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Where to look

2. Where to look?
Siena is an evolving endeavour, which may be hard to follow.

The CRAN version may be out of date.
Current version is 1.2-12 (May 13, 2018)
Important errors, if any, will be noted at the News page.
Consult the Siena website
http://www.stats.ox.ac.uk/~snijders/siena/

( ‘Downloads’ page) for latest versions.
Usually, this is the R-Forge version.
Literature: the 2010 tutorial in Social Networks;
the manual (at the website, frequently updated);
the R help pages (complementary to the manual);
the scripts at the website;
much is mentioned at the Literature page.
The website notes important matters at the ‘News’ page:
incompatibilities, bugs, new developments, papers.
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Where to look

Where to look? (2)

Follow the Siena/Stocnet discussion list!
Announcements of new versions, bugs, etc.

Website ‘News’ page has interesting news.

Website ‘News’ page, and Appendix B in the manual,
give description of changes in the new versions.

Website ‘Literature’ page has a section
‘Presentations (teaching material)’
including (e.g.) these slides.

The available effects of ‘myeff’ are given by
effectsDocumentation(myeff).

Siena_algorithms.pdf at the Siena website gives
partial explanation of algorithms and code.
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Convergence of estimation New convergence criterion

3. Convergence; new criterion

The earlier convergence criterion is tmax,
the absolute maximum of the t-ratios for convergence,
considering simultaneously all parameters in the model.

It has appeared that for some models
(e.g., with non-centered actor covariates)
the usual criterion

tmax ≤ 0.10

is not sufficient.

Therefore, the overall maximum convergence ratio
(included as tconv.max in sienaFit objects since some time)
gets a new importance.
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Convergence of estimation Overall maximum convergence ratio

Overall maximum convergence ratio
This is defined as the maximum t-ratio for convergence
for any linear combination of the parameters,

tconv.max = max
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The definition implies that

tconv.max ≥ tmax .
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Convergence of estimation Overall maximum convergence ratio

Studies comparing results of siena07 with the ‘true estimate’
(robust mean of many estimations) show:

1 Distance from true estimate is much better
indicated by tconv.max than by tmax.

2 When tconv.max exceeds 0.30,
distances from the true value are too large.

New criterion

tmax ≤ 0.10 and tconv.max ≤ 0.25 .

(Sometimes these values are hard to attain, and tconv.max
between 0.25 and 0.30 may also be acceptable)
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Convergence of estimation What if convergence is difficult

What to do if convergence is hard to attain
To understand what to do against convergence difficulties,
recall the structure of the estimation algorithm with 3 phases:

1 brief phase for preliminary estimation of sensitivity of
estimation statistics Z to parameters θ;

2 estimation phase with Robbins-Monro updates for θ,
consisting of nsub subphases (usually 4)
with decreasing step sizes, determined by firstg;

3 final phase with n3 runs, θ constant at estimated value θ̂ ;
this phase is for checking that

Eθ̂ {Z} − z is small

and for estimating standard errors.
These are the ‘deviations from targets’.
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Convergence of estimation What if convergence is difficult

Also recall the importance of initial values.

The initial values for the estimation are determined as follows:

1 If useStdInits=FALSE in sienaAlgorithmCreate:
parameter values in effects object
(starting with standard values).
These can be modified by functions setEffect and
updateTheta.

2 If useStdInits=TRUE in sienaAlgorithmCreate:
standard initial values;
these are the values put in the effects object by getEffects.

3 If the argument prevAns is used in siena07:
initial values used from this existing sienaFit object,
together with some other information
(skipping Phase 1 if models are identical).
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Convergence of estimation What if convergence is difficult

The standard initial values are fine for basic models,
but may be off for models for non-directed networks,
two-mode networks, monotonic dependent variables,
multivariate networks with constraints, and data sets with
many structurally determined values.

For such models/data, it may be good to start by
estimating an empty model (with only rate and density
effects),
and putting those parameter estimates into the effects object
by updateTheta for further use.
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Convergence of estimation What if convergence is difficult

Algorithm is set in sienaAlgorithmCreate,
parameters are estimated by siena07 or sienacpp.

The normal procedure is to repeat estimation,
using the prevAns parameter in siena07,
until tconv.max ≤ 0.25.

When a sequence of models is estimated of increasing
complexity,
the normal procedure is to use the preceding model
as prevAns for the more complicated model.

However, be aware that although this mostly helps estimation,

for some complex data & model combinations, it may be

better to start with the standard initial values than with a

prevAns.
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Convergence of estimation What if convergence is difficult

If estimation diverges right away,
check data and model specification;
perhaps use a simpler model.

If estimation still diverges right away, either:

⇒ estimate a simpler model, and use the result for prevAns

with the intended model;

⇒ use a smaller value for firstg;
default is 0.2, suggestions for smaller are 0.01 or 0.001.
Note that this implies the algorithm moves more slowly,
and when the estimation is ‘on track’, it is better
to continue further estimation runs with prevAns

with a larger value of firstg (e.g., the default).
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Convergence of estimation What if convergence is difficult

It sometimes appears, especially for complicated models,
that tconv.max from some moment does not systematically
decrease any more,
but in repeated estimations with prevAns fluctuates about
some value.

It turns out that, when estimation starts from values rather
close to a good estimate,
tconv.max is determined by the
length of the last subphase of Phase 2 (& random noise).
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Convergence of estimation What if convergence is difficult

If a low value of tconv.max is not easily achieved, for getting
better convergence in continued siena07 runs with prevAns:

⇒ from the estimation runs where tconv.max is 0.5 or so,
use algorithm settings with nsub=1, n2start=‘large’,
where ‘large’ is in the range of 1,000 to 10,000,
and the ‘regular’ (not-large) value is 40× (p + 7),
with p = number of parameters;
n3 large (e.g., 2,000 or 5,000); firstg small (e.g., 0.01).

⇒ If you expect it coming right away, instead of this,
you can use more subphases: nsub = 5 or even 6
(but further with default settings).

⇒ If tconv.max still too big, further increase n2start and n3.
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Convergence of estimation What if convergence is difficult

Other considerations
There are other settings for the estimation algorithm
that may also be helpful in difficult situations:

diagonalize: more stability for higher values than the
default 0.2;
doubleAveraging: you could try higher values than the
default 0 (e.g., 2–5);
cond, condvarno: you might try different conditioning
note that you can condition on 0 or 1 dependent
variables; conditioning means that the simulations stop
when the observed number of differences in the
dependent variable has been reached.

For these settings, there currently is no other advice than trial
and error.
The default before version 1.1-289 was doubleAveraging=5,

diagonalize=1. In some rare cases, those values may
produce better results than the current defaults.
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Convergence of estimation What if convergence is difficult

Look in other directions
Perhaps the convergence difficulties are a sign of a mismatch
between your data and your model.

⇒ Look for a better model specification.

⇒ Perhaps the issue is time heterogeneity. Analyse the data per
period, if possible, perhaps provisionally with a reduced model,
to investigate temporal heterogeneity.

⇒ Do you have the important covariates?
E.g., contact opportunities?

⇒ Perhaps covariates should be transformed? Make plots!

⇒ Or perhaps you should use a non-constant rate function,
depending on (logged?) outdegrees?

