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1. Where to look

1. Where to look?
Siena is an evolving endeavour, which may be hard to follow.

Follow the Siena/Stocnet discussion list!

The website
http://www.stats.ox.ac.uk/~snijders/siena/

notes important matters at the ‘News’ page:
list of incompatibilities and bugs;
new developments; some interesting papers.

Most recent versions can be downloaded from
R-Forge and ‘Downloads’ page of website,
and are announced at the Siena/Stocnet discussion list.

Website ‘News’ page, and Appendix B in the manual,
give description of changes in the new versions.
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1. Where to look

Where to look? (2)

Website ‘Literature’ page has a section
‘Presentations (teaching material)’
including (e.g.) these slides.

Recent (since late 2014) changes in manual:
⇒ elementary effects (treated below);
⇒ more about user-defined interaction effects;
⇒ changed section about convergence

and how to use the algorithm options.

Siena_algorithms.pdf now is at the Siena website
(partial explanation of algorithms and code).

The available effects of ‘myeff’ are given by
effectsDocumentation(myeff).
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2. New convergence criterion

2. New convergence criterion

The usual convergence criterion is tmax
the absolute maximum of the t-ratios for convergence,
considering simultaneously all parameters in the model.

It has appeared that for some models
(e.g., with non-centered actor covariates)
the usual criterion

tmax ≤ 0.10

is not sufficient.

Therefore, the overall maximum convergence ratio
(included as tconv.max in sienaFit objects since some time)
gets a new importance.
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2. New convergence criterion a. Overall maximum convergence ratio

2a. Overall maximum convergence ratio
This is defined as the maximum t-ratio for convergence
for any linear combination of the parameters,

tconv.max = max
b

¨

b ′
�

s̄j − sobs
�

p
b ′Σb

«

.

This is equal to (use Cauchy-Schwarz inequality)

max
c

¨

c ′Σ−1/2
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p
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=
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.

The definition implies that

tconv.max ≥ tmax .
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2. New convergence criterion a. Overall maximum convergence ratio

Studies comparing results of siena07() with the ‘true estimate’
(robust mean of many estimations) show:

1 Distance from true estimate is much better
indicated by tconv.max than by tmax.

2 When tconv.max exceeds 0.30,
distances di from the true value are too large.

New criterion

tmax ≤ 0.10 and tconv.max ≤ 0.25 .
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2. New convergence criterion a. Overall maximum convergence ratio

Further options for siena07()

To improve the possibilities of siena07() to indeed produce
estimates satisfying this new criterion,
some new options were developed since version 1.1-285
(2015-05-20);
see ?sienaAlgorithmCreate and manual, Section 6.1.3;
also see Siena_algorithms.pdf.

Since version 1.1-289 (2015-09-10), new defaults for MoM:

1 doubleAveraging = 0
(i.e., use double averaging right from subphase 1)

2 diagonalize = 0.2
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2. New convergence criterion a. Overall maximum convergence ratio

What is double averaging?

The regular Robbins-Monro update step is

θ̂N+1 = θ̂N − aN D̃
−1 (SN − s)

The algorithm with double averaging is

θ̂N+1 = θ̄N − NaN D̃
−1 (SN − s) ,

where

θ̄N =
1

N

∑

n≤N
θ̂n , SN =

1

N

∑

n≤N
sn .

See Siena_algorithms.pdf.
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2. New convergence criterion a. Overall maximum convergence ratio

Achieving this more stringent convergence criterion
may require several repeated runs of siena07()
linked by using the prevAns parameter.

The following page is an extension of siena07()
like in the manual Section 6.1.3.
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2. New convergence criterion a. Overall maximum convergence ratio

siena07ToConvergence <- function(alg, dat, eff, ans0=NULL,

threshold, ...){

numr <- 0

ans <- siena07(alg, data=dat, effects=eff, prevAns=ans0, ...) # the first run

repeat {

save(ans, file=paste("ans",numr,".RData",sep="")) # to be safe

numr <- numr+1 # count number of repeated runs

tm <- ans$tconv.max # convergence indicator

cat(numr, tm,"\n") # report how far we are

if (tm < threshold) {break} # success

if (tm > 10) {break} # divergence without much hope

# of good return

if (numr > 100) {break} # now it has lasted too long

ans <- siena07(alg, data=dat, effects=eff, prevAns=ans, ...)

