
Class Design for Siena 4

Krists Boitmanis; later additions by Tom Snijders

September 28, 2021

1. Introduction

The purpose of this document is to give an overview of the C++ code for
Siena 4. Some notes:

� Names in the code are indicated as name.

� Typewriter font is used for file names, like FileName.cpp.

� Normally, a class named SomeName is declared in the file SomeName.h

and implemented in the file SomeName.cpp.

� Camel case is used for names of classes, methods, and variables. More
specifically, all names but class names start with a lower case letter,
and when the name consists of several words, each of the subsequent
words starts with an upper case letter. Examples:

– StatisticCalculator – a class name

– calculateNetworkRateStatistics – a method name

– observationCount – a variable name

� The names of pointer variables start with a ‘p’ followed by an upper
case letter, like pNetworkData.

� Similarly, the names of reference variables start with an ‘r’, like in the
following declarations of a copy constructor and an assignment
operator:

1

Network(const Network & rNetwork);

Network & operator=(const Network & rNetwork);

� Moreover, the names of instance variables are prepended with an ‘l’,
e.g.

– int lobservationCount – an instance variable of a non-pointer type,

– Model * lpModel – an instance variable of a pointer type.

2. Library Overview

The code is organised into libraries that correspond to the directory names
under src. The libraries are briefly explained in the following list in the
order of their dependencies, namely, no library depends on any other
library listed after it.

� utils – contains various general purpose classes and functions.

� network – contains the classes Network and OneModeNetwork for
storing and manipulating directed two-mode and one-mode networks,
respectively, as well as supporting classes like various iterators over
ties in a network.

� data – contains everything related to the observed data with the class
Data being the main container storing the observations of network and
behavior variables, covariates, etc.

� model – contains the tools for specifying and simulating actor-oriented
models. The Model class can be used to specify an actor-oriented
model, which can be subsequently simulated with respect to a specific
Data object by using an instance of the EpochSimulation class. Finally,
the StatisticCalculator class provides the means for calculating the
observed or simulated statistics for effects in the model.

In the next sections, each library is explained in some detail.

2

3. Utils

� Utils.h provides miscellaneous utility functions, macros, and classes.

� Random.h provides functions for drawing random numbers.

� The class NamedObject acts as a base class for anything that has a
name.

� The singleton class SqrtTable is used throughout the system to
calculate square roots of integers efficiently. Once the root of an
integer is calculated, it is stored in a table for later reuse.

Example:

SqrtTable * pTable = SqrtTable::instance();

double root2 = pTable->sqrt(2);

4. Networks

4.1 Network class

The Network class implements directed two-mode networks with valued ties.
The number of tie senders n and the number of tie receivers m have to be
provided at the construction of a network. Technically, the Network class
can be used for storing one-mode networks as well, in which case n = m,
however, the derived class OneModeNetwork is recommended for this
purpose.

4.1.1 Internal Data Representation

The outgoing ties of each sender i are stored in an STL (C++ Standard
Template Library) map. The alters of non-zero ties from i act as keys in the
map, and the tie values are stored in the map as values corresponding to
those keys. The maps themselves are stored in an array lpOutTies, hence
the value of a tie (i, j) can be accessed as lpOutTies[i][j]. Similarly, an array
of maps lpInTies is used to store the incoming ties of all receivers.

While being much more memory efficient than storing the adjacency matrix
of a network explicitly, this representation still provides fast queries of tie
values – the number of steps necessary to retrieve the value of a tie (i, j) is

3

proportional to the logarithm of the out-degree of i. Also, this
representation directly provides a fast and convenient way of iterating over
all non-zero ties of an actor in the increasing order of the alters.

The users of the Network class should not care about its internal
representation, though, and use the public interface methods, to which we
now turn.

4.1.2 Interface

Some of the more important methods of the Network class are explained in
the following list.

� Network(int n, int m) – constructs a network with n senders, m
receivers, and no ties.

� int n() – returns the number of actors in the set of tie senders.