⇒ Check for outliers; how could these be represented
(structural zeros, dummy variables, NA for over-responders..)..
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Convergence of estimation Standard errors

A related issue, different but sometimes occurring in the same
data-model combinations because of their complexity,
is that sometimes standard errors are instable and
sometimes strongly over-estimated.

This may disappear when re-estimating the model
with a sufficiently long Phase 3 (i.e., high n3).

Ongoing work by Nynke Niezink.
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Causality?

4. Causality?
Network data are often observational, and relations are crucial
for how social actors try to attain their goals.
Therefore, networks in real life are highly endogenous.

Attaining causal conclusions about network effects from
non-experimental studies is hard, because if ties are changed,
actors will try something else that is similarly helpful for what
they try to attain.

Causality in observational research, certainly for networks,
is a Holy Grail: a lofty and important aim,
which we should not expect to attain;
cf. Shalizi & Thomas (2011):
selection and influence are generically confounded.
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Causality?

D.R. Cox / R.A. Fisher about causality:
Make your theories elaborate,
construct explanations at a deeper level.

P. Hedström & P. Ylikoski: causal mechanisms.

Network approaches themselves are a deeper level
than traditional quantitative social science approaches,
representing interaction processes,
and in this sense may help in coming closer to causal insights.

Stochastic Actor-oriented Modeling approach does not lead to
causal conclusions in the Holland-Rubin counterfactual sense;
it leads to conclusions about time sequentiality.
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Causality? Process approach

Process approach

We should realize that one of the ways in which
network research differs from much traditional social science
is its framing in terms of dependencies between actors
and in terms of representing detailed processes,
contrasting with variables defined for isolated actors
affecting each other.

....

We should be aware that this may be a large step
for many colleagues, supervisors, reviewers,
and sometimes leads to confusion and misunderstanding.
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Causality? Process approach

Network analysis requires new methodologies:

We are used to thinking in terms of variables,
defined for isolated actors, affecting each other;
or perhaps variables defined for isolated dyads,
or variables for nested levels;

We are accustomed to basing models on independence;

Thinking in terms of processes in networks,
and dependence between actors, is quite different;
we are only starting to understand how to specify
dependence. This implies a larger place for explorative
parts in theory-guided research.

Without independence assumptions can rely less on
mathematical theorems supporting statistical methods.
We can/should make our methods reproducible.
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Causality? Emergent Phenomena

Emergent Phenomena

Emergence refers to properties at the ‘system’ level that are
not an obvious direct consequence of the micro-level rules.

For sociology, this is related to micro-macro transitions.

Process models of this kind cannot be understood readily in
terms of monadic variables acting on each other as

represented in diagrams of path models
/ causal directed acyclic graphs.

The following is an example showing that in these models,
more complex phenomena occur than can be represented in
such diagrams.
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Causality? Emergent Phenomena

Emergent Phenomena: example
Consider a group of actors with a ‘friend’ network X and a behavior
Z.

⇒ Behavior Z has ordered categories 1,2, . . . ,9

⇒ average number of friends per actor fluctuates around 5

⇒ actors have some preference for ties to those with similar
Z-values

⇒ actors with friends (outgoing ties) who are high/low on Z

tend themselves to go up/down on Z: social influence

⇒ with a lot of randomness, too, in changes in X and Z

⇒ the initial situation is a random network, uniform distribution
for Z

⇒ the model is totally symmetric about the mid-point 5 of Z.
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Causality? Emergent Phenomena

Emergent Phenomena: specification

The specification is as follows:

⇒ n = 63 actors

⇒ initial network random with average degree 5

⇒ network effects: density β1 = −1.79, reciprocity β2 = 2,
similarity with respect to Z β3 = 0.4

⇒ calibrated so that average degree stable at ≈ 5

⇒ behavior with 9 categories, initially uniform distribution

⇒ specification of behavior symmetric about midpoint 5

⇒ social influence: total alter, ranging from 0 to 0.030.
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Causality? Emergent Phenomena

The objective function for behaviour is

fZ
i

(x, z) = βta

∑

j

xij

�

zj − 5
�

For an actor i with
∑

j xij = 5 friends,
the maximum absolute value of

∑

j xij(zj − 5) is 20;
this is multiplied by βta for which we show values from 0.010
to 0.022.

We let this model run and study the distribution of Z

as it develops over a long time,
for various values of the social influence parameter.
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Causality? Emergent Phenomena

βta = 0.010 βta = 0.016

Left: random fluctuations of average Z, distribution close to uniform;
right: average Z spends long periods in high, or low ranges.

horizontal is time; ∼ 10,000 choices per actor; vertical are values 1–9 of Z;

grey bands indicate frequencies of values of Z; green curve is mean Z.
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Causality? Emergent Phenomena

βta = 0.018 βta = 0.022

Left: average Z seems stable in an extreme range, then suddenly changes;
right: average Z seems totally stable,
with probability 0.5 in high or in low range.

horizontal is time; ∼ 10,000 choices per actor; vertical are values 1–9 of Z;

grey bands indicate frequencies of values of Z; green curve is mean Z.
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Causality? Emergent Phenomena

How can people represent causality in models without time?
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Estimation

5. Several methods for estimation
1 Method of Moments (MoM) (Snijders 2001).

The default method: solve equation
‘estimated = observed’ for a good set of statistics.

2 Maximum Likelihood

(Snijders, Koskinen, Schweinberger 2010).
Maximize the likelihood by data augmentation.

3 Generalized Method of Moments (GMoM)

(Amati, Schönenberger, & Snijders, 2015).
Minimize ‘estimated minus observed’
for an extended set of statistics.

4 Bayesian (Koskinen & Snijders 2007).
Not implemented in RSiena.

All optimizations use the Robbins-Monro algorithm.
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Estimation

ML is presumably better than MoM,
but much more time consuming.

For data structures with only one dependent network,
MoM is excellent;
for co-evolution data structures, it is adequate.

For co-evolution data structures,
ML and GMoM have advantages;
but GMoM is still under development;
see presentation by Viviana Amati Thursday 10.40
(Sunbelt pap04.05.01).

GMoM is currently available only in sienacpp,
for restricted specifications.
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Estimation

sienacpp
RSiena has two rooms:

1 front office: user interface in R
2 back office: simulations going on in C++

In siena07, only the simulations are done in C++;
the further calculations for the Robbins-Monro estimation
algorithm are done in R.

Starting from version 1.1-290 (early 2016), RSienaTest
contains sienacpp which produces the same as siena07,
but with all calculations in C++.
(Programmed by Felix Schönenberger.)

Some options are different, e.g., GMoM and multigroup data.
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Model specification

6. How to specify the model?

This depends of course on the purpose of the research,
theoretical considerations, empirical knowledge...

But the following may be a guideline
for specifying the network model:

1 Outdegree effect: always.

2 Reciprocity effect: almost always.

3 A triadic effect representing network closure.
gwesp, transitive triplets, and/or transitive ties.

4 transitive reciprocated triplets and/or three-cycles
(see Block, Network Science, 2015).
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Model specification

Interlude: GWESP effect

GWESP (geometrically weighted edgewise shared partners)
(cf. ERGM!!) is intermediate between transTrip and transTies.

GWESP(i, α) =
∑

j

xij e
α
n

1 −
�

1− e−α
�

∑

h xihxhj
o

.

for α ≥ 0 (effect parameter = 100× α).