}

ans

}
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2. New convergence criterion a. Overall maximum convergence ratio

Results for a moderately complicated data set & model
with a low threshold=0.1 :

vdb.algo4 <- sienaAlgorithmCreate(seed=54321, nsub=4)

ans012 <- siena07ToConvergence(vdb.algo4,

vdb.data012, vdb.eff012, threshold=0.1,

useCluster=TRUE, nbrNodes=2)

(note the use of the dots ... parameter)

1 0.1979708
2 0.2461148
3 0.1748373
4 0.1445431
5 0.1442089
6 0.133533
7 0.1211533
8 0.1203132

9 0.1471743
10 0.134066
11 0.1402179
12 0.1298273
13 0.1447915
14 0.1548974
15 0.1522713
16 0.1177088

17 0.1157999
18 0.10688
19 0.1368976
20 0.1147648
21 0.1453033
22 0.1220962
23 0.1181492
24 0.2007752

25 0.1904938
26 0.1478382
27 0.1509909
28 0.1306809
29 0.157657
30 0.1727815
31 0.09992554

AdSUM 2016 Zürich 2016 10 / 85



2. New convergence criterion a. Overall maximum convergence ratio

With 5 subphases it goes more quickly:

vdb.algo5 <- sienaAlgorithmCreate(seed=54321, nsub=5)

ans012 <- siena07ToConvergence(vdb.algo5,

vdb.data012, vdb.eff012, threshold=0.1,

useCluster=TRUE, nbrNodes=2)

1 0.1318489
2 0.1417612
3 0.0894502
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2. New convergence criterion a. Overall maximum convergence ratio

And with 6:

vdb.algo6 <- sienaAlgorithmCreate(seed=54321, nsub=6)

ans012 <- siena07ToConvergence(vdb.algo6,

vdb.data012, vdb.eff012, threshold=0.1,

useCluster=TRUE, nbrNodes=2)

1 0.111879
2 0.08501629
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2. New convergence criterion a. Overall maximum convergence ratio

Conjecture :

If the initial value (’prevAns’) is reasonably near the solution
(say, tconv.max < 0.4), the successive (’prevAns’) values of
results of the Robbins-Monro procedure of siena07()
are almost independent, with the distribution of tconv.max

having an average value depending on
the length of the last subphase.

Default length of subphase k is Nmax = (p+ 7)× (2.52)k,
with p = number of parameters.
This means for the length of the last phase:

kmax Nmax

4 685
5 1727
6 4353
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2. New convergence criterion a. Overall maximum convergence ratio

algo700 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=700)

ans012.0 <- siena07(vdb.algo4, data=vdb.data012,

effects=vdb.eff012, useCluster=TRUE, nbrNodes=2)

ans012r <- siena07ToConvergence(algo700, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.1566975
2 0.111309
3 0.1476088
4 0.1310093
5 0.1121832
6 0.1202841
7 0.1483798
8 0.08566426
9 0.117654
10 0.1345501

11 0.1043422
12 0.1077261
13 0.1504494
14 0.1630273
15 0.1494122
16 0.09694043
17 0.09847209
18 0.1935148
19 0.1862205
20 0.1186548

3 smaller than 0.10; mean 0.13.
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2. New convergence criterion a. Overall maximum convergence ratio

algo2000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=2000)

ans012r <- siena07ToConvergence(algo2000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.1437418
2 0.1356098
3 0.1023418
4 0.1790526
5 0.1562154
6 0.1009786
7 0.1109657
8 0.09316735
9 0.08950204
10 0.1508801

11 0.3063748
12 0.07639885
13 0.127548
14 0.07809783
15 0.1082213
16 0.157643
17 0.08581463
18 0.07484955
19 0.1212121
20 0.1179153

6 smaller than 0.10; mean 0.13 (one outlier...)
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2. New convergence criterion a. Overall maximum convergence ratio

algo4000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=4000)

ans012r <- siena07ToConvergence(algo4000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.08891164
2 0.1013756
3 0.142784
4 0.1038731
5 0.1082759
6 0.1026858
7 0.1429859
8 0.07912083
9 0.06697233
10 0.1144773

11 0.08027072
12 0.09768049
13 0.1286098
14 0.0895482
15 0.08794522
16 0.1011986
17 0.09113767
18 0.09408743
19 0.07530766
20 0.1145916

10 smaller than 0.10; mean 0.10.
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2. New convergence criterion a. Overall maximum convergence ratio

algo10000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=10000)

ans012r <- siena07ToConvergence(algo10000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.06661866
2 0.07738042
3 0.110977
4 0.0775174
5 0.07146001
6 0.099844
7 0.1162311
8 0.1294587
9 0.07587712
10 0.1355451

11 0.1237608
12 0.1458485
13 0.1231905
14 0.09870046
15 0.06263102
16 0.1059729
17 0.07406779
18 0.1081187
19 0.09084813
20 0.1250927

10 smaller than 0.10; mean 0.10.
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2. New convergence criterion a. Overall maximum convergence ratio

With larger and larger number of runs for estimation,
for really large numbers of runs
the values of tconv.max do not get convincingly smaller.

What is limiting further decrease?

The length of phase 3.

Therefore now, a series of experiments with n2start = n3.

