RSiena: Remarks and Developments

Tom A.B. Snijders

University of Oxford
University of Groningen

ECRP Social Influence in Dynamic Networks
Paris, December 15-18, 2014

Overview

\Rightarrow New version RSiena 1.1-282
\Rightarrow New effects: influence from incoming ties,
\Rightarrow New effects: two-step influence
\Rightarrow Influence through direct ties $\stackrel{\uparrow \rightarrow \text { influence from those }}{ }$ who have similar affiliations: structural equivalence

Overview

\Rightarrow New version RSiena 1.1-282
\Rightarrow New effects: influence from incoming ties,
\Rightarrow New effects: two-step influence
\Rightarrow Influence through direct ties $\stackrel{\uparrow \rightarrow}{ }$ influence from those who have similar affiliations: structural equivalence
\Rightarrow Evaluation effects \rightleftharpoons Elementary effects
\Rightarrow Diagnostic in case of multicollinearity
\Rightarrow Effect sizes (sienaRI)

Overview

\Rightarrow New version RSiena 1.1-282
\Rightarrow New effects: influence from incoming ties,
\Rightarrow New effects: two-step influence
\Rightarrow Influence through direct ties $\uparrow \rightarrow$ influence from those who have similar affiliations: structural equivalence
\Rightarrow Evaluation effects \rightleftharpoons Elementary effects
\Rightarrow Diagnostic in case of multicollinearity
\Rightarrow Effect sizes (sienaRI)
\Rightarrow Multilevel Analysis of Networks (sienaBayes)
\Rightarrow Analysis of Multilevel Networks

Overview

\Rightarrow New version RSiena 1.1-282
\Rightarrow New effects: influence from incoming ties,
\Rightarrow New effects: two-step influence
\Rightarrow Influence through direct ties $\uparrow \rightarrow$ influence from those who have similar affiliations: structural equivalence
\Rightarrow Evaluation effects \rightleftharpoons Elementary effects
\Rightarrow Diagnostic in case of multicollinearity
\Rightarrow Effect sizes (sienaRI)
\Rightarrow Multilevel Analysis of Networks (sienaBayes)
\Rightarrow Analysis of Multilevel Networks
\Rightarrow Centering is optional
\Rightarrow Attention for website and some recent papers.

Incompatibilities

(1) Effects object no longer used as argument for print01Report().
(2) Effect AltsAvAlt renamed to avXAlt (it is like avAlt but for covariates).
(3) Parameter 'priorRatesFromData' in sienaBayes now has values 0-1-2 instead of TRUE-FALSE.

New effects

There are a lot of new effects.
(1) Influence effects
(2) Influence from incoming alters
(3) Distance-two effects
(9) Elementary effects
(6) Miscellaneous

Influence effects

The triple avSim - totSim - avAlt now is a quartet with a 2×2 structure:
\{ sim, alt \} \times \{ av, tot \}
This was implemented for regular influence effects, influence from reciprocated alters, and influence from other covariates (non-dependent / exogenous).

New effects:
(1) totAlt
(2) totRecAlt
(3) totXAlt

Incoming influence effects

The effects avAlt - totAlt - avXAlt - totXAlt now also have analogues for influence from incoming ties:
(0) avInAlt
(3) totInAlt
(6) avXInAlt
(0 totXInAlt
i is influenced by
incoming ties $j_{1}-j_{3}$

Extreme influence effects

(8) maxAlt
(9) minAlt

Distance-two effects

There now is the possibility to express influence at distance 2.
With the distinction average/total this leads to 4 possibilities: average vs. total at step 1 or step 2.
(10) avAltDist2
(1) totAltDist2
(1) avTAItDist2
(3) totAAltDist2
i is influenced by
the average/total of the alter averages/totals of $j_{1}-j_{3}$

New effects (3)

(14) The formula for avAltDist2 (average at both steps) uses

$$
\breve{z}_{j}^{(-i)}= \begin{cases}\frac{\sum_{h \neq i} x_{j h} z_{h}}{x_{j+}-x_{j i}} & \text { if } x_{j+}-x_{j i}>0 \\ 0 & \text { if } x_{j+}-x_{j i}=0 .\end{cases}
$$

The effect is

$$
s_{i 14}^{\mathrm{beh}}(x, z)=z_{i} \times \frac{\sum_{j} x_{i j} \check{z}_{j}^{(-i)}}{\sum_{j} x_{i j}}
$$

(and the mean behavior, i.e. 0 , if the ratio is $0 / 0$).