Default α = log(2), parameter = 69.
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Model specification

Interlude ... GWESP ......

0 1 2 3 4 5 6

0

2

4

6

s

G
W

E
S

P
w

ei
g

h
t

α = ∞
α = 1.2
α = 0.69
α = 0

Weight of tie i→ j for s =
∑

h xihxhj two-paths.
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Model specification

Interlude ...... GWESP ...

The implementation of GWESP is an elementary effect:

For creation of a new tie,
only its role as i→ j in the formula is counted,
not its role as i→ h.

Therefore it can be interacted with all dyadic effects.

GWESP sometimes yields better fit than transTrip or transTies.

The GWESP effect exists in many directions:
gwespFF, gwespBB, gwespFB, gwespBF, gwespRR

for F = Forward, B = Backward, R = Reciprocal,
and also for multivariate networks: gwespFFMix etc.
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Model specification

How to specify the model? (continued)

5 Degree-related effects:
indegree-popularity (‘Matthew effect’), outdegree-activity,
outdegree-popularity and/or indegree-activity
(raw or sqrt versions depending on goodness of fit; for high
average degrees, preference for sqrt).

6 Perhaps reciprocal degree - activity.

7 Think about what are important covariates!
For actor covariates: see paper by T. Snijders and A. Lomi,
Specification of Homophily in Actor-oriented Network Models:
for numerical actor variables there may be a combination of
tendencies of homophily, aspiration, and social norm;
use 4 or 5 effects: ego, alter, ego-squared,
ego-alter difference squared; perhaps also ego squared.
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Model specification

How to specify the model? (further continued)

8 Use information about dyadic contact opportunities
(same classroom, task dependence, distances, etc.)

9 If there is a strong center-periphery structure,
and/or a strong dispersion in the outdegrees,
then a dependence of the rate function e.g. on the
log-outdegree (outRateLog) may be advisable.

A large set of effects is available in RSiena,
growing over the years because of researchers’ requests.
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Model specification Hierarchy

Model specification: hierarchy requirements

There are hierarchy principles
somewhat like in regression analysis:
simpler configurations should be used as controls
for complicated configurations.

This leads to heavy controls for multiple network co-evolution
and complicated multi-node effects.
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Model specification Hierarchy

Hierarchy: example

. .

.

i j

k

transitive triplet

. .

.

i j

k

two-path

. .

.

i j

k

two-in-star

. .

.

i j

k

two-out-star

The transitive triplet (left) includes three subgraphs (right);
actor i can create a transitive triplet by closing i→ j or i→ k;
therefore, to properly test transitivity, the two-path and
two-in-star configurations should be included in the model.
These correspond to the
outdegree-popularity and indegree-popularity effects.
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Model specification Hierarchy

How to specify the model? (even further

continued)

In addition to allowing you to answer your research questions,
the model also should have a good fit to the data.

The fit can be checked, but always incompletely,
by using sienaTimeTest and sienaGOF.

Note that difficulties in obtaining convergence of the
estimation procedure
may be a sign of model misspecification or overspecification.

(The converse is not true!!!)
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Assumption checking

7. Assumption checking

Two functions are available in RSiena
for checking model assumptions:

1 sienaTimeTest

for testing time heterogeneity
(meaningful only if there are 3 or more waves);

2 sienaGOF

for checking that the RSiena model reproduces sufficiently
the characteristics of the observed networks.

Both were developed by Josh Lospinoso (Oxford).
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Assumption checking Time homogeneity

sienaTimeTest

For M waves there are M− 1 periods.

The assumption
that parameters are constant in the M− 1 periods
is tested by sienaTimeTest.

The summary method also produces effect-wise
and period-wise tests.

See RscriptSienaTimeTest.r

Can be used also to check homogeneity between groups
for multi-group projects!
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Assumption checking Time homogeneity

The associated function includeTimeDummy can be used
to interact the effects specified by time dummies,
representing time heterogeneity.

An alternative for this purpose is to define time variables
(dummies or trend or other time-dependent variables;
defined as changing actor covariates,
constant across actors and changing across waves)
and add those to the data set,
and then specify interactions
between the other effects and these time variables.

This is a bit more work but also more flexible and clearer.
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Assumption checking Goodness of fit

sienaGOF

The goodness of fit of a model
(does it reproduce the data well enough?)
can be tested by the function sienaGOF.

This requires that siena07 was run
with returnDeps = TRUE.

This option returns the simulated data sets in Phase 3
as part of the sienaFit object produced by siena07.
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Assumption checking Goodness of fit

( from the help page ...:)

This is done by simulations of auxiliary statistics,
different from the statistics used for parameter estimation.
The fit is good if the average values
of the auxiliary statistics over many simulation runs
are close to the values observed in the data.

A Monte Carlo test based on the Mahalanobis distance
is used to calculate p-values.

This is a case where you wish the p-values to be large enough!

A plot method can be used to diagnose poor fit.
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Assumption checking Goodness of fit

The auxiliary statistics must be given explicitly
in the call of sienaGOF.

Some basic auxiliary statistics are available directly:
OutdegreeDistribution

IndegreeDistribution

BehaviorDistribution

CliqueCensus (useful for nondirected networks!) ;
and the user can also create custom functions.

The help page sienaGOF-auxiliary contains
some additional functions using packages igraph and sna.
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Assumption checking Goodness of fit

Sketch of the use of sienaGOF
See ?sienaGOF and the script sienaGOF_new.R

The basic operation is as follows:

results1 <- siena07(myalg, data=mydata, effects=myeff,
returnDeps=TRUE)

gof1.od <- sienaGOF(results1, verbose=TRUE,
varName="friendship", OutdegreeDistribution,
cumulative=TRUE, levls=0:10)

gof1.od
plot(gof1.od)

You can adapt the parameters levls and cumulative.
For levls this is important!
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Assumption checking Goodness of fit

Auxiliary functions
Some auxiliary functions are available within RSiena,
(‘out of the box’),
some are listed on the help page for "sienaGOF-auxiliary",
such as TriadCensus and GeodesicDistribution,
and others can be made by yourself (...)
or in future by others (!!!).

If you wish to useTriadCensus and GeodesicDistribution,
you have to take these,
for the latter along with igraphNetworkExtraction,
from the sienaGOF-auxiliary help page and give them to R.

What is available now is not meant to be complete! There are,
e.g., other statistics for assessing the fit for covariates; see
below.
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Assumption checking Goodness of fit

Goodness of fit: indegree distribution
Example of Goodness of Fit plot, indegree distribution

levls=0:10 to cover all observed outdegrees
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Assumption checking Goodness of fit

For more variable degrees, larger categories can be used, e.g.

gof1.od < − sienaGOF(..., IndegreeDistribution,

cumulative=TRUE, levls=c(0:5, 10*(1:4)))

gives 0, 1, 2, 3, 4, 5, 10, 20, 30, 40 – cumulatively!
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Assumption checking Goodness of fit

Example goodness of fit: triad census
Example of poor fit, triad census
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Assumption checking Goodness of fit

The triads that are not well represented are 030C, 120C, 210.

Look them up!

. .

.

030C

. .

.

120C

. .

.

210

All of these triads are fewer in the simulations than in the
data.