� int m() – returns the number of actors in the set of tie receivers.

� void setTieValue(int i , int j , int v) – sets the specified value of the
tie (i, j).

� int tieValue(int i , int j) – returns the value of the tie (i, j).

� TieIterator ties() – returns an iterator over all ties of the network. The
ties are ordered according to their senders from smallest to largest,
and the ties from the same sender are ordered according to their
receivers.

Usage:

TieIterator iter = pNetwork->ties();

while (iter.valid())

{

int ego = iter.ego();

int alter = iter.alter();

int value = iter.value();

cout << "The tie from " << ego << " to " << alter <<

4

" has a value " << value << endl;

// Move on to the next tie

iter.next();

}

� IncidentTieIterator outTies(int i) – returns an iterator over the
outgoing ties of actor i in the increasing order of the alters.

Usage:

IncidentTieIterator iter = pNetwork->outTies(i);

while (iter.valid())

{

int alter = iter.actor();

int value = iter.value();

cout << "The tie from " << i << " to " << alter <<

" has a value " << value << endl;

// Move on to the next tie

iter.next();

}

� IncidentTieIterator inTies(int i) – returns a similar iterator over the
incoming ties of actor i.

� int outDegree(int i) – returns the number of non-zero outgoing ties
for actor i.

� int inDegree(int i) – returns the number of non-zero incoming ties for
actor i.

4.2 Iterators

We have already seen the usage of supporting classes TieIterator and
IncidentTieIterator . Another iterator class, namely CommonNeighborIterator ,
provides convenient means for iterating over actors that are common to two
instances of IncidentTieIterator . For example, one can iterate over
reciprocated ties of an actor in a one-mode network as follows:

5

CommonNeighborIterator iter(pNetwork->inTies(i),

pNetwork->outTies(i));

while (iter.valid())

{

int neighbor = iter.actor();

cout << "There is a reciprocated tie from " << i <<

" to " << neighbor << endl;

// Move on to the next neighbor

iter.next();

}

4.3 OneModeNetwork class

A one-mode network can be thought of as a special case of a two-mode
network, where the set of tie senders coincides with the set of tie receivers.
Hence, the OneModeNetwork class is derived from the Network class. In
addition to the interface inherited from the base class, it maintains the
number of reciprocated ties per each actor and provides various methods for
counting two-paths in a network. A non-exhaustive list of methods follows:

� OneModeNetwork(int n, bool loopsPermitted) – constructs an empty
network for n actors. Ties from actors to themselves (which are called
loops) can be explicitly forbidden by providing the value false as the
second argument.

� int reciprocalDegree(int i) – returns the number of reciprocated ties of
actor i.

� CommonNeighborIterator reciprocatedTies(int i) – returns an iterator
over all reciprocated ties of actor i. The usage is similar to that of the
method Network::outTies(int i) except that the class
CommonNeighborIterator does not have a value() method. In a sense,
the network is treated as a boolean network, where the
existence/non-existence of ties is of interest, but not the actual values
of ties.

6

� int twoPathCount(int i , int j) – returns the number of two-paths
from actor i to actor j.

5. Observed Data

The data library contains classes for storing the observed data subject to
actor-oriented modeling. The entire set of observed data for a Siena project
(or one group in a multi-group project) should be stored in an instance of
the Data class. It owns collections of more specific data objects like those
storing the observed data for dependent network variables, constant actor
covariates, etc. This section will guide you step-by-step through the process
of populating a Data object. To begin with, an instance of the Data class
should be created:

int observationCount = 4;

Data * pData = new Data(observationCount);

Note that the number of observations has to be provided in the very
beginning.

5.1 Actor Sets

There may be several sets of actors involved, like a set of students, a set of
teachers, and a set of courses, therefore, when specifying dependent
variables and covariates, one should be explicit about the relevant actor
sets. Each set of actors is represented in the system by an instance of the
ActorSet class, which can be created with the factory method
Data::createActorSet by providing the name of the set and the number of
actors in it.

const ActorSet * pStudents =

pData->createActorSet("students", 50);

const ActorSet * pCourses =

pData->createActorSet("courses", 20);

7

5.2 Observed Data for Dependent Variables

There is a small hierarchy of classes for storing the observed data for
dependent variables.