Recall that for n2start = n3 = 700,
we had 3 smaller than 0.10; mean 0.13.
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2. New convergence criterion a. Overall maximum convergence ratio

algo2000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=2000, n3=2000)

ans012r <- siena07ToConvergence(algo2000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.1154304
2 0.08335217
3 0.1090684
4 0.07606212
5 0.1121068
6 0.09108999
7 0.1344702
8 0.1006035
9 0.1010324
10 0.1177485

11 0.1346359
12 0.08379924
13 0.06819761
14 0.09366772
15 0.06833264
16 0.0710875
17 0.0623443
18 0.1140778
19 0.1103848
20 0.08337979

10 smaller than 0.10; mean 0.10.
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2. New convergence criterion a. Overall maximum convergence ratio

algo4000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=4000, n3=4000)

ans012r <- siena07ToConvergence(algo4000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.07859669
2 0.04700076
3 0.08937357
4 0.05405991
5 0.06668956
6 0.06828561
7 0.07328622
8 0.07626721
9 0.05873874
10 0.06239783

11 0.06140544
12 0.0761522
13 0.05954446
14 0.07722966
15 0.07653949
16 0.09723554
17 0.04959409
18 0.09825669
19 0.0545597
20 0.08574505

all smaller than 0.10; mean 0.07.
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2. New convergence criterion a. Overall maximum convergence ratio

algo10000 <- sienaAlgorithmCreate(seed=54321,

nsub=1, n2start=10000, n3=10000)

ans012r <- siena07ToConvergence(algo10000, vdb.data012,

vdb.eff012, threshold=0.01,
useCluster=TRUE, nbrNodes=2, ans0=ans012.0)

1 0.04208639
2 0.03915605
3 0.04588603
4 0.05221235
5 0.04504675
6 0.04463104
7 0.07108124
8 0.06551668
9 0.07060039
10 0.06158192

11 0.04782997
12 0.03918571
13 0.05879899
14 0.05735232
15 0.05569969
16 0.04880436
17 0.04088348
18 0.07608058
19 0.06220432
20 0.04426156

all smaller than 0.08; mean 0.05.
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2. New convergence criterion a. Overall maximum convergence ratio

Conclusion

If a low value of tconv.max is not easily achieved,
for getting better convergence:

⇒ Use 5 or 6 subphases;

or

⇒ Starting from a decent prevAns,
use an algorithm with nsub=1, n2start=‘large’,
noting that ‘large’ > (p+ 7)× (2.52)k

with default k = 4;
use a smaller firstg (e.g., 0.02);

⇒ If tconv.max still too big, further increase n2start.
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3. sienacpp()

3. sienacpp()

RSiena has two rooms:

1 front office: user interface in R

2 back office: simulations going on in C++

In siena07(), only the simulations are done in C++;
the further calculations for the Robbins-Monro estimation
algorithm are done in R.

Starting from version 1.1-290 (2016-01-31), RSienaTest
contains sienacpp() which produces the same as siena07(),
but with all calculations in C++.

(Some options are not yet included, e.g., multigroup data.)
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3. sienacpp()

Parallellization options may be different.

sienacpp() has a small efficiency advantage,
which is relatively important only for
small data sets / small amounts of total change.
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4. Specification, Effects

4. Specification; effects

1 GWESP

2 Structural equivalence: Jaccard distances

3 Multivariate degree effects on behaviour

4 Distance-two effects

5 Elementary effects

6 Influence effects

7 Influence from incoming alters

8 Miscellaneous
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4. Specification, Effects

Effects (1): GWESP

GWESP (geometrically weighted edgewise shared partners)
(cf. ERGM) is intermediate between transTrip and transTies.

GWESP(i, α) =
∑

j

xij e
α
n

1 −
�

1− e−α
�

∑

h xihxhj
o

.

for α ≥ 0 (effect parameter = 100× α).

Default α = log(2), parameter = 69.
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4. Specification, Effects

GWESP (contd.)

0 1 2 3 4 5 6

0

2

4

6

s

G
W

E
S

P
w

ei
g

h
t

α = ∞
α = 1.2
α = 0.69
α = 0

Weight of tie i→ j for s =
∑

h xihxhj two-paths.
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4. Specification, Effects

The implementation of GWESP is an elementary effect:

For creation of a new tie,
only its role as i→ j in the formula is counted,
not its role as i→ h.

GWESP sometimes yields better fit than transTrip or transTies.

The GWESP effect exists also for multivariate networks:
gwespFFMix etc.
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4. Specification, Effects a. New network effects

New effects (1): Structural equivalence
A good way of expressing structural equivalence,
i.e., being connected to the same others,
is the Jaccard similarity between rows, or columns:

Jout(i, j) =

∑

h xih xjh

xi+ + xj+ −
∑

h xih xjh

Jin(i, j) =

∑

h xhi xhj

x+i + x+j −
∑

h xhi xhj

Based on these (by summing over the outgoing ties of i),
the effects Jout and Jin are defined.

