrictions on θ defining H0 are
valid, the observed values of the statistics corresponding to the restricted
parameter coordinates should be close to their expected values; on the other
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hand, when these restrictions are not valid, the observed value of the statis-
tics should depart from the expected value. Thus, the test statistic has an
appealing interpretation in terms of goodness-of-fit.

Model selection may proceed in three main steps.

I. First the network dynamics are considered without taking the behav-
ior into account. In network modelling, it is appealing to start simple and
use the dyads

(
Xij(t), Xji(t)

)
as the units of analysis, because many social

relations, and in particular friendship and collaboration, have been shown
to exhibit strong tendencies towards reciprocity; hence models postulating
independent ties processes and thus ignoring reciprocity are hardly tenable.
A classical continuous-time Markov model that postulates that the processes
shaping the dyads are independent and governed by the same probabil-
ity law, and at the same time captures reciprocity, is the so-called “reci-
procity” model (Wasserman, 1980, Leenders, 1995a,b, Snijders, 2005). The
state space of the continuous-time Markov chain for each dyad is given by
{(0, 0), (1, 0), (0, 1), (1, 1)}. The infinitesimal generator follows from the tran-
sition rates

λ0ij = ζ0 + µ0xji
λ1ij = ζ1 + µ1xji

where λ0ij is the rate of changing xij = 0 into xij = 1, and λ1ij is the rate of
changing xij = 1 into xij = 0. The parameters ζ0 > 0 and ζ1 > 0 are basic
rates governing transitions from 0 to 1 and from 1 to 0, respectively, and µ0

and µ1 represent the change in the rate which is due to the other tie being
present in the dyad (xij = 1), subject to the constraints ζ0 + µ0 > 0 and
ζ1 +µ1 > 0. It is possible to incorporate covariates into the model which are
constant between observation points (Leenders, 1995a).

Before proceeding with actor-driven models, it is meaningful to test the
null hypothesis of independent dyad processes. Snijders and van Duijn (1997)
showed that there exist parametrizations of the family of stochastic actor-
driven models (with network dynamics but without action dynamics) that
are equivalent to the reciprocity model. It is possible to extend such model
specifications by including triadic dependencies, like the number of transitive
triplets, in the evaluation function f

[X]
i . The resulting models are not equiv-

alent to the reciprocity model any more, and violate the dyad independence
(DI) assumption. Let the parameters corresponding to the triadic depen-
dencies be collected in θ2. Then the DI assumption can be tested by testing
the null hypothesis of the reciprocity model extended by suitable covariate
effects, and test this as the null hypothesis H0 : θ2 = 0 against H1 : θ2 6= 0.
Rejection of this null hypothesis would indicate that the DI assumption is
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indefensible in the light of the observed panel data, and be an argument for
continuing the analysis with actor-driven models.

II. If it is established that dyads do not follow independent processes,
the main dependencies between dyad processes should be captured by actor-
driven models for the network dynamics along with simple specifications
of the behavior dynamics. It is sensible first to specify a model for the
network and behavior dynamics that does not contain cross-references in the
form of statistics (11) and (12), implying independence of the network and
behavior dynamics. Once a seemingly adequate specification of the network
and behavior dynamics has been found, such a model then can be tested
against an alternative that does contain such cross-references and therefore
implies dependence between the network and behavior dynamics. For this
purpose, again a generalized Neyman-Rao score test can be used.

III. Rejection of this independence hypothesis provides the empirical evi-
dence for continuing the statistical modeling by actor-driven models for joint
network and behavioral dynamics

as proposed in the preceding sections.

It is often natural to start modeling with a focus on the evaluation func-
tions. Given that seemingly adequate specifications of the evaluation func-
tions have been found, more advanced specifications of the rate functions and
endowment functions may be worthwhile to consider, as well as homogeneity
tests with respect to nodes and periods (see Schweinberger, 2011).

6. Example: The dynamics of friendship and alcohol consumption

Steglich et al. (2010) investigated the role played by tobacco and alcohol use
for the formation of friendship networks, and – vice versa – the role played
by social network structure in propagating or inhibiting these risk-taking
behaviors. In this section, a more restricted example is given of the methods
described in the preceding sections using the same data set.