The base class LongitudinalData is not supposed to be created directly,
however, it provides some useful methods applicable to observed data of all
types of dependent variables:

� const ActorSet * pActorSet() – returns the set of actors this dependent
variable is defined for.

� int n() – returns the size of the set of actors.

� int observationCount() – returns the number of observations that can
be stored in this data object.

� bool upOnly(int period) – returns if only upward changes are
observed in the given period.

� void upOnly(int period , bool flag) – stores the indicator if only
upward changes are observed in the given period. Note that the
LongitudinalData class provides just the storage of these flags, and their
values have to be computed elsewhere. They are currently passed in
from the R part of the system.

� downOnly – similar accessor methods for flags indicating that only
downward changes are observed.

The derived classes of LongitudinalData are created with the factory methods
of the Data class by providing the name of the variable and the
corresponding actor set (or both the set of tie senders and the set of tie
receivers in the case of two-mode networks):

8

� one-mode networks

OneModeNetworkLongitudinalData * pFriendshipData =

pData->createOneModeNetworkData("friendship",

pStudents);

� two-mode networks

NetworkLongitudinalData * pCourseSelectionData =

pData->createNetworkData("courses",

pStudents,

pCourses);

� behavior

BehaviorLongitudinalData * pAverageGradeData =

pData->createBehaviorData("grade", pStudents);

5.2.1 Two-Mode Network Variables

Network Structure. The main purpose of the NetworkLongitudinalData

class is to store the values of network ties in each of the observations as well
as indicators about whether a tie value is missing or structurally
determined. This can be done with the following setter methods:

� void tieValue(int i , int j , int observation, int value) – stores the
value of the tie between the given actors at the given observation,

� void missing(int i , int j , int observation, bool flag) – stores if the
value of the tie between the given actors is missing at the given
observation,

� void structural(int i , int j , int observation, bool flag) – stores if the
value of the tie between the given actors is structurally determined at
the given observation.

There is a corresponding set of methods for accessing the stored values:

� int tieValue(int i , int j , int observation)

9

� bool missing(int i , int j , int observation)

� bool structural(int i , int j , int observation)

Internally, this information is stored in three arrays of networks, namely,
lnetworks for the observed tie values, lmissingTieNetworks for indicators of
missing ties, and lstructuralTieNetworks for storing the indicators of
structurally determined ties. To enable effective iteration over all ties, the
class NetworkLongitudinalData provides constant access to these networks via
the following methods:

� const Network * pNetwork(int observation) – returns the network of
observed values at the given observation,

� const Network * pMissingTieNetwork(int observation) – returns the
network of missing tie indicators for the given observation,

� const Network * pStructuralTieNetwork(int observation) – returns the
network of structural tie indicators for the given observation.

For example, the following code snippets demonstrate two ways of iterating
over the selected courses of a certain student i, but the second snippet is
much more efficient.

Example 1

for (int j = 0; j < pCourses->n(); j++)

{

if (pCourseSelectionData->tieValue(i, j, observation) != 0)

{

cout << "The student " << i <<

" has selected the course " << j << endl;

}

}

Example 2

10

const Network * pNetwork =

pCourseSelectionData->pNetwork(observation);

IncidentTieIterator iter = pNetwork->outTies(i);

while (iter.valid())

{

int j = iter.actor();

cout << "The student " << i <<

" has selected the course " << j << endl;

iter.next();

}

Calculating Properties. Once a network data object has been
populated, it is important to call the calculateProperties method that
computes important properties of the observed data, which are used by
some effects during model simulations:

pCourseSelectionData->calculateProperties();

cout << "The average number of courses per student is " <<

pCourseSelectionData->averageOutDegree() << endl;

cout << "The average number of students " <<

"attending a course is " <<

pCourseSelectionData->averageInDegree() << endl;

Other Methods.