For multivariate networks: JoutMix, JinMix.
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4. Specification, Effects b. Specification

Specification

Basic specification for the usual type of networks:

outdegree, reciprocity

transitive closure: gwespFF or transTrip or ...
or perhaps Jin and Jout could do just as well?

interactions between this and reciprocity (Per Block):
transRecTrip, gwespFF × recip
(possible because gwespFF is an elementary effect!)

inPop; outAct; inAct or outPop (or ...sqrt)

(if available) representation of meeting opportunities
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4. Specification, Effects c. Multivariate degree effects

New effects (2): Multivariate degree effects
Combined degrees affect behavior.

Number to whom i is tied in network X1 and network X2:
F = ‘Forward’, B = ‘Backward’, R = ‘Reciprocal’

1 double outdegree effect (FFDeg),
sbeh
i1 (x, z) = zi

∑

j x1ij x2ij ;
2 double indegree effect (BBDeg),

sbeh
i2 (x, z) = zi

∑

j x1ji x2ji ;
3 combined out-indegree effect (FBDeg),

sbeh
i3 (x, z) = zi

∑

j x1ij x2ji ;
4 combined out-reciprocated degree effect (FRDeg),

sbeh
i4 (x, z) = zi

∑

j x1ij x2ij x2ji ;
5 combined in-reciprocated degree effect (BRDeg),

sbeh
i5 (x, z) = zi

∑

j x1ji x2ij x2ji .
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4. Specification, Effects d. Influence effects

New effects (3): Influence

The triple avSim – totSim – avAlt
now is a quartet with a 2× 2 structure:
{ sim , alt } × { av, tot }

totAlt was implemented for regular influence effects,
influence from reciprocated alters, and
influence from other covariates (non-dependent / exogenous).

New effects:

1 totAlt (next to avAlt, totSim, avSim)

2 totRecAlt (next to avRecAlt)

3 totXAlt (next to avXAlt, the old AltsAvAlt)
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4. Specification, Effects d. Influence effects

Incoming influence effects
The effects avAlt – totAlt – avXAlt – totXAlt
now also have analogues for influence from incoming ties:

4 avInAlt

5 totInAlt

6 avXInAlt

7 totXInAlt

i is influenced by
incoming ties j1 − j3 i

j1

j2

j3
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4. Specification, Effects d. Influence effects

Extreme influence effects

8 maxAlt

9 minAlt
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4. Specification, Effects e. Distance-two influence

New effects (4): Distance-two
There now is the possibility to express influence at distance 2.

With the distinction average/total this leads to 4 possibilities:
average vs. total at step 1 or step 2.

10 avAltDist2

11 totAltDist2

12 avTAltDist2

13 totAAltDist2

i is influenced by
the average/total of the
alter averages/totals of j1 − j3

i

j1

j2

j3

k1

k2

k3

k4
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4. Specification, Effects e. Distance-two influence

New effects (4a)

14 The formula for avAltDist2 (average at both steps) uses

z̆
(−i)
j =







∑

h 6=i xjh zh

xj+ − xji
if xj+ − xji > 0

0 if xj+ − xji = 0.

The effect is

sbeh
i14 (x, z) = zi ×

∑

j xij z̆
(−i)
j

∑

j xij

(and the mean behavior, i.e. 0, if the ratio is 0/0).
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4. Specification, Effects e. Distance-two influence

New effects (4b)

15 totAltDist2 (total at both steps) is defined by

sbeh
i15 (x, z) = zi

∑

j

xij
∑

h 6=i
xjh zh = zi

∑

j

xij (xj+ − xji) z̆
(−i)
j .
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4. Specification, Effects e. Distance-two influence

New effects (4c)

16 avTAltDist2 (average of totals) is defined by

sbeh
i16 (x, z) = zi ×

∑

j xij (xj+ − xji) z̆
(−i)
j

∑

j xij

= zi ×

∑

j xij
∑

h 6=i xjh zh
∑

j xij

and the mean behavior, i.e. 0, if the ratio is 0/0.

17 totAAltDist2 (total of averages) is defined by

sbeh
i17 (x, z) = zi ×

�

∑

j

xij z̆
(−i)
j

�

.
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4. Specification, Effects e. Distance-two influence

New effects (5)

The same for distance-2 averages and totals of covariates:

18 avXAltDist2

19 totXAltDist2

20 avTXAltDist2

21 totAXAltDist2
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4. Specification, Effects e. Distance-two influence

New effects (6): outgoing - incoming
The same for distance-2 averages and totals
where the second step is for incoming ties:

22 avInAltDist2

23 totInAltDist2

24 avTInAltDist2

25 totAInAltDist2

26 avXInAltDist

27 totXInAltDist2

28 avTXInAltDist2

29 totAXInAltDist2

i

j1

j2

j3

k1

k2

k3

k4

i is influenced by the incoming alter averages of j1 − j3.
Also ‘sim’ versions (simEgoInDist2 etc.)
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4. Specification, Effects e. Distance-two influence

New effects (6a)

The *InAltDist2 effects are
also available
for two-mode networks.

i

k1

k2

k3

k4

j1

j2

j3

This means that it is now possible to model influence
from those out-alters
who have the same affiliations as the focal actor.
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4. Specification, Effects e. Distance-two influence

Structural equivalence again

These distance-two outgoing–incoming effects
can be regarded as representing influence from
actors who are structurally equivalent (w.r.t. outgoing ties).