New effects (4)

(3) totAltDist2 (total at both steps) is defined by

$$
s_{i 15}^{\mathrm{beh}}(x, z)=z_{i} \sum_{j} x_{i j} \sum_{h \neq i} x_{j h} z_{h}=z_{i} \sum_{j} x_{i j}\left(x_{j+}-x_{j i}\right) \check{z}_{j}^{(-i)} .
$$

New effects (5)

(10) avTAltDist2 (average of totals) is defined by

$$
\begin{aligned}
s_{i 16}^{\mathrm{beh}}(x, z) & =z_{i} \times \frac{\sum_{j} x_{i j}\left(x_{j+}-x_{j i}\right) \check{z}_{j}^{(-i)}}{\sum_{j} x_{i j}} \\
& =z_{i} \times \frac{\sum_{j} x_{i j} \sum_{h \neq i} x_{j h} z_{h}}{\sum_{j} x_{i j}}
\end{aligned}
$$

and the mean behavior, i.e. 0 , if the ratio is $0 / 0$.
(1) totAAltDist2 (total of averages) is defined by

$$
s_{i 17}^{\mathrm{beh}}(x, z)=z_{i} \times\left(\sum_{j} x_{i j} \check{z}_{j}^{(-i)}\right) .
$$

New effects (6)

The same for distance-2 averages and totals of covariates:
(B) avXAItDist2
(1) totXAltDist2
(2) avTXAItDist2
(2) totAXAltDist2

New effects: outgoing - incoming

The same for distance-2 averages and totals where the second step is for incoming ties:
(23) avInAItDist2
(3) totInAltDist2
(23) avTInAltDist2
(3) totAInAltDist2
(20) avXInAltDist
(3) totXInAItDist2
(3) avTXInAltDist2
(2) totAXInAItDist2

i is influenced by
the incoming alter averages of $j_{1}-j_{3}$

New effects (8)

The *InAltDist2 effects are also available for two-mode networks.

This means that it is now possible to model influence from those out-alters who have the same affiliations as the focal actor.

Elementary effects

SAOM effects have been framed in the triple
(1) evaluation
(2) maintenance/endowment
(3) creation
effects.
The contributions to probabilities are based on differences in evaluation function f^{ev} maintenance function $f^{m t}$
creation function $f^{c r}$
which play the following role in the definition of a ministep:

The probability that, given a current network x and actor i making the ministep, the network changes to $x^{ \pm i j}$, is

$$
\frac{\exp \left(u_{i}\left(x, x^{ \pm i j}\right)\right)}{1+\sum_{h \neq i} \exp \left(u_{i}\left(x, x^{ \pm i h}\right)\right)}
$$

where the objective function is

$$
\begin{aligned}
u_{i}\left(x, x^{*}\right)=f_{i}^{\mathrm{ev}}\left(x^{*}\right)-f_{i}^{\mathrm{ev}}(x) & +\Delta^{+}\left(x, x^{*}\right)\left(f_{i}^{\mathrm{cr}}\left(x^{*}\right)-f_{i}^{\mathrm{cr}}(x)\right) \\
& +\Delta^{-}\left(x, x^{*}\right)\left(f_{i}^{\mathrm{mt}}\left(x^{*}\right)-f_{i}^{\mathrm{mt}}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta^{+}\left(x, x^{*}\right)= \begin{cases}1 & \text { if tie is created }\left(x^{*}=x^{+i j}\right) \\
0 & \text { if tie is dropped, or no change }\end{cases} \\
& \Delta^{-}\left(x, x^{*}\right)= \begin{cases}1 & \text { if tie is dropped }\left(x^{*}=x^{-i j}\right) \\
0 & \text { if tie is created, or no change }\end{cases}
\end{aligned}
$$

However, not all probabilities of change can be based on changes in some (evaluation-type) function.