6.1. Some background theory

Starting with the study of Elmtown’s Youth by de Belmont Hollingshead
(1949), literature on adolescents’ health consistently reports that friends
tend to behave similarly with respect to health-endangering activities such
as smoking, drug use, and alcohol consumption: smokers tend to be friends
of smokers, while non-smokers tend to be friends with non-smokers, etc.
(Newcomb, 1962, Cohen, 1977, Kandel, 1978). In methodological terms, this
pattern is known by the name of network autocorrelation (Doreian, 1989).
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These early cross-sectional studies have led to alternative strands of theory
explaining the phenomenon. On the one hand, there is the literature on social
influence processes (Homans, 1974, Friedkin, 1998, 2001, Oetting and Don-
nermeyer, 1998), arguing that peers condition (or ‘socialize’) each other into
compliance with group norms. By this line of reasoning, adolescents will seek
to minimize deviance from their friends, and will adapt their own risk-taking
behavior accordingly. On the other hand, there is the literature on social
selection processes (Lazarsfeld and Merton, 1954, Byrne, 1971, McPherson
and Smith-Lovin, 1987, McPherson et al., 2001), arguing that peers select
each other based on similarity on a range of individual characteristics (“birds
of a feather flock together”). By this line of reasoning, adolescents are likely
to break their relationships with others who are not like them (e.g., do not
drink as much as they do), and seek out new friends who are more similar.

For some time, researchers have been contemplating the question whether
selection processes or processes of social influence play a stronger role in the
explanation of particular network autocorrelation phenomena (Fisher and
Bauman, 1988, Ennett and Bauman, 1994, Leenders, 1995b, Pearson and
Michell, 2000, Haynie, 2001, Kirke, 2004, Steglich et al., 2010). This is an
important question because its answer is crucial for success or failure of
potential intervention strategies.

Research seems to indicate that the prevalence of either process type is
domain-specific (cf. the cited references), with alcohol consumption being a
domain where both processes occur. In the following exemplary analyses, it
is shown how the actor-driven modeling approach introduced above can be
applied for assessing the strength of both selection and influence processes
simultaneously, controlling the effects for each other. For a critique of the
methods applied in the other studies mentioned, see Steglich et al. (2010).

6.2. Data

The data being analyzed were collected as part of the Teenage Friends and
Lifestyle Study. They contain three measurements of the friendship network
among 160 students of a school cohort in Glasgow (Scotland), some demo-
graphic variables, and self-reported smoke and alcohol consumption (next to
other health and lifestyle oriented data not considered here). The measure-
ments were collected in three waves at intervals of one year, starting in 1995
when the pupils were 13 years old and ending in 1997 when they were aged 15.
Alcohol consumption was measured by a self-report question on a scale rang-
ing from 1 (never) to 5 (more than once a week). Previous results obtained
through these data were reported by Michell and Amos (1997), Pearson and
Michell (2000), Pearson and West (2003), and Steglich et al. (2010).
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6.3. Statistical analyses

The analyses reported here were run on the subset of 129 pupils that were
present at all three measurement points. They follow the principle of forward
model selection as outlined in Section 5 and use the score tests of Schwein-
berger (2011).

The first model fitted to the data is a model of dyadic independence
(“reciprocity model”) extended with some relevant actor characteristics and
dyadic covariates. As actor characteristics, main effects of the gender of ego
(‘sender’ of the tie), gender of alter (‘receiver’ of the tie), alcohol consumption
of ego, and alcohol consumption of alter were included. Dyad characteris-
tics included are the similarity effects of gender and alcohol consumption,
representing homophily effects in network choices.

The focal interest of this first analysis is whether the fit of this model
would benefit from the inclusion of triadic effects — i.e., whether a ‘true’
network approach adds to the explanatory power of the analysis. Therefore,
the score test was applied to two triadic parameters, each of which implies
between-dyad dependence. The tested parameters are the transitivity effect
and the number of geodesic distances two effect, described in Section 3.