An alternative would be to use Jaccard measures (cf. Jin, Jout)
for defining influence effects.
This is still for future consideration.
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4. Specification, Effects f. Elementary effects

Elementary effects

SAOM effects have been framed in the triple

1 evaluation

2 maintenance/endowment

3 creation

effects.

If the parameters for a creation and corresponding
maintenance effect are the same, then it can be represented
just as well by an evaluation effect.

AdSUM 2016 Zürich 2016 43 / 85



4. Specification, Effects f. Elementary effects

These kinds of effects differ in how they contribute
to the probability of a particular choice in the ministep.

The contributions to probabilities are based on
evaluation function fev

maintenance function fmt

creation function f cr .

Evaluation function plays a role for any step;
creation function only for upward change;
maintenance function only against downward change.

The definition is on the following page.
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4. Specification, Effects f. Elementary effects

The probability that, given a current network x and
actor i making the ministep, the network changes to x±ij, is

exp
�

ui
�

x,x±ij
�

�

1 +
∑

h 6=i exp
�

ui
�

x,x±ih
�

�

where the objective function is

ui
�

x,x∗
�

= fev
i

(x∗)− fev
i

(x) + ∆+
�

x,x∗
� �

f cr
i

(x∗)− f cr
i

(x)
�

+ ∆−
�

x,x∗
� �

fmt
i

(x∗)− fmt
i

(x)
�

and

∆+
�

x,x∗
�

=

¨

1 if tie is created (x∗ = x+ij)

0 if tie is dropped, or no change

∆−
�

x,x∗
�

=

¨

1 if tie is dropped (x∗ = x−ij)

0 if tie is created, or no change.
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4. Specification, Effects f. Elementary effects

However, not all probabilities of change can be based on
changes in some (evaluation-type) function.

Example : transitive triplets

The transitive triplets effect is defined as

si(x) =
∑

j,k

xij xik xkj

with change statistic
(change when adding tie i→ j)

δij(x) =
∑

k

xik
�

xkj + xjk
�

.

i

h

ℓ

The first part refers to creating the tie i→ j = h,
the second part to creating the tie i→ j = ℓ.
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4. Specification, Effects f. Elementary effects

But one could be interested in only transitive closure,
as defined by closing of an open two-path (i→ j = h),
as distinct from creating ties
to those with the same out-choices,
which is a kind of structural equivalence (i→ j = ℓ).

This cannot be represented
as a change in an evaluation function.

Therefore we need a different kind of effect:
elementary effect
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4. Specification, Effects f. Elementary effects

Elementary effect

An elementary effect is a term of the objective function
ui
�

x,x∗
�

used to define change probabilities for ministeps,
referring to creation and/or maintenance of a tie i→ j,
without being necessarily a difference fi(x±ij)− fi(x)

of some function fi
(or similar with multiplication by ∆+ or ∆−).

Evaluation function is only about the result;
elementary effect can express the detailed process / step
that leads to a given configuration.
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4. Specification, Effects f. Elementary effects

Example : transTrip1 and transTrip2

transTrip1 (transitive closure)

sij(x) = xij
∑

k

xik xkj
i

j

k

transTrip2
(structural equivalence outgoing ties)

sij(x) = xij
∑

k

xik xjk

i

k

j
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4. Specification, Effects f. Elementary effects

Elementary effects can lead to the same configuration and
therefore have the same target statistic
(such as transTrip1 and transTrip2).

In such cases they cannot be distinguished empirically
by estimation by the Method of Moments.

However, they can be be distinguished empirically
by estimation by the Generalized Method of Moments
(under development)
and by likelihood-based methods
(Maximum Likelihood, Bayes).

The use of elementary effects can give a more fine-grained
representation of the process of network change;
but this will require more data;
like also distinction creation-maintenance requires more data.
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4. Specification, Effects f. Elementary effects

Other example of elementary effects

30 XWX1: like XWX,
dependent variable is only
one of the XWX ties: i→ j.

31 XWX2: dependent variable
here is i→ k. . .

.

i j

k

X

X

W

XWX1 and XWX2 are elementary effects.
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4. Specification, Effects f. Elementary effects

Still other elementary effects

32 cl.XWX1: like XWX1 but for dependent network.

33 cl.XWX2: like XWX2 but for dependent network.
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4. Specification, Effects g. Miscellaneous

34 sameXInPop, indegree popularity from same covariate

number of incoming ties received by those
to whom i is tied and sent by others
who have the same covariate value as i,

snet
i34(x) =

∑

j

xij
∑

h

xhj I{vi = vh} .