They all contain a 3-cycle (or two).
This suggests that the frequency of 3-cycles is not
represented well.
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Assumption checking Goodness of fit

Example goodness of fit: triad census(2)
Example of good fit, triad census
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Assumption checking Goodness of fit

For the combination of senders’ and receivers’ values of
monadic actor covariates, a new set of auxiliary statistics will
be added, enabling the following kind of plots (next page).

Siena Advanced Users’ Workshop, 2018 Sunbelt 2018 59 / 143



Assumption checking Goodness of fit

Overall Mahalanobis combination p = 0.045.
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Assumption checking Goodness of fit

How good a fit is required?
Since recently we have been moving to a new standard for
publications using Siena, where the fit for the degree and
behavior distributions should be adequate.

Of course it is also advisable to consider goodness of fit
for the triad census and the geodesic distribution.

It may not always be possible to achieve a fit with p > 0.05
for the Mahalanobis combination of all statistics under
consideration.

The traditional standards of ‘significance’ do not necessarily
apply to p-values for goodness of fit assessment.

In my experience it usually is possible,
to have the data within the confidence band of plot.sienaGOF.
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Assumption checking Goodness of fit

If the fit for the degree distribution is poor, one may consider
the degree-related effects listed in the manual.

In all cases, it is preferable to reflect on the processes under
study and consider additional covariate or structural effects,
interactions, non-linear transformations of covariates,
differences creation – maintenance, etc.:
finding out about misspecification in theoretically meaningful
ways is a main road to scientific progress.
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Assumption checking Goodness of fit

Further remarks
See the help pages for further information,
and Sections 6.11 and 9.6 of the manual.

Also see the scripts on the Siena scripts webpage.

First test time homogeneity, then goodness of fit.

Goodness of fit testing can be time consuming;
you may explore it with a Phase 3 of reduced length and/or
using multiple processes.

Testing of time homogeneity and goodness of fit
is getting more and more important.

Improving fit in this way

can led to theoretically interesting new insights!
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New Effects

8. Specification; effects

New network effects

Influence effects

Distance-two influence

Elementary effects

Influence in two-mode networks

Miscellaneous

Other new effects are also treated in earlier ‘Advanced Users’

presentations – see the website.
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New Effects New network effects

New effects (1): Structural equivalence
A good way of expressing structural equivalence,
i.e., being connected to the same others,
is the Jaccard similarity between rows, or columns:

Jout(i, j) =

∑

h xih xjh

xi+ + xj+ −
∑

h xih xjh

Jin(i, j) =

∑

h xhi xhj

x+i + x+j −
∑

h xhi xhj

Based on these (by summing over the outgoing ties of i),
the effects Jout and Jin are defined.

For multivariate networks: JoutMix, JinMix.
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New Effects New network effects

New effects (2): weighted degree effects

Degrees weighted by covariate: inPopX, outPopX, inActX,
outActX
useful especially for non-centered X
(version 1.1-306)
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New Effects Influence effects

New effects (2): Influence

The triple avSim – totSim – avAlt
now is a quartet with a 2× 2 structure:
{ sim , alt } × { av, tot } ⇒ avSim, avAlt, totSim, totAlt.

totAlt is implemented for regular influence effects,
influence from reciprocated alters, and
influence from other covariates (non-dependent / exogenous).

totAlt and totSim may need controlling for outdeg.
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New Effects Influence effects

New effects (3): influence weighted by
popularity

influence weighted by indegrees: avAltPop, totAltPop
(version 1.1-306)
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New Effects Influence effects

Reminder of effects (3):
Influence from covariates

Influence on a given behavior could also come from
another attribute of the alters
(e.g., effect of work attitude of friends on performance).

monadic: avXAlt, totXAlt;
dyadic: avWAlt, totWAlt;

don’t confuse with av/totAltW: av/totAlt weighted by W.

tot*Alt may need controlling for outdeg.
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New Effects Influence effects

Incoming influence effects
The effects avAlt – totAlt – avXAlt – totXAlt
also have analogues for influence from incoming ties:

10 avInAlt

11 totInAlt

12 avXInAlt

13 totXInAlt i

j1

j2

j3

i is influenced by incoming ties j1 − j3

totInAlt and totXInAlt may need controlling for outdeg.
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New Effects Influence effects

Extreme influence effects

14 maxAlt

15 minAlt
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New Effects Distance-two influence

New effects (4): Distance-two
Influence can also be expressed at distance 2.

With the distinction average/total this leads to 4 possibilities:
average vs. total at step 1 or step 2.

16 avAltDist2

17 totAltDist2

18 avTAltDist2

19 totAAltDist2

i is influenced by
the average/total of the
alter averages/totals of j1 − j3

i

j1

j2

j3

k1

k2

k3

k4
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New Effects Distance-two influence

New effects (5)

The same for distance-2 averages and totals of covariates:

20 avXAltDist2

21 totXAltDist2

22 avTXAltDist2

23 totAXAltDist2
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New Effects Distance-two influence

New effects (6): outgoing - incoming
The same for distance-2 averages and totals
where the second step is for incoming ties:

24 avInAltDist2

25 totInAltDist2

26 avTInAltDist2

27 totAInAltDist2

28 avXInAltDist

29 totXInAltDist2

30 avTXInAltDist2

31 totAXInAltDist2

i

j1

j2

j3

k1

k2

k3

k4

i is influenced by the incoming alter averages of j1 − j3.
Also ‘sim’ versions (simEgoInDist2 etc.)
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New Effects Distance-two influence

New effects (6a)

The *InAltDist2 effects are
also available
for two-mode networks.

i

k1

k2

k3

k4

j1

j2

j3

This means that it is now possible to model influence
from those out-alters
who have the same affiliations as the focal actor.
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New Effects Distance-two influence

Structural equivalence again

These distance-two outgoing–incoming effects
can be regarded as representing influence from
actors who are structurally equivalent (w.r.t. outgoing ties).

An alternative would be to use Jaccard measures (cf. Jin, Jout)
for defining influence effects.
This is still for future consideration.
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New Effects Elementary effects

Elementary effects

SAOM effects have been framed in the triple

1 evaluation

2 maintenance/endowment

3 creation

effects.

If the parameters for a creation and corresponding
maintenance effect are the same, then it can be represented
just as well by an evaluation effect.

Siena Advanced Users’ Workshop, 2018 Sunbelt 2018 78 / 143



New Effects Elementary effects

These kinds of effects differ in how they contribute
to the probability of a particular choice in the ministep.

The contributions to probabilities are based on
evaluation function fev

maintenance function fmt

creation function f cr .

Evaluation function plays a role for any step;
creation function only for upward change;
maintenance function only against downward change.

The definition is on the following page.
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New Effects Elementary effects

The probability that, given a current network x and
actor i making the ministep, the network changes to x±ij, is

exp
�

ui

�

x,x±ij
�

�

1 +
∑

h 6=i exp
�

ui

�

x,x±ih
�

�

where the objective function is

ui

�

x,x∗
�

= fev
i

(x∗)− fev
i

(x) + ∆+
�

x,x∗
� �

f cr
i

(x∗)− f cr
i

(x)
�

+ ∆−
�

x,x∗
� �

fmt
i

(x∗)− fmt
i

(x)
�

and

∆+
�

x,x∗
�

=

¨

1 if tie is created (x∗ = x+ij)

0 if tie is dropped, or no change

∆−
�

x,x∗
�

=

¨

1 if tie is dropped (x∗ = x−ij)

0 if tie is created, or no change.
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New Effects Elementary effects

However, not all probabilities of change can be based on
changes in some (evaluation-type) function.