� void maxDegree(int degree) – if there is a restriction on the maximum
number of outgoing ties an actor can have, it has to be specified by
using this method.

5.2.2 One-Mode Network Variables

Since one-mode networks are a special kind of two-mode networks, the class
OneModeNetworkLongitudinalData derives from NetworkLongitudinalData and

11

inherits all its methods. The derived class provides some additional
methods, though, which are applicable to one-mode networks only:

� void symmetric(bool flag) – stores if the network is symmetric,

� void balanceMean(double value) – stores the centering constant for the
balance effect.

Some of the information that is simply stored in the
OneModeNetworkLongitudinalData class could be computed by the class itself,
but since this information is already computed in R, we save the effort of
computing it again, and simply pass the values in from the R part of the
system.

5.2.3 Behavior Variables

Analogous to the data class for network variables, the class
BehaviorLongitudinalData stores the observed values of a certain behavior
variable and various properties computed from the observed data.

Observed Values. The observed values or indications about missing
values can be stored with the following methods:

� void value(int observation, int actor , int value)

� void missing(int observation, int actor , bool missing)

The stored values can be accessed with these methods:

� int value(int observation, int actor)

� bool missing(int observation, int actor)

Internally, the observed values are stored in an M ×N integer array lvalues

and the missingness indicators are stored in an M ×N boolean array
lmissing , where M is the number of observations and N is the number of
actors in the corresponding actor set. A read-only access to a whole row of
the matrix of values (namely, the values of all actors in a single
observation) is provided by the method

� const int * values(int observation).

12

Calculating Properties. Again, as soon as the observed values and
missingness indicators are stored, and before the data object can be used
for model simulations, the method calculateProperties should be called:

pAverageGradeData->calculateProperties();

cout << "The average grades of students range from " <<

pAverageGradeData->min() << " to " <<

pAverageGradeData->max() << endl;

The method calculateProperties calculates some properties of the observed
data, which can be subsequently queried with the following methods:

� int min() – returns the smallest observed non-missing value,

� int max() – returns the largest observed non-missing value,

� int range() – returns the range of observed non-missing values, which
is simply the difference between the maximum and the minimum
values,

� double overallMean() – returns the overall mean of the observed

non-missing values defined as 1
M

∑M
k=1

∑
i∈Ak

vki
|Ak|

, where vki is the
observed behavior for actor i and the observation k and Ak is the set
of actors with non-missing values at the observation k.

Other Methods.

� void similarityMean(double similarityMean) – stores the mean similarity
of actor behavior values over all observations, which is calculated in R.

� double similarity(double a, double b) – returns the centered similarity
score for the given values a and b. The similarity score is defined as
1 − |a−b|

∆
, where ∆ is the observed range of the behavior variable, and

the mean similarity is subtracted from this expression to obtain the
centered similarity score.

13

5.3 Covariates

The classes for storing actor covariates and dyadic covariates are organised
in two separate hierarchies:

Since the usage of covariate classes is very similar to that of observed data
for behavior variables, we will just briefly list the main methods for working
with covariates.

The covariate data classes can be created by the factory methods of the
Data class:

� ConstantCovariate * createConstantCovariate(. . .)

� ChangingCovariate * createChangingCovariate(. . .)

� ConstantDyadicCovariate * createConstantDyadicCovariate(. . .)

� ChangingDyadicCovariate * createChangingDyadicCovariate(. . .)

The name of the covariate and one (for actor covariates) or two (for dyadic
covariates) actor sets should be provided as parameters for these methods.

5.3.1 Actor Covariates

The base class Covariate for actor covariates provides the following methods:

� void range(double range) – stores the observed range of the covariate.
Unlike the observed data for behavior variables, it is not computed by
the covariate class itself, but passed in from R.

� double range() – returns the observed range of the covariate.

� similarityMean(. . .) and similarity(. . .) – these methods behave precisely
as the corresponding methods in the BehaviorLongitudinalData class.

