The co-evolution of one-mode and two-mode networks

Tom A.B. Snijders

University of Groningen University of Oxford

June 2023

One-mode and two-mode networks

The combined consideration of one-mode and two-mode networks is very fruitful because it allows to consider the mutual dependencies between (one-mode) relational networks and (two-mode) activities and/or memberships and/or cognitions and/or internal structure and/or details of behavioral tendencies and/or

These slides are about the co-evolution of one-mode and two-mode networks according to the Stochastic Actor-oriented Model.

One-mode - two-mode dependencies

Two-mode networks have less structure, so that there are fewer effects.
Within-dyad dependencies are undefined.
Actor-level dependencies are meaningful.
mixed activity
mixed popularity

\Rightarrow activity

Closed triads are impossible in bipartite networks; but they are possible as mixed patterns.

One-with-two-mode triads.
One-mode tie \Rightarrow
two-mode agreement
'I go to places where my friends are'
association-based affiliation closure

Two-mode agreement \Rightarrow one-mode tie
'Those who go to the same places become friends'
affiliation-based focal closure

The two different ways in which this mixed triadic closure can occur implies that, analogous to the distinction influence \leftrightarrow selection in network-behavior co-evolution, in the co-evolution of a one-mode and a two-mode network there is the distinction between focal closure and affiliation closure, also called affiliation-based closure and association-based closure.
(One-mode: association;
two-mode: affiliation, focus).
E.g., Easley and Kleinberg (2010, Section 4.3); Lomi and Stadtfeld (2014).

Example 1: Glasgow friends and pastimes

Example:

West of Scotland 11-16 Study; West et al. (1996 and later).
One school year group from a Scottish secondary school starting at age 12-13 years, monitored over more than 2 years; total of 160 pupils, sociometric \& behavior questionnaires at three moments, at appr. 1 year intervals.

First network: friendship;
second network (two-mode): activities.
covariates:
gender, smoking of parents and siblings (binary), money available (range 0-40 pounds/week).
wave 1
girls: circles boys: squares
node size: pocket money

$$
\begin{array}{r}
\text { color: top }=\text { drinking } \\
\text { bottom }=\text { smoking } \\
\text { (orange }=\text { high) }
\end{array}
$$

wave 2
girls: circles
boys: squares
node size: pocket money
color: top = drinking bottom = smoking (orange = high)

Example 1 Descriptives

Descriptives for friendship

Three waves \sim two periods.
Average degrees 3.7; 3.5; 3.6.

Amount of stability in network ties measured by Jaccard coefficient

$$
J=\frac{N_{11}}{N_{01}+N_{10}+N_{11}}
$$

where $N_{h k}=$ number of tie variables
with value h at one wave and value k at the next.
$J=0.30 ; 0.35$ for the two periods.

Descriptives for leisure activities

Three waves \sim two periods.
Average degrees 4.7; 4.0; 3.9.

Amount of stability in activities also measured by Jaccard coefficient

$$
J=\frac{N_{11}}{N_{01}+N_{10}+N_{11}}
$$

where $N_{h k}=$ number of tie variables
with value h at one wave and value k at the next.
$J=0.51$ for both periods.

Second mode: Leisure time activities

	daily	weekly	monthly	less
I listen to tapes or CDs	$\mathbf{3 8 8}$	23	5	16
I look around in the shops	$\mathbf{6 5}$	290	48	30
I read comics, mags or books	$\mathbf{1 8 6}$	121	65	60
I go to sport matches	$\mathbf{3 0}$	$\mathbf{1 1 3}$	90	200
I take part in sports	$\mathbf{2 1 8}$	117	30	68
I hang round in the streets	$\mathbf{2 1 6}$	64	26	125
I play computer games	$\mathbf{1 5 7}$	109	45	122
I spend time on hobby (e.g. art, instrument)	$\mathbf{1 1 4}$	113	36	170
I go to something like B.B., Guides or Scouts	$\mathbf{3 6}$	$\mathbf{8 1}$	1	314
I go to cinema	$\mathbf{1 1}$	$\mathbf{8 1}$	269	71
I go to pop concerts, gigs	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{9 2}$	326
I go to church, mosque or temple	$\mathbf{2}$	$\mathbf{5 2}$	$\mathbf{1 0}$	368
I look after a pet animal	$\mathbf{1 9 7}$	25	6	203
I go to dance clubs or raves	$\mathbf{1 5}$	$\mathbf{4 4}$	$\mathbf{1 0 4}$	266
I do nothing much (am bored)	$\mathbf{3 7}$	39	24	331