The joint score test statistic for inclusion of the network closure effects
is 1035 (df = 2), which is highly significant. Tested separately, the statistic
for the number of transitive triplets is 29 (df = 1, p < 0.0001) while for the
number of distance 2 the statistic is 1.9 (df = 1, p = 0.17). (Being based on
simulated random samples these test statistics are not exact, but independent
repetitions give qualitatively similar results.) The comparatively high value
of the joint test statistic illustrates that the bivariate test for these two effects
jointly may have a higher power than the two univariate tests separately.
The significant result gives strong arguments for continuing with models
that account for network interdependence. This is achieved by the following
actor-driven models.

The second model fitted to the data assumes conditional independence of
network dynamics and behavioral dynamics. This model was estimated for
the purpose of investigating whether it is warranted to fit models where the
dynamics of the friendship network and of alcohol consumption are interde-
pendent.

In the sub-model for network dynamics, the covariates included are the
same as mentioned for the reciprocity model, except for the effects related
to alcohol consumption. In the sub-model for behavioral dynamics, only the
main effect of gender on alcohol consumption was included, plus an intercept
(‘tendency’) parameter. The effects tested for assessing interdependence of
the network and behavior dynamics are effects of alcohol homophily in the
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network dynamics (a selection effect, corresponding to s
[X]
i5 ), and assimila-

tion of alcohol consumption to one’s friends in the behavioral dynamics (an

influence effect, expressed by s
[Z]
i2 ). In Table 1, the estimation results are

reported. The p-values given refer to tests based on the t-ratio defined as
parameter estimate divided by standard error, testing whether the corre-
sponding parameter differs from zero. Because such a test does not make
sense for the rate parameters (the fact that any change has occurred indi-
cates that the rate cannot be zero), these are only given for the parameters
in the evaluation function.

Table 1: Estimates of the conditional independence model

Parameter estimate s.e. p
X: Network dynamics
X: outdegree –2.11 0.08 <0.001
X: reciprocity 2.06 0.09 <0.001
X: transitive triplets 0.17 0.03 <0.001
X: distance-2 –0.80 0.11 <0.001
X: gender homophily 0.82 0.12 <0.001
X: gender ego (F) 0.18 0.09 0.05
X: gender alter (F) –0.25 0.10 0.02
X: rate period 1 12.46 2.45
X: rate period 2 9.33 2.66
Z: Behavior (i.e., alcohol consumption) dynamics
Z: tendency 0.27 0.06 <0.001
Z: gender (F) 0.08 0.15 0.57
Z: rate period 1 1.36 0.21
Z: rate period 2 2.18 0.12

The parameter estimates demonstrate strong tendencies towards reciprocity
of choice and towards transitivity (expressed both by a tendency toward
transitive triplets and a tendency to have few other actors at a sociometric
distance of 2; the latter result differs from that of the score test reported
above, which is understandable because the tested null hypothesis is quite
different). There is a preference for friends of the same sex, and girls tend
to be slightly more active in having friends but less popular than boys. The
rate parameters show that, while friendship dynamics slow down from the
first to the second observation year (friendship stabilizes), the dynamics of
alcohol consumption speed up. The score test statistic is χ2 = 25.80 (df = 2,
p < 0.001). This means strong evidence for interdependence of the network
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and behavior dynamics. Separate score tests give values of χ2 = 9.47 for
the alcohol homophily effect (p = 0.002) and χ2 = 12.51 for the alcohol
assimilation effect (p < 0.001).

In the next model, therefore, social selection and social influence effects
with respect to alcohol consumption are included: an effect of alcohol ho-
mophily (along with main effects of alcohol consumption of ego and of alter)
in the network dynamics part of the model, and an effect of assimilation to
the network neighbors in the behavioral (alcohol) dynamics part of the model.
This allows mutual dependence of the friendship dynamics and the alcohol
consumption dynamics. To illustrate the use of endowment effects, score
tests are used furthermore to test whether making new friends and dropping
existing friends is influenced differently by the alcohol consumption of the
other persons; and whether assimilation to the alcohol consumption of one’s
current friends is different when this assimilation means drinking more than
when it means drinking less. The former distinction can be made by testing
for an endowment effect in the network part of the model related to alcohol
homophily. The latter distinction can be made by testing an endowment
effect in the behavioral part of the model related to alcohol assimilation.
Results of this model are reported in Table 2.