Example : transitive triplets

The transitive triplets effect is defined as

si(x) =
∑

j,k

xij xik xkj

with change statistic
(change when adding tie i→ j)

δij(x) =
∑

k

xik

�

xkj + xjk

�

.

i

h

ℓ

The first part refers to creating the tie i→ j = h,
the second part to creating the tie i→ j = ℓ.
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New Effects Elementary effects

But one could be interested in only transitive closure,
as defined by closing of an open two-path (i→ j = h),
as distinct from creating ties
to those with the same out-choices,
which is a kind of structural equivalence (i→ j = ℓ).

This cannot be represented
as a change in an evaluation function.

Therefore we need a different kind of effect:
elementary effect
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New Effects Elementary effects

But one could be interested in only transitive closure,
as defined by closing of an open two-path (i→ j = h),
as distinct from creating ties
to those with the same out-choices,
which is a kind of structural equivalence (i→ j = ℓ).

This cannot be represented
as a change in an evaluation function.

Therefore we need a different kind of effect:

elementary effect
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New Effects Elementary effects

But one could be interested in only transitive closure,
as defined by closing of an open two-path (i→ j = h),
as distinct from creating ties
to those with the same out-choices,
which is a kind of structural equivalence (i→ j = ℓ).

This cannot be represented
as a change in an evaluation function.

Therefore we need a different kind of effect:
elementary effect
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New Effects Elementary effects

Elementary effect

An elementary effect is a term of the objective function
ui

�

x,x∗
�

used to define change probabilities for ministeps,
referring to creation and/or maintenance of a tie i→ j,
without being necessarily a difference fi(x±ij)− fi(x)

of some function fi
(or similar with multiplication by ∆+ or ∆−).

Evaluation function is only about the result;
elementary effect can express the detailed process / step
that leads to a given configuration.
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New Effects Elementary effects

Elementary effect

An elementary effect is a term of the objective function
ui

�

x,x∗
�

used to define change probabilities for ministeps,
referring to creation and/or maintenance of a tie i→ j,
without being necessarily a difference fi(x±ij)− fi(x)

of some function fi
(or similar with multiplication by ∆+ or ∆−).
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New Effects Elementary effects

Example : transTrip1 and transTrip2

transTrip1 (transitive closure)

sij(x) = xij

∑

k

xik xkj

i

j

k

transTrip2
(structural equivalence outgoing ties)

sij(x) = xij

∑

k

xik xjk

i

k

j
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New Effects Elementary effects

Elementary effects can lead to the same configuration and
therefore have the same target statistic
(such as transTrip1 and transTrip2).

In such cases they cannot be distinguished empirically
by estimation by the Method of Moments.

However, they can be be distinguished empirically
by estimation by the Generalized Method of Moments
(under development)
and by likelihood-based methods
(Maximum Likelihood, Bayes).

The use of elementary effects can give a more fine-grained
representation of the process of network change;
but this will require more data;
like also distinction creation-maintenance requires more data.
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New Effects Elementary effects
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New Effects Elementary effects

Other example of elementary effects
XWX, ‘closure of covariate’.

E.g.: X = bullying, W = defending;
XWX = ’if k defends j and i bullies one of them,
then s/he will tend to bully both’.

32 XWX1: like XWX, dependent variable is
only one of the XWX ties: i→ j

‘i bullies those who are defended
by his victims’.

33 XWX2: dependent variable
here is i→ k.
‘i bullies defenders of his victims’.

. .

.

i j

k

X

X

W

XWX1 and XWX2 are elementary effects.
Siena Advanced Users’ Workshop, 2018 Sunbelt 2018 86 / 143



New Effects Elementary effects

Still other elementary effects

34 cl.XWX1: like XWX1 but for dependent network.

35 cl.XWX2: like XWX2 but for dependent network.
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New Effects Influence in two-mode networks

Influence in one-mode – two-mode co-evolution

.

.

.

i

j

h ⇒
.

.

.

i

j

h from

.

.

.

i

j

h ⇒
.

.

.

i

j

h to

Circles (left) are mode-1, squares (right) are mode-2 nodes.
Top: affiliation-based focal closure, effect from;
bottom: association-based affiliation closure, effect to.
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New Effects Miscellaneous

There are a lot of other effects – see the manual! E.g.:

36 reciPop: reciprocal degree popularity

37 reciAct: reciprocal degree activity

38 gwesp.. effects have endowment and creation effects.
They also are allowed to interact with other effects
(interactionType = "dyadic") ,
straightforward because implemented as elementary
effects.

39 And various others
(e.g., interactions between networks and covariates).
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Co-evolution

9. Co-evolution

Evolution of multiple networks is studied more and more.

Various new effects have been constructed for this purpose:
see Section 12.1.3 of the manual.

When a monadic or dyadic variable is regarded
as a control variable,
it still may be advisable to use it as a dependent variable
in the SAOM analysis, rather than as a covariate,
because this will allow the ‘control’ variable much better
to maintain its correspondence during the simulations
with the focal dependent variables.
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Co-evolution

Results using a ‘control network’ as a covariate
will differ quite appreciably from results obtained
while using it as a co-evolving dependent network;
and similarly for monadic variables.

Example: acquaintance or communication
as a control network variable for advice
to study the properties of the ‘purified’ advice relation,
conditional on the condition of acquaintance.
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Multilevel Networks Multilevel Analysis of Networks

10. Multilevel Analysis of Networks

See MultiMetaSAOM_s.pdf, at website.

Emmanuel Lazega and Tom A.B. Snijders (eds).
Multilevel Network Analysis

for the Social Sciences.
Cham: Springer, 2016.

Special issue of Social Networks ‘Multilevel Social Networks’,
edited by Alessandro Lomi, Garry Robins, and Mark Tranmer,
vol. 44 (January 2016).
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Multilevel Networks Analysis of Multilevel Networks

Analysis of Multilevel Networks
Multilevel network (Wang, Robins, Pattison, Lazega, 2013):

Network with nodes of several types,
distinguishing between types of ties
according to types of nodes they connect.

Thus, if types of nodes are A, B, C,
distinguish between A− A, B− B, C− C ties, etc., (within-type)
and between A− B, A− C, etc., ties (between-type).

Some may be networks of interest,
others may be fixed constraints,
still others may be non-existent or non-considered.

This generalizes two-mode networks
and multivariate one mode – two mode combinations.
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Multilevel Networks Analysis of Multilevel Networks

See paper

Tom A.B. Snijders, Alessandro Lomi, and Vanina Torlò (2013).
A model for the multiplex dynamics of two-mode and
one-mode networks, with an application to employment
preference, friendship, and advice.
Social Networks, 35, 265-276;

Analysis of longitudinal multilevel networks in RSiena
is possible by a trick (thanks to James Hollway).
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Multilevel Networks Analysis of Multilevel Networks

Consider multilevel network with two node sets, A and B.

There are two one-mode networks internal to A and B,
and two two-mode networks X1 from A to B; X2 from B to A.