14

The derived classes ConstantCovariate and ChangingCovariate provide
appropriate methods value(. . .) and missing(. . .) for storing and retrieving
the values of the covariate and the missingness indicators, respectively.
Internally, the data is stored in one-dimensional or two-dimensional N ×M
arrays lvalues and lmissing , where N is the number of actors in the
respective set and M is the number of observations.

5.3.2 Dyadic Covariates

The interface of the dyadic covariates is very similar to that of actor
covariates and should not present any difficulties. The base class
DyadicCovariate provides access to both relevant sets of actors (methods
pFirstActorSet() and pSecondActorSet()) and a storage of the mean value of
the covariate that is passed in from R (mean(. . .) methods).

Again, the values of the covariate and their missingness indicators can be
stored and accessed with methods value(. . .) and missing(. . .), which are
defined in the derived classes ConstantDyadicCovariate and
ChangingDyadicCovariate.

The internal representation of the values is tricky, though. Since storing a
sparse N1 ×N2 (the sizes of both involved actor sets) matrix explicitly is
expensive in terms of memory, we store each row of the matrix as an
instance of map<int, double> that maps each column index with a
non-zero value in that row to the respective value. The matrix of missings
has only 0 and 1 as its entries, so an instance of set<int> is more
appropriate for storing the column indices with missings in a certain row.
Array of such maps or sets (like lpRowValues and lpRowMissings in
ConstantDyadicCovariate), one for each row, then represents the whole
matrices. Such a representation is not only space-efficient, but also suitable
for fast iteration over non-zero values in a certain row. To facilitate an
equally fast iteration over non-zero values in a certain column, we maintain
analogous structures for columns in lpColumnValues and lpColumnMissings.
The following methods in ConstantDyadicCovariate exploit this internal
representation to provide fast iterators over non-zero non-missing values of
in a given row or column:

� DyadicCovariateValueIterator rowValues(int i)

� DyadicCovariateValueIterator columnValues(int j)

15

Example

The following example multiplies the row i with the column j.

DyadicCovariateValueIterator rowIter =

pCovariate->rowValues(i);

DyadicCovariateValueIterator columnIter =

pCovariate->columnValues(j);

double product = 0;

while (rowIter.valid() && columnIter.valid())

{

if (rowIter.actor() < columnIter.actor())

{

rowIter.next();

}

else if (rowIter.actor() > columnIter.actor())

{

columnIter.next();

}

else

{

product += rowIter.value() * columnIter.value();

rowIter.next();

columnIter.next();

}

}

Finally, we should note that the ChangingDyadicCovariate class has the same
functionality as discussed above for constant dyadic covariates, except that
the methods expect the observation to be specified as an additional
parameter and that the dimensionality of the whole storage increases by
one.

5.4 Composition Change

If a set of actors is not constant over time because actors join or leave, it
has to be specified in the Data object. The following methods of the Data

16

class should be used for this purpose:

� void active(const ActorSet * pActorSet,
int actor ,
int observation,
bool flag) – specifies if the given actor of the given set of actors is

active at the given observation.

� void addJoiningEvent(int period ,
const ActorSet * pActorSet,
int actor ,
double time) – stores the time of a period when an actor joins a

certain actor set.

� void addLeavingEvent(int period ,
const ActorSet * pActorSet,
int actor ,
double time) – stores the time of a period when an actor leaves a

certain actor set.

The time values in the above methods have to lie in the range [0, 1] with
values 0 and 1 representing the start and end point of the period,
respectively. For example, assuming that the length of a period is one year,
the following code snippet expresses the fact that and the student i leaves
the university 3 months after the second observation and resumes the
studies half year after the third observation (remember that the indices of
observations start with 0):

for (int k = 0; k < observationCount; k++)

{

if (k == 2)

{

pData->active(pStudents, i, k, false);

}

else

{

// This is not strictly necessary,

// as the actors are active by default

17

pData->active(pStudents, i, k, true);

}

}

pData->addLeavingEvent(1, pStudents, i, .25);

pData->addJoiningEvent(2, pStudents, i, .5);

The details about every exogenous event are collected in instances of the
ExogenousEvent class, which are stored in sets of type EventSet, one for each
period. These sets can be accessed with the method pEventSet(int period).