Example : transitive triplets
The transitive triplets effect is defined as

$$
s_{i}(x)=\sum_{j, k} x_{i j} x_{i k} x_{k j}
$$

with change statistic
(change when adding tie $i \rightarrow j$)

$$
\delta_{i j}(x)=\sum_{k} x_{i k}\left(x_{k j}+x_{j k}\right) .
$$

The first part refers to creating the tie $i \rightarrow j=h$, the second part to creating the tie $i \rightarrow j=\ell$.

But one could be interested in only transitive closure, as defined by closing of an open two-path ($i \rightarrow j=h$), as distinct from creating ties to those with the same out-choices, which is a kind of structural equivalence ($i \rightarrow j=\ell$).

This cannot be represented as a change in an evaluation function.

But one could be interested in only transitive closure, as defined by closing of an open two-path ($i \rightarrow j=h$), as distinct from creating ties to those with the same out-choices, which is a kind of structural equivalence ($i \rightarrow j=\ell$).

This cannot be represented as a change in an evaluation function.

Therefore we need a different kind of effect:

But one could be interested in only transitive closure, as defined by closing of an open two-path ($i \rightarrow j=h$), as distinct from creating ties to those with the same out-choices, which is a kind of structural equivalence ($i \rightarrow j=\ell$).

This cannot be represented as a change in an evaluation function.

Therefore we need a different kind of effect:
elementary effect

Elementary effect

An elementary effect is simply an effect that is a term of the objective function $u_{i}\left(x, x^{*}\right)$
used to define change probabilities for ministeps, referring to creation and/or maintenance of a tie $i \rightarrow j$, without being necessarily a difference $f_{i}\left(x^{ \pm i j}\right)-f_{i}(x)$ of some function f_{i} (or similar with multiplication by Δ^{+}or Δ^{-}).

Example : transTrip1 and transTrip2
transTrip1 (transitive closure)

$$
s_{i j}(x)=x_{i j} \sum_{k} x_{i k} x_{k j}
$$

transTrip2
(structural equivalence outgoing ties)

$$
s_{i j}(x)=x_{i j} \sum_{k} x_{i k} x_{j k}
$$

Elementary effects can lead to the same configuration and therefore have the same target statistic (such as transTrip1 and transTrip2).

In such cases they cannot be distinguished empirically by estimation by the Method of Moments.

Elementary effects can lead to the same configuration and therefore have the same target statistic (such as transTrip1 and transTrip2).

In such cases they cannot be distinguished empirically by estimation by the Method of Moments.

However, they can be be distinguished empirically by estimation by the Generalized Method of Moments and by likelihood-based methods (Maximum Likelihood, Bayes).

Incidentally, the gwesp effects have also been implemented as elementary effects.

New effects (continued)

(30) $\mathrm{XWX1}$: like XWX, dependent variable is only one of the XWX ties: $i \rightarrow j$.
(31) XWX2: dependent variable here is $i \rightarrow k$.

XWX1 and XWX2 are elementary effects.

New effects (still continued)

(32) cI.XWX1: like XWX1 but for dependent network.
(3) cl.XWX2: like XWX2 but for dependent network.
cl.XWX1 and cl.XWX2 also are elementary effects.
(373 sameXInPop, indegree popularity from same covariate number of incoming ties received by those to whom i is tied and sent by others who have the same covariate value as i,

$$
s_{i 34}^{\mathrm{net}}(x)=\sum_{j} x_{i j} \sum_{h} x_{h j} l\left\{v_{i}=v_{h}\right\} .
$$

(35) transRecTrip2,
another reciprocity \times transTrip interaction.

(3) reciPop: reciprocal degree popularity
(3) reciAct: reciprocal degree activity
(3) gwesp.. effects obtain endowment and creation effects. They now also are allowed to interact with other effects (interactionType = "dyadic").

Warning for collinearities between effects

E.g: use transTrip together with transMedTrip effects:

Estimates, standard errors and convergence t-ratios

	Estimate	Standard Error	Conv. t-ratio
1. eval outdegree (density)	-2.6538	$(0.1198$	$) 0.0833$
2. eval reciprocity	2.3836	$(0.2008$	$) 0.0326$
3. eval transitive triplets	0.3535	$(0.0545$	$) 0.0592$
4. eval transitive mediated triplets 0.5624	$(0.0545$	$) 0.0592$	
Warning: ** Warning: Noninvertible estimated covariance matrix			

Note that a standard error is given. This is wrong.