Number of students participating in each of a list of activities, summed over three waves, for Glasgow data. Bold-faced are categories counted as a tie.

Results

The table of results is distributed over 4 pages:

- friendship: the basis
- friendship: effects of leisure activities
- leisure: the basis
- leisure: sex-related specializations.

Friendship: basic

Effect	par.	(s.e.)
rate period 1	12.383	(1.217)
rate period 2	9.870	(1.132)
Friendship: endogenous effects		
outdegree (density)	$-3.633^{* * *}$	(0.258)
reciprocity	$3.337^{* * *}$	(0.311)
GWESPFF: creation $(\alpha=0.69)$	$3.350^{* * *}$	(0.301)
GWESPFF: maintenance $(\alpha=0.69)$	0.273	(0.385)
indegree - popularity	$-0.079^{* * *}$	(0.020)
outdegree - activity	$0.121^{* * *}$	(0.036)
reciprocated degree - activity	$-0.303^{* * *}$	(0.071)
indegree - activity	0.001	(0.056)
Covariate effects		
girls alter	-0.124	(0.085)
girls ego	0.032	(0.086)
same gender	$0.446^{* * *}$	(0.082)

Friendship: effects of leisure activities

Effect	par.	(s.e.)
Friendship: effects of leisure		
leisure outdegree popularity	-0.046	(0.037)
leisure outdegree activity	-0.087^{*}	(0.037)
affiliation-based closure	$0.213^{* *}$	(0.073)

Leisure: basic

Effect	par.	(s.e.)
Activities	4.386	(0.293)
rate period 1	4.254	(0.313)
rate period 2	$-2.149 * * *$	(0.333)
Endogenous effects of activities		
outdegree (density)	$0.0272^{* * *}$	(0.0073)
4-cycles	$0.0269^{* *}$	(0.0084)
indegree - popularity	$0.389^{* * *}$	(0.086)
outdegree - activity	$-0.0128^{* * *}$	(0.0027)
out-in degree assortativity		
Effects of friendship on activities		
friendship indegree activity	0.001	(0.039)
friendship outdegree activity	-0.148^{*}	(0.073)
association-based closure	$0.351^{* * *}$	(0.062)

Leisure: two-mode sex homophily

Homophily in two-mode networks is treated in
https://www.stats.ox.ac.uk/~snijders/siena/Twomode_s.pdf

Effect	par.	(s.e.)
Effects of sex on activities		
girls ego	$-0.870^{* *}$	(0.313)
4-cycles among girls	0.0027	(0.0065)
girls \times outdegree - activity	0.066^{*}	(0.029)
indegree - popularity within girls	0.0242^{*}	(0.0098)
indegree - popularity within boys	0.0091	(0.0103)

Leisure homophily only for girls!
The leisure-only model did show leisure homophily also for boys.
This is 'explained away' here by association-based closure.

Example 2: American high school

Other example, based on Fujimoto, Snijders, \& Valente (NWS, 2018).
US high school, $X=$ friendship, $Z=$ sport activities.

Descriptives

Two waves \sim one period.
$n=309$ students, $m=16$ sports,
$X=$ friendship, $Z=$ sport participation in past 12 months.
Average friendship degrees 6.6, 6.2; Jaccard similarity 0.25 .

Average sport out-degrees 1.2, 1.1; Jaccard similarity 0.44 .

Again, four pages of results.