5.5 Accessor Methods

Once a Data object has been populated, its sub-objects can be accessed in
two ways. A single object can be looked up by its name, like in the
following examples.

const ActorSet * pStudents = pData->pActorSet("students");

OneModeNetworkLongitudinalData * pFriendshipData =

pData->pOneModeNetworkData("friendship");

If some operation is to be performed for all sub-objects of a certain type,
one can obtain a reference to the vector, where the subobjects of this type
are stored by the Data class. For example, the values of all constant
covariates can be printed as follows:

const vector<ConstantCovariate *> & rCovariates =

pData->rConstantCovariates();

for (unsigned i = 0; i < rCovariates.size(); i++)

{

ConstantCovariate * pCovariate = rCovariates[i];

cout << pCovariate->name() << endl;

for (int j = 0; j < pCovariate->pActorSet()->n(); j++)

{

18

cout << j << " " << pCovariate->value(j) << endl;

}

}

6. Models

6.1 Effects in the rate function

Effects in the rate function are implemented as parts of the classes
DependentVariable and StatisticCalculator .

A special class of rate effects for behavior are the diffusion effects. These
are implemented in a special class DiffusionRateEffect.

To calculate the waiting times for the simulations, which implies the choice
of variable and actor, class DependentVariable uses function calculateRate

which calls functions constantRates, structuralRate, diffusionRate,
behaviorVariableRate, updateCovariateRates, and settingRate. The function
diffusionRate uses values computed by class DiffusionRateEffect.

The scores for the rate parameters are computed in function
calculateScoreSumTerms.

The estimation statistics are computed in class StatisticCalculator .

This architecture is not very transparent for the diffusion effects. These
have some duplications, because class DiffusionRateEffect is used neither for
calculateScoreSumTerms nor for StatisticCalculator . This could be improved in
the future.

6.2 Effects in the objective function

Effects for the objective function are defined by the class Effect, with
derived classes NetworkEffect and BehaviorEffect. Network effects are
implemented either as (general) effects or as generic network effects,
explained in the next section. The construction as generic network effects is
not always possible, but even when it is possible, this implementation was
not always chosen (the choice was rather arbitrary).

Section 18 of the RSiena manual contains a tutorial-style description of
general effects.

19

6.2.1 Generic Network Effects

The Basic Idea. The class GenericNetworkEffect may be used to specify
an effect for a network variable x(r) if its evaluation and endowment
statistics can be conveniently defined as∑

i 6=j

x
(r)
ij fij(y)

and ∑
i 6=j

(1 − x
(r)
ij)x

(r)obs
ij (tm)fij(y

obs(tm)),

respectively. This function fij(y) as well as the change contribution ∆X
kij(y)

should be specified as instances of the AlterFunction class and passed as
parameters when creating the effect.

We illustrate the overall process by defining the density effect
snet
i1 (x) =

∑
j xij as a generic network effect.

1. First, let us define the change contribution function by creating a
subclass of AlterFunction. Since in our case ∆X

1ij(y) = 1, we will name
the new class accordingly:

class ConstantOneFunction : public AlterFunction

{

virtual double value(int alter);

};

The method value should be overridden to return the value of the
function for the given alter j. The ego i is implicit and can be
accessed by the method AlterFunction::ego(). Here is the trivial
implementation of the value method:

double ConstantOneFunction::value(int alter)

{

return 1;

}

20

2. Similarly, the tie statistic fij(y) should be defined. However, since in
our case fij(y) = ∆X

1ij(y) = 1, we can reuse the same class
ConstantOneFunction.