Specification for RSiena possible by employing
one joint node set A ∪ B and two dependent networks:

A B A B

A

B

�

internal A 0
0 internal B

� �

0 two-mode A× B

two-mode B× A 0

�

networks A, B network X2 network X1

Siena Advanced Users’ Workshop, 2018 Sunbelt 2018 97 / 143



Multilevel Networks Analysis of Multilevel Networks

For example:

A a set of organizations, B a set of individuals,
X2 is a fixed membership relation, X1 is not there;

networks A and B could be taken apart
in two distinct networks;

if there are only ties between individuals within organizations,
B will be a network of diagonal blocks
and structural zeros between different organizations;

if there are essential differences between individual ties
within organizations or across organizations,
B can be decomposed in two further distinct networks.
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Multilevel Networks Analysis of Multilevel Networks

For the ‘Analysis of Multilevel Networks’ using RSiena,
possibilities exist in principle, as indicated above;

a first example is Snijders, Lomi, Torlò (2013)
mentioned above;

see scripts RscriptSienaTwoModeAsOneMode.R and
TwoModeAsSymmetricOneMode_Siena.R

on the Siena website

the research program is being continued by James Hollway
(Oxford – Zürich – Genève) and by Gennady Zavyalov
(Stavanger), and in research collaboration between Malick
Faye, Julien Brailly, and Tom Snijders (EUSN 2017
presentation).

much exciting research to be done!
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Multilevel Networks Effects for multilevel networks

Effects for multilevel networks
Multilevel networks have several different node sets.
The node set used in RSiena is their union,
distinguished by actor variables.

This requires that the objective function correspondingly has
several parts, depending only on the relevant nodes.

For some effects this can be accomplished by using interactions
with the egoX, altX, simX effects of these indicating variables.

Other effects:

⇒ sameXInPop, sameXOutAct, sameXInPopIntn,
sameXTransTrip, sameXCycle4, etc.

⇒ altRThresholdX, altLThresholdX
(like altX with a step function)
for using an endogenous (‘behavior’) node set.
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Missing Data

11. Missing Data in RSiena

The internal treatment of missing tie values in RSiena is
simple:

Impute missing tie variables in wave 1 by 0.

Impute missing tie variables in later waves by
Last Observation Carried Forward.

Exclude these imputed values from the calculation
of the statistics used for estimation in the MoM.

This can be improved if you have more knowledge of the data
and also if you are willing to take more effort.
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Missing Data

Missing Data: improvements

⇒ Sometimes there is enough information to make some
imputations,
based on knowledge of the data,
with a high degree of confidence.
If possible, do this!

⇒ There was an error in the treatment of missings in
non-centered monadic covariates
until and including version 1.1-284.
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Missing Data

Missing Data (contd.)

⇒ New option imputationValues in coCovar, varCovar :
these values will be used for imputation of missings
for the simulations,
but (like always happens for missings) are not taken into
account for the statistics used for estimation.

Can be used if there are reasonable, not completely
reliable values for imputation.
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Missing Data

Missing Data (contd. further)

⇒ Papers about treatment of missing data in Social Networks

by Hipp, Wang, Butts, Jose, Lakon (2015) and
Wang, Butts, Hipp, Jose, Lakon (2016)
criticize missing data treatment by RSiena;
but they disregard the fact
that imputed values are not used for the
statistics for estimation, only for simulations.
Thus the effect of these imputations is only indirect.

⇒ In Wang et al. (2016) it is proposed to do multiple
imputations by ERGMs for treating missing data in SAOMS.
This might be an improvement of the current defaults,
but it disregards the longitudinal dependence!
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Missing Data

Intermezzo:
Multiple imputation – how does it work?
Multiple stochastic imputation was developed by Don Rubin.

For a given incomplete data set,
the missing data is imputed independently D times
by drawing from the conditional distribution
of the missing data given the observed data.

This leads to D complete data sets,
that differ only with respect to the imputed values.

For each complete data set the desired analysis is executed;
standard errors of parameters are a combination
of the within-data set standard errors,
and the variability of estimates between the data sets.

The larger the amount of missing data,
the larger will be the variability between imputed data sets.
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Missing Data

How to combine the multiple imputations

The parameter of interest is denoted γ.

Suppose that the d′th randomly imputed data set leads to
estimates γ̂d and estimated variances Wd (‘Within’),

Wd = var
�

γ̂d | data set d
	

.

Note that Wd underestimates true uncertainty,
because it treats imputed data as real data.

The combined estimate is the average

γ̄D =
1

D

D
∑

d=1

γ̂d .
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Missing Data

Combine multiple imputations....

Compute the average within-imputation variance

WD =
1

D

D
∑

d=1

Wd ,

and the between-imputation variance

BD =
1

D− 1

D
∑

d=1

�

γ̂d − γ̄D

�2
.

Estimated total variability for γ̄D is

TD = dvar
�

γ̄D

�

= WD +
D + 1

D
BD , s.e.

�

γ̄D

�

=
p

TD .
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Missing Data

Another kind of multiple imputation

The ML option in RSiena will give a model-based simulation
of the missings in the second wave,
if the first wave has complete data.

This can be used for getting model-based longitudinal
imputations:

1 If the first wave has any missings, estimate an ERGM
or stationary SAOM and impute the missings in the first
wave using this.

2 Estimate the SAOM parameters provisionally
using the default treatment of missing data.
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Missing Data

3 For each wave m, m = 1, . . . ,M− 1:
given the completed data set for wave m, produce a
model-based random draw from the missings in wave
m + 1 from an ML simulation.
This is not as time-consuming as full ML estimation,
because only one simulation is required.

4 Use this complete data set to obtain one estimate γ̂d.

5 Repeat this procedure D times and use Rubin’s rules
for combining the estimates and standard errors.
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Missing Data

This is treated in R. Krause, M. Huisman, & T. Snijders (2018),
‘Multiple imputation for longitudinal network data’, Italian

Journal of Applied Statistics, in press:
impute first wave (for which there is no help from earlier
observations!) by Bayesian ERGM or stationary SAOM,
and further waves by likelihood-simulation of SAOM.

This assumes ’missingness at random’: i.e., observed data
are sufficient for randomly generating missing data.

The main remaining disadvantage is that the future values are
not used for the imputations.
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Missing Data

Example

Waves 2-3-4 of the van de Bunt students data.

Wave 0 is complete, so no ERGM imputation is needed!

Number of missing actors in waves 0–4 are
0; 2; 3; 5; 6, out of 32.

Impute wave 1 – then 2 – then 3 – then 4.
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Missing Data

default multiple imputation
Effect par. (s.e.) par. (s.e.) m.f.

Rate 1 4.207 (0.640)
Rate 2 5.063 (0.668)

outdegree –1.728∗∗∗ (0.317) –1.804∗∗∗ (0.343) .16
reciprocity 2.024∗∗∗ (0.233) 2.100∗∗∗ (0.260) .18
trans. trip. 0.324∗∗∗ (0.048) 0.329∗∗∗ (0.049) .12
indeg. - pop. 0.002 (0.038) 0.024 (0.039) .16
outdeg. - pop. –0.132∗∗∗ (0.027) –0.155∗∗∗ (0.031) .11
outdeg. - act. 0.014 (0.014) 0.013 (0.014) .09
sex alter 0.409∗ (0.200) 0.323 (0.204) .08
sex ego –0.386† (0.208) –0.282 (0.218) .13
same sex 0.379∗ (0.189) 0.362∗ (0.193) .07
program sim. 0.604∗∗ (0.205) 0.687∗∗ (0.213) .09

par. = estimate; s.e. = standard error; m.f. = missing fraction;
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

convergence t ratios all < 0.06; overall maximum convergence ratio 0.08.
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Missing Data

Note:
in waves 3 and 4 the proportion of missing actors is 0.15;
proportion missing information is of about this size.