What can be seen from these results is that indeed, alcohol consumption
influences network dynamics according to homophily patterns (β̂

[X]
k = 0.89,

p = 0.003). The non-significance of the alcohol-ego and alcohol-alter effects
shows that there is no evidence for alcohol consumption-related differences
in the tendency to have friends, or for a differential popularity depending
on alcohol use. There is also evidence for a social influence effect: alcohol
consumption is affected by friends’ alcohol consumption according to assim-
ilation patterns (β̂

[Z]
k = 3.91, p < 0.001). The test for endowment effects is

not significant: the joint score test statistic is χ2 = 1.94 (df = 2, p = 0.38),
separate tests give statistics of χ2 = 1.52 for the endowment effect related
to homophily (p = 0.22) and χ2 < 0.001 for the endowment effect related to
assimilation (p = 0.99). We therefore can discard the hypothesis that alco-
hol homophily acts with a different force for the creation of new ties than it
does for the maintenance of existing ties. Further, there is no evidence that
assimilation to the alcohol consumption of one’s friends works differently in
the upward than in the downward direction.

7. Discussion

This chapter has presented a statistical model for the simultaneous, mutually
dependent, dynamics of a relation (or social network) on a given set of social
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Table 2: Estimates of the interdependence model

Parameter estimate s.e. p-value
X: Network dynamics
X: outdegree –2.06 0.16 <0.001
X: reciprocity 2.03 0.11 <0.001
X: transitive triplets 0.17 0.04 <0.001
X: distance-2 –0.79 0.10 <0.001
X: gender homophily 0.84 0.11 <0.001
X: gender ego (F) 0.21 0.13 0.11
X: gender alter (F) –0.24 0.13 0.06
X: alcohol homophily 0.89 0.30 0.003
X: alcohol ego –0.04 0.05 0.48
X: alcohol alter 0.00 0.05 0.93
X: rate period 1 12.37 3.38
X: rate period 2 9.22 3.50
Z: Behavior (i.e., alcohol consumption) dynamics
Z: tendency 0.33 0.09 <0.001
Z: gender (F) 0.05 0.14 0.73
Z: assimilation 3.91 1.08 <0.001
Z: rate period 1 1.53 0.23
Z: rate period 2 2.37 0.25

actors, and the behavior of these actors as represented by one or more ordinal
categorical variables. Longitudinal observations are assumed to be available
at some discrete moments according to a panel design, but the dynamics
of the network and behavior are assumed to take place in continuous time,
unobserved between the panel waves. The mutual dependence is represented
in a relatively simple way by a Markov model, where the state is defined by
the network (X) together with the behavior (Z), and where the dynamics
are composed of a sequence of ‘micro steps’, each micro step consisting of a
change in at most one variable Xij or Zhi by one unit. These changes are
represented as the consequence of choices by the actors: the model is actor-
driven. The dependence between network and behavior is the result of the
fact that network and behavior constitute each other’s context, where both
change endogenously and determine the transition probability distribution.