35 altXOutAct, outd. activity weighted by alter’s covariate

squared sum of ties weighted by alter’s covariate values,
snet
i35(x) =

�∑

j xij vj
�2

;
makes sense especially for non-centered covariates.
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4. Specification, Effects g. Miscellaneous

36 transRecTrip2, another

reciprocity × transTrip interaction.

. .

.

i j

k

37 reciPop: reciprocal degree popularity

38 reciAct: reciprocal degree activity

39 gwesp.. effects have endowment and creation effects.
They also are allowed to interact with other effects
(interactionType = "dyadic") .

40 And various others
(e.g., interactions between networks and covariates).
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5. Co-evolution

5. Co-evolution

Evolution of multiple networks is studied more and more.

Various new effects have been constructed for this purpose:
see Section 12.1.2 of the manual.

When a monadic or dyadic variable is regarded
as a control variable,
it still may be advisable to use it as a dependent variable
in the SAOM analysis, rather than as a covariate,
because this will allow the ‘control’ variable much better
to maintain its correspondence during the simulations
with the focal dependent variables.
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5. Co-evolution

Results using a ‘control network’ as a covariate
will differ quite appreciably from results obtained
while using it as a co-evolving dependent network;
and similarly for monadic variables.

Example: acquaintance or communication
as a control network variable for advice
to study the properties of the ‘purified’ advice relation,
conditional on the condition of acquaintance.
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6. Multilevel Networks Multilevel Analysis of Networks

6. Multilevel Analysis of Networks

See MultiMetaSAOM_s.pdf, at website.

Emmanuel Lazega and Tom A.B. Snijders (eds).
Multilevel Network Analysis

for the Social Sciences.
Cham: Springer, 2016.

Special issue of Social Networks ‘Multilevel Social Networks’,
edited by Alessandro Lomi, Garry Robins, and Mark Tranmer,
vol. 44 (January 2016).
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6. Multilevel Networks Analysis of Multilevel Networks

Analysis of Multilevel Networks
Multilevel network (Wang, Robins, Pattison, Lazega, 2013):

Network with nodes of several types,
distinguishing between types of ties
according to types of nodes they connect.

Thus, if types of nodes are A, B, C,
distinguish between A− A, B− B, C− C ties, etc., (within-type)
and between A− B, A− C, etc., ties (between-type).

Some may be networks of interest,
others may be fixed constraints,
still others may be non-existent or non-considered.

This generalizes two-mode networks
and multivariate one mode – two mode combinations.
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6. Multilevel Networks Analysis of Multilevel Networks

See paper

Tom A.B. Snijders, Alessandro Lomi, and Vanina Torlò (2013).
A model for the multiplex dynamics of two-mode and
one-mode networks, with an application to employment
preference, friendship, and advice.
Social Networks, 35, 265-276;

Analysis of longitudinal multilevel networks in RSiena
is possible by a trick (thanks to James Hollway).
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6. Multilevel Networks Analysis of Multilevel Networks

Consider multilevel network with two node sets, A and B.

There are two one-mode networks internal to A and B,
and two two-mode networks X1 from A to B; X2 from B to A.

Specification for RSiena possible by employing
one joint node set A ∪ B and two dependent networks:

A B A B

A

B

�

internal A 0
0 internal B

� �

0 two-mode A× B
two-mode B× A 0

�

networks A, B network X2 network X1
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6. Multilevel Networks Analysis of Multilevel Networks

For example:

A a set of organizations, B a set of individuals,
X2 is a fixed membership relation, X1 is not there;

networks A and B could be taken apart
in two distinct networks;

if there are only ties between individuals within organizations,
B will be a network of diagonal blocks
and structural zeros between different organizations;

if there are essential differences between individual ties
within organizations or across organizations,
B can be decomposed in two further distinct networks.
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6. Multilevel Networks Analysis of Multilevel Networks

For the ‘Analysis of Multilevel Networks’ using RSiena,
possibilities exist in principle, as indicated above;

a first example is Snijders, Lomi, Torlò (2013)
mentioned above;

the research program has been continued by James Hollway
in his DPhil thesis (Oxford – Zürich – Genève);

further relevant effects have to be elaborated;

and the field is open!
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7. Missing Data

7. Missing Data in RSiena

The internal treatment of missing tie values in RSiena is
simple:

Impute missing tie variables in wave 1 by 0.

Impute missing tie variables in later waves by
Last Observation Carried Forward.

Exclude these imputed values from the calculation
of the statistics used for estimation in the MoM.

This can be improved if you have more knowledge of the data
and also if you are willing to take more effort.
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7. Missing Data

Missing Data: improvements

⇒ Sometimes there is enough information to make some
imputations,
based on knowledge of the data,
with a high degree of confidence.
If possible, do this!

⇒ There was an error in the treatment of missings in
non-centered monadic covariates
until and including version 1.1-284.
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7. Missing Data

Missing Data (contd.)