Standard errors of the two approaches are similar;
estimates sometimes (3 cases) differ by about half s.e.,
in other cases differ hardly.

Further studies are needed to see
how this procedure performs.

Research is being done by Robert Krause.
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Effect Sizes
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Effect Sizes Generalities about effect sizes

12. Effect sizes ....?
Effect sizes aim for comparability of parameters.

Comparability may be across variables in the same data set,
or between models for the same data set, or across data sets.

In linear regression comparability (all types) can be achieved
by using standardized predictors, or equivalently
by considering

βk s.d.(Xk) or
βk s.d.(Xk)

s.d.(Y)
.

For linear regression, there still is an essential difference
between such standardized coefficients (∼ one model)
and contributions to R2 (∼ comparison between models).
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Effect Sizes Generalities about effect sizes

The straightforward approach to effect sizes
in linear regression models
breaks down in most other generalized linear models.

Several approaches possible for defining effect sizes:

⇒ Marginal effects:
expected change in some outcome variable,
for a ‘unit’ change in explanatory ‘variable’;

⇒ Model-based effects:
definitions within the model,
making the effect sizes comparable in some way.

Marginal effects are more directly interpretable,
because they refer directly to observed variables;
they may be complicated because of their dependence
on the values of other variables in the model.

Man sociologists are fond of marginal effects
for the interpretation of logistic regression results.
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Effect Sizes Generalities about effect sizes

Here I present some available techniques
for model-based effects for SAOMs.
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Effect Sizes Change statistics

Change statistics

Consider a SAOM with evaluation function

fi(β,x) =
∑

k

βk ski(x) .

Define by δij,k(x) the change statistic

δk,ij(x) = ski

�

x(+ij)
�

− ski

�

x(−ij)
�

,

where x(+ij) and x(−ij) are the networks x

with and without tie i→ j, respectively.

For the model-based effect sizes,
we consider the probabilities in a ministep.
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Effect Sizes Change statistics

In a ministep, the probability of toggling tie variable xij,
if actor i has the opportunity to make a change, is

πij(β,x) =
exp

�

fi(β,x(±ij))− fi(β,x)
�

1 +
∑

h 6=i exp
�

fi(β,x(±ih))− fi(β,x)
� ,

where x(±ij) the network in which tie variable xij

is toggled into 1− xij (and similarly for x(±ih) ).

Note that

fi(β,x
(±ij))− fi(β,x) =

∑

k

βk (1− 2xij)δij,k(x) .

The change statistics (with a + or a –) have the role
of the explanatory (‘independent’) variables.
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Effect Sizes Change statistics

For example:

log

�

P
�

add tie i→ j to x
	

P
�

leave network unchanged
	

�

=
∑

k

βk δij,k(x) if xij = 0 ;

log

�

P
�

drop tie i→ j from x
	

P
�

leave network unchanged
	

�

= −
∑

k

βk δij,k(x) if xij = 1 ;

and

log

�

P
�

add tie i→ j to x
	

P
�

add tie i→ h to x
	

�

=
∑

k

βk

�

δij,k(x)− δih,k(x)
�

,

if x does not have the ties i→ j or i→ h.
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Effect Sizes Question 1

Question 1

Two-mode network for Glasgow data for 14 activities:

daily weekly monthly less
1 I listen to tapes or CDs 388 23 5 16
2 I look around in the shops 65 290 48 30
3 I read comics, mags or books 186 121 65 60
4 I go to sport matches 30 113 90 200
5 I take part in sports 218 117 30 68
6 I hang round in the streets 216 64 26 125
7 I play computer games 157 109 45 122
8 I spend time on my hobby (e.g. art, an instrument) 114 113 36 170
9 I go to something like B.B., Guides or Scouts 36 81 1 314
10 I go to cinema 11 81 269 71
11 I go to pop concerts, gigs 7 6 92 326
12 I go to church, mosque or temple 2 52 10 368
13 I look after a pet animal 197 25 6 203
14 I go to dance clubs or raves 15 44 104 266
15 I do nothing much (am bored) 37 39 24 331

Number of students participating in each of a list of activities, summed over three waves, for Glasgow data.
Bold-faced are frequencies counted as a tie.
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Effect Sizes Question 1

Effect par. (s.e.)

rate period 1 4.230 (0.268)
rate period 2 4.046 (0.278)

outdegree –5.891∗∗∗ (0.660)
outdegree - activity 0.637∗∗∗ (0.088)
indegree - popularity (p) 0.790∗∗∗ (0.100)
out-in degree assortativity –0.0184∗∗∗ (0.0025)
4-cycles 0.0389∗∗∗ (0.0057)

Estimation results for activity participation of Glasgow students.

Question 1: what about the vastly different parameter sizes?
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Effect Sizes Standardization

Some kind of standardization
To compare βk for a given network x,
consider the formulae

πij(β,x) =
exp

�

fi(β,x(±ij))− fi(β,x)
�

1 +
∑

h 6=i exp
�

fi(β,x(±ih))− fi(β,x)
� ,

fi(β,x
(±ij))− fi(β,x) =

∑

k

βk (1− 2xij)δij,k(x) .

This shows that βk is multiplied by the ‘variable’

(1− 2xij)δij,k(x) .

Define
δii,k(x) = 0 .
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Effect Sizes Standardization

In analogy to linear regression,
we can make the values βk comparable by considering

σ2
ik

(x) = var
n

δij,k(x) (1− 2xij)
�

� i fixed
o

=
1

n

n
∑

j=1

�

δij,k(x) (1− 2xij)
�2 −

�1

n

n
∑

j=1

δij,k(x) (1− 2xij)

�2

,

the within-actor variance of this ‘variable’; and

σ2
k

(x) =
1

n

∑

i

σ2
ik

(x) .

The product
σk(x)βk

expresses the parameters βk, for different k and a given x, on
a common scale. The standard deviation is used here as a
somewhat arbitrary, but well-known measure of scale.
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Effect Sizes Answer to Question 1

Answer to Question 1

Effect β̂k (s.e.) σk σk β̂k

rate period 1 4.227 (0.268)
rate period 2 4.047 (0.278)

outdegree –5.891 (0.660) 0.79 –4.67
outdegree - activity 0.637 (0.088) 5.48 4.33
indegree - popularity (p) 0.790 (0.100) 6.74 4.29
out-in degree assortativity –0.0184 (0.0025) 331.54 –6.11
4-cycles 0.0389 (0.0057) 55.08 2.14

β̂k: estimates; s.e.: standard errors;
σk: mean within-ego standard deviations of change statistics;

σkβ̂k: their product.