Statistical models for the dynamics of networks only are reviewed in Snij-
ders (1995, 2005). Although models for simultaneous dynamics of a social
network and actor behavior have been discussed in the literature accord-
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ing to various theoretical approaches (some examples are Bala and Goyal,
2000, Carley, 1991, Durlauf and Young, 2001, Ehrhardt et al., 2005, Latané
and Nowak, 1997, Mark, 1991, Macy et al., 2003), this is, to our knowl-
edge, the first model of this kind that can be used for statistical inference.
The model proposed here is more flexible than the models proposed in these
references, and can represent a wider variety of dynamics, due to the flexi-
bility in specifying the rate, evaluation, and endowment functions. This is
required to obtain a good fit between the model and empirical data. The
present model is limited by the assumption of an underlying continuous-time
Markov process and the other assumptions in Section 3 which cut down the
co-evolution dynamics to the smallest possible micro steps. The proposal to
use continuous-time Markov chains for the statistical modeling of network
dynamics dates back to Holland and Leinhardt (1977a,b) and Wasserman
(1977). In situations where only a few panel observations on an evolving so-
cial network are available, a Markov chain model is natural and convenient.
Since there is no information on the dynamics in between the panel waves, it
seems not fruitful to go very far in specifying quite detailed models for these
unobservables. The plausibility of a Markov model is increased by including
covariates reflecting relevant characteristics of actors or pairs of actors. An
extension is to include non-observed variables into the state of the process,
which can lead to various kinds of hidden Markov models. Extensions of this
type, allowing unobserved actor heterogeneity, are currently being investi-
gated by one of us (M.S.). It is also possible to extend the model by relaxing
the second to fourth assumptions in Section 3, e.g., by allowing simultaneous
changes in network and behavior, or coordination between actors. Such ex-
tensions may be useful in specific applications, where it can be argued how
such simultaneous changes or coordination should be modeled.

The results obtained by the application of this model depend on the plau-
sibility and fit of the model. Further work on how to find good specifications
of the model will be important; the generalised Neyman-Rao score tests of
Schweinberger (2011) can be useful for this purpose. More practical appli-
cations and simulation studies of this model, and of its future extensions,
are necessary to obtain a good understanding of the type of social situations
where it can be fruitfully applied. For such applications the SIENA program
(Snijders et al., 2005) can be used, which implements the methods presented
here.

Next to the Method of Moments elaborated in this chapter, it will be use-
ful also to have likelihood-based estimation methods. For network dynamics,
Bayesian estimation methods were proposed by Koskinen (2004), and further
work is under way. The elaboration of maximum likelihood and Bayesian es-
timation methods for these models will not only increase efficiency in param-
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eter estimation but also yield more insight in the performance of alternative
models for this type of longitudinal data.
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Ökonomie, pp. 11–38. Tübingen: Mohr (Siebeck).

Macy, M., J. Kitts, A. Flache, and S. Benard (2003). A Hopfield model of emergent
structure. In R. Breiger, K. Carley, and P. Pattison (Eds.), Dynamic Social Network
Modeling and Analysis: Workshop Summary and Papers, pp. 162–173. Washington,
DC: National Academies Press.

Maddala, G. S. (1983). Limited-dependent and Qualitative Variables in Econometrics
(third ed.). Cambridge: Cambridge University Press.

Mark, N. (1991). Beyond individual differences: Social differentiation from first principles.
American Sociological Review 63, 309–330.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In
P. Zarembka (Ed.), Frontiers in Econometrics, pp. 105–142. New York: Academic Press.

30



McPherson, J. M. and L. Smith-Lovin (1987). Homophily in voluntary organizations:
Status distance and the composition of face-to-face groups. American Sociological Re-
view 52, 370–379.

McPherson, J. M., L. Smith-Lovin, and J. Cook (2001). Birds of a feather: Homophily in
social networks. Annual Review of Sociology 27, 415–444.

Michell, L. and A. Amos (1997). Girls, pecking order and smoking. Social Science and
Medicine 44, 1861–1869.

Newcomb, T. M. (1962). Student peer-group influence. In N. Sanford (Ed.), The American
College: A Psychological and Social Interpretation of the Higher Learning. New York:
Wiley.

Oetting, E. R. and J. F. Donnermeyer (1998). Primary socialization theory: The etiology
of drug use and deviance. I. Substance Use and Misuse 33, 995–1026.

Padgett, J. and C. Ansell (1993). Robust action and the rise of the Medici, 1400-1434.
American Journal of Sociology 98, 1259–1319.

Pahor, M. (2003). Causes and Consequences of Companies’ Activity in Ownership Net-
work. Ph. D. thesis, Faculty of Economics, University of Ljubljana, Slovenia.