This now gives the warning:
*** Warning: Covariance matrix not positive definite ***
*** Standard errors not reliable ***
The following is approximately a linear combination for which the data carries no information:
$-1 * \operatorname{beta}[3]+1 *$ beta[4]
It is advisable to drop one or more of these effects.

Relative Importance of Effects

Natalie Indlekofer has contributed the function sienaRI(), which assesses the relative importance of effects.
From version 1.1-270.
Indlekofer, Natalie, and Brandes, Ulrik, (2013).
Relative importance of effects
in stochastic actor-oriented models.
Network Science 1.3, 278-304.
Now including dynamic importance (over the period); but this still/again runs into a crash; and also (not explicitly given in her paper) the raw/total importance of effects.

Indlekofer \& Brandes (2013), formulae (3, 4):
π_{i} is the vector of probabilities for actor i in mext ministep, and $\pi_{i}^{(-k)}$ is the same if effect k obtains a weight of 0 ;

$$
I_{k}(X, i)=\frac{\left\|\pi_{i}-\pi_{i}^{(-k)}\right\|_{1}}{\sum_{\ell=1}^{K}\left\|\pi_{i}-\pi_{i}^{(-\ell)}\right\|_{1}} ;
$$

expected relative importance then is

$$
\frac{1}{N} \sum_{i=1}^{N} I_{k}(X, i) .
$$

Expected (raw / total) importance can then be defined as

$$
\frac{1}{N} \sum_{i=1}^{N}\left\|\pi_{i}-\pi_{i}^{(-k)}\right\|_{1}
$$

Multilevel Analysis of Networks

Analysis of multilevel network dynamics (Koskinen - Snijders) ('random coefficient Siena') is now available; still experimental, paper still needs to be finished, but can be used.

The analysis is Bayesian (MCMC) and time-consuming.

See the manual!

Especially meaningful for many small groups, where 'borrowing strength' is important.

Convergence assessment still needs to be further codified; various options and parameters are being added, e.g., to help convergence.

For example:
now possible to estimate parameters for elementary effects that have the same target statistic.

Analysis of Multilevel Networks

Multilevel network (Wang, Robins, Pattison, Lazega, 2013):
Network with nodes of several types, distinguishing between types of ties according to types of nodes they connect.

Thus, if types of nodes are A, B, C, distinguish between $A-A, B-B, C-C$ ties, etc., (within-type) and between $A-B, A-C$, etc., ties (between-type).

Some may be networks of interest, others may be fixed constraints, still others may be non-existent or non-considered.

Analysis of multilevel networks with several actor sets is possible by a sleight of hand, (thanks to James Hollway).

Consider multilevel network with two node sets, A and B.
There are two one-mode networks internal to A and B, and two two-mode networks X_{1} from A to $B ; X_{2}$ from B to A.

Specification for RSiena possible by employing one joint node set $A \cup B$ and two dependent networks:
A
A
$B$$\left(\begin{array}{ccc}A \\ \text { internal } A & 0 \\ 0 & \text { internal } B\end{array}\right) ~\left(\begin{array}{cc}A & B \\ 0 & \text { two-mode } A \times B \\ \text { networks } A, B\end{array}\right.$

For example:
A a set of organizations, B a set of individuals, X_{2} is a fixed membership relation, X_{1} is not there;
networks A and B could be taken apart
in two distinct networks;
if there are only ties between individuals within organizations,
B will be a network of diagonal blocks
and structural zeros between different organizations;
if there are essential differences between individual ties within organizations or across organizations,
B can be decomposed in two further distinct networks.

Further to be developed....

Centering

Note that centering of monadic and dyadic covariates now is optional.

Sometimes centering is more, sometimes less suitable.
(E.g., do not center if you wish to use an interaction to specify some effect for only some category of an actor covariate.)

Think of this choice!

Website - documentation

Note the website:
at the 'news' tab,
there is a list of incompatibilities and bugs; also some interesting papers are mentioned.

- Manual explains elementary effects.
- Section in manual about user-defined interaction effects extended.
- Siena_algorithms.pdf is put at the Siena website (partial explanation of algorithms and code).