The order of magnitude of the effects is similar.
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Effect Sizes Question 2

Question 2
Effect par. (s.e.)

rate (period 1) 14.471 (1.511)
rate (period 2) 11.949 (1.250)

outdegree –3.419 (0.294)
reciprocity 3.815 (0.315)
GWESP transitive 1.906 (0.125)
GWESP cyclic 0.394 (0.114)
indegree - popularity –0.008 (0.027)
outdegree - popularity –0.092 (0.063)
outdegree - activity 0.110 (0.047)
reciprocated degree - activity –0.279 (0.066)
sex alter –0.156 (0.091)
sex ego 0.057 (0.106)
same sex 0.591 (0.082)
reciprocity × GWESP transitive –1.148 (0.167)

How strong are the contributions of the effects
to determining the actors’ choice probabilities?
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Effect Sizes Relative Importance

Relative Importance
Indlekofer & Brandes (Network Science, 2013) proposed
a measure for the Relative Importance of effects.

This is based on the following approach:
how large is the change in the probability vector πi

if one of the effects is dropped?

Ingredients of the approach:

Just replace βk by 0, do not re-estimate.

Measure change in probability vector by the ℓ1 distance,
i.e., sum of absolute differences.

Define πi as vector of probabilities for actor i in next ministep,
and π

(−k)
i as the same if effect k obtains a weight of 0.
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Effect Sizes Relative Importance

Then importance of effect k for actor i is


πi − π
(−k)
i





1 =
∑

j

�

�πij − π
(−k)
ij

�

� .

Relative importance of effect k for actor i is

Ik(X, i) =



πi − π
(−k)
i





1
∑K

ℓ=1



πi − π
(−ℓ)
i





1

;

Expected relative importance (for random i) is

1

N

N
∑

i=1

Ik(X, i) .

Expected (raw / total) importance can then be defined as

1

N

N
∑

i=1



πi − π
(−k)
i





1 .
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Effect Sizes Answer to Question 2

Answer to Question 2

Exp. rel. importance

Effect β̂k (s.e.) wave 1 wave 2 wave 3

outdegree -3.5904 (0.2161) 0.1730 0.2005 0.1749
reciprocity 3.5827 (0.2503) 0.2115 0.1952 0.2209
GWESP transitive 1.5569 (0.0997) 0.1225 0.1085 0.1267
GWESP cyclic 0.3290 (0.1178) 0.0252 0.0216 0.0253
indegree - popularity -0.0274 (0.0247) 0.0245 0.0266 0.0232
outdegree - popularity -0.0197 (0.0453) 0.0148 0.0155 0.0141
outdegree - activity 0.1626 (0.0323) 0.1626 0.1549 0.1534
reciprocated degree - activity -0.3915 (0.0560) 0.1283 0.1303 0.1306
sex alter -0.1458 (0.0886) 0.0179 0.0191 0.0172
sex ego 0.0597 (0.0966) 0.0049 0.0054 0.0047
same sex 0.6515 (0.0782) 0.1147 0.1224 0.1091
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Effect Sizes Answer to Question 2

Previous page:
Plot of relative importance of effects for first 40 actors
(blank = absent) and averaged for all actors (pie-chart).

The graph was produced by

plot(RI, actors=1:40, addPieChart = TRUE, legendColumns=4)

where RI was the object produced by sienaRI.
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Effect Sizes Question 3

Question 3

In the model for network dynamics (Glasgow data),
how large are the separate contributions of:

1 dyadic effects (reciprocity)

2 triadic effects (gwesp)

3 degree effects (inPop, outPop, outAct, reciAct)

4 effects of sex (ego, alter, same)?
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Effect Sizes Entropy-based measures

Entropy-based measures
The uncertainty / variability
in the outcomes of categorical random variables
can be expressed by the entropy (Shannon, 1948).

For a probability vector p = (p1, . . . ,pK), entropy is defined as

H(p) = −
K
∑

k=1

pk
2log(pk) . (1)

Minimum 0 (if one category has pk = 1);
maximum 2log(K) (if pk = 1/K for all k).

The degree of certainty, or amount of information,
in the outcome of the ministep for actor i can be expressed by

RH(i, β,x) = 1−
H(πi(β,x))

2log(K)
. (2)
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Effect Sizes Entropy-based measures

For models with constant rate function, this can be averaged:

RH(β,x) =
1

n

∑

i

RH(i, β,x) . (3)

This is a measure between 0 and 1:
1 if the outcome of the ministep for a given actor is certain;
0 if all actors choose a random change (all probabilities 1/n).

This measure was proposed in Snijders
(Mathématiques et Sciences Humaines, 2004).

For network panel data we may average over waves:

RH(β) =
1

M

∑

m

RH

�

β,x(tm)
�

. (4)

Values generally will be low!
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Effect Sizes Entropy-based measures

Contributions to RH

For the contribution of an effect, or set of effects,
to the information about the outcome:
estimate the model twice,
giving parameter estimates β̂1 for full model
and β̂2 for restricted model, and consider the difference

RH(β̂1) − RH(β̂2) . (5)

Note that this is not necessarily positive,
because the estimation method does not maximize RH(β̂).
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Effect Sizes Answer to Question 3

Answer to Question 3

Exp. information

Effect wave 1 wave 2 wave 3

Reciprocity only 0.2540 0.2475 0.2326
Reciprocity and triadic 0.2410 0.2596 0.2459
Reciprocity and degree-based 0.2307 0.2613 0.2172
Reciprocity and sex 0.2677 0.2574 0.2467
Rec, triadic, degree-based 0.2571 0.2842 0.2725
Rec, triadic, sex 0.2509 0.2635 0.2599
Rec, degree-based, sex 0.2465 0.2714 0.2342
Full model 0.2596 0.2854 0.2811

I have to check this....
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Effect Sizes Implementation

sienaRI

Natalie Indlekofer has contributed the function sienaRI,
which assesses the relative importance of effects.
Available since version 1.1-270.

There was also the function sienaRIDynamics,
averaging over all changes from one wave to the next,
but this had difficulties and was withdrawn (may be revived).

sienaRI was extended by Tom Snijders
with measures σ and RH and further adapted.
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And further Developments in current models

13. Developments in current models

There still is much more to do and explore within the confines
of what has already been developed and implemented.

1 The topics mentioned above are open for application /
elaboration.

2 4 or 5 parameters for numerical actor variables (ArXiV
paper)

3 Evaluation / creation / maintenance / elementary effects

4 Evaluation / creation / maintenance / effects for behaviour

5 Variants of non-directed models

Siena Advanced Users’ Workshop, 2018 Sunbelt 2018 140 / 143



And further Developments in current models

Developments in current models (contd.)

6 Model selection

7 Importance of GoF for validity of results

8 Extended auxiliary functions for GoF

9 avAlt⇔ avSim⇔ totAlt⇔ totSim

10 Diffusion of innovations – event history analysis

11 Two-mode networks: homophily, comparisons

12 Multivariate (e.g., signed) networks

13 Ordered networks
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And further Hot Issues

Hot Issues

Analysis of Multilevel Networks (see above!)

Comparison SAOM↔ ERGM (papers Per Block et al)

Generalized Method of Moments (Viviana Amati)

Continuous dependent actor variables (Nynke Niezink)

Settings model (Tom Snijders)

Comparability of effects across models, data sets
∼ ‘marginal’ effects

Stable standard errors (Nynke Niezink)

CUP Books!
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