Pearson, M. and L. Michell (2000). Smoke rings: Social network analysis of friendship
groups, smoking, and drug-taking. Drugs: Education, Prevention and Policy 7, 21–37.

Pearson, M. and P. West (2003). Drifting smoke rings: Social network analysis and Markov
processes in a longitudinal study of friendship groups and risk-taking. Connections 25,
59–76.

Pflug, G. C. (1996). Optimization of Stochastic Models. The Interface between Simulation
and Optimization. Boston: Kluwer Academic.

Polyak, B. T. (1990). New method of stochastic approximation type. Automation and
Remote Control 51, 937–946.

Rapoport, A. (1953a). Spread of information through a population with socio-structural
bias: I. Assumption of transitivity. Bulletin of Mathematical Biophysics 15, 523–533.

Rapoport, A. (1953b). Spread of information through a population with socio-structural
bias: II. Various models with partial transitivity. Bulletin of Mathematical Bio-
physics 15, 535–546.

Robbins, H. and S. Monro (1951). A stochastic approximation method. Annals of Math-
ematical Statistics 22, 400–407.

Ruppert, D. (1988). Efficient estimation from a slowly convergent Robbins-Monro pro-
cess. Technical report, Cornell University, School of Operations Research and Industrial
Engineering.

Sahlins, M. (1972). Stone Age Economics. New York: Aldine De Gruyter.

Schweinberger, M. (2011). Statistical modeling of digraph panel data: Goodness-of-fit. In
press.

Schweinberger, M. and T. A. B. Snijders (2007). Markov models for digraph panel data:
Monte carlo-based derivative estimation. Computational Statistics and Data Analy-
sis 51 (9), 4465–4483.

Snijders, T. A. B. (1995). Methods for longitudinal social network data. In E. M. Tiit,
T. Kollo, and H. Niemi (Eds.), New Trends in Probability and Statistics, Vol. 3: Mul-
tivariate Statistics and Matrices in Statistics, pp. 211–227. Utrecht: VSP.

31



Snijders, T. A. B. (1996). Stochastic actor-oriented dynamic network analysis. Journal of
Mathematical Sociology 21, 149–172.

Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. In
M. Sobel and M. Becker (Eds.), Sociological Methodology, pp. 361–395. Boston and
London: Basil Blackwell.

Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J. Carrington,
J. Scott, and S. Wasserman (Eds.), Models and Methods in Social Network Analysis.
New York: Cambridge University Press.

Snijders, T. A. B., C. E. G. Steglich, M. Schweinberger, and M. Huisman (2005).
Manual for SIENA version 2. Groningen: ICS, University of Groningen.
http://stat.gamma.rug.nl/snijders/siena.html.

Snijders, T. A. B. and M. A. J. van Duijn (1997). Simulation for statistical inference in
dynamic network models. In R. Conte, R. Hegselmann, and P. Terna (Eds.), Simulating
Social Phenomena, pp. 493–512. Berlin: Springer.

Steglich, C. E. G., T. A. B. Snijders, and M. Pearson (2010). Dynamic networks and
behavior: Separating selection from influence. Sociological Methodology 40, 329–393.

Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic
Behavior and Organization 1, 39–60.

Valente, T. (1995). Network Models of the Diffusion of Innovations. Cresskill, New Jersey:
Hampton Press.

Van de Bunt, G. G. (1999). Friends by Choice. An Actor-Oriented Statistical Network
Model for Friendship Networks through Time. Amsterdam: Thesis Publishers.

Van de Bunt, G. G., M. A. J. Van Duijn, and T. A. B. Snijders (1999). Friendship
networks through time: An actor-oriented statistical network model. Computational
and Mathematical Organization Theory 5, 167–192.

Wasserman, S. (1977). Stochastic models for directed graphs. Ph. D. thesis, Department
of Statistics, University of Harvard.

Wasserman, S. (1980). Analyzing social networks as stochastic processes. Journal of the
American Statistical Association 75, 280–294.

Wasserman, S. and K. Faust (1994). Social Network Analysis: Methods and Applications.
Cambridge: Cambridge University Press.

32