Results: friendship (1)

Effect	par.	(s.e.)
outdegree	$-3.519^{* * *}$	(0.413)
reciprocity	$2.775^{* * *}$	(0.171)
transitive triplets	$0.398^{* * *}$	(0.032)
transitive reciprocated triplets	$-0.293^{* * *}$	(0.071)
3-cycles	0.101	(0.064)
transitive ties	$0.425^{* * *}$	(0.073)
indegree - popularity	$0.022^{* * *}$	(0.005)
outdegree - popularity	$-0.065^{* * *}$	(0.009)
outdegree - activity	0.011	(0.023)
outdegree - activity $(\sqrt{ })$	0.154	(0.187)
reciprocal degree - activity	$-0.079^{* * *}$	(0.015)
outdegree positive	-0.776	(0.763)
gender (F) alter	-0.035	(0.041)
gender (F) ego	0.093^{*}	(0.042)
same gender	$0.363^{* * *}$	(0.047)
same gender \times reciprocity	$-0.442^{* *}$	(0.136)

Results: friendship (2)

Effect	par.	(s.e.)
hispanic alter	0.013	(0.065)
hispanic ego	-0.045	(0.063)
same hispanic	0.144^{*}	(0.064)
grade alter	-0.021	(0.022)
grade ego	-0.026	(0.023)
grade similarity	$0.317^{* * *}$	(0.088)
same class	$0.564^{* * *}$	(0.091)
same class \times reciprocity	-0.210	(0.154)
same class \times same gender	-0.041	(0.107)

Results: sports

Effect	par.	(s.e.)
outdegree	$-2.369^{* * *}$	(0.613)
4-cycles	0.041	(0.030)
indegree - popularity	$0.020^{* *}$	(0.007)
outdegree - activity	-0.029	(0.102)
outdegree positive	$-2.116^{* * *}$	(0.592)
gender ego (F)	0.023	(0.184)
two-mode gender similarity	$1.750^{* * *}$	(0.416)
4-cycles same gender	-0.085^{*}	(0.039)
hispanic ego	$-0.599^{* *}$	(0.222)
grade ego	$0.299^{* *}$	(0.115)

Strong evidence for homophily!

Results: cross-networks

Effect	par.	(s.e.)
Sports \Rightarrow Friendship		
outdegree $(\sqrt{ })$ sports activity	$-0.106^{* *}$	(0.038)
affiliation-based closure	$0.159^{* *}$	(0.057)

Friendship \Rightarrow Sports

friendship outdegree $(\sqrt{ })$ activity (eval.)	0.171	(0.468)
friendship outdegree $(\sqrt{ })$ activity (maint.)	-1.386	(1.063)
association-based closure (evaluation)	0.442^{*}	(0.187)
association-based closure (maintenance)	0.646	(0.452)

Those mentioning more sports mention fewer friends;
shared sport activities lead to friendship;
friendship leads to shared sport activities
(not different for creating or maintaining activities).

Discussion

\Rightarrow See Snijders, Lomi \& Torlò in Social Networks, 2013 Fujimoto, Snijders \& Valente (Network Science, 2018), Lomi \& Stadtfeld (KZfSS, 2014).
\Rightarrow It's a multilevel issue (but not nested): ties, dyads, actors, triads, subgroups, ...
\Rightarrow Testing cross-network dependencies in dynamics of multiple networks gives interesting new possibilities for hypothesis testing.
\Rightarrow Elaborated along the lines of actor-based modeling.
\Rightarrow Compared to modeling dynamics of single networks, this approach attenuates the Markov assumption by extending the state space to a multiple network.
\Rightarrow New perspectives possible by combining one-mode and two-mode networks.
\Rightarrow The method is available in RSiena.
This works for a small number (e.g., 2-6) of networks, and a limited number of actors (up to a few hundred).
\Rightarrow If there are implication relations between the networks, e.g., two networks might be mutually exclusive, or one might be a sub-network of the other, then this constraint is observed, noted in the print01Report, and respected in the simulations.
This gives possibilities for networks with valued ties by using different dichotomies.