⇒ New option imputationValues in coCovar, varCovar :
these values will be used for imputation of missings
for the simulations,
but (like always happens for missings) are not taken into
account for the statistics used for estimation.

Can be used if there are reasonable, not completely
reliable values for imputation.

AdSUM 2016 Zürich 2016 65 / 85



7. Missing Data

Missing Data (contd. further)

⇒ Papers about treatment of missing data in Social Networks

by Hipp, Wang, Butts, Jose, Lakon (2015) and
Wang, Butts, Hipp, Jose, Lakon (2016)
criticize missing data treatment by RSiena;
but they disregard the fact
that imputed values are not used for the
statistics for estimation, only for simulations.
Thus the effect of these imputations is only indirect.

⇒ In Wang et al. (2016) it is proposed to do multiple
imputations by ERGMs for treating missing data in SAOMS.
This might be an improvement of the current defaults,
but it disregards the longitudinal dependence!
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7. Missing Data

Intermezzo:
Multiple imputation – how does it work?
Multiple stochastic imputation was developed by Don Rubin.

For a given incomplete data set,
the missing data is imputed independently D times
by drawing from the conditional distribution
of the missing data given the observed data.

This leads to D complete data sets,
that differ only with respect to the imputed values.

For each complete data set the desired analysis is executed;
standard errors of parameters are a combination
of the within-data set standard errors,
and the variability of estimates between the data sets.

The larger the amount of missing data,
the larger will be the variability between imputed data sets.
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7. Missing Data

How to combine the multiple imputations

The parameter of interest is denoted γ.

Suppose that the d′th randomly imputed data set leads to
estimates γ̂d and estimated variances Wd (‘Within’),

Wd = var
�

γ̂d | data set d
	

.

Note that Wd underestimates true uncertainty,
because it treats imputed data as real data.

The combined estimate is the average

γ̄D =
1

D

D
∑

d=1

γ̂d .
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7. Missing Data

Combine multiple imputations....

Compute the average within-imputation variance

WD =
1

D

D
∑

d=1

Wd ,

and the between-imputation variance

BD =
1

D− 1

D
∑

d=1

�

γ̂d − γ̄D
�2

.

Estimated total variability for γ̄D is

TD = dvar
�

γ̄D
�

= WD +
D+ 1

D
BD , s.e.

�

γ̄D
�

=
p

TD .
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7. Missing Data

Another kind of multiple imputation

The ML option in RSiena will give a model-based simulation
of the missings in the second wave,
if the first wave has complete data.

This can be used for getting model-based longitudinal
imputations:

1 If the first wave has any missings, estimate an ERGM
and impute the missings in the first wave using this.

2 Estimate the SAOM parameters provisionally
using the default treatment of missing data.
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7. Missing Data

3 For each wave m, m = 1, . . . ,M− 1:
given the completed data set for wave m, produce a
model-based random draw from the missings in wave
m+ 1 from an ML simulation.
This is not as time-consuming as full ML estimation,
because only one simulation is required.

4 Use this complete data set to obtain one estimate γ̂d.

5 Repeat this procedure D times and use Rubin’s rules
for combining the estimates and standard errors.

The main disadvantage is that the future values are not used
for the imputations.

This assumes ’missingness at random’: i.e., observed data
are sufficient for randomly generating missing data.
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7. Missing Data

Example

Waves 2-3-4 of the van de Bunt students data.

Wave 0 is complete, so no ERGM imputation is needed!

Number of missing actors in waves 0–4 are
0; 2; 3; 5; 6, out of 32.

Impute wave 1 – then 2 – then 3 – then 4.
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7. Missing Data

default multiple imputation
Effect par. (s.e.) par. (s.e.) m.f.

Rate 1 4.207 (0.640)
Rate 2 5.063 (0.668)

outdegree –1.728∗∗∗ (0.317) –1.804∗∗∗ (0.343) .16
reciprocity 2.024∗∗∗ (0.233) 2.100∗∗∗ (0.260) .18
trans. trip. 0.324∗∗∗ (0.048) 0.329∗∗∗ (0.049) .12
indeg. - pop. 0.002 (0.038) 0.024 (0.039) .16
outdeg. - pop. –0.132∗∗∗ (0.027) –0.155∗∗∗ (0.031) .11
outdeg. - act. 0.014 (0.014) 0.013 (0.014) .09
sex alter 0.409∗ (0.200) 0.323 (0.204) .08
sex ego –0.386† (0.208) –0.282 (0.218) .13
same sex 0.379∗ (0.189) 0.362∗ (0.193) .07
program sim. 0.604∗∗ (0.205) 0.687∗∗ (0.213) .09

par. = estimate; s.e. = standard error; m.f. = missing fraction;
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

convergence t ratios all < 0.06; overall maximum convergence ratio 0.08.
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7. Missing Data

Note:
in waves 3 and 4 the proportion of missing actors is 0.15;
proportion missing information is of about this size.