3. Now that the necessary alter functions are implemented, we are ready
to create the generic effect:

AlterFunction * pChangeContribution =

new ConstantOneFunction();

AlterFunctoin * pTieStatistic =

new ConstantOneFunction();

Effect * pEffect =

new GenericNetworkEffect(pEffectInfo,

pChangeContribution,

pTieStatistic);

If the change contribution and the tie statistic functions are the same
(as for the density effect), the alternative constructor with a single
function is recommended:

Effect * pEffect =

new GenericNetworkEffect(pEffectInfo,

new ConstantOneFunction());

The Anatomy of Alter Functions. As indicated above, the key
method of the AlterFunction class is the method value that has to be
implemented by all concrete functions. However, there is a couple of other
methods that may be necessary to override.

� initialize(pData, pState, period , pCache) – This method is called before
evaluating the function for a specific period of the observed data and
a fixed state of the dependent variables. Also, functions may take
advantage of the given cache object to speed up the overall processing
time by avoiding repetitive computation of common values, like the
number of two-paths, etc. The following example shows the
initialization method in the class NetworkAlterFunction, which is the
base class for all alter functions defined on a network:

21

void NetworkAlterFunction::initialize(const Data * pData,

State * pState,

int period,

Cache * pCache)OneModeNetworkAlterFunction

{

// Do not forget to initialize the base class

AlterFunction::initialize(pData,

pState,

period,

pCache);

// Obtain the right network from the state

this->lpNetwork = pState->pNetwork(this->name());

// Store the corresponding network cache object

this->lpNetworkCache =

pCache->pNetworkCache(this->lpNetwork);

}

� preprocessEgo(ego) – This method is called before calling the value

method for any specific alters. The base implementation simply stores
the ego, which can be later accessed by using the ego method. The
derived alter functions may override this method to do some other
ego-related preprocessing.

Important Alter Functions. There is a whole hierarchy of alter
functions implemented in src/model/effects/generic, and one should
review the existing functions before writing his or her own.

� NetworkAlterFunction – This is the base class for all functions defined
on a network such as InDegreeFunction, InStarFunction, etc. The name of
the network should be given as an argument on the construction of
the function. The following methods are defined for convenient use in
the actual derived functions:

– Network * pNetwork() – Returns the current network this function
is computed for.

22

– NetworkCache * pNetworkCache() – Returns the corresponding
cache object for efficient calculations.

� OneModeNetworkAlterFunction – This is the base class for all functions
defined on a one-mode network. It is a subclass of
NetworkAlterFunction and does nothing more than throwing an
exception if the underlying network is not a one-mode network.

� ProductFunction – A composite function defined as a product of two
other alter functions.

� DifferenceFunction – A composite function defined as a difference
between two other alter functions.

� ConditionalFunction – A composite function returning the value of
either of two other alter functions depending on the value of a certain
predicate.

Composite Functions. Composite functions like ProductFunction and
DifferenceFunction may be used to define new alter funtions without having
to implement new classes. For example, consider the mutuality effect with
the network W on the network X, which is formally defined as
snet
ik (y) =

∑
j xijwijwji. The change contribution is ∆X

kij(y) = wijwji, which
is not implemented directly as an alter function. However, there is a
function OutTieFunction that returns the values wij of the outgoing ties and
an analogous function InTieFunction that returns the values wji of the
incoming ties. These two atomic functions can be easily combined in a
product function. Assuming that W is a friendship network, the complete
code defining the mutuality effect looks like this:

pEffect = new GenericNetworkEffect(pEffectInfo,

new ProductFunction(

new OutTieFunction("friendship"),

new InTieFunction("friendship")));

Conditional Functions. The function ConditionalFunction is another type
of composite functions, which takes three parameters in its constructor – a
predicate and two alter functions. The value of the conditional function

23

depends on the value of the predicate. If the predicate holds for a certain
alter j, the if-function is evaluated and its value is returned as the value of
the conditional function. If the predicated does not hold then the
else-function is evaluated. The predicate has to be an object of the
AlterPredicate class. This class functions very much like AlterFunction except
that the type of the value method is bool instead of double.

24