Standard errors of the two approaches are similar;
estimates sometimes (3 cases) differ by about half s.e.,
in other cases differ hardly.

Further studies are needed to see
how this procedure performs.
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8. Effect Sizes

8. Relative Importance of Effects

Natalie Indlekofer has contributed the function sienaRI(),
which assesses the relative importance of effects.
From version 1.1-270.

Natalie Indlekofer and Ulrik Brandes (2013).
Relative importance of effects
in stochastic actor-oriented models.
Network Science 1.3, 278–304.

sienaRI() also gives (not explicitly used in her paper)
the raw/total importance of effects.

sienaRIDynamics() still has difficulties
(temporarily withdrawn).
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8. Effect Sizes

Expected importance of a parameter is defined as
the change in choice probabilities
if this parameter would be changed to the value 0.

Expected relative importance is the same,
relative to all effects
(i.e., rescaled to have sum = 1).

sienaRI() also produces entropies
(cf. Snijders, Maths. and Soc. Sci., 2004).
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8. Effect Sizes

Indlekofer & Brandes (2013), formulae (3, 4):
πi is the vector of probabilities for actor i in next ministep,
and π

(−k)
i is the same if effect k obtains a weight of 0;

Ik(X, i) =



πi − π
(−k)
i





1
∑K

ℓ=1



πi − π
(−ℓ)
i





1

;

expected relative importance then is

1

N

N
∑

i=1

Ik(X, i) .

Expected (raw / total) importance can then be defined as

1

N

N
∑

i=1



πi − π
(−k)
i





1 .
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8. Effect Sizes

Example: Results for Glasgow data
Effect par. (s.e.)

basic rate parameter friendship 11.207 (1.025)

outdegree (density) –2.023∗∗∗ (0.249)
reciprocity 2.563∗∗∗ (0.190)
transitive recipr. triplets –0.323∗∗∗ (0.086)
GWESP I -> K -> J (69) 2.172∗∗∗ (0.145)
indegree - popularity –0.016 (0.031)
outdegree - popularity –0.135† (0.076)
outdegree - activity –0.146∗∗∗ (0.026)
sex alter –0.101 (0.118)
sex ego 0.076 (0.150)
same sex 0.691∗∗∗ (0.118)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;
convergence t ratios all < 0.07.
Overall maximum convergence ratio 0.15.
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8. Effect Sizes

Example: Results for Glasgow data

Exp. rel. importance Exp. importance

Effect wave 1 wave 2 wave 1 wave 2

outdegree (density) 0.2075 0.2193 0.8656 0.9122
reciprocity 0.1857 0.1691 0.7154 0.6701
transitive recipr. triplets 0.0369 0.0381 0.1650 0.1696
GWESP I -> K -> J (69) 0.1889 0.1831 0.8079 0.7839
indegree - popularity 0.0145 0.0149 0.0543 0.0551
outdegree - popularity 0.0900 0.0922 0.3361 0.3500
outdegree - activity 0.1486 0.1541 0.6608 0.6791
sex alter 0.0113 0.0109 0.0373 0.0365
sex ego 0.0062 0.0063 0.0244 0.0248
same sex 0.1104 0.1121 0.3798 0.3860

Entropy 0.3632 0.3941
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8. Effect Sizes

Plot of relative importance of effects for first 25 actors
and averaged for all actors (pie-chart).
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8. Effect Sizes

The graph was produced by

plot(RI, actors=1:25, addPieChart = TRUE, legendColumns=5)

where RI was the object produced by sienaRI();
plot.sienaRI() was slightly improved in version 1.1-288,
with a new argument actors,
and better proportions of the pie chart.

Note: you can get the code of such a function by

RSIenaTest:::plot.sienaRI

(no parentheses!) and then, if you know enough R,

modify as desired.
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9. And further Developments in current models

9a. Developments in current models

There still is much more to do and explore within the confines
of what has already been developed and implemented.

1 The topics mentioned above are open for application /
elaboration.

2 Evaluation / creation / maintenance / elementary effects

3 Evaluation / creation / maintenance / effects for behaviour

4 Variants of non-directed models.

5 Comparability of effects across models, data sets
∼ ‘marginal’ effects
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9. And further Developments in current models

Developments in current models (contd.)

6 Model selection

7 Importance of GoF for validity of results

8 Extended auxiliary functions for GoF

9 avAlt⇔ avSim⇔ totAlt⇔ totSim

10 Diffusion of innovations – event history analysis

11 Two-mode networks

12 Multivariate (e.g., signed) networks

13 Ordered networks
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9. And further Hot Issues

9b. Hot Issues

Analysis of Multilevel Networks (see above!)

Comparison SAOM↔ ERGM (Per Block et al)

JSiena (Felix Schönenberger)

Generalized Method of Moments (Viviana Amati)

Continuous dependent actor variables (Nynke Niezink)

Settings model (Tom Snijders)

Marginal effects

Stable standard errors (Nynke Niezink)

CUP Books!
